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Abstract

The Laplace approximation provides a closed form model selection objective for neural
networks (NN). Online variants, which optimise NN parameters jointly with hyperparame-
ters, like weight decay strength, have seen renewed interest in the Bayesian deep learning
community. However, these methods violate Laplace’s method’s critical assumption that the
approximation is performed around a mode of the loss, calling into question their soundness.
This work re-derives online Laplace methods, showing them to target a variational bound
on a variant of the Laplace evidence which does not make stationarity assumptions, i.e, a
mode-corrected method. Online Laplace and its mode-corrected counterpart share station-
ary points where 1. the NN parameters are a mazimum a posteriori, satisfying Laplace’s
method’s assumption, and 2. the hyperparameters maximise the Laplace evidence, motivat-
ing online methods. We demonstrate that these optima are roughly attained in practise by
online algorithms using full-batch gradient descent on UCI regression datasets. Here, online
model selection prevents overfitting and outperforms validation-based early stopping.

1. Introduction

Online model selection holds the promise of automatically tuning large numbers of neural
network (NN) hyperparameters during a single training run, obsoleting cross validation
(Clarke et al., 2022). Online Laplace methods (OL) interleave regular NN optimisation steps
with steps of hyperparameter optimisation with respect to the Laplace-approximated model
evidence (Foresee and Hagan, 1997; Friston et al., 2007; Immer et al., 2021a). The method
has been used to learn layer-wise weight decay strengths, data noise scales, and even data
augmentation hyperparameters (Immer et al., 2022).

Laplace’s method constructs a second-order Taylor expansion around a mode of the
posterior. Here, the first-order term vanishes, leaving a pure quadratic approximation to
the log-density, that is, a Gaussian. The Laplace evidence is this distribution’s normalising
constant. The online setting implies non-convergence of the NN parameters, violating the
stationarity assumption. Antoran et al. (2022b) show that applying Laplace’s method to
pre-trained NNs which do not attain zero loss gradient leads to severe deterioration in model
selection performance. Immer et al. (2021a) experiment with inclusion of the first-order
Taylor term in the OL procedure but find that it leads to training instability.

This work revisits online Laplace methods, taking steps towards reconciling their seeming
unsoundness with their satisfactory empirical performance.

e We show that a variant of OL that includes the first-order Taylor term (and thus
does not assume stationarity) corresponds to NN hyperparameter optimisation with
the evidence of a tangent linear model. We re-derive the standard OL objective as a
variational lower bound on the evidence of this tangent linear model, motivating its use.
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e We show OL shares fixed points, where the ELBO is tight, with the above first-order-
corrected procedure. Here, the linear model’s mazimum a posteriori (MAP) parameters
match the NN parameters, for which they are also a MAP, and the linear model’s
evidence matches the NN’s Laplace evidence, further motivating its use.

e We show that these fixed points are roughly attained in practise by small NNs trained
via full-batch gradient descent with OL hyperparameter tuning on UCI regression
datasets, but they are not attained without online tuning. The hyperparameters found
through online Laplace lead to NNs that outperform their non-online counterparts.

2. Preliminaries: Laplace approximation and online variants

We consider a supervised problem where n inputs, stacked as X € R" % are paired with
scalar targets stacked as y € R”. We introduce a NN regressor f : R% x R% — R with
w € R% as parameters. Omitting dependence on the inputs from our notation, as these are
fixed, and working with arrays of stacked predictions f(w) € R™, we model the targets as

y=f(w)+e with w~N(0,a 'Iy) and e~N(0,37'1,),

where « is the scalar precision of our prior over NN parameters and S is the scalar ho-
moscedastic noise precision. The set of both hyperparameters is M = {«, 8}. Our results
readily generalise to vector-valued hyperparameters and outputs (Antoran et al., 2023).
We train the NN to minimise the loss £f(w; M) = gHy — f(w)|I?+ §lw|[*. This objective
matches the unnormalised, negative log-joint density of our parameters and targets

et ()T ()T = s Fw), 5 TN (s 0,07 ) = s s M)

Laplace’s method (Mackay, 1992; Bishop, 2006) takes a second-order Taylor expansion of
log p¢(y, w; M) around wy, assumed to be a mode (wy € arg min,, £;(w; M)), and approxi-
mates the NN model evidence p;(y; M) by integrating the expanded expression as

