
Under review for RLC 2025, to be published in RLJ
ˇ

ˇ Cover Page

Multiple-Frequencies Population-Based Training
Anonymous Authors

Paper under double-blind review

Keywords: Hyperparameter Optimization, Greediness, Reinforcement Learning

Summary
Reinforcement Learning’s high sensitivity to hyperparameters is a source of instability and

inefficiency, creating significant challenges for practitioners. Hyperparameter Optimization
(HPO) algorithms have been developed to address this issue, among them Population-Based
Training (PBT) stands out for its ability to generate hyperparameters schedules instead of fixed
configurations. PBT trains a population of agents, each with its own hyperparameters, frequently
ranking them and replacing the worst performers with mutations of the best agents. These
intermediate selection steps can cause PBT to focus on short-term improvements, leading it
to get stuck in local optima and eventually fall behind vanilla Random Search over longer
timescales. This paper studies how this greediness issue is connected to the choice of evolution
frequency, the rate at which the selection is done. We propose Multiple-Frequencies Population-
Based Training (MF-PBT), a novel HPO algorithm that addresses greediness by employing
sub-populations, each evolving at distinct frequencies. MF-PBT introduces a migration process
to transfer information between sub-populations, with an asymmetric design to balance short
and long-term optimization.

Contribution(s)
1. We investigate the impact of evolution frequency on PBT and its connection to greediness.

Context: PBT (Jaderberg et al., 2017) introduces a parameter, denoted tready, which
controls the evolution frequency of its genetic process. Previous extensions of PBT (Parker-
Holder et al., 2020; 2021; Franke et al., 2021; Dalibard & Jaderberg, 2021; Wan et al., 2022)
employ a tready parameter, but don’t study or comment its impact on performance. We show
it can be used to control PBT’s optimization horizon, avoiding greedy behaviors that makes
PBT weak for long-term performance. The greediness of PBT was identified in the original
PBT paper (Jaderberg et al., 2017), and in FIRE PBT (Dalibard & Jaderberg, 2021). But we
propose a novel scope to analyse it: evolution frequency.

2. We introduce MF-PBT to mitigate the greediness issue.
Context: FIRE PBT (Dalibard & Jaderberg, 2021) is the only other attempt at solving
the greediness issue. We propose a simpler approach, that is very close the original PBT
algorithm. We make our work reproducible by publishing the code and addressing all the
implementation details in the paper.

3. We evaluate MF-PBT and ablate its components. We build an experimental setup that enables
to exhibit greediness issues of population-based approaches, and show MF-PBT effectively
mitigates greediness.
Context: Our experiments rely on the Brax (Freeman et al., 2021) framework, whose speed
enables to perform experiments on the billion steps scale. MF-PBT does not claim to be a
SOTA approach to HPO. Our contribution is to isolate, explain and mitigate an important
weakness of PBT, which is a popular HPO method for RL.

4. We empirically show how population-based methods can leverage stochasticity in RL training
to significantly improve performance, even without tuning hyperparameters.
Context: Performance gains are usually associated to the effective optimization of hyper-
parameters. We show that beyond HPO, PBT can be used in a variance-exploitation mode,
to bring significant performance gains on an already-tuned hyperparameter configuration.
We further show that PBT still exhibits greediness in this mode and that MF-PBT is a better
solution.



Multiple-Frequencies Population-Based Training

Multiple-Frequencies Population-Based Training

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning’s high sensitivity to hyperparameters is a source of instability1
and inefficiency, creating significant challenges for practitioners. Hyperparameter Op-2
timization (HPO) algorithms have been developed to address this issue, among them3
Population-Based Training (PBT) stands out for its ability to generate hyperparameters4
schedules instead of fixed configurations. PBT trains a population of agents, each with5
its own hyperparameters, frequently ranking them and replacing the worst performers6
with mutations of the best agents. These intermediate selection steps can cause PBT7
to focus on short-term improvements, leading it to get stuck in local optima and even-8
tually fall behind vanilla Random Search over longer timescales. This paper studies9
how this greediness issue is connected to the choice of evolution frequency, the rate10
at which the selection is done. We propose Multiple-Frequencies Population-Based11
Training (MF-PBT), a novel HPO algorithm that addresses greediness by employing12
sub-populations, each evolving at distinct frequencies. MF-PBT introduces a migration13
process to transfer information between sub-populations, with an asymmetric design14
to balance short and long-term optimization. Extensive experiments on the Brax suite15
demonstrate that MF-PBT improves sample efficiency and long-term performance, even16
without actually tuning hyperparameters. Code will be released.17

1 Introduction18

The performance of neural networks depends on selecting a well-suited configuration of hyperparam-19
eters, a task that is time-consuming and often reduced to trial-and-error when done manually. This20
concern has driven the development of Hyperparameter Optimization (HPO, Bergstra et al. (2011);21
Feurer & Hutter (2019)), a field focused on modeling and automating the hyperparameter selection22
process. The need for HPO algorithms is particularly strong in Reinforcement Learning (RL, Sutton23
& Barto (2018)), as RL algorithms are often highly sensitive to hyperparameter choices (Eimer et al.,24
2023; Zhang et al., 2021).25

Given these challenges, Population-Based Training (PBT, Jaderberg et al. (2017)) has become a26
popular HPO method among RL practitioners (Badia et al., 2020; Liu et al., 2022; Cusumano-Towner27
et al., 2025). PBT trains a population of agents in parallel, using an evolutionary process to propagate28
successful hyperparameter configurations while exploring new ones. This frequent evolution enables29
PBT to generate dynamic hyperparameter schedules, unlike earlier methods like random search30
(Bergstra & Bengio, 2012) and classic sequential optimization (Li et al., 2018; Falkner et al., 2018),31
which typically produced fixed configurations. This dynamic adaptation of hyperparameters is32
particularly desirable in RL, where the learning problem is non-stationary (Parker-Holder et al.,33
2022).34

However, to achieve this dynamic adaptation, PBT selects hyperparameter configurations based on35
intermediate performance. As a result, it often favors configurations that show early improvements36
but fail to deliver better long-term results. Dalibard & Jaderberg (2021) identified this greediness37
and proposed Faster Improvement Rate PBT (FIRE PBT), which uses learning curves to predict the38

1



Under review for RLC 2025, to be published in RLJ 2025

long-term potential of hyperparameters based on their improvement rates. In this paper, we address39
PBT’s inherent greediness by introducing a novel focus on evolution frequencies.40

