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Abstract

Explaining the decision-making process of ma-001
chine learning models is crucial for ensuring002
their reliability and fairness. One popular expla-003
nation form highlights key input features, such004
as i) tokens (e.g., Shapley Values and Integrated005
Gradients), ii) interactions between tokens (e.g.,006
Bivariate Shapley and Attention-based meth-007
ods), or iii) interactions between spans of the008
input (e.g., Louvain Span Interactions). How-009
ever, these explanation types have only been010
studied in isolation, making it difficult to judge011
their respective applicability. To bridge this012
gap, we develop a unified framework that fa-013
cilitates a direct comparison between highlight014
and interactive explanations comprised of four015
diagnostic properties1. We conduct an exten-016
sive analysis across these three types of input017
feature explanations–each utilizing three differ-018
ent explanation techniques–across two datasets019
and two models, and reveal that each explana-020
tion has distinct strengths across the different021
diagnostic properties. Nevertheless, interactive022
span explanations outperform other types of023
input feature explanations across most diagnos-024
tic properties. Despite being relatively under-025
studied, our analysis underscores the need for026
further research to improve methods generat-027
ing these explanation types. Additionally, inte-028
grating them with other explanation types that029
perform better in certain characteristics could030
further enhance their overall effectiveness.031

1 Introduction032

Input feature explanations reveal how a model033

makes decisions based on a specific input. Among034

these, the most widely used explanation type is035

Token Explanations (TokenEx), which for Natu-036

ral language Understanding tasks provide impor-037

tance scores for the tokens of the input, using meth-038

ods such as Shapley Values (Lundberg and Lee,039

2017) and Integrated Gradients (Sundararajan et al.,040

2017). However, for complex reasoning tasks that041

1We will make the code available after acceptance.

A man playing guitar  on stage.

A man playing banjo   on the floor.

Highlight Token Explanation
Token Interactive Explanation

Span Interactive Explanation

Contradiction

Figure 1: An example of the three types of Input Feature
Explanations on an instance from the SNLI dataset,
with their two most important pieces of explanation
(token for TokenEx, token tuple for TokenIntEx,
span tuple for SpanIntEx, correspondingly).

require reasoning across multiple pieces of text, 042

e.g., Fact Checking is performed given a claim 043

and evidence, Natural Language Inference is per- 044

formed given a premise and a hypothesis, Token 045

Explanations can be insufficient to capture the rela- 046

tions employed between the different parts of the 047

input. To this end, Token Interactive Explanations 048

(TokenIntEx) are proposed as another explana- 049

tion type that provides importance scores for in- 050

teractions between two tokens of the input with 051

methods such as Bivariate Shapley (Masoomi et al., 052

2022) and Layer-wise Attention Attribution (Ye 053

et al., 2021). Further, to enhance the semantic 054

coherence of these interactive explanations, Span 055

Interactive Explanations (SpanIntEx) is an ex- 056

planation type that provides importance scores for 057

interactions across tuples of input spans, e.g., gener- 058

ated by Louvain community detection (Ray Choud- 059

hury et al., 2023). Figure 1 showcases these three 060

types of input feature explanations. 061

It is crucial to develop rigorous and comprehen- 062

sive evaluation frameworks to ensure the principled 063

selection of the most suitable explanation in a prac- 064
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tical application (Yu et al., 2024) and systematic065

progress in the development of different types of066

explanations (Atanasova et al., 2022; Jolly et al.,067

2022). However, these three types of input feature068

explanations have typically been studied in isola-069

tion, where explanation methods of the same type070

are compared (Atanasova et al., 2020a; DeYoung071

et al., 2020; Janizek et al., 2021; Ray Choudhury072

et al., 2023). Moreover, evaluations of interactive073

explanations have been restricted to one property.074

To address these gaps, we develop a unified frame-075

work that facilitates a direct comparison between076

highlight and interactive input feature explanations077

on a suite of four diagnostic properties. Using the078

framework, we then perform an extensive empirical079

analysis of the properties of existing explanation080

methods across all three explanation types.081

Unified Evaluation Framework. Our unified082

evaluation framework consists of four essential di-083

agnostic properties – Faithfulness, Agreement with084

Human Annotation, Simulatability, and Complex-085

ity. They are the most widely used for TokenEx086

(Nauta et al., 2023) and include the only property087

used for interactive explanations – Faithfulness.088

Faithfulness (Chen et al., 2020, 2021; Ray Choud-089

hury et al., 2023) measures the extent to which090

explanations accurately reflect the reasons used091

by the model in its predictions. Agreement with092

Human Annotation (Atanasova et al., 2020a) evalu-093

ates whether explanations exhibit an inductive bias094

akin to human reasoning, potentially enhancing095

their plausibility to end users. Simulatablity (Pruthi096

et al., 2022) estimates whether the explanations097

are useful to an agent for replicating the model’s098

decisions. Finally, Complexity (Bhatt et al., 2021)099

evaluates whether the explanations are easy to com-100

prehend. In the unified evaluation framework, we101

further extend the four properties to facilitate their102

application and comparison across all three expla-103

nation types (§2).104

Extensive Empirical Analysis of Input Fea-105

ture Explanations. We conduct an extensive anal-106

ysis across two different tasks and language models,107

and three different explanation techniques for each108

input feature explanation type. Our findings indi-109

cate that TokenEx exhibit greater Comprehensive-110

ness, and SpanIntEx – Sufficiency. Addition-111

ally, SpanIntEx and TokenIntEx align more112

closely with human annotations at the token level113

compared to TokenEx. Moreover, SpanIntEx114

demonstrate the highest interaction overlap with hu-115

man annotations. Further, SpanIntEx are found 116

to be most beneficial for Simulatability. Finally, our 117

results suggest that SpanIntEx and TokenEx 118

are easier to comprehend. 119

Overall, our analysis highlights the strengths 120

of each explanation type across various diagnos- 121

tic properties, with SpanIntEx generally outper- 122

forming others on most measures. However, we ob- 123

serve a trade-off between Comprehensiveness and 124

plausibility, particularly with SpanIntEx, under- 125

scoring the need for methods that enhance both. Fu- 126

ture research could explore integrated approaches 127

that combine explanation types to optimize perfor- 128

mance across all diagnostic properties. 129

2 A Unified Evaluation Framework for 130

Highlight Explanations 131

To systematically compare feature attribution ex- 132

planations of different types, we present a unified 133

framework comprised of four widely employed di- 134

agnostic properties: Faithfulness, Agreement with 135

Human Annotations, Simulatability, and Complex- 136

ity. This section formally introduces them and out- 137

lines the extensions that allow for their application 138

across different input feature explanation types. 139

2.1 Preliminaries 140

We start with a dataset D, and a model M fine- 141

tuned on D. An instance x ∈ D is com- 142

prised of two parts, e.g., a claim and an ev- 143

idence, the first consisting of m tokens, and 144

the second – of n tokens. We apply an ex- 145

planation attribution method AE of type E ∈ 146

{TokenEx,TokenIntEx,SpanIntEx} to M , 147

and each x ∈ D: AE(M,x) = {exk, axk|k ∈ 148

[0, s− 1]}, where exk is a token/pair of tokens/pair 149

of token spans from the input and axk denotes its 150

importance score. k is the importance ranking 151

of the corresponding piece of explanation. s is 152

an upper limit for the number of most important 153

pieces of explanation for an instance, such that: 154

s ∈ [1,m + n] for TokenEx, s ∈ [1,m · n] for 155

TokenIntEx, and for SpanIntEx s varies for 156

each instance with s ∈ [1, f ], f < m! · n!. De- 157

pending on the explanation type E, exk can con- 158

sist of: one token xi for TokenEx, i ∈ [0,m + 159

n− 1], one token pair (xp, xq) for TokenIntEx, 160

where p ∈ [0,m − 1] and q ∈ [m,m + n − 161

1], one span pair ((xs, . . . , xs+l1), (xt, . . . , xt+l2)) 162

for SpanIntEx, where s, s+ l1 ∈ [0,m− 1] and 163

t, t+ l2 ∈ [m,m+ n− 1]. 164
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Considering a particular threshold for the num-165

