Under review as a conference paper at ICLR 2026

CoST VOLUME MEETS PROMPT: ENHANCING MVS
WITH PROMPTS FOR AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Metric depth is foundational for perception, prediction, and planning in autonomous
driving. Recent zero-shot metric depth foundation models still exhibit substantial
distortions under large-scale ranges and diverse illumination. While multi-view
stereo (MVS) offers geometric consistency, it fails in regions with weak parallax or
textureless areas. On the other hand, directly using sparse LiDAR points as per-
view prompts introduces noise and gaps due to occlusion, sparsity, and projection
misalignment. To address these challenges, we introduce Prompt-MVS, a cross-
view prompt-enhanced framework for metric depth estimation. Our key insight is
to inject LiDAR-derived prompts into the cost volume construction process through
a differentiable, matching-aware fusion module, enabling the model to leverage
accurate metric cues while preserving dense geometric consistency provided by
the MVS process. Furthermore, we propose depth-spatial alternating attention
(DSAA), which combines spatial information with depth context, significantly
improving multi-view geometric consistency. Experiments on KITTI, DDAD, and
NYUv2 demonstrate the effectiveness of Prompt-MVS, which outperforms state-of-
the-art methods by up to 34.6% in scale consistency. Notably, our method remains
effective even with missing or highly sparse prompts and produces stable metric
depth under severe occlusion, weak texture, and long-range scenes, demonstrating
strong robustness and generalization. Our code will be publicly available.

1 INTRODUCTION

High-quality metric depth perception is critical for autonomous driving systems, enabling accurate
obstacle detection, motion planning, and scene understanding. While cameras provide dense visual
cues, monocular depth estimation suffers from inherent scale ambiguity, limiting its reliability in
safety-critical applications. To recover metric-scale geometry, modern approaches have explored
two promising directions: (i) leveraging sparse but accurate LiDAR or SfM points as geometric
prompts to anchor absolute scale (Wang et al., 2025b; Lin et al., 2025; Guo et al., 2025); and (ii)
exploiting multi-view stereo (MVS) frameworks that use calibrated camera sequences to enforce
epipolar constraints and achieve scale-aware reconstruction (Cao et al., 2022; 2024; Izquierdo et al.,
2025).

However, in real-world autonomous driving scenarios, both paradigms face fundamental limitations
due to system-level constraints. First, LIDAR-based prompts are often spatially sparse and unevenly
distributed—especially at long range or under adverse weather—leading to poor generalization when
the prompt is missing or misaligned with the target region. Moreover, occlusions and sensor place-
ment biases (e.g., forward-facing only) further degrade prompt coverage, resulting in unreliable scale
anchoring regarding some blind areas. Second, while MVS offers a principled way to recover metric
structure through multi-view cues, it critically depends on a sufficient baseline between views. In prac-
tice, ego-motion can be minimal during traffic jams, parking, or low-speed maneuvers—conditions
where consecutive frames exhibit near-zero parallax. Under such degenerate configurations, epipolar
geometry collapses, correspondences become ambiguous, and MVS performance degrades sharply,
reverting effectively to monocular estimation with all its associated scale uncertainties.

This dilemma reveals a central tension: prompt-based methods offer absolute scale but lack spatial
completeness, while MVS provides dense multi-view consistency but fails under motion degeneracy.
Crucially, neither approach alone is robust across the full spectrum of operational conditions in
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autonomous driving. Our core insight is that: metric depth should be recovered through a synergistic
fusion of absolute scale anchors and relative multi-view cues, where each modality compensates for
the other.

Building on this principle, we introduce Prompt-MVS, a unified framework that integrates sparse
metric prompts with multi-view cues for robust depth estimation. Our approach leverages absolute
scale from prompts while exploiting dense geometric consistency from multiple views. Technically,
Prompt-MVS introduces three core components: (1) a confidence-aware multi-view aggregation
scheme that modulates matching costs along the depth hypothesis axis using geometrically propagated
prompts as soft priors, enabling reliable scale anchoring even with sparse inputs; (2) a prompt-
count-agnostic fusion mechanism that dynamically weights views based on prompt availability
and confidence, allowing well-informed views to regularize those without prompts through cross-
view consistency; and (3) a depth—spatial alternating attention (DSAA) module that disentangles
depth-level aggregation from 2D spatial modeling, preserving structural coherence while reducing
computational overhead. Together, these designs enable Prompt-MVS to produce high-fidelity, 3D-
consistent depth maps across a wide range of driving conditions. Experiments show state-of-the-art
performance on challenging benchmarks, with significant improvements over both monocular and
multi-view methods in depth accuracy and downstream 3D reconstruction quality.