1
/pf(y,w;/\/l) dw ~ /eXp (logpf(y, wo; M) — §(w —wo) H(w — wo)> dw

w 1
= exp (C; loga + 7 log 5 — §||y—f<wo>||%—§||wo||% — 5 logdetH — * log 2w) (1)
= exp L (M;wp),

where the first-order term vanishes since we assume 9, ¢(wo; M) = 0 and H is 92 (¢ (wo; M).
In practice, the loss Hessian is replaced by the Generalised Gauss Newton matrix (GGN),
that is, H = BJTJ +aly, € R for J = 9, f(wg) € R™ % the NN’s Jacobian evaluated
at the training inputs. This choice provides ease of computation and numerical stability
(Martens, 2020; Immer et al., 2021b). We hereon assume H to be the GGN and suppress its
dependence on the hyperparameters and the expansion point from our notation.
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2.1. Online hyperparameter tuning

We may tune the hyperparameters M for a NN by choosing them to maximise £;(M;w*),
where w* € argmin,, £¢(w; M) is a true optima of the loss. This will not change our
NN’s predictions however, as its parameters are held fixed at w,. Mackay (1992) proposes
to re-train the NN from scratch using the updated hyperparameters. This procedure
terminates when a joint stationary point of the parameters and hyperparameters is found:
wy € argmin,, £(w; M*) and M* € argmin L (M;w*).

The size of NN parameter spaces and datasets
has grown dramatically since 1992 and re-training
the NN is now impractical. This motivates online
Laplace (OL) approaches which, at timestep ¢ with
parameters wy, perform a step of NN parameter op- Fzo)
timisation to minimise ¢¢(w;; M), followed by a hy-
perparameter update to maximise £¢(M;wy) (Fore-
see and Hagan, 1997; Friston et al., 2007; Immer
et al., 2021a)!. Importantly, the Taylor expansion o
point is chosen to match the current NN parameter Figure 1: Second-order Taylor ap-
setting w;. Since optimisation has not converged, proximations of a function f (black)
wy ¢ argmin,, £¢(w; M), then L;(M;w,), which dis- around x¢ (star), with (orange) and
cards the first-order expansion term, does not provide without (blue) the first-order term.
a local approximation to the evidence. Figure 1 illus-
trates that discarding this first-order term can result in a vastly different approximation.

3. Understanding online Laplace through the tangent model

This section re-derives online Laplace methods for NNs as empirical Bayesian inference in a
tangent linear model. This analysis provides a non-heuristic motivation for these methods.

Online hyperparameter optimisation including the first-order term To start, we
integrate the Taylor expansion of log p¢(y, w; M) at w; without discarding the first-order term

/exp <10gpf(y,wt; M) = 0wl (wi; M) (w — wy) — %(w —wy)  H(w— wt)> dw (2)

dy n N oy, 1 n
—oxp (5 toga+ o6 § = (F (w4300} - § 071 - § tog et og 2x )
= exp Ly (M;wy),

where the optimum of the quadratic expansion v* is obtained by performing a Gauss-Newton
update on the NN loss at wy, that is, v* = wy — BH ™ (JT(f(wy) — y) + aw;). Gauss-
Newton optimisation is common in the NN second order optimisation-literature; it makes
more progress per step than gradient descent (Botev et al., 2017; Martens, 2020; Barbano
et al., 2023). Since L}, (M;w;) represents a local evidence approximation, mode-corrected by a
Gauss-Newton step, it may more closely match the Laplace evidence computed at an optimum
L §(M;w*) than the Laplace evidence computed at the online expansion point £ (M;w;). We

1. Friston et al. (2007) refers to the described online Laplace procedure as Variational Laplace.
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Figure 2: Illustration of exact linear model evidence, and LM and OL hyperparameter
objectives at a single train step ¢ (left). The latter two represent lower bounds as per (3). L,
is tighter which leads to larger updates, making hyperparameter trajectories unstable (right).

may use Lp(M;wy) to construct an algorithm where each step of NN parameter optimisation
minimising £ (w¢; M) is interleaved with a hyperparameter update maximising Ly, (M;wy).

Online hyperparameter optimisation with the tangent linear model The mode-
corrected evidence approximation L, (M;w;) matches the exact evidence of a tangent model
with regressor h : R% x R% — R given by a first-order Taylor approximation to f at wy

y = h(v) + € with h(v) = f(w) + J(v —w;) and v ~N(0,a ' Iy,), € ~N(0,87L,).

The tangent model’s loss is £, (v; M) = glly — h(v)||* 4+ &[jv[[% It is minimised by the MAP
v* = argmin, f;(v; M), which matches the optimum of the quadratic expansion in (2),
and its constant curvature matches the GGN 92/, (v*; M) = H. Thus, the above described
mode-corrected algorithm selects hyperparameters that improve the tangent model’s evidence

L (M;w;) at each step. We hereon refer to this procedure as online Linear Model (LM).