ber of most important explanation pieces s, we166

compute the total set of input tokens involved in167

the presented explanation for x:168

TAE ,M (x, s) = {xi|xi ∈ exk, k ∈ [0, s− 1]} (1)169

However, as noted above, the maximum possible170

value for s can vary across different types of input171

feature explanations. Additionally, the number of172

tokens included in the top-k important explanations173

can differ substantially among explanation types –174

in top-1 we can have: 1 token for TokenIntEx, 2175

tokens for TokenIntEx, and more than 2 tokens176

for SpanIntEx. This variability makes it diffi-177

cult to compare results across different explanation178

types. To address this problem, we propose exten-179

sions for each of the studied diagnostic properties180

that result in unified diagnostic properties which181

can be used for a direct comparison of the different182

types of input feature explanations.183

2.2 Faithfulness184

Faithfulness (DeYoung et al., 2020) assesses185

whether explanations accurately reflect the model’s186

decision-making process. It involves two aspects187

– Sufficiency and Comprehensiveness – measured188

as the number of the model’s prediction changes189

after keeping (SP) or omitting (CP) k of the most190

important portions of the input2:191

CP (x,AE , k) =

{
0, if f(x− TAE ,M (x, k)) = f(x)
1, otherwise

}
(2)192193

SP (X,AE , k) =

{
1, if f(TAE ,M (x, k)) = f(x)
0, otherwise

}
(3)194

To take different thresholds k, we average over195

k ∈ [0, s = m+ n− 1]. We then also average the196

results across instances within D to compute the197

final Comprehensiveness and Sufficiency scores:198

CompAE =

∑|D|
x∈D

∑s
k=0 CP (x,AE , k)

s ∗ |D| (4)199

200

SuffAE =

∑|D|
x∈D

∑s
k=0 SP (x,AE , k)

s ∗ |D| (5)201

Unified Faithfulness. To facilitate the com-202

parison of faithfulness scores, we introduce a dy-203

namic threshold θx,k. It represents the number204

of unique tokens used for a perturbation on x,205

same across explanation methods of all explana-206

tion types. Since top-k explanations for AE of type207

2Details about how the tokens are omitted or kept in the
input sequences can be found in Appendix A.

SpanIntExtypically contain more tokens than 208

for TokenEx or TokenIntEx, we set the num- 209

ber of unique tokens used for perturbations across 210

the explanation methods of all types to: 211

θx,k =
∣∣TASpanIntEx,M (x, k)

∣∣ (6) 212

Thus, θx,k becomes a dynamic threshold that adapts 213

based on each instance’s top-k explanation to- 214

kens from ASpanIntEx. We then adjust the num- 215

ber of top-k explanations selected from ATokenEx 216

and ATokenIntEx, kATokenEx and kATokenIntEx , corre- 217

spondingly, to result in the same number of per- 218

turbed tokens θx,k: 219∣∣TATokenEx,M (x, kATokenEx(x))
∣∣ = θx,k (7) 220

221∣∣TATokenIntEx,M (x, kATokenIntEx(x))
∣∣ = θx,k (8) 222

Furthermore, a Random baseline is established, 223

where the tokens for perturbation are selected ran- 224

domly to match the average θx,k across D. 225

2.3 Agreement with Human Annotations 226

Agreement with Human Annotations has been used 227

to assess the overlap between generated and human- 228

annotated explanations, which can indicate the 229

plausibility of the generated explanations to end 230

users. For E = TokenEx, the measure is com- 231

puted by calculating a precision score for the top-k 232

most important explanations compared to the gold 233

human annotations (Atanasova et al., 2020a). 234

For E = TokenEx, axi , i ∈ [1,m + n] is the 235

attribution score of ith most important explana- 236

tion for x. s = m + n is the number of expla- 237

nations extracted from x. Corresponding to each 238

explanation’s attribution score, s thresholds are set, 239

forming the threshold list ωAE
(x) = [ax0 , ..., a

x
s ]. 240

By selecting explanations with higher attribution 241

scores than each threshold in ωAE
(x), s targeted ex- 242

planation sets are obtained, where CAE
(x, i){exj : 243

axj <= axi } represents the set for the ith thresh- 244

old, axj is the attribution score of token exj for 245

E = TokenEx. Comparing these sets with the 246

golden explanation set eG, s precision-recall pairs 247

Pi/Ri(x, e
G, AE) can be derived. Average Preci- 248

sion (AP) is then obtained by weighting Pi with 249

the corresponding Ri increase: 250

Pi/Ri(x, e
G, AE) = Pre/Rec(CAE (x, i), eG) (9) 251

252
APAE (x, eG) =

∑s
i=0(Ri −Ri−1) ∗ Pi (10) 253

Finally, Mean AP (MAP) is calculated for all x∈ 254

D: 255

MAPAE =

∑|D|
x∈D APAE (x, eG)

|D| (11) 256
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Unified Agreement with Human Annotation257