Evolution frequency, which controls the number of training steps between evolutionary updates, has41
not been explicitly addressed in prior research on PBT. Yet, our study shows that it lies at the core of a42
key trade-off in PBT’s behavior. Evolving too frequently can lead to greedy collapse in two ways: (1)43
aggressive hyperparameter tuning traps PBT in local optima, and (2) population diversity decreases as44
similar agents are reproduced repeatedly. Conversely, reducing the evolution frequency limits PBT’s45
adaptability, resulting in less fine-grained schedules and, ultimately, deteriorating sample efficiency.46

To address this trade-off, we propose Multiple-Frequencies Population-Based Training (MF-PBT),47
a novel HPO algorithm that employs multiple sub-populations, each evolving at distinct frequen-48
cies. By incorporating an asymmetric migration process, MF-PBT allows these sub-populations to49
share information while preventing greediness. This design aims to balance short and long-term50
optimization, leading to mixed-frequency schedules that enhance anytime performance.51

We validate MF-PBT through a series of reinforcement learning experiments using the Brax frame-52
work (Freeman et al., 2021). Our results demonstrate that MF-PBT effectively mitigates the two53
forms of greedy collapse, achieving significantly higher long-term rewards and improved anytime54
performance compared to PBT baselines. Additionally, we conduct an empirical study on the potential55
of population-based methods for variance-exploitation, showing that even without hyperparameter56
tuning, populations can greatly improve performance by exploiting the inherent stochasticity of RL57
training. To ensure reproducibility, we make our code publicly available.58

To summarize, our contributions are as follows:59

1. We investigate the impact of evolution frequency on PBT and its connection to greediness.60

2. We introduce MF-PBT, a novel HPO algorithm that uses multiple evolution frequencies and an61
asymmetric migration process across sub-populations to overcome PBT’s greediness62

3. We evaluate MF-PBT using the Brax suite, isolating the impact of PBT’s greediness and demon-63
strating how MF-PBT mitigates this issue to achieve better final performance and sample efficiency64
across various environments.65

4. We empirically show how population-based methods can leverage stochasticity in reinforcement66
learning training to significantly improve performance, even without tuning hyperparameters.67

2 Preliminaries68

Hyperparameter Optimization (HPO, Bergstra et al. (2011); Feurer & Hutter (2019)) encompasses69
various approaches aimed at efficiently tuning hyperparameters to enhance performance and robust-70
ness of learning algorithms. Random Search (Bergstra & Bengio, 2012) is the baseline approach71
to HPO; the field then progressed towards more sophisticated techniques, notably meta-gradient72
methods (Finn et al., 2017; Xu et al., 2018), sequential optimization (Li et al., 2018; Falkner et al.,73
2018; Awad et al., 2021), and population-based approaches.74

HPO methods generally follow one of two perspectives. Sequential optimization approaches treat75
HPO as the search for an optimal hyperparameter configuration within a fixed computational budget,76
assuming that once identified, this configuration can be reused across multiple training runs. In77
contrast, population-based methods integrate hyperparameter tuning into the training process itself,78
adapting hyperparameters dynamically to maximize the performance of a single model. In this work,79
we adopt the latter perspective, which justifies our exclusive focus on population-based methods in80
both our discussions and experiments.81

In this section, we focus on Population-Based Training (PBT, Jaderberg et al. (2017)), beginning with82
its mechanisms and relevance to RL applications. We then briefly review notable extensions to PBT83
and provide insights into the greediness issue that we aim to tackle, highlighting its connection to84
evolution frequency.85

2



Multiple-Frequencies Population-Based Training

2.1 Population-Based Training86

Population-Based Training (PBT) is an HPO technique that combines evolutionary strategies with87
gradient-based optimization. In PBT, a population of N agents, P “ taiu

N
i“1, is trained iteratively88

in parallel, with each agent maintaining its own set of hyperparameters, hi, and neural network89
parameters, θi.90

After every tready training steps, an evolution step occurs where all agents are evaluated and assigned91
a fitness score. The parameter tready controls the evolution frequency, with smaller values resulting92
in more frequent evolution. The agents are then ranked and divided into three brackets: winners,93
survivors, and losers. The evolution step consists of two phases: an exploitation phase, where the94
losers are replaced with clones of the winners, followed by an exploration phase, where the cloned95
agents’ hyperparameters are slightly perturbed to encourage exploration around the best solutions.96
In our experiments, we use the truncation method introduced in PBT: the top 25% are winners, the97
bottom 25% are losers, and the remaining agents are survivors.98

While PBT can be applied to any deep learning task, is is particularly effective in RL, due to the99
non-stationarity of the training process (Parker-Holder et al., 2022; Zhang et al., 2021). Unlike100
supervised learning, where the data distribution remains fixed, RL experiences significant shifts in101
the data distribution as training progresses, and the hyperparameters should take it into account.102
PBT’s frequent evolution steps allow hyperparameters to adapt to the current learning state, naturally103
generating schedules that accommodate this non-stationarity.104

Another strength of PBT is its ability to harness RL’s intrinsic variance. The stochastic nature of105
both the environment and learning algorithms leads to significant performance fluctuations across106
different random seeds (Henderson et al., 2018; Agarwal et al., 2021). By maintaining a population107
and periodically reproducing the top performers, PBT propagates favorable outcomes, ensuring108
that unfortunate agents are replaced by luckier ones. This ability of PBT to propagate exploration109
luck is noted in Jaderberg et al. (2017), but our experiments in section 4.3 further demonstrate that110
population-based approaches can significantly improve performance, even without hyperparameter111
tuning.112

Numerous extensions to PBT have been proposed, focusing on improving exploration and efficiency.113
Methods like PB2 (Parker-Holder et al., 2020; 2021) use bandit theory to explore hyperparameter114
spaces, offering performance guarantees, particularly in small population settings. SEARL (Franke115
et al., 2021) enhances sample efficiency in off-policy RL by employing a shared replay buffer across116
the population. BG-PBT (Wan et al., 2022) integrates policy distillation (Rusu et al., 2016) to jointly117
optimize neural architectures and hyperparameters.118