Finally, our contributions can be summarized as follows:

* We propose Prompt-MVS, a unified framework that integrates sparse metric prompts with
multi-view cost volume learning, achieving accurate depth estimation even in challenging
scenarios in autonomous driving.

* We introduce a confidence-aware multi-view aggregation scheme, that dynamically modu-
lates matching costs along the hypothesized depth axis as a soft depth prior, allowing views
with reliable prompts to guide and compensate for less-informative views without prompts.

* We design a depth-spatial alternating attention (DSAA) module that alternately ag-
gregates contextual information across depth hypotheses and spatial dimensions, keeping
structural consistency in 2D space.

2 RELATED WORK

Monocular Depth Estimation (MDE). Monocular depth estimation (MDE) is a long-standing chal-
lenge in computer vision. Early approaches exploit image features and geometric heuristics (Hoiem
et al., 2007; Saxena et al., 2008). With the development of deep learning, data-driven methods (Eigen
et al., 2014; Guo et al., 2025; Fu et al., 2018) achieved significant performance gains, yet often
suffer from poor generalization beyond their training domains. Recent advances have focused on
improving open-world robustness. The DepthAnything family (Eigen et al., 2014; Yang et al., 2024)
further leverages massive unlabeled imagery via semi-supervised training (Sun et al., 2024; Yang
et al., 2023), producing strong zero-shot results across various real-world scenes. To further enhance
generalization, several works scale up training data with diverse scene priors (Xian et al., 2018; 2020),
adopt affine-invariant losses (Ranftl et al., 2020), or design stronger architectures based on vision
transformers (Ranftl et al., 2021). Concurrently, the diffusion model has opened a new frontier for
MDE. Marigold (Ke et al., 2024) adapts Stable Diffusion (Rombach et al., 2022) to predict depth
from diffusion priors. DepthLab (Liu et al., 2024) introduces a “painting-style” generation strategy to
sharpen structure. Depthfm (Gui et al., 2025) adopts flow-matching to accelerate sampling within
diffusion frameworks. While these approaches recover compelling relative geometry, they typically
inherit the scale ambiguity of generative models and thus fail to recover metric-consistent depth. To
address this problem, classic methods supervise with RGB-D or LiDAR in specific domains (e.g.,
indoor scenes or street views) (Bhat et al., 2021; Yin et al., 2019), while more recent efforts (Butler
et al., 2012; Guizilini et al., 2023; Kendall et al., 2018) demonstrate improved cross-domain general-
ization. ZoeDepth (Bhat et al., 2023) builds upon relative-depth pretraining (Birkl et al., 2023) and
attaches domain-specific metric heads for scale adaptation. UniDepth (Piccinelli et al., 2024; 2025)
jointly learns from metric and non-metric depth, further enhancing generalization. MoGe (Wang
et al., 2025a) targets metric geometric estimation directly by exploiting the z-channel of predicted
point clouds as a metric signal.
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Prior-based MDE. In real-world scenarios (e.g., autonomous driving), cameras are often paired with
LiDAR, motivating the use of sparse depth measurements as geometric priors for recovering dense,
metrically calibrated depth maps (Schonberger et al., 2016; Jensen et al., 2014). Recent methods have
explored various strategies to effectively fuse such priors. OMNI-DC (Zuo et al., 2024) addresses
diverse sparsity patterns via a specialized architecture and probability-based loss, combined with scale
normalization and mixed synthetic training. Marigold-DC (Viola et al., 2024) leverages generative
models to capture complex visual statistics, improving cross-scene generalization. However, under
extremely sparse priors, these methods can falter due to insufficient geometric guidance. To mitigate
this, PromptDepthAnything (Lin et al., 2025) conditions a depth foundation model (Piccinelli et al.,
2024) on a low-resolution depth prompt, while PriorDepthAnything (Wang et al., 2025b) injects
explicit geometric constraints in a coarse-to-fine pipeline to retain performance even with scarce
priors. DepthLab (Liu et al., 2024) first interpolates to fill holes and then refines with a depth-
guided diffusion model, but effectiveness degrades when missing regions are large or the depth range
is incomplete, as interpolation errors accumulate. Despite these advances, they remain vague and
unconvincing. The core drawback is the heavy reliance on 3D-structured point cloud/depth prompting,
which does not involve multi-view cues, thereby causing inconsistency.