Measure. For a fair comparison between the dif-258

ferent types of explanations, the thresholds ωAE
(x)259

for including the same number of tokens across260

the explanation methods of different types fol-261

lows the procedure set for the Unified Faithful-262

ness (§2.2). In particular, we start with the thresh-263

olds set for the SpanIntExmethod, and adjust264

the thresholds for the TokenEx/TokenIntEx265

methods to reach the same number of tokens. Fur-266

thermore, we measure Agreement with Human267

Annotations at the interaction level for the gold268

SpanIntEx/TokenIntEx explanations and at269

the token level for gold TokenEx explanations.270

Interaction-level Agreement with Human271

Annotations. For a fair comparison between272

TokenIntEx and SpanIntEx methods, we273

adapt MAPTokenEx to the interaction level. Specif-274

ically, we compute the mean average preci-275

sion (Eq. 11) w.r.t. the human-annotated276

TokenIntEx/SpanIntEx sets.277

Token-level Agreement with Human Annota-278

tions. For a fair comparison between TokenEx279

and TokenIntEx/SpanIntEx methods, we280

extract tokens from TokenIntEx/SpanIntEx281

and compare them with tokens from golden282

TokenIntEx/SpanIntEx sets. To compute283

MAP for at token-level, we follow the similar284

procedure set for E = TokenEx (Eq. 11) with285

threshold lists ωATokenIntEx/SpanIntEx
(x), but the tar-286

geted sets CAEtoken
(x, i) contain tokens extracted287

from TokenIntEx/SpanIntEx methods. The288

golden set SAEtoken
(x) aggregates tokens from289

golden TokenIntEx/SpanIntEx sets.290

We also set a Random baseline, where the num-291

ber of randomly selected span pairs, token pairs,292

or tokens for each instance matches the average293

number of tokens per instance extracted with a294

SpanIntEx explanation method.295

2.4 Simulatability296

Simulatability was initially proposed to measure297

how accurately humans can predict a model’s out-298

puts based on its explanations (Chen et al., 2024;299

Hase et al., 2020). Previous studies have demon-300

strated that Simulatability can be approximated us-301

ing an automated agent model as a surrogate for hu-302

man understanding (Pruthi et al., 2022). Given the303

established positive correlation between Simulata-304

bility and human evaluation of explanation utility305

from previous research, we integrate the Simulata-306

bility scores obtained from an agent model with 307

different explanation types to approximate their 308

utility for humans. 309

Following existing work (Hase et al., 2020), we 310

train an agent model AM , sharing the same ar- 311

chitecture as the original model M , to simulate 312

M ’s predictions Y ′ using produced explanations. 313

During AM ’s training phase, we extract the top-k 314

explanations and incorporate them in the input. In 315

comparison, another agent model, AMO, is trained 316

without explanation guidance as a baseline on the 317

same training set. During the testing phase, the sim- 318

ulation accuracy of AM and AMO over the shared 319

dataset D is calculated3. The difference between 320

the accuracies is interpreted as the explanation’s 321

effect in enhancing the simulatability of M : 322

Sim = ACC(AM(D), Y ′)−ACC(AMO(D), Y ′) (12) 323

Unified Simulatability. To compare the simula- 324

tion utility of different explanation types, we train 325

a separate agent model AME , for each explana- 326

tion method AE , and calculate the corresponding 327

simulation performance on the common test set. 328

For a fair comparison across the different expla- 329

nation method types AE , we first ensure top-kE 330

explanations are presented for assisting the agent’s 331

training for AE , following the method in Section 332

2.2. This ensures that each model is exposed to the 333

same quantity of unique tokens from the different 334

explanation method types. 335

During the training phase of AM , we intro- 336

duce the explanations from AE into the learning 337

of AMAE
; we supplement x with top-kAE

expla- 338

nations instead so that the agent model will be 339

trained with the same mechanism whether the ex- 340

planations are provided or not, and each training 341

instance will contain the input sequence xAE
and 342

golden label Y ′ which is predicted by the original 343

model M . Specifically, we examine two different 344

ways of presenting the explanations as part of the 345

original input sequence, ISymbol and IText (see de- 346

tails in App. B.); all aim to ensure the explanations 347

of different types are inserted similarly. 348

At test time, the F1 scores of agent models AME 349

and AMO over D are calculated: 350

SFE = F1(AME(xE), Y
′), x ∈ D (13) 351

352
SFO = F1(AMO(x), Y

′), x ∈ D (14) 353

3While existing work (Hase et al., 2020) notes that incorpo-
rating natural language explanations in the testing phase could
leak the predicted label, we use only input feature explanations
that do not contain additional information.
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Note that the explanations from AE are also pro-354

vided to the input for the unseen instances for agent355

model AME . The final simulation metric then indi-356

cates how much this specific type of input feature357

explanation enhances the model’s simulatability:358

RSFE = SFE − SFO (15)359

2.5 Complexity360

Feature attribution explanations are designed to aid361

human understanding of a model’s reasoning over362

specific instances. However, since humans have363

a limited capacity to process large amounts of in-364

formation simultaneously, these explanations need365

to be easy to comprehend. Even if we select only366

the top-k attributions with the highest importance367

scores, they need to be distinctive as opposed to368

the attribution scores having a uniform distribution.369

Bhatt et al. (2021) propose to measure the complex-370

ity of a produced explanation with entropy (Rényi,371

1961) over the attribution scores of all the produced372

explanations by ATokenEx method:373

P (x, p) =
∣∣ax

p

∣∣ /∑m+n
q=1

∣∣ax
q

∣∣ (16)374
375

CL(x) = −
∑m+n

p=1 P (x, p) ln(P (x, p)) (17)376

m+n is the total number of generated ATokenEx ex-377

planations, and all explanations are considered for378

the complexity score computation. Higher entropy379

means different features have similar attribution380

scores, where the simplest explanation, with low381

entropy, would be concentrated on one feature.382

Unified Complexity. To ensure a fair compari-383

son across different types of explanation methods384

AE , we maintain consistency in the size of the cho-385

sen explanation lists across all AE for the same386

instance, denoted as kx, as the number of gener-387

ated ATokenEx/ATokenIntEx/ASpanIntEx explana-388

tions originally vary for the same x. The complex-389

ity score CLAE
(x, kx) of the top-kx explanation390

list under method AE is calculated as:391

PAE (x, kx, i) = |ax
i | /

∑kx
j=1

∣∣ax
j

∣∣ (18)392
393

CLAE (x, kx) = −
∑kx

i=1 PAE (x, kx, i) ln(PAE (x, kx, i))
(19)394

where axi /axj represent the i/jth highest attribution395

score from the explanation set for x.396

The final complexity score is an average of397

CLAE
(x, kx) across all x ∈ D:398

CLE =
∑|D|

x∈D CLE(x, kx)/|D| (20)399

Notably, kx is calculated from the number of ex-400

planations produced by method ASpanIntEx for x,401

which varies based on the span interaction extrac-402

tion method and is known only after generation.403

3 Experimental Setup 404

3.1 Datasets 405

We select the natural language inference dataset 406

SNLI (Bowman et al., 2015), where instances 407

consist of a premise, a hypothesis, and a label 408

y ∈ {entailment, neutral, contradiction}. 409

Additionally, we select the fact check- 410

ing dataset FEVER (Thorne et al., 2018; 411

Atanasova et al., 2020b), where instances 412

consist of a claim, an evidence, and a label 413

y ∈ {entailment, neutral, contradiction}4. 414

For generating the input feature explanations, we 415

sample 4000 instances from each train, dev, and 416

test set due to the computational requirements 417

especially pronounced for Shapley-based explana- 418

tions (Atanasova et al., 2020a). For the Agreement 419

with Human Annotations property, we employ 420

existing human explanation annotations for SNLI 421

and FEVER (see App. C). 422

3.2 Input Feature Explanation Methods 423

To generate importance scores, we first select three 424

common TokenEx explanation techniques – Shap- 425

ley (Lundberg and Lee, 2017), Attention (DeYoung 426

et al., 2020), and Integrated Gradients (IG, Sun- 427

dararajan et al. (2017)). For TokenIntEx, we 428

employ Bivariate Shapley (Masoomi et al., 2022), 429

Attention (Clark et al., 2019), and Layer-wise At- 430

tention Attribution (Ye et al., 2021). Notably, the 431

TokenIntEx techniques are the bivariate version 432

of the techniques used for generating TokenEx; 433

e.g. Layer-wise Attention Attribution uses IG. 434

Following Ray Choudhury et al. (2023), we ap- 435

ply the Louvain algorithm (Blondel et al., 2008) on 436

top of each of the three selected TokenIntEx to 437

generate importance scores for SpanIntEx meth- 438

ods, where the importance score of each span in- 439

teraction is averaged over the importance scores of 440

the token interactions within it. We will refer to 441

Shapley, Attention, and IG as the explanation base 442

types used for generating all types of input feature 443

explanations for brevity. See the details of gener- 444

ating all input feature explanations with different 445

explainability techniques in Appendix E. 446

3.3 Models 447

We use the BERT-base-uncased model (Devlin 448

et al., 2019) with 12 encoder layers, and the BART- 449

4We used the following FEVER dataset https://hugg
ingface.co/datasets/copenlu/fever_gold_e
vidence
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base-uncased model (Lewis et al., 2020) with 6450