However, these works do not address a key weakness of PBT: the inherent greediness of its interme-119
diate selection mechanism. This issue was first identified in the original PBT work (Jaderberg et al.,120
2017), leading its authors to propose FIRE PBT (Dalibard & Jaderberg, 2021) to mitigate it through121
learning curve modeling. While FIRE PBT introduces an intricate mechanism (described in section122
3.1), we aim to introduce a more practical approach of the greediness phenomenon.123

All the aforementioned approaches rely on a fixed evolution frequency, and do not discuss the choice124
of the tready parameter. To our knowledge, we are the first to investigate its impact on PBT, and its125
connection to greediness.126

2.2 Greediness and Evolution Frequency127

While PBT’s dynamic adaptation of hyperparameters is a key strength, it also introduces a form of128
greediness in the optimization process. This greediness arises from selecting agents based on their129
short-term performance, often resulting in an overemphasis on immediate gains at the expense of130
long-term success. Evolution frequency lies at the core of this problem, as it controls the optimization131
horizon. Increasing tready allows PBT to select agents based on longer-term performance, mitigating132
the short-sighted decisions issue. However, this comes at the cost of sacrificing PBT’s main principle:133

3



Under review for RLC 2025, to be published in RLJ 2025

its dynamic adaptation throughout the training run. We identify two collapse modes that can be134
caused by too frequent evolution: diversity collapse and hyperparameter collapse.135

Hyperparameter collapse. Certain hyperparameters, such as the learning rate or exploration136
factors in RL, are inherently susceptible to greediness. Decaying these hyperparameters often yields137
immediate performance gains, making them more favorable during short-term selection. However,138
lower values restrict the exploration of the solution space, reducing the likelihood of finding better139
optima within tready steps. This initiates a self-reinforcing cycle: agents with higher learning rates140
are outperformed and thus replaced by agents with lower learning-rates that fine-tune the found local141
optimum. After a few evolution steps, this hyperparameter collapse can combine with diversity loss,142
leading the overall optimization process to a convergence trap.143

Diversity collapse. Diversity loss is a well-known weakness in evolutionary algorithms (EAs,144
Spears (1995)) that has not been directly addressed in PBT. When optimizing problems with multiple145
local optima, EAs often lose population diversity and converge to a single basin of attraction.146
Typically, this issue is corrected using niching techniques (Shir, 2012), which penalize reductions in147
diversity. In PBT, the repeated cloning of the highest-performing agents at each evolution step leads148
to a similar problem. Our variance-exploitation experiment in section 4.3 further highlights that this149
diversity collapse can cause PBT to fail, independently from hyperparameter optimization.150

A solution to PBT’s greediness should account for both of these collapses. One straightforward151
approach is to reduce the evolution frequency, giving agents more time to escape local optima and152
slowing the loss of diversity. However, this can’t be a satisfactory solution, as it would directly harm153
PBT’s sample efficiency by allowing poorly performing agents to persist longer. This ultimately154
pushed PBT closer to a Random Search, where evolution is entirely absent.155

3 Multiple-Frequencies Population-Based Training156

To build upon our insights on evolution frequency, we propose MF-PBT, which employs multiple157
frequencies. By incorporating low-frequency agents that are less susceptible to hyperparameter158
and diversity collapse, alongside higher-frequency agents that enable quick adaptation and stronger159
anytime performance, MF-PBT mitigates the greediness of traditional PBT without sacrificing its160
core strengths.161

3.1 Sub-Populations162

A key challenge in PBT is the misalignment between short-term and long-term optimization. As the163
algorithm selects agents solely based on their performance over tready training steps, and is blind to164
their long-term potential, it greedily favors hyperparameters that yield immediate gains, eliminating165
those that could lead to superior performance in the long term. Nevertheless, this short-term feedback166
is valuable to achieve strong anytime performance.167

FIRE PBT (Dalibard & Jaderberg, 2021) introduced the concept of using sub-populations to address168
the trade-off between short-term and long-term optimization. In their approach, one sub-population169
is allowed to adopt a greedy strategy by directly optimizing the fitness signal, while the others aim170
to optimize a proxy for long-term performance: the improvement rate. To evaluate the long-term171
potential of hyperparameters, FIRE PBT uses an evaluator agent that simulates training with those172
hyperparameters. The core assumption is that faster improvement in the evaluator’s performance173
indicates better long-term potential, which is a quite strong assumption on HPO.174

In contrast, we argue that the best proxy for long-term performance is long-term performance itself.175
Rather than crafting an estimation, we let some agents train over longer timescales before evolu-176
tion. In MF-PBT, each sub-population runs PBT at its own distinct evolution frequency. Dynamic177
sub-populations (i.e., higher frequency) focus on local optimization and short-term improvements,178
which can be greedy but offer gains in sample efficiency. Conversely, steady (low-frequency) sub-179

4



Multiple-Frequencies Population-Based Training

populations assess long-term performance, avoiding the pitfalls of greediness at the expense of sample180
efficiency.181

Our main intuition comes from the phenomenon of greediness itself. When an algorithm shows strong182
early performance but eventually falls behind a simpler baseline, it is a clear sign of over-optimization183
and entrapment in a poor local solution. Based on this comparison principle, we expect dynamic184
agents to over-optimize local optima, and use the steady agents to regularly check if the dynamic185
agents have been greedy. Once greediness is identified, we correct it by restarting the optimization of186
dynamic agents around a better optimum found by steadier agents, a process managed through our187
asymmetric migration mechanism, details in next subsection.188

3.2 Asymmetric migration process189

To effectively leverage the sub-populations, instead of running multiple PBT instances independently,190
an inter-population information transfer mechanism is needed. Alongside the winners, losers, and191
survivors brackets, MF-PBT introduces a migration bracket, allowing poorly performing agents192
within a sub-population to be replaced by better-performing agents from other sub-populations. The193
migration process operates asymmetrically based on the frequencies of the concerned sub-populations.194

If a dynamic agent is outperformed by an agent from a steadier sub-population, this signals greediness.195
In response, we replace the dynamic agent with a clone of the steady one, to restore diversity in the196
dynamic sub-population and avoid convergence traps.197

Conversely, if a steady agent is outperformed by a more dynamic agent, the dynamic agent’s solution198
may result from a valuable high-frequency optimization pattern. However, since it might have been199
achieved through over-optimization, we protect the steady sub-population from hyperparameter200
collapse by importing only the dynamic agent’s weights, not its hyperparameters.201