Multi-view Stereo (MVS). Multi-view Stereo provides a complementary route to metric-aware depth:
under calibrated cameras, depth can be triangulated by enforcing epipolar constraints. Early methods
relied on patch-based matching for depth estimation (Schonberger et al., 2016; Furukawa et al., 2015).
With the advent of deep learning, MVSNet (Yao et al., 2018) proposes an end-to-end formulation
that decomposes MVS into feature extraction, cost-volume construction, and cost regularization,
substantially improving accuracy and robustness. Subsequent works advance along several axes:
architectural innovations for richer geometric and long-range context (Cao et al., 2022; 2024); explicit
handling of occlusions and independently moving objects (Wimbauer et al., 2021; Long et al., 2020);
efficiency-oriented designs that reduce compute and memory (Sayed et al., 2022; Yu & Gao, 2020);
and joint estimation of camera poses and depth to mitigate extrinsic errors (Leroy et al., 2024;
Wang et al., 2024). Murre (Guo et al., 2025) incorporates strong multi-view SfM priors into the
diffusion process to enforce cross-view consistency. Despite these advances, most early methods
are trained and evaluated within narrow domains, limiting their out-of-distribution generalization.
MVSAnywhere (Izquierdo et al., 2025) addresses this by targeting cross-domain and cross-range
robustness without requiring retraining on target data, which marks a shift toward foundation-model-
style MVS systems. Nevertheless, MVS remains fundamentally constrained by epipolar geometry,
which often fails in degenerate conditions (e.g., near-zero baseline, unchanged camera poses, or
repetitive textures). In such cases, multi-view constraints provide little discriminative power and
result in a collapse to an MDE problem with inherent scale ambiguity. The limitations of existing
paradigms motivate a hybrid formulation that combines metric priors with MVS cues, balancing
global scale awareness with local geometric consistency to improve robustness under degenerate
configurations.

3 METHOD

Overview. The overall pipeline of Prompt-MVS is illustrated in Fig. 1. Given N + 1 calibrated
images with known camera poses, we designate the reference image as Iy € R¥>*"W 3 and its sparse
metric depth prompt as Py € RF>*W where H x W is the image resolution. The source views are
{I; € REXW>31NV | with associated sparse depth prompts { P; € R>*W1 N Conditioned on these
inputs, Prompt-MVS predicts multi-scale depth maps for the reference view, progressively refining
resolutions from 1/8 to full scale (1/1) of the original image size. Specifically, for the reference and
source views {Ii}f\io, we adopt the first two blocks of a ResNet18 (He et al., 2016) as the feature

encoder, mapping each image I, to a deep feature map F; € RT*TxC a1 /4 resolution, where
C is the channel dimension. The encoder weights are shared across views. Then, we discretize the
depth range into D hypotheses, {dk}szl. For each source view 1, the feature map JF; is warped into
the reference camera at depth d. The warped features are concatenated with the reference feature F
and auxiliary geometric metadata to form the initial cost volume F, € R&*5xD To fully exploit
prompt information across views, we first densify the sparse metric depth prompts { P4 € RZ*W}
and simultaneously estimate per-pixel confidence Conf ;-1 € R¥*W  The resulting pseudo-dense
prompts and their confidences are downsampled to £ x % and used to refine the reliability of