encoder and 6 decoder layers, as common repre-451

sentatives of the encoder and the encoder-decoder452

Transformer architecture (Vaswani et al., 2017).453

Our choice is particularly influenced by the substan-454

tial computational requirements of the input feature455

explanations, especially pronounced for Shapley456

(Atanasova et al., 2020a). Additionally, our choice457

is guided by the need to directly access the mod-458

els’ internals for generating IG and Attention-based459

explanations. Furthermore, while our framework460

currently utilizes the said models, it is designed to461

be easily adaptable to other models or newly devel-462

oped explainability techniques, provided that there463

are more robust computational resources available.464

We fine-tune the base models on SNLI and465

FEVER and use them to generate explanations.466

Their performance on the test sets is shown in App.467

D. For the Simulation property, we follow existing468

work (Fernandes et al., 2022; Pruthi et al., 2022)469

and train simulator agent models (§2.4) with the470

same architectures as the base ones. Following471

Fernandes et al. (2022), we split the test set into472

train/dev/test for the training of the agent model.473

4 Results and Discussion474

We now present the results of our unified evalua-475

tion framework (§2) illustrated in Fig. 2. They in-476

clude explanation methods of types SpanIntEx,477

TokenIntEx, and TokenEx (§3.2), two models478

(§3.3), two datasets (§3.1), and three base expla-479

nation techniques per explanation type (§3.2). For480

Simulatability, we select the results of Isym, as this481

form avoids repeating the input text and increasing482

the input size substantially. For Agreement with483

Human Annotations, we select the Token-level re-484

sults as they are present for all types of explana-485

tions. App. F lists detailed results per property.486

4.1 Faithfulness487

Unified Comprehensiveness. Across both datasets488

and models, TokenEx and TokenIntEx are489

identified as the most comprehensive explana-490

tion types, achieving the highest scores in 7/12 and491

5/12 cases, respectively. SpanIntEx, designed492

to enhance the semantic coherence of interactive493

explanations by including additional context, of-494

ten incorporates tokens that do not directly con-495

tribute to the model’s prediction, thus explaining496

its lower comprehensiveness scores. Compared to497

the random baseline, TokenEx and SpanIntEx498

always outperform it, while TokenIntEx mostly 499

underperforms it when based on IG. Across the 500

base explanation techniques, TokenEx performs 501

best when based on Attention for BERT and on 502

Shapley for BART, indicating that different base 503

explanation techniques can perform better for 504

different architectures. Both TokenIntEx and 505

SpanIntEx show optimal performance when 506

based on Shapley and Attention. Overall, the re- 507

sults indicate a stronger performance of Attention 508

and Shapley over IG across all explanation types. 509

Unified Sufficiency. SpanIntEx ranks as the 510

most sufficient explanation type in 7/12 cases, sur- 511

passing TokenEx, which performs well in only 512

3/12 cases. While contrary to SpanIntEx Com- 513

prehensiveness performance, we attribute this to 514

the semantic coherence of the extracted top spans, 515

which provide more meaningful information. We 516

note that while Sufficiency is highly desirable, 517

Comprehensiveness is not required in all down- 518

stream applications as end-users prefer simpler, 519

more general explanations with fewer causes (Tha- 520

gard, 1989). Unlike TokenEx, which consistently 521

outperforms the random baseline, TokenIntEx 522

and SpanIntEx struggle to outperform it on 523

FEVER, likely due to the longer input length, pos- 524

ing challenges for the explanations to accurately 525

unveil the model’s internal processes. The results 526

from different base explanation techniques show 527

no clear trends, indicating a significant variability 528

stemming from the specific dataset and model 529

architecture. 530

4.2 Agreement with Human Annotation 531

SpanIntEx and TokenIntEx show higher 532

agreement scores with human annotations than 533

TokenEx. Similarly, we find that SpanIntEx 534

consistently achieves higher agreement with hu- 535

man interaction-level annotators, especially when 536

based on Attention scores (see App. F). This in- 537

dicates that SpanIntEx is more plausible to 538

humans due to their enhanced semantic co- 539

herence. In contrast, TokenEx often scores 540

lower than the random baseline. Moreover, con- 541

sidering SpanIntEx’s lower performance in 542

terms of Comprehensiveness, there emerges a dis- 543

tinct trade-off between Comprehensiveness and 544

Agreement with Human Annotations. Across 545

the base explanation techniques, IG performs best 546

for the FEVER dataset; IG and Attention perform 547

best for SNLI. In addition, we find that for the 548

6



(a) SNLI dataset, BERT model. (b) SNLI dataset, BART model.

(c) FEVER dataset, BERT model. (d) FEVER dataset, BART model.

Figure 2: Unified evaluation framework (§2) results for all feature attribution methods (§3.2).