3.3 Algorithm202

Algorithm 1 Multiple-Frequencies Population Based Training (MF-PBT)

1: procedure TRAINING(P)
2: for δ “ 1, . . . , T{tready do
3: STEP(a,@a P P, tready) Ź Parallel Training for tready steps
4: P Ð RANKING(ta P Pu) Ź Evaluate fitness and sort agents
5: for i “ 1, . . . ,M do
6: if δ mod δi “ 0 then Ź Population Update
7: Bi Ð BRACKETS(Pi)
8: Pi Ð EVOLUTION(Pi, B1

i , B4
i )

9: Pi Ð MIGRATION(Pi, P´i, B1
i , B3

i )
10: end if
11: end for
12: end for
13: end procedure

Similar to PBT, MF-PBT operates with a population of N agents that train concurrently, evaluated203
every tready steps and assigned a fitness score. The agents are divided into M sub-populations204
P1,P2, . . . ,PM , each containing n “ N{M agents.205

Each sub-population Pi evolves at its own frequency, parameterized by the factor δi, meaning it206
undergoes an evolution step every δi ˆ tready training steps. We set P1 to be the reference population,207
and the δi to be integers with 1 “ δ1 ă δ2 ă ¨ ¨ ¨ ă δM .208

Brackets. When a sub-population Pi evolves, its agents are ranked and divided in four brackets:209
he top quarter, B1

i (winners); the second quarter, B2
i (survivors); the third quarter, B3

i (open for210
migration); and the last quarter, B4

i (losers). For simplicity, we assume n is a multiple of 4.211

5



Under review for RLC 2025, to be published in RLJ 2025

Evolution. Regarding the winners, survivors and losers, MF-PBT behaves identically as PBT. The212
agents in B4

i (losers) are replaced with perturbed clones of agents from B1
i (winners). The survivors213

(B2
i ) continue training unchanged.214

Algorithm 2 Asymmetric migration in MF-PBT

1: function MIGRATION(Pi, P´i, B1
i , B3

i )
2: k “ 1
3: for j “ 1, . . . , n{4 do
4: if FITNESS(B3

i pjq) ě FITNESS(P´ipkq) then
5: continue Ź Agents in B3

i better than contenders in P´i are kept as is
6: end if
7: i1 Ð INDEX(P´ipkq) Ź Sub-population Index Retrieval
8: if δi1 ă δi then
9: B3

i pjqθ Ð P´ipkqθ Ź Weights Assignment
10: B3

i pjqh Ð B1
i p1qh Ź Hyperparameter Assignment

11: else if δi1 ą δi then
12: B3

i pjqθ,h Ð P´ipkqθ,h Ź Full Transfer
13: end if
14: k Ð k ` 1
15: end for
16: end function

Migration. The agents in B3
i are compared against agents in P´i “ PzPi, to determine if they215

should be replaced by a copy of an external agent. First, both the agents in B3
i and P´i are sorted in216

descending order of fitness. Then, we sequentially perform pairwise comparisons of agents in B3
i and217

P´i. For each agent in B3
i , if it is outperformed by the current top external agent, we replace it using218

the asymmetric logic described in section 3.2. The procedure is detailed in Algorithm 2.219

4 Experiments220

While MF-PBT can be applied to any HPO problem, we focus on reinforcement learning, where221
its impact is likely most significant. Following Wan et al. (2022), we use the parallelizable Brax222
framework (Freeman et al., 2021) to train a Proximal Policy Optimization (PPO) (Schulman et al.,223
2017) agent on multiple control tasks.224

We use jax-based (Bradbury et al., 2018) implementations of MF-PBT and PPO, designed to225
parallelize agents on GPUs, thereby leveraging the capabilities of the Brax framework. This imple-226
mentation achieves approximately 106 steps per second on two Nvidia A100 40 GB GPUs, allowing227
us to train over extended timescales and clearly demonstrate PBT’s limitations in the long term. For228
robust and fair evaluations, we conduct experiments on seven random seeds and report the interquar-229
tile means (IQM) (Agarwal et al., 2021) and interquartile ranges (IQR). To ensure reproducibility, we230
will make our code publicly available.1231

We use a reference value of tready “ 106 environment interactions, consistent with BG-PBT’s232
experiments (Wan et al., 2022). This choice allow us to demonstrate how a conventional value can233
lead PBT to collapse over extended timescales. For the computation of the fitness score, we evaluate234
agents on 512 episodes and use the mean evaluation reward. Based on preliminary experiments, we235
selected N “ 32 agents split into M “ 4 sub-populations of n “ 8 agents each, as moving from 16236
to 32 agents significantly improved performance, while gains diminished beyond 32. In this setting,237
our longest experiments (3 billion steps in the Humanoid environment) require approximately 30238
hours using two Nvidia A100 40 GB GPUs.239

1The code will be published on GitHub after the double-blind review process. A minimal version of the project is included
in the supplementary materials for reviewers.

6



Multiple-Frequencies Population-Based Training

Our computational budget allowed us to train for approximately 1 billion steps per experiment,240
guiding our choice of δ4 “ 50 for the steadiest sub-population. Indeed, higher values would get it241
closer to a random search, as the total number of evolution steps for this specific sub-population242
equals 1000{δ4. To facilitate smoother transfers between the fastest and slowest sub-populations,243
we selected two intermediary values: δ2 “ 10 and δ3 “ 25. This configuration of the δ-values244
demonstrated slightly superior performance compared to a less spread geometric progression, as245
detailed in Appendix B.1. Given that the results already showed MF-PBT’s ability to overcome246
PBT’s greediness, we did not further tune the δ-values.247

We optimize the learning rate and the entropy cost of PPO’s loss (Schulman et al., 2017), as these248
hyperparameters are particularly susceptible to causing hyperparameter collapse. For all experiments,249
we initially log-uniformly sample the learning rate between 10´5 and 10´3, and the entropy cost250
between 10´3 and 10´1. For the remaining hyperparameters, we use the tuned values proposed by251
Brax when available.2 Notably, the same network architectures are used across all environments.252