Online Laplace as a variational bound on the tangent model’s evidence Finally,
we connect the LM procedure to the OL procedure described in Section 2.1. For this, we
apply Antoran et al. (2023)’s lower bound on the linear model’s evidence, i.e., the ELBO,

Lp(M;we) > Epvy, -1y 108 pr(y, v; M)] + BN (, H)) = LM p, wy) (3)

dy n 15} Q 1 n
—oxp (9 toga+ G log - 5y (7(un) + Je-w))| - 5 Il - 3 logdensr— 1o 2

where H refers to the differential entropy and pp(y, v; M) = e~ tn(vsM) (%) 2 (%) dTw

The bound is tight when the variational posterior mean p matches the linear model’s
MAP v*, that is, L(M;v*, wy) = L(M;w,). This recovers the LM objective. On the other
hand, by choosing the variational mean to match the linearisation point, u = w;, we recover
the OL evidence L(M;wy, w) = L§(M;w). Thus, discarding the first-order term in the
Taylor expansion of logp¢(y, w; M), which seemed unjustified, actually results in a lower
bound on a variant of the Laplace evidence which corrects for the expansion point not

matching the mode, that is, £¢(M;w;) < Ly (M;w,). This is illustrated in Figure 2 (left).

Convergence behaviour Both the OL and LM procedures reach a shared fixed point when
a simultaneous optimum of the NN weights and linear model hyperparameters is found, that
is, w* = argmin,, {¢(w; M*) and M* = argmax , Lp(M;w*) = argmax  L(M;w*,w*).
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Figure 3: Evolution of neural network weights w; and tangent linear model posterior mean
v* during training. With online Laplace (OL procedure), w; and v* converge to the same
distribution. Offline training does not exhibit this behaviour.

Since the first-order term vanishes here, 0,,¢f(w*; M) =0, the ELBO is tight and the linear
model evidence L£; matches the regular Laplace evidence Ly, satisfying the termination
condition of Mackay (1992)’s NN re-training algorithm.

At convergence, we have 0,0 f(w*; M) = 0yl (w*; M) =0. We may thus use similarity
between w* and v* to check for convergence of the OL and LM procedures. Figure 3 shows
the LM procedure results in the NN and tangent model converging to a shared MAP. This
does not occur when performing standard NN training with fixed hyperparameters.

Since the NN and linear model share hyperparameters M, their loss gradients match
at the linearisation point 0y ¢¢(wy; M) = O0plp(wi; M). Thus, during training, each NN
optimisation step brings its parameters closer to the MAP of the current tangent model
while also changing the linearisation point, which in turn changes the tangent model. This
is not guaranteed to result in a tangent linear model with increased evidence. Indeed,
Figure 4 (right) shows both the OL and LM evidences exhibit non-monotonic training curves.
Interestingly, the slack in the OL bound results in smaller hyperparameter steps, as shown in
Figure 2. These may counteract training instability coming from a rapidly changing tangent
model evidence. We find OL updates often lead to more stable convergence to a shared MAP
for the NN and tangent model than LM updates. This can be seen in Figure 4 (left).
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Figure 4: Difference between neural network weights w; and linear model posterior mean v*
(left) and test RMSE versus ELBO L (right) throughout online training for both OL and
LM procedures. A maximised ELBO does not imply optimal test RMSE.
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Figure 5: Test log-likelihood on UCI regression (mean =+ standard error over 10 splits).
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4. Experiments

This section demonstrates the OL and LM online hyperparameter tuning algorithms discussed
in the previous section and contrasts them with standard NN training, that is, with fixed
hyperparameters (labelled offline). To this end, we train single hidden layer, 50 hidden unit
MLPs on 5 UCI datasets (Dua and Graff, 2017): housing, concrete, energy, wine, and yacht.
We train our NNs with full-batch Adam and an exponentially decaying learning rate. For
online methods, we train until convergence, updating the hyperparameters after every NN
parameter step. The hyperparameter update step is detailed in Appendix D. For offline
methods, we select the stopping point that minimises RMSE on a validation set consisting of
10% of training data points. We do not use normalisation layers, as these interfere with the
Laplace approximation (Antoran et al., 2022a).