interaction-level agreement, TokenIntEx and549

SpanIntEx perform worst when based on Shap-550

ley. The lower agreement results for Shapley com-551

pared to its better comparative performance on552

Comprehensiveness, once again indicate an exist-553

ing trade-off between the two properties.554

4.3 Simulatability555

Our results show that SpanIntEx achieves556

the highest simulatability in 9/12 cases, help-557

ing the agent model accurately reproduce the558

original model’s predictions. This again under-559

scores the critical role of contextual information560

and enhanced semantic coherence provided by561

SpanIntEx explanations. Notably, providing562

SpanIntEx explanations to agents improves their563

ability to simulate the original model by up to 7.9564

F1 points compared to scenarios without explana- 565

tions. Among the base explanation techniques, IG 566

consistently performs best for SpanIntEx; other 567

techniques do not exhibit a clear trend. 568

4.4 Complexity 569

SpanIntEx and TokenEx generally achieve 570

similar complexity, which consistently remains 571

lower than those of TokenIntEx. This suggests 572

that TokenEx and SpanIntEx generate more 573

distinctive attribution scores, potentially mak- 574

ing them easier for humans to understand. Re- 575

garding the base explanation techniques, Attention 576

consistently yields the best complexity scores for 577

BERT across all explanation types. There is no 578

clear trend for BART. Additionally, as detailed in 579

App. F, TokenIntEx frequently underperform 580

7



the random baseline, highlighting its complexity.581

4.5 Overall582

In summary, we find that while TokenEx and583

TokenIntEx generally provide more compre-584

hensive insights, SpanIntEx performs better in585

terms of Sufficiency due to its enhanced semantic586

coherence (§4.1). This calls for better methods587

for generating SpanIntEx explanations that are588

both comprehensive and sufficient. Additionally,589

there is a trade-off between Comprehensiveness590

and Agreement with Human Annotations (§4.2),591

suggesting that the most faithful explanations might592

be less plausible to end users. This highlights the593

need for advanced methods to boost both the Com-594

prehensiveness and plausibility of SpanIntEx595

possibly leveraging the advantage of TokenEx596

explanations. Furthermore, SpanIntEx signifi-597

cantly improves simulatability by allowing agents598

to accurately replicate model decisions (§4.3),599

which is crucial for practical applications. Fi-600

nally, the complexity analysis (§4.4) shows that601

SpanIntEx and TokenEx are potentially easier602

to comprehend than TokenIntEx when consid-603

ering the importance score distribution.604

Overall, our results highlight the differences be-605

tween the different types of input feature explana-606

tions, with SpanIntEx generally outperforming607

others on most measures. As there is no one type608

that performs best on all diagnostic properties, we609

call for the development of combined methods that610

can leverage the strength of the different types of611

explanations and potentially lead to an overall im-612

provement of the explanation utility.613

5 Related Work614

Input Feature Explanations. Considerable re-615

search exists on extracting explanations for input616

data. Methods like perturbation-based attribution617

(e.g., Shapley (Lundberg and Lee, 2017)), attention-618

based methods (e.g., Attention (Jain and Wallace,619

2019; Serrano and Smith, 2019)), and gradient-620

based methods (e.g., Integrated Gradients (Sun-621

dararajan et al., 2017; Serrano and Smith, 2019))622

are prevalent for highlighting individual tokens. As623

individual tokens might be insufficient to explain624

the model, many attribution methods have been625

extended to bivariate forms (Masoomi et al., 2022;626

Janizek et al., 2021; Sundararajan et al., 2017; Ye627

et al., 2021) to capture input token interactions.628

More recent work has explored how interactions629

between groups of tokens collectively contribute 630

to model reasoning (Ray Choudhury et al., 2023; 631

Chen et al., 2021). Unlike other work where to- 632

ken groups might consist of tokens from arbitrary 633

positions, Ray Choudhury et al. (2023) introduces 634

a method to explicitly capture span interactions, 635

enhancing the comprehensiveness of explanations 636

by containing the entire spans. 637

Explanation Evaluation. For evaluating 638

TokenEx, DeYoung et al. (2020); Atanasova et al. 639

(2020a) propose metrics to measure how faith- 640

ful explanations are to the model’s inner reason- 641

ing. They also propose to assess the plausibil- 642

ity of explanations to humans by measuring the 643

agreement of TokenIntEx with human anno- 644

tations. To assess the utility of explanations to 645

humans, Pruthi et al. (2022) propose to use an 646

agent model as a proxy for humans and evalu- 647

ate whether explanations aid in model simulata- 648

bility. Complexity Bhatt et al. (2021) measures 649

the distribution of attribution scores of TokenEx 650

and assesses whether the key tokens in token ex- 651

planations are easily comprehensible to humans. 652

To evaluate TokenIntEx most works adopt the 653

faithfulness or axiomatic/theoretical path (Tsang 654

et al., 2020; Sundararajan et al., 2020; Janizek et al., 655

2021). Current work on evaluating SpanIntEx 656

has primarily focused on faithfulness (Ray Choud- 657

hury et al., 2023). However, since SpanIntEx, 658

TokenIntEx, and TokenEx contain varying 659

amounts of tokens, which, e.g., affects the faithful- 660

ness test, this makes direct comparisons between 661

different explanation types using existing metrics 662

challenging. To our knowledge, no prior paper 663

has involved all types of input feature explanations 664

within a unified evaluation framework. 665

6 Conclusion 666

We introduced a unified evaluation framework 667

for input feature attribution analysis to guide 668

the principled selection of the most suitable ex- 669

plainability technique in practical applications. 670

Our analysis outlines the diverse strengths and 671

trade-offs among TokenEx, TokenIntEx, and 672

SpanIntEx. Our findings particularly under- 673

score SpanIntEx’s superior performance in Suf- 674

ficiency, agreement with human inductive biases, 675

its enhancement of Simulatability, and Complexity, 676

compared to TokenEx and TokenIntEx. Fu- 677

ture efforts should focus on developing combined 678

methods that enhance all explanation properties. 679
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Limitations680

Our work introduces a unified framework to evalu-681

ate input feature explanations across four key prop-682

erties. We generated three types of explanations683

using three attribution methods on two transformer684

models (BERT-base and BART-base) for two NLU685

tasks (NLI and fact-checking). This enabled us to686

assess and compare the properties of each expla-687

nation type. Due to computational resource lim-688

itations, we did not include larger decoder-only689

models in our evaluation. Future research could690

explore these models to provide additional insights.691

We note that our work considered the FEVER692

and SNLI datasets as they are the only available693

datasets with annotations of human interactive ex-694

planations, required for the Agreement with Hu-695

man Annotations property. In future work, given696

the availability of other datasets, examining the697

properties of different explanations in various tasks698

beyond NLI and fact checking would be valuable,699

especially for simpler tasks that consist of only one700

input part or more complex tasks that consist of701

more than two parts with possible relationships be-702

tween them. Furthermore, while we consider four703

widely used explanation properties, future works704

should consider verifying, potentially with supple-705

mentary human studies, that the properties are well706

aligned with the downstream utility of the explana-707

tions in different application tasks.708

Our findings indicate that span interactive ex-709

planations (SpanIntEx) have a notable advan-710

tage over other types in Agreement with Human711

Annotation, Simulatability, and Complexity, sug-712

gesting they are easier for humans to understand.713

This insight could inspire future work to leverage714

SpanIntEx as the input feature explanation in715

HCI models. However, SpanIntEx shows low716

comprehensiveness in faithfulness evaluations. The717

Louvain algorithm, used for SpanIntEx genera-718

tion, may limit its comprehensiveness despite using719

different attribution methods for TokenIntEx.720

Future work should explore better methods for721

capturing span interactions and possibly combine722

SpanIntEx and TokenEx for higher faithful-723

ness, as TokenEx demonstrates a stable advantage724

in comprehensiveness.725

Another core finding is that the attribution726

method significantly affects most diagnostic prop-727

erties of all explanation types, such as sufficiency.728

No single attribution method consistently excels729

across all properties, highlighting the need for con-730

tinuous evaluation and improvement in attribution 731

methods, particularly for SpanIntEx. 732

To ensure a fair comparison, our unified evalua- 733

tion framework currently considers only the token 734

count differences among various input feature ex- 735

planations, with interactive explanations flattened. 736

Future work could involve a human-in-the-loop ap- 737

proach to account for the effects of interactive ex- 738

planations beyond just token count differences. For 739

example, a display system could visually present 740

highlighted tokens and interactions to gauge human 741

preferences. Our work provides a starting point for 742

comparing input feature explanations, and future 743

research could explore additional factors such as 744

psychological elements and visual aspects from a 745

human perspective. 746
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A Unified Faithfulness Evaluation:947