4.1 Comparative study of MF-PBT253

We first compare MF-PBT to both PBT and Random Search (RS) (Bergstra & Bengio, 2012), using254
the same number of agents and the same value of tready. Since RS does not involve evolutionary255
updates, it can be interpreted as a degenerate case of PBT where δ is set to `8. (see Appendix A.1256
for additional implementation details). This allows us to isolate the effect of evolution in PBT; if RS257
performs better than PBT, it is a clear sign of greediness. For the perturbation of hyperparameters in258
both PBT and MF-PBT, we use the naive perturb strategy introduced in the original PBT (Jaderberg259
et al., 2017), which involves multiplying the hyperparameters by a factor λ randomly sampled from260
t0.8, 1.25u.261

We also include Population-Based Bandits (PB2, (Parker-Holder et al., 2020)) in the comparison.262
PB2 is designed to replace PBT’s naive exploration with Bayesian optimization. Other baselines that263
also enhance PBT’s exploration are PB2-Mix and BG-PBT (Parker-Holder et al., 2021; Wan et al.,264
2022). However, when tuning only continuous parameters and in the absence of neural architecture265
search, these two methods are identical to PB2. Note that PB2’s primary objective is to outperform266
PBT in small-population settings (e.g., N “ 8). Our experimental setup, which uses N “ 32, is not267
aligned with its intended use case. This baseline mainly serves to demonstrate that the greediness268
issue is not caused by PBT’s naive exploration.269

FIRE PBT (Dalibard & Jaderberg, 2021) is not included due to reproducibility challenges. It lacks a270
public implementation, and key aspects, such as the curve smoothing process, are not detailed in the271
paper. Additionally, their RL experiments use V-MPO (Song et al., 2019), an algorithm without a272
public implementation, and their experiment on ImageNet requires 200 TPU-v3 days, making direct273
comparison prohibitive.274

(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 1: Performance of MF-PBT, PB2, PBT, and RS on Brax environments. IQM across seven
seeds, with IQR shaded. The performance of each algorithm is determined by the highest fitness score
(mean evaluation reward over 512 episodes) among the 32 agents, evaluated every tready training
steps.

2See Brax’s GitHub. For Hopper and Walker2D we used the same values as in Humanoid.

7

https://github.com/google/brax/blob/main/notebooks/training.ipynb


Under review for RLC 2025, to be published in RLJ 2025

This experiment highlights the limitations of regular PBT for long-term performance. In Table 1, we275
report the performance of each algorithm after 50 million training steps, the default horizon proposed276
by Brax for most environments. At this stage, PBT demonstrates relatively strong performance,277
achieving results that are superior or comparable to RS in most environments. However, after one278
billion steps, the same PBT falls significantly behind RS, demonstrating its greediness. Evolving279
every tready “ 106 steps causes it to collapse into a poor optimum, while RS, which does not evolve,280
finds better solutions.281

Additionally, PB2’s performance, reported in Figure 1, follows a similar trend. While PB2 matches or282
outperforms PBT in most environments, it consistently falls behind RS in the long run. This suggests283
that extensions to PBT that focused on improving exploration of the hyperparameter space do not284
tackle the greediness issue we identified in our work.285

In contrast, MF-PBT consistently outperforms PBT, PB2, and RS at both training horizons, demon-286
strating its adaptability across varying timescales. The training trajectories in Figure 1 further287
illustrate that MF-PBT achieves stronger anytime performance, consistently outperforming all base-288
lines throughout training. This indicates that MF-PBT has better sample efficiency, reaching high289
rewards more rapidly.290

Table 1: IQM of the performance achieved by the evaluated HPO algorithms at 50 million steps
and 1 billion steps across seven random seeds. Methods within the IQR of the best-performing
method are bolded. The PPO columns correspond to the training of a single agent with the default
hyperparameters.

Performance at 50M steps Performance at 1B steps

Method PPO RS PBT MF-PBT PPO RS PBT MF-PBT

Humanoid 7903 9021 8348 9266 14934 17713 16171 23793
Hopper 1782 2437 2542 2579 1822 2498 2519 2819
Ant 5482 6858 6820 7115 7102 9050 7900 9654
HalfCheetah 3786 4906 4914 5154 4262 5503 5143 5837
Walker2D 2881 3309 3822 3852 4261 7005 3870 9545

4.2 Hyperparameters Schedules291

To better illustrate MF-PBT’s optimization process, we reconstruct the history of the best agent to292
visualize its hyperparameter schedule. In figure Figure 2a, we present three snapshots of MF-PBT293
taken during training on the Humanoid environment, at 750 million, 1.5 billion and 3 billion steps.294
For each snapshot, we trace back the history of the best-performing agent by recursively identifying295
the agents it cloned. Each colored segment in the schedule indicates the sub-population that produced296
the agent, showcasing how MF-PBT combines contributions from all sub-populations to produce its297
final solution.298

A comparison of the three snapshots shows how MF-PBT is able to target for strong anytime299
performance. At every stage of the training, there are greedy agents diving into local optima, in order300
to maximize the immediate reward. Steady agents on their side, focus on long-term performance and301
protect the overall optimization process from collapse.302

In the final schedule, we observe three phases. First, MF-PBT identifies an interesting high-frequency303
optimization pattern, where the learning rate increases briefly before decreasing, resembling the304
warm-up strategy proposed in Smith (2017). Next, the steady agents, slowly decrease their learning305
rate, avoiding collapse and aiming for better long-term rewards. Finally, dynamic agents take the306
lead, by fine-tuning the found local optimum through more aggressive learning rate decrease. This307
final schedules shows how MF-PBT effectively makes use of its multiple frequencies to produce the308
best long-term performance.309

8



Multiple-Frequencies Population-Based Training

(a) (b)

Figure 2: Example of learning rate schedules for MF-PBT and PBT on the Humanoid environment.
(a) MF-PBT snapshots at 750 million, 1.5 billion, and 3 billion training steps. Colors represent the
sub-populations contribution to the schedule, showing how MF-PBT integrates input from various
frequencies. (b) Comparison of the two final schedules, illustrating a case of hyperparameter collapse
in PBT.

Figure 2b compares the final schedule produced by MF-PBT, to a schedule from a PBT experiment310
that encountered a strong hyperparameter collapse, ceasing to improve its reward after only 340311
million steps. This collapse results from the presence of strong, peaked local optima in the Humanoid312
environment, such as running on one leg. Escaping such optima requires extensive exploration, as313
deviating from them is highly punitive, leading short-sighted PBT to enter a collapse cycle without314
finding better solutions. This difficulty with the Humanoid environment has also been noted in315
BG-PBT (Wan et al., 2022).316

4.3 MF-PBT as a variance-exploiter317

(a) Hopper (b) HalfCheetah (c) Walker2D

Figure 3: Comparative performance of MF-PBT, PBT and a non-evolutive baseline for variance-
exploitation. IQM across seven seeds, with IQR shaded.