4
each spatial location in the cost volume, as depicted in Sec. 3.1. Moreover, to more effectively
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Figure 1: Overview of Prompt-MVS. Given multi-view images, we first perform Semi-Densification
to propagate sparse prompts and derive per-pixel confidence maps. (a) The source views are encoded
into matching features, and a cost volume is constructed by correcting features across views over
discretized depth hypotheses. (b) A key to performance is our confidence- and prompt- conditioned
cost volume: the densified prompts and their confidences modulate and reweight the costs, sup-
pressing spurious matches and sharpening responses along the depth axis. (c) Finally, the proposed
Depth—Spatial Alternating Attention (DSAA) fuses monocular cues from the reference and source
encoders with the spatial features extracted from the cost volume, explicitly disentangling depth and
spatial dependencies for efficient and robust aggregation.

fuse mono-cues (from the reference image) with multi-cues (from cost volume), we introduce a
Depth—Spatial Alternating Attention (DSAA) mechanism that will be depicted in Sec. 3.2.

3.1 SEMI-DENSIFICATION WITH CONFIDENCE

To make the projected sparse depth usable in image space, we first perform K-nearest-neighbor
(KNN) interpolation for semi-densification. Let D denote the sparse depth map with valid set, the
image domain, and a sky mask from semantic segmentation. We completely skip sky and other
semantics that do not require filling. In addition, to help the network distinguish original pixels from
interpolated pixels and to better leverage the prompt information, we introduce an extra confidence
map Conf whose weights are derived from each pixel’s Euclidean distance to its nearest valid prompt.
Furthermore, to account for the noise inherent in LiDAR, for each pixel x where a sparse metric
measurement d,ps(x) is available, we assume it follows a Gaussian likelihood as follows:

N (d(@); dobs (%), 7554 ()), M

where 0,5 () encodes range-dependent sensor noise. Then we yield a closed-form posterior for x
through Bayesian fusion:

—2 —2 -2 2 Hprior (-T) dobs (JJ) )
Opost = Oobs +o 0T ost\T) = Opost\ L + . (2)
post b p Hp t( ) p t( ) (Uprior(m) O_gbs (ZC)

For each pixel = where a sparse metric measurement d,,, () is not available, we simply set ft,05¢(z) =

Hprior (), O2pst = Orpior- We the define a numerically stable confidence as follows:

o Jgost ({E)

Conf(x) = exp 5
-

; 3

where T is temperature factor. Because the range of prompt depth values varies significantly across
views and scenes, we first normalize the prompt depths. Specifically, we set the lower bound to
0.8 the original minimum and the upper bound to 1.2 the original maximum (to ensure the true
depth range is covered). We use the same range to normalize the ground-truth depth maps. This
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design ensures that the trained model predicts depths on the same scale as the input prompt, enabling
effective use in subsequent multi-view feature extraction.

Confidence-aware multi-view aggregation. Following Fig. 1, we first build a feature volume and
apply a matching MLP independently to each combined feature vector at a given spatial location and
depth plane. This yields a raw cost volume C,q,, € RH#/4*W/4xD Tg Jeverage prompt maps and
corresponding confidence from both the reference and source views, we further apply an aggregation
MLP that fuses C-aw with the dense prompts and confidence maps. Like the matching MLP, the
aggregation MLP is shared across locations and depths and is evaluated in parallel at every plane of
the volume. Concretely, for each voxel we form a 3D input vector

X = [varacmbmcs]a (4)

where s is the matching score from C'.q., .-, bs are the dense bias score of reference view and source
view, defined as the absolute difference between the multi-view dense prompt depth and the current
depth plane, and ¢, ¢, are the pixel-wise confidence. For pixels withou a valid prompt depth, we set
¢ = 0and b = —1 The aggregation MLP maps x to a fused score § = MLP,,,(x). This procedure is
used identically at training and test time.