Convergence of NN and linear model posteriors Figure 4 (left) shows the Euclidean
distance between the NN parameters and tangent model MAP decreasing throughout training
for both the LM and OL procedures. Although the distance does not exactly reach 0, the NN
and linear model parameter vectors present nearly identical distributions, as shown in Figure
3. This does not occur in the offline setting. The LM procedure takes larger hyperparameter
steps than OL resulting in some training instability and overall slower convergence, as shown
in Figure 2. Figure 4 (right) shows that both the LM and OL evidence estimates attain
their maxima very early in training, before the lowest test RMSE is reached. As discussed in
Section 3, these metrics target the evidence of a tangent model and may only transfer to the
NN once online training has fully converged.

Predictive performance We obtain predictive distributions using the linearised Laplace
method (Immer et al., 2021b). For NNs trained offline, linearised Laplace hyperparameters
are chosen post-hoc my maximising either the Ly or Lj objectives. Figure 5 reports log-
likelihood mean and standard errors obtained across 10 train-test splits where the test set
size is 10% of the whole dataset size.

We find the OL procedure to consistently provide the best performance or be a close second
best. The LM procedure performs very similarly to OL on all datasets except energy and
yacht, where it performs the worse out of all methods. We attribute this to training instability.
Offline methods only perform competitively on yacht, despite use of validation-based stopping.
The online methods’ improvement over their offline counterparts can mostly be explained by
improved RMSE (see Figure 14), suggesting online hyperparameter optimisation helps find
NN parameters that effectively navigate the bias-variance trade off.

The full set of experimental results, including hyperparameter trajectories and evidence
estimates, is provided in Appendix A.
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Appendix A. Evolution of neural network training
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Figure 6: Evolution of neural network training on the housing dataset.
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Figure 7: Evolution of neural network training on the concrete dataset.
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Figure 8: Evolution of neural network training on the energy dataset.
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Figure 9: Evolution of neural network training on the wine dataset.
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Appendix B. Additional predictive metrics
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Figure 11: Train log-likelihood on UCI regression (mean + standard error over 10 splits).

housing concrete energy wine yacht
~0.675 -
25 A 30 - —06 4 04 I I § OnlineOL
—0.700 I ¢ Online LM
—30 —31 —07 —0.725 I -2 7 $  Offline £y
B | § Offline £,
-35 4 30 4 o 4 0.750 .
—0.775
—4.0 1 -33 o ~09 —0.800 —6

Figure 12: Test log-likelihood on UCI regression (mean + standard error over 10 splits).
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Figure 13: Train RMSE on UCI regression (mean + standard error over 10 splits).
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15



ONLINE LAPLACE MODEL SELECTION REVISITED

Appendix C. Related work

This work builds on the rich literature of Bayesian linear regression, which was first introduced
by Gull (1989). We recommend chapter 3 of Bishop (2006) and chapter 2 of Rasmussen
and Williams (2006) for an introduction. The use of both the linear model evidence and
Laplace model evidence for hyperparameter selection are introduced in Mackay (1992). These
techniques are analysed and extended by Tipping (2001); Tipping and Faul (2003); Wipf
and Nagarajan (2007) for linear model and by Immer et al. (2021a); Antoran et al. (2022b)
for NNs.

Despite their analytic tractability, linear models are held back by a cost of inference
cubic in the number of parameters when expressed in primal form, or cubic in the number of
observations for the dual (i.e. kernelised or Gaussian Process) form. Although we do not deal
with this computationally intractability in this work, there exist a number of approximations
which aim to make inference in linearised NNs scalable (Ritter et al., 2018; Khan et al., 2019;
Watson et al., 2020, 2021; Antoran et al., 2023; Immer et al., 2023; Lin et al., 2023).

Appendix D. MacKay’s hyperparameter update

Given mean g and predictions ¢, the hyperparameters o and 8 can be updated by

gl n—7

o= 5 =0, v =dy — aTr(HY), (4)
[12ll2 ly — 913

to maximise the linear model’s evidence (Mackay, 1992), where v is the effective number of
dimensions. For OL, 4 = w and § = f(w), and in the case of LM, u = v* and § = h(v*).
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Figure 15: Ilustration of a hyperparameter update at a single timestep t. Starting at the
current value (dashed black), the updated value (star) is obtained by maximising the ELBO.

Appendix E. Implementation details

The initial learning rate used for Adam was set to 0.01 and the exponential learning rate
decay factor was set to 0.9999. In the online setting, housing and wine were trained for 1000,
concrete for 2000, energy for 30000 and yacht for 10000 steps until convergence. In the offline
setting, the validation RMSE was tracked for a maximum of 30000 epochs.
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