Building on our discussion on variance-exploitation in section 2.1, we designed experiments to318
evaluate MF-PBT’s ability to leverage stochasticity in training outcomes to improve performance,319
even without hyperparameter tuning. In these experiments, all agents are fixed to use the default320
hyperparameters for the entire duration of training, with only weight cloning performed during the321
evolution steps. To provide a baseline for comparison, we included a non-evolutive approach: running322
32 agents independently without any weight replication or hyperparameter tuning, evaluating their323
fitness every tready steps.324

The resulting trajectories in Figure 3 reveal three key insights. (1) variance-exploitation can enhance325
the performance of a fixed hyperparameter configuration, as demonstrated in the HalfCheetah326
environment; (2) PBT, even when no hyperparameter collapse is possible, can still fall behind its327
non-evolutive counterpart, evidencing diversity collapse- the inherent greediness of the cloning328
mechanism; (3) MF-PBT significantly improves performance without modifying hyperparameters,329
illustrating the power of a more sophisticated cloning mechanism.330

9



Under review for RLC 2025, to be published in RLJ 2025

Interestingly, while PBT outperformed the non-evolutive baseline in the variance-exploitation regime331
for HalfCheetah and Walker2D, its performance dropped when hyperparameter tuning was introduced,332
indicating hyperparameter collapse. In contrast, MF-PBT performed in both regimes, highlighting its333
ability to overcome both diversity and hyperparameter collapse.334

5 Ablative Studies335

5.1 Evolution frequency336

Our intuition is that evolving less frequently (increasing δ) mitigates greediness and ensures better337
long-term performance, but using multiple frequencies is necessary to achieve stronger anytime338
performance. To test this, we conducted an experiment comparing MF-PBT with four separate339
PBT runs, each using 32 agents and evolving at one of the frequencies used within MF-PBT:340
δ P t1, 10, 25, 50u.341

(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 4: Impact of the evolution frequency in PBT. IQM across seven seeds, with IQR shaded.

The resulting trajectories plotted in Figure 4 confirm our first intuition about the critical role of342
evolution frequency, demonstrating its significant impact on PBT’s performance. The curves also343
reveal that the best frequencies vary by task; for example, on Humanoid, δ “ 50 is the most344
effective, whereas on HalfCheetah, δ “ 25 yields better results. Additionally, most of the slower345
PBT configurations outperform RS, indicating that δ “ `8 is sub-optimal. This underscores the346
brittleness of population-based approaches to the choice of tready.347

In contrast, MF-PBT achieves either superior or comparable final performance relative to each348
single-frequency PBT experiment, while also offering significant sample efficiency gains in most349
environments. This indicates that employing multiple frequencies within MF-PBT is superior to350
relying on a single frequency. Moreover, MF-PBT’s ability to outperform each of its sub-components351
simplifies the selection of δ-values, as MF-PBT will always perform at least as well as its best-352
performing sub-population.353

5.2 Symmetric migration354

(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 5: Ablation on the asymmetric migration. IQM across seven seeds, with IQR shaded.

We now assess the importance of the asymmetry in the migration process, which adds a protection355
against hyperparameter collapse by preventing greedy agents from corrupting steadier sub-populations.356

10



Multiple-Frequencies Population-Based Training

To test this, we compare MF-PBT with an alternative version where hyperparameters are always357
transferred along with weights, regardless of the δ-values.358

The training trajectories in Figure 5 show that while the asymmetry has little impact on Hopper, it359
yields improvements in most environments, particularly in the challenging Humanoid task. This360
indicates that the asymmetric design indeed enhances long-term performance.361

6 Conclusion362

We introduced MF-PBT, an extension of Population-Based Training, designed to address the inherent363
greediness in traditional PBT. Our experiments on various reinforcement learning tasks identified364
two key failure modes of PBT: diversity and hyperparameter collapse, both linked to the evolution365
frequency. Building on these insights, we proposed MF-PBT, which incorporates multiple sub-366
populations evolving at different frequencies and an asymmetric migration process to balance short367
and long-term optimization. The results demonstrated that MF-PBT effectively overcomes both368
collapses associated with PBT while maintaining strong anytime performance.369

Through ablation studies, we highlighted the critical role of evolution frequency in PBT and showed370
that using multiple frequencies increases robustness to this parameter. We believe this insight extends371
beyond MF-PBT and could benefit a broader range of population-based optimization methods.372

Our experiments about variance-exploitation highlight that a non-negligible share of the performance373
gains in population-based methods stems from leveraging exploration luck rather than tuning hyper-374
parameters effectively. This underscores the need for a more comprehensive study on the origins of375
improvements brought by population-based methods.376

References377

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-378
mare. Deep reinforcement learning at the edge of the statistical precipice. In M. Ran-379
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances380
in Neural Information Processing Systems, volume 34, pp. 29304–29320. Curran Asso-381
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/382
2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf.383

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyberband for scalable, robust384
and efficient hyperparameter optimization. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth385
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2147–2153. International386
Joint Conferences on Artificial Intelligence Organization, 8 2021. DOI: 10.24963/ijcai.2021/296.387
URL https://doi.org/10.24963/ijcai.2021/296. Main Track.388

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,389
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark.390
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on391
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 507–517.392
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/badia20a.393
html.394

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal395
of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/396
v13/bergstra12a.html.397

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-398
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-399
berger (eds.), Advances in Neural Information Processing Systems, volume 24. Curran Asso-400
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/401
2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.402

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://doi.org/10.24963/ijcai.2021/296
https://proceedings.mlr.press/v119/badia20a.html
https://proceedings.mlr.press/v119/badia20a.html
https://proceedings.mlr.press/v119/badia20a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf


Under review for RLC 2025, to be published in RLJ 2025

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal403
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and404
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL405
http://github.com/google/jax.406

Marco Cusumano-Towner, David Hafner, Alex Hertzberg, Brody Huval, Aleksei Petrenko, Eugene407
Vinitsky, Erik Wijmans, Taylor Killian, Stuart Bowers, Ozan Sener, Philipp Krähenbühl, and408
Vladlen Koltun. Robust autonomy emerges from self-play, 2025. URL https://arxiv.org/409
abs/2502.03349.410