Explanation Masking Details948

As discussed in Section §2.2, we introduce the dy-949

namic threshold θx,k to ensure an identical number950

of tokens from different types of top input feature951

explanations for the same instance in Unified Faith-952

fulness evaluation.953

For the Unified Comprehensiveness evaluation,954

we conduct a similar process for all three expla-955

nation types separately. Using TokenEx as an956

example, we first calculate the maximum number957

of top TokenEx explanations for disturbing each958

instance x as kTokenEx(x) following Eq. 7. To959

omit the TokenEx tokens from the original in-960

put, we replace them with [MASK] tokens, while961

keeping the rest unchanged. The specific [MASK]962

token used depends on the model architecture. We963

then gradually increase the number of TokenEx964

tokens masked out until it reaches kTokenEx(x) and965

record the corresponding changes in model pre-966

dictions. The average prediction change across967

the dynamic threshold and all instances gives the968

Unified Comprehensiveness score for TokenEx.969

For TokenIntEx and SpanIntEx, the only970

difference is that we mask out token pairs for971

TokenIntEx and span pairs for SpanIntEx,972

with the maximum explanations masked out as973

kTokenIntEx(x) and kSpanIntEx(x) for each in-974

stance x, calculated using Eq. 6 and Eq. 8 re-975

spectively.976

For the Unified Sufficiency evaluation, we con-977

duct experiments for the three explanation types978

separately. Unlike Unified Comprehensiveness, we979

retain only the tokens/token pairs/span pairs for980

the input while masking out all other tokens with981

[MASK] tokens for each instance, depending on982

the model architecture used. We first calculate the983

maximum number of top explanations involved984

in disturbance for each explanation type for in-985

stance x using Eq. 6, Eq. 7, and Eq. 8. Then,986

we keep the token/token pairs/span pairs in the987

model input by masking out all other tokens, start-988

ing with one explanation and adding one more ex-989

planation for each subsequent disturbance until the990

total number of explanations reaches kTokenEx(x),991

kTokenIntEx(x), or kSpanIntEx(x). Meanwhile,992

we record the model predictions for each distur-993

bance. The Unified Sufficiency score for each ex-994

planation type is then calculated by averaging the995

prediction changes across the dynamic threshold996

for that explanation type, considering all instances.997

B Detailed Explanation Insertion Method 998

To enable a fair comparison among different in- 999

put feature explanations in terms of simulatabil- 1000

ity (§2.4), we applied consistent insertion formats 1001

to combine the explanations with the original in- 1002

put for training the agent models. This design 1003

aims to minimize noise from insertion format dif- 1004

ferences. We tested two ways, each applicable 1005

to all types of input feature explanations, to con- 1006

struct input sequences with inserted explanations 1007

of type E. These input sequences are denoted xE 1008

in §2.4, omitting specific insertion format details 1009

for brevity. 1010

For Symbol-Insertion ISymbol, we preserve the 1011

original input sequence but insert special symbols 1012

< and > to quote the tokens (for TokenEx and 1013

TokenIntEx) or spans (for SpanIntEx) within 1014

the input. Additionally, for TokenEx, we append 1015

a ranking mark after each quoted token based on 1016

their attribution scores, ranked in descending order. 1017

For TokenEx and SpanIntEx, each quoted to- 1018

ken/span is also assigned a ranking mark indicating 1019

the rank of their respective interactions by attribu- 1020

tion score, ensuring tokens/spans from the same 1021

interaction share the same mark. This method al- 1022

lows us to generate input sequences combined with 1023

different input feature explanations in a consistent 1024

symbol insertion format. 1025

For Text-Insertion IText, we append tokens, to- 1026

ken tuples, or span tuples to the end of the original 1027

input sequence for each explanation type. They are 1028

added in the order ranked by descending attribu- 1029

tion score. Specifically, for TokenEx, tokens from 1030

different TokenExexplanations are separated by 1031

semicolons. For TokenIntEx and SpanIntEx, 1032

tokens/spans within each interaction are connected 1033

by a comma, and different interactions are sep- 1034

arated by semicolons. This approach constructs 1035

input sequences combined with each type of input 1036

feature explanation in a consistent text insertion 1037

format. 1038

C Agreement Dataset Details 1039

To assess how different types of input feature ex- 1040

planations overlap with human annotations, we 1041

collected golden explanations of various types 1042

from e-SNLI and SpanEx for instances within 1043

the SNLI and FEVER datasets, respectively. De- 1044

tailed information about the annotated explana- 1045

tion types and the number of instances with la- 1046

beled explanations for these datasets is shown in 1047

12



D E Size

SNLI -
549367 Train

9842 Dev
9824 Test

e-SNLI TokenEx
549367 Train

9842 Dev
9824 Test

SpanEx-SNLI SpanIntEx
TokenIntEx

3865 Test

FEVER -
145449 Train

9999 Dev
9999 Test

SpanEx-FEVER SpanIntEx
TokenIntEx

3206 Test

Table 1: Overview of datasets SNLI (Bowman
et al., 2015), FEVER (Thorne et al., 2018),
SpanEx (Ray Choudhury et al., 2023) and e-SNLI (Cam-
buru et al., 2018). SpanEx contains instances
from SNLI and FEVER datasets, annotated with
SpanIntEx explanations including token-level expla-
nations (TokenIntEx explanations). e-SNLI contains
instances from SNLI dataset, annotated with TokenEx
explanations.

Table 1. For the SNLI dataset, e-SNLI provides1048

TokenEx explanations, while SpanEx-SNLI in-1049

cludes SpanIntEx explanations and token-level1050

interactions (TokenIntEx explanations). We se-1051

lected 3,865 overlapping instances and evaluated1052

the human agreement score for different types of1053

input feature explanations. For the FEVER dataset,1054

SpanEx-FEVER includes SpanIntEx and token-1055

level interactions (TokenIntEx explanations).1056

Since no TokenEx explanations are provided, we1057

extracted tokens from the golden TokenIntEx1058

explanations in SpanEx-FEVER as an approxima-1059

tion. These selected instances are also used when1060

evaluating other properties of input feature expla-1061

nations.1062

D Base Model Performance.1063

As shown in Table 2, we report the performance1064

of fine-tuned BERT-base and BART-base models1065

on the SNLI and FEVER datasets, respectively.1066

These models, fine-tuned for their specific tasks,1067

are used to generate various input feature explana-1068

tions through different explainability techniques.1069

Importantly, these are the original models that the1070

agent models, as described in §2.4, learn to simu-1071

late.1072

Model
F1 score

Dev Test

BERT-SNLI 87.21 88.43
BART-SNLI 86.81 85.40

BERT-FEVER 86.21 89.49
BART-FEVER 85.19 84.88

Table 2: The performance of our BERT-base and BART-
base models fine-tuned on SNLI and FEVER datasets,
respectively, regarding F1 score(%).

E Explainability Techniques 1073

In this section, we detail the explainability tech- 1074

niques employed to generate various types of input 1075

feature explanations. As outlined in §3.2, we cate- 1076

gorize these techniques based on the method used 1077

for generating TokenEx, while TokenIntEx ex- 1078

planations stem from their bivariate variants, form- 1079

ing the basis for SpanIntEx explanations. 1080

As denoted in Section §2.1, xi represents the ith 1081

token with instance x. To better illustrate the ex- 1082

plainability techniques below, we use F as the set 1083

of all tokens within this instance and S as the sub- 1084

set of F . All explanations are obtained using model 1085

M , which is omitted in the following notions for 1086

brevity. We use ATokenEx(xi) to denote the attribu- 1087

tion score generated by explainability technique 1088

A for the ith token xi, ATokenIntEx(xi, xj) as 1089

the attribution score for token interaction (xi, xj), 1090

ATokenIntEx(xi | xj) as the importance score 1091

of token xi conditioned on xj is present when 1092

the directed importance between tokens within 1093

(xi, xj) is considered in some attribution tech- 1094

niques, ASpanIntEx(span
0
i , span

1
i ) as the attri- 1095

bution score for corresponding span interaction, 1096

where span0
i = (xs, ..., xs+l1) is a span from part1 1097

and span1
i = (xt, ..., xt+l2) is a span from part2 of 1098

the input. Note that in Section §2.1, we use axk to 1099

denote the importance score of the kth most impor- 1100

tant explanation of instance x; here, we only focus 1101

on the attribution scores of explanations without 1102

ranking them. 1103

Shapley. For TokenEx, we employ the SHAP 1104

method to assign importance scores to each token 1105

within the input by removing each token separately 1106

and computing its removal effect on the model 1107

prediction with different subsets of other tokens 1108

presented to the model, following Lundberg and 1109
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Lee (2017).1110

ShapTokenEx(xi) =
∑

S⊆F\{xi}

|S|!(|F | − |S| − 1)!

|F |!