3.2 DEPTH-SPATIAL ALTERNATING ATTENTION

In multi-view stereo (MVYS), the cost volume exhibits pronounced anisotropy along the depth and
spatial dimensions: along the depth dimension d € {1,..., D} it enumerates multiple geometric
hypotheses for the same pixel and evaluates their consistency, whereas along the spatial dimensions
(u,v) € {1,..., H} x {1,..., W} it encodes cross-pixel structural priors and occlusion cues, such
as edge continuity and occlusion boundaries at discontinuities. Flattening a 3D voxel volume
into a single token sequence and applying global self-attention is computationally prohibitive and,
more critically, conflates two fundamentally different dependencies: depth-wise correlations across
hypothesized planes and in-plane spatial structure. Inspired by VGGT’s Alternating Attention (AA),
which factorizes video attention into intra-frame followed by inter-frame, we redefine the attention
scope to alternate across orthogonal axes, applying depth-first attention and then spatial attention
in a stacked manner. This axis-wise, divide-and-conquer factorization reduces the complexity of
global attention and prevents dependency entanglement, thereby enabling more effective fusion of
geometric priors along the depth axis with spatial context within each plane and yielding more stable
optimization. As illustrated in Fig. 1, within the reference-image encoder we convert the cost volume
into tokens using two cross-row convolutional layers. Before tokenization, the cost-volume features
are concatenated with monocular features taken from the first two encoder stages (at 1/4 and 1/8
of the input resolution), after appropriate transposition and linear projection. The module outputs a
sequence of H/16 x W/16 tokens, matching the sequence length of the monocular stream. We then
feed these tokens into a ViT-B initialized with DINOv2 weight. To fuse geometric evidence from the
cost volume with appearance cues from the image, we adopt an alternating attention scheme. After a
linear projection that maps both streams to a shared embedding space, the cost-volume tokens and
the reference-image tokens first undergo intra-stream self-attention independently; their results are
then summed (residual fusion) and subsequently processed by inter-stream self-attention to exchange
information across streams. We repeat this procedure at the 2nd, 5th, 9th, and 11th transformer
blocks, thereby integrating monocular cues at multiple depths of the ViT. This design enables effective
coupling of depth (along the hypothesis dimension) and spatial information, improving the joint
reasoning over geometry and appearance.

3.3 IMPLEMENTATION DETAILS

The Design of Metadata. Following MVSAnywhere (Izquierdo et al., 2025), we construct a metadata
vector per pixel-depth hypothesis and feed it to a source—view—agnostic MLP to construct the cost
volume. Specifically, each metadata token contains seven components: the feature dot product
between warped source and reference features, ray directions, reference-plane depth, reprojected
depths, relative ray angles, relative pose distance, and a depth validity mask. This design enables
fixed-dimensional tokenization that is independent of the number of source views, facilitating scalable
and flexible cost aggregation across inputs with varying view counts.

The selection of keyframes. For reference—source selection, we adopt the strategy proposed by
MVSAnywhere for dense video sequences. To ensure robustness in sparse frame settings, we further
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enhance the selection criterion by forming reference—source tuples based on geometric overlap.
Specifically, we select non-consecutive frames that maximize view intersection—measured by repro-
jection coverage and visibility—while maintaining sufficient parallax. This balances completeness of
multi-view correspondence with depth discriminability, thereby improving depth estimation reliability
under large temporal gaps.

Loss function. We adopt the supervision losses from MVSAnywhere (Izquierdo et al., 2025).
Specifically, we apply an ¢; loss between the logarithm of the ground-truth depth and the logarithm
of the prediction, together with gradient and surface-normal losses. The training objective is imposed
at four decoder output scales.

4
1 1 iy y
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s=1 14,5
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where D,,..q4 is the network output depth map, Dy is the ground truth depth map, V denotes first-
order spatial gradients, Np,¢q is the normal map derived from predicted depth and camera intrinsics,
Ny, is the normal map derived from ground truth depth and camera intrinsics, and 4, j superscripts
indicate pixel indices. Here 14, denotes that each output is aligned with the full-size ground truth
depth map via nearest-neighbor upsampling and | represents downsampling to scale s.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate Prompt-MVS in a non-zero-shot (in-dataset) setting on two real-world
autonomous-driving datasets, training and validating on each dataset separately. The evaluation targets
outdoor driving scenes with diverse image resolutions, sparse-depth densities, sensing configurations,
and noise characteristics. KITTI (Geiger et al., 2012) comprises driving sequences with paired RGB
images and sparse LiDAR depths at a resolution of 1216 x 352. Semi-dense ground truth is