Valentin Dalibard and Max Jaderberg. Faster improvement rate population based training. CoRR,411
abs/2109.13800, 2021. URL https://arxiv.org/abs/2109.13800.412

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning413
and how to tune them. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,414
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on415
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 9104–9149.416
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/eimer23a.417
html.418

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-419
mization at scale. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International420
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,421
pp. 1437–1446. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/422
falkner18a.html.423

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automatic Machine Learning:424
Methods, Systems, Challenges, pp. 3–38. Springer, 2019.425

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of426
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International427
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.428
1126–1135. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/429
finn17a.html.430

Jörg K.H. Franke, Gregor Koehler, André Biedenkapp, and Frank Hutter. Sample-efficient automated431
deep reinforcement learning. In International Conference on Learning Representations, 2021.432
URL https://openreview.net/forum?id=hSjxQ3B7GWq.433

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.434
Brax – a differentiable physics engine for large scale rigid body simulation, 2021.435

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.436
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-437
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence438
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,439
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.440

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali441
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and442
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846, 2017.443
URL http://arxiv.org/abs/1711.09846.444

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:445
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning446
Research, 18(185):1–52, 2018. URL http://jmlr.org/papers/v18/16-558.html.447

12

http://github.com/google/jax
https://arxiv.org/abs/2502.03349
https://arxiv.org/abs/2502.03349
https://arxiv.org/abs/2502.03349
https://arxiv.org/abs/2109.13800
https://proceedings.mlr.press/v202/eimer23a.html
https://proceedings.mlr.press/v202/eimer23a.html
https://proceedings.mlr.press/v202/eimer23a.html
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=hSjxQ3B7GWq
http://arxiv.org/abs/1711.09846
http://jmlr.org/papers/v18/16-558.html


Multiple-Frequencies Population-Based Training

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M. Czarnecki,448
Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever,449
Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul Muller, Tuomas450
Haarnoja, Brendan Tracey, Karl Tuyls, Thore Graepel, and Nicolas Heess. From motor control451
to team play in simulated humanoid football. Science Robotics, 7(69):eabo0235, 2022. DOI:452
10.1126/scirobotics.abo0235. URL https://www.science.org/doi/abs/10.1126/453
scirobotics.abo0235.454

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparameter opti-455
mization with population-based bandits. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and456
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17200–17211.457
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_458
files/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf.459

Jack Parker-Holder, Vu Nguyen, Shaan Desai, and Stephen J Roberts. Tuning mixed in-460
put hyperparameters on the fly for efficient population based autorl. In M. Ranzato,461
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-462
ral Information Processing Systems, volume 34, pp. 15513–15528. Curran Associates, Inc.,463
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/464
file/82debd8a12b498e765a11a8e51159440-Paper.pdf.465

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,466
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lindauer.467
Automated reinforcement learning (autorl): A survey and open problems. Journal of Artificial468
Intelligence Research, 74:517–568, 06 2022. DOI: 10.1613/jair.1.13596.469

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirk-470
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy471
distillation. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning472
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,473
2016. URL http://arxiv.org/abs/1511.06295.474

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy475
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://dblp.uni-trier.476
de/db/journals/corr/corr1707.html#SchulmanWDRK17.477

Ofer M. Shir. Niching in Evolutionary Algorithms, pp. 1035–1069. Springer Berlin Heidelberg,478
Berlin, Heidelberg, 2012. ISBN 978-3-540-92910-9. DOI: 10.1007/978-3-540-92910-9_32. URL479
https://doi.org/10.1007/978-3-540-92910-9_32.480

Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference481
on Applications of Computer Vision (WACV), pp. 464–472, 2017. DOI: 10.1109/WACV.2017.58.482

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,483
Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov,484
Martin A. Riedmiller, and Matthew M. Botvinick. V-MPO: on-policy maximum a posteriori485
policy optimization for discrete and continuous control. CoRR, abs/1909.12238, 2019. URL486
http://arxiv.org/abs/1909.12238.487

William Michael Spears. Adapting Crossover in Evolutionary Algorithms. In Evolutionary Pro-488
gramming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming. The489
MIT Press, 08 1995. ISBN 9780262290920. DOI: 10.7551/mitpress/2887.003.0035. URL490
https://doi.org/10.7551/mitpress/2887.003.0035.491

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,492
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.493
html.494

13

https://www.science.org/doi/abs/10.1126/scirobotics.abo0235
https://www.science.org/doi/abs/10.1126/scirobotics.abo0235
https://www.science.org/doi/abs/10.1126/scirobotics.abo0235
https://proceedings.neurips.cc/paper_files/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82debd8a12b498e765a11a8e51159440-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82debd8a12b498e765a11a8e51159440-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82debd8a12b498e765a11a8e51159440-Paper.pdf
http://arxiv.org/abs/1511.06295
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://doi.org/10.1007/978-3-540-92910-9_32
http://arxiv.org/abs/1909.12238
https://doi.org/10.7551/mitpress/2887.003.0035
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


Under review for RLC 2025, to be published in RLJ 2025

Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, and495
Michael Osborne. Bayesian generational population-based training. In Isabelle Guyon, Mar-496
ius Lindauer, Mihaela van der Schaar, Frank Hutter, and Roman Garnett (eds.), Proceed-497
ings of the First International Conference on Automated Machine Learning, volume 188 of498
Proceedings of Machine Learning Research, pp. 14/1–27. PMLR, 25–27 Jul 2022. URL499
https://proceedings.mlr.press/v188/wan22a.html.500

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learn-501
ing. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-502
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-503
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/504
2018/file/2715518c875999308842e3455eda2fe3-Paper.pdf.505

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank506
Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for model-507
based reinforcement learning. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings508
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of509
Proceedings of Machine Learning Research, pp. 4015–4023. PMLR, 13–15 Apr 2021. URL510
https://proceedings.mlr.press/v130/zhang21n.html.511

14

https://proceedings.mlr.press/v188/wan22a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/2715518c875999308842e3455eda2fe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2715518c875999308842e3455eda2fe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2715518c875999308842e3455eda2fe3-Paper.pdf
https://proceedings.mlr.press/v130/zhang21n.html