[f(S ∪ {xi})− f(S)]

(21)1111

ShapTokenEx(xi) denotes the importance score of1112

token xi. As the calculation of ShapTokenEx(xi)1113

is computationally expensive, we utilize Kernel1114

SHAP to approximate these Shapley values.1115

For TokenIntEx, we first apply Bivariate1116

Shapley (Masoomi et al., 2022) to assess the mu-1117

tual importance scores between two tokens, which1118

are from different parts of the input, within a to-1119

ken interaction, and then average these two mutual1120

importance scores as importance score of this to-1121

ken interaction. Specifically, to compute the im-1122

portance score of a token xi conditioned on the1123

presence of token xj , the sets of tokens S con-1124

sidered are limited to those containing token xj ,1125

while the impact of other sets of tokens influences1126

the importance of xi is ignored in this case. Thus,1127

ShapTokenIntEx(xi | xj) can be calculated by:1128

ShapTokenIntEx(xi | xj) =
∑

xj∈S⊆F\{xi}

|S|!(|F | − |S| − 1)!

|F |!

[f(S ∪ {xi}) − f(S)]

(22)

1129

The importance score ShapTokenIntEx(xi, xj)1130

for token interaction (xi, xj) are calculated1131

by averaging ShapTokenIntEx(xi | xj) and1132

ShapTokenIntEx(xj | xi). We also use Kernel1133

Shapley to approximate the calculation of Bivariate1134

Shapley value.1135

For SpanIntEx, we first apply the Louvain1136

Community Detection algorithm (Blondel et al.,1137

2008) to extract span interactions and then average1138

the importance scores of token interactions com-1139

prised in each span interaction as its importance1140

score, following Ray Choudhury et al. (2023).1141

To extract span interactions, we first construct a1142

directed bipartite graph for instance x, by taking1143

each token xi from the input as node i and the mu-1144

tual importance scores between each two tokens1145

from different parts obtained above as the weights1146

of directed edges connecting them. Louvain Com-1147

munity Detection algorithm is then applied to1148

search for communities of nodes with dense intra-1149

cluster and sparse inter-cluster relationships. With1150

each community of nodes(tokens) Sp obtained,1151

we can get one span interaction (span0
p, span

1
p),1152

where the two spans consist of neighboring tokens1153

from the part1 subset of this community S0
p , and 1154

the part2 subset of it S1
p respectively. 1155

Then we calculate the importance score of this 1156

span interaction by averaging the importance scores 1157

of all token interactions it comprises. 1158

ShapSpanIntEx(span
0
p, span

1
p) =

xi∈S0
p

xj∈S1
p∑

i,j
ShapTokenIntEx(xi, xj)

|S0
p ∪ S1

p|
(23) 1159

Note that in the following, no matter which 1160

explainability techniques to assign importance 1161

score to TokenIntEx, we apply the same 1162

method as stated above to extract span inter- 1163

actions and compute their importance scores, 1164

ASpanIntEx(span
0
p, span

1
p), based on corre- 1165

sponding token interaction importance score, 1166

ATokenIntEx(xi, xj). 1167

Attention. For each token within the input se- 1168

quence, we use the self-attention weights between 1169

this token and the first token as an indicator of its 1170

importance score (Jain and Wallace, 2019). We 1171

follow Ray Choudhury et al. (2023) to select the 1172

most important attention head in the last layer of 1173

the model to obtain these attention weights. For 1174

each possible token interaction, we use the method 1175

by Clark et al. (2019) to extract and average the at- 1176

tention weights between token pairs from different 1177

parts of the input to derive their importance scores, 1178

also from the most important head of the last layer. 1179

To obtain span interactions and assign them impor- 1180

tance scores, we apply the same method to these 1181

token interaction scores as described above. 1182

Integrated Gradients. To calculate the impor- 1183

tance score for each token in the input sequence, 1184

we integrate the gradients of the model’s output 1185

with respect to each token embedding, following 1186

Sundararajan et al. (2017). For generating the im- 1187

portance scores of token interactions, we use Layer- 1188

wise Attention Attribution (Ye et al., 2021), which 1189

attributes attention links between pairs of tokens 1190

within attention maps with a mechanism similar 1191

to Integrated Gradients. These attribution maps 1192

are created for each model layer and then aggre- 1193

gated across layers to form a final attribution map. 1194

The importance score for each token interaction 1195

is calculated as the average value from this final 1196

attribution map between the involved tokens. For 1197

span interactions, we generate and assign impor- 1198

tance scores using the same approach based on the 1199

importance scores of the token interactions. 1200
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E Shap Att IG Rand

Interaction level agreement
SpanIntEx 30.18 57.40 39.40 33.82
TokenIntEx 29.02 37.02 35.06 23.42
TokenEx - - - -

Token level agreement
SpanIntEx 75.63 78.26 76.52 76.96
TokenIntEx 74.89 79.60 73.19 74.96
TokenEx 75.54 77.62 70.74 76.33

Table 3: Human Annotation Agreement Results (see
§2.3) on SNLI dataset when explanations are gen-
erated based on BERT. Interaction-level and Token-
level agreement scores, Average Precision(%), com-
pared to human annotations for explanation types
SpanIntEx, TokenIntEx, TokenEx generated
by Shapley(Shap), Attention(Att), Integradiant Gra-
dients(IG) respectively. Using the same attribution
method, the highest alignment score for each category
is highlighted in bold. Rand indicates the random base-
line as described in §2.3.

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 19.92 28.12 27.45 19.33
TokenIntEx 3.96 10.27 21.30 10.23
TokenEx - - - -

Token level agreement
SpanIntEx 66.95 68.71 72.24 67.5
TokenIntEx 66.90 67.29 70.50 65.86
TokenEx 58.07 56.88 61.07 63.10

Table 4: Human Annotation Agreement Results (see
§2.3) on the FEVER dataset when explanations are gen-
erated based on BERT. The rest of the settings are the
same as Table 3.

F Detailed Experiment Results1201

F.1 Faithfulness1202

F.2 Agreement with Human Annotation1203

There is a notable gap between interaction-level1204

and token-level agreement scores. For example, in1205

Table 3, the highest interaction-level agreement1206

score for SpanIntEx explanations is 57.40%,1207

while the highest token-level agreement score for1208

SpanIntEx is 78.26%. A similar pattern is ob-1209

served for TokenIntEx. This suggests that al-1210

though SpanIntEx and TokenIntEx expla-1211

nations align more with human reasoning than1212

TokenEx explanations, pairing important tokens1213

or spans into interactions that are plausible to hu-1214

mans remains challenging.1215

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 37.36 47.33 34.18 28.25
TokenIntEx 32.36 35.17 33.06 13.80
TokenEx - - - -

Token level agreement
SpanIntEx 80.16 76.28 82.76 70.04
TokenIntEx 84.9 75.92 86.06 75.32
TokenEx 65.74 73.71 70.44 73.34

Table 5: Human Annotation Agreement Results (see
§2.3) on SNLI dataset when explanations are generated
based on BART. The rest settings are the same as Table
3.

E Shap Att IG Rand

Interaction level agreement
SpanIntEx 22.86 20.66 18.72 16.76
TokenIntEx 4.71 2.64 10.54 8.64
TokenEx - - - -

Token level agreement
SpanIntEx 68.77 65.33 70.22 69.51
TokenIntEx 67.01 63.40 70.98 68.11
TokenEx 59.43 52.15 57.56 60.93

Table 6: Human Annotation Agreement Results (see
§2.3) on FEVER dataset when explanations are gener-
ated based on BART. The rest settings are the same as
Table 3.

F.3 Simulatability 1216

Regarding insertion formats, for BERT models, 1217

text insertion (IText), which adds explanation text 1218

to the end of the input sequence, consistently out- 1219

performs symbol insertion (ISym), where symbols 1220

are added to the original input sequence, as shown 1221

in Tables 7 and 8. However, the opposite effect is 1222

observed for BART models, as shown in Tables 9 1223

and 10. This indicates that simulatability results are 1224

sensitive to the explanation insertion form, high- 1225

lighting the need for consistency in insertion form 1226

when comparing different explanation types. 1227

F.4 Complexity 1228
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(a) Comprehensiveness on SNLI dataset, the higher the better. (b) Comprehensiveness on FEVER dataset, the higher the better.

(c) Sufficiency on SNLI dataset, the lower the better. (d) Sufficiency on FEVER dataset, the lower the better.

Figure 3: Unified Comprehensiveness and Sufficiency of three types of feature attribution explanations on SNLI and
FEVER datasets using the BERT model. Subfigures (a) and (c) show Unified Comprehensiveness results, while
(b) and (d) show Unified Sufficiency results. Explanations are generated by Shapley (Shap), Attention (Att), and
Integrated Gradients (IG). Randomly selected span pairs, token pairs, and tokens are baselines corresponding to
explanation type SpanIntEx, TokenIntEx, and TokenEx and form the group Random baseline (Rand). We
set k = 3 for top span interactions and adjust token counts as per §2.2, also ensuring the random baseline matches
the average token count of the top k span interactions.

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.9 3.2 86.7 2.0 88.9 4.2
TokenIntEx 86.6 1.9 85.3 0.6 85.8 1.1
TokenEx 87.4 2.7 85.7 1.0 86.0 1.3

FEVER SpanIntEx 83.9 3.8 85.3 5.2 85.2 5.1
TokenIntEx 82.7 2.6 84.0 3.9 84.4 4.3
TokenEx 84.0 3.9 82.3 2.2 81.8 1.7

Table 7: Simulatability results on SNLI and FEVER
with BERT as the model used for all explanations
E ∈ SpanIntEx,TokenIntEx,TokenEx genera-
tion with attribution method Shapley, Attention, and
Integrated Gradients respectively. Note that insertion
form ISym is adopted for combining the explanations
and the original input sequence for agent model AME ,
as depicted in §2.4. The agent models used for baseline
AMO, trained without explanations, have simulation F1
scores, as denoted in §2.4, of 84.7% and 80.0% on test
set shared with other agent models AME , as denoted
in §2.4. We set k = 1 for top SpanIntEx and calcu-
lated the number of top TokenIntEx and TokenEx
accordingly as stated in §2.2. The largest increases are
highlighted in bold for each dataset with the identical
attribution method.

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.8 3.1 87.1 2.4 88.2 3.5
TokenIntEx 86.5 1.8 87.8 3.1 86.4 1.7
TokenEx 87.0 2.3 86.3 1.6 88.4 3.7

FEVER SpanIntEx 85.7 5.6 85.1 5.0 86.0 5.9
TokenIntEx 81.9 1.8 85.6 5.5 84.3 4.2
TokenEx 85.8 5.7 84.5 4.4 82.0 1.9

Table 8: Simulatability results on SNLI and FEVER
with BERT as the model used for all input feature ex-
planation generation. Note that insertion form IText is
adopted for combining the explanations and the original
input sequence for agent model AME , as depicted in
§2.4. The agent models used for baseline AMO, which
are trained without explanations, have simulation F1
scores of 84.7% and 80.0% on the test sets shared with
agent model AME . The other setting is the same as
Table 7
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(a) Comprehensiveness on SNLI dataset, the higher the better. (b) Comprehensiveness on FEVER dataset, the higher the better.

(c) Sufficiency on SNLI dataset, the lower the better. (d) Sufficiency on FEVER dataset, the lower the better.

Figure 4: Unified Comprehensiveness and Sufficiency of three types of feature attribution explanations on SNLI
and FEVER datasets using the BART model. Subfigures (a) and (c) show Unified Comprehensiveness results,
while (b) and (d) show Unified Sufficiency results. Explanations are generated by Shapley (Shap), Attention (Att),
and Integrated Gradients (IG). Randomly selected span pairs, token pairs, and tokens are baselines corresponding
to explanation type SpanIntEx TokenIntEx and TokenEx and form the group Random baseline (Rand).
We set k = 3 for top span interactions and adjust token counts as per section §2.2, ensuring the random baseline
matches the average token count of the top k span interactions.

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 87.8 7.9 87.3 7.4 86.5 6.6
TokenIntEx 83.5 3.6 84.2 4.3 84.6 4.7
TokenEx 88.2 8.3 81.4 1.5 85.8 5.9

FEVER SpanIntEx 80.6 7.2 76.1 2.7 75.2 1.8
TokenIntEx 78.9 5.5 75.9 2.5 74.7 1.3
TokenEx 80.1 6.7 75.0 1.6 74.1 0.7

Table 9: Simulatability results on SNLI and FEVER
with BART as the model used for all input feature ex-
planation generation. Note that insertion form ISym is
adopted for combining the explanations and the original
input sequence for agent model AME , as depicted in
§2.4. The base agent models AMO trained without ex-
planations have the simulation f1 scores of 79.9% and
73.4%, respectively on the test sets sharing with other
agent models AME . The other setting is the same as
Table 7

D E
Shap Att IG

SF RSF SF RSF SF RSF

SNLI SpanIntEx 86.8 6.9 85.0 5.1 84.3 4.4
TokenIntEx 81.2 1.3 82.6 2.7 81.6 1.7
TokenEx 83.3 3.4 83.8 3.9 82.2 2.3

FEVER SpanIntEx 78.2 4.8 75.3 1.9 74.6 1.2
TokenIntEx 74.8 1.4 74.1 0.7 73.9 0.5
TokenEx 77.6 4.2 74.9 1.5 73.6 0.3

Table 10: Simulatability results on SNLI and FEVER
with BART as the model used for all input feature expla-
nation generation respectively. Note that insertion form
IText is adopted for combining the explanations and
the original input sequence for agent model AME , as
depicted in §2.4. The base agent models AMO trained
without explanations have the simulation f1 scores of
79.9% and 73.4%, respectively. The other setting is the
same as Table 7
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Dataset E Shapley Attention IG R U

SNLI SpanIntEx 2.05 1.11 2.10 2.19 2.62
TokenIntEx 1.72 1.43 2.30 - -
TokenEx 2.08 1.64 1.91 - -

FEVER SpanIntEx 2.78 2.22 2.90 2.98 3.18
TokenIntEx 3.12 3.07 3.15 - -
TokenEx 2.76 2.22 2.57 - -

Table 11: Complexity results on SNLI and FEVER
datasets for three types of explanations generated by
different attribution methods based on BERT model.
The Random baseline represents the complexity score
obtained by randomly generated scores in the range
[0,1], ensuring the same number of scores as the number
of explanations used. The Upperbound is calculated
by setting all the attribution scores to the same value
while ensuring the same number of scores as the number
of explanations used. The lowest complexity score for
each specific explanation type compared is highlighted
in bold when the explanations are generated by each
attribution method.

Dataset E Shapley Attention IG R U

SNLI SpanIntEx 1.90 1.93 1.63 2.36 2.76
TokenIntEx 2.50 2.53 2.13 - -
TokenEx 1.86 1.95 1.94 - -

FEVER SpanIntEx 2.73 3.03 2.38 3.13 3.38
TokenIntEx 3.30 3.36 2.93 - -
TokenEx 2.82 3.07 3.19 - -

Table 12: Complexity results on SNLI and FEVER
datasets for three types of explanations generated by
different attribution methods based on BART model.
The other settings are the same as Table 11.
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