Multiple-Frequencies Population-Based Training

Supplementary Materials512

The following content was not necessarily subject to peer review.513
514

In this supplementary material we provide additional information about our implementation choices515
for RS and PBT. Then we report experiments on our selection of MF-PBT’s parameters, and additional516
experiments on other solutions that could have been envisionned to mitigate greediness: increasing517
population size and adding a backtracking component as in Zhang et al. (2021).518

A Additional Implementation Details519

A.1 Random Search Baseline520

In our experiments, Random Search (RS) serves as a simple baseline for hyperparameter optimization.521
RS involves randomly sampling hyperparameter values at the start of training and keeping these522
values fixed throughout the entire training process. Unlike PBT, RS does not involve any evolution523
or adjustment of hyperparameters based on intermediate performance. Instead, the goal of RS524
is to evaluate different fixed hyperparameter configurations by following their reward curves and525
identifying which sampled configuration performs best.526

For this comparison, hyperparameters in RS were sampled uniformly from the same search space as527
PBT and MF-PBT. By comparing RS to PBT, we isolate the impact of PBT’s evolutionary process;528
if RS outperforms PBT, it indicates that evolving too frequently can lead to suboptimal long-term529
performance, which we refer to as the greediness issue.530

A.2 PBT’s parameters531

In subsection 2.2 we identified that the main source of the greediness issue is that agents do not532
survive long enough to escape poor local optima and maintain diversity. Alongside the evolution533
frequency, another parameter of PBT impact the lifespan of agents in the population: the selection534
rate in the exploit phase.535

Indeed, in PBT, at each evolution step, 25% of the population is discarded and replaced by copied of536
the top-agents. One could play on this parameter to mitigate greediness, and create a method similar537
to MF-PBT, where each sub-population would have its own selection rate. However, as we identify538
the issue to be about the lifespan of agents, and optimizing for various horizons, we found more539
natural to frame it explicitly in terms of evolution frequency.540

We decided to use standard values for the exploit and explore process of PBT, and keep the same541
values for MF-PBT in order to isolate the impact of evolution frequency.542

15



Under review for RLC 2025, to be published in RLJ 2025

B Choice of parameters543

B.1 Frequencies544

Figure 6 compares our chosen configuration (tready “ 106, δ1 “ 1, δ2 “ 10, δ3 “ 25, δ4 “ 50) with545
an alternative setup using a geometric progression (tready “ 6ˆ106, δ1 “ 1, δ2 “ 2, δ3 “ 4, δ4 “ 8).546
The goal of this comparison is to assess how the spread of δ-values impacts MF-PBT’s performance.547

(a) Humanoid (b) Hopper (c) Walker2D

Figure 6: Comparative performance of two configurations for MF-PBT. IQM across seven seeds,
with IQR shaded.

While the geometric progression shows a slight advantage on Hopper and Walker2D, it performs548
significantly worse on Humanoid. Therefore, we opted to continue using the more spread-out549
configuration.550

B.2 Population size551

To make a choice for N after fixing the δ-values, we conducted a preliminary experiment on552
Humanoid, the most computationally demanding environment. As shown in Figure 7, the gain from553
rising from N “ 16 to N “ 32 is quite large for both methods. While increasing from N “ 32 to554
N “ 64 was still beneficial for MF-PBT, but the with a much smaller gap.555

Interestingly, PBT’s performance decreases with 64 agents on the Humanoid task, likely due to the556
abundance of local optima. With a large population, PBT may quickly converge on a high-performing557
local optimum, which then limits further exploration.558

(a) MF-PBT (b) PBT

Figure 7: Impact of the population size. IQM across five seeds, with IQR shaded. Experiments on
the Humanoid environment.

C Additionnal Experiments559

C.1 Increasing Population Size560

One solution to improve PBT’s performance can be to increase the population size. In Jaderberg et al.561
(2017), a value of N “ 80 was used. To make sure we didn’t unfairly treat PBT by picking N “ 32,562

16



Multiple-Frequencies Population-Based Training

we made an additional experiment to compare the gains of using MF-PBT to the gains of simply563
increasing N in standard PBT.564

The curves in Figure 8 show that while on Hopper raising to 80 agents greatly improves PBT’s565
performance, it is not sufficient in a more complex locomotion environment like Walker2D.566

(a) Hopper (b) Walker2D

Figure 8: Increasing population size. IQM across seven seeds, with IQR shaded.

C.2 Backtracking567

Zhang et al. (2021) proposed to add a backtracking mechanism to PBT, to prevent it from catastrophic568
forgetting. The method, dubbed PBT-BT (PBT with backtracking), keeps track of the Ne best agents569
encountered during the training: the elites. And every δ evolution steps, the elites are reincorporated570
into the population.571

Since in the Hopper and Humanoid environments, we observed a substantial amount of runs where572
PBT’s performance would dramatically drop, PBT-BT could be an interesting alternative baseline in573
those environments.574

The backtracking can be seen as a migration across times, where elites from the past are reincorporated575
in the population, to enable it to resume training from a better checkpoint. However there is one576
fundamental difference, in PBT-BT the elites come from the past and didn’t interact as much with the577
environnement; whereas in MF-PBT the steady agents that migrate are "current" agents, meaning578
they performed the exact same amount of training steps. In MF-PBT, the agents that migrate only579
differ on their HPO-objective, e.g. performance on 50M steps instead of performance on 1M steps.580
While backtracking enables recovering from collapses, there is no notion of increasing the lifespan of581
some hyperparameters to assess their long-term performance.582

(a) Hopper (b) Humanoid

Figure 9: Comparative performance of PBT-BT. IQM across seven seeds, with IQR shaded.

We implemented PBT-BT with N “ 32, Ne “ 16 and δ “ 50. The training curves in Figure 9 shows583
that it improves PBT on Hopper by correcting the catastrophic forgetting behavior. However on584

17



Under review for RLC 2025, to be published in RLJ 2025

Humanoid, the elites tend to rapidly all belong to the same local optimum, and then PBT-BT is stuck585
without being able to explore for better solution.586

In both cases, MF-PBT outperforms PBT-BT, highlighting that backtracking is not sufficient to587
overcome PBT’s greediness.588

C.3 Pusher environnment589

We made an experiment in the Pusher environment from Brax, keeping the same parameters for590
MF-PBT, PBT and RS and report the training curves in Figure 10.591

Figure 10: Performance of MF-PBT, PBT, and RS on Pusher. IQM across seven seeds, with IQR
shaded.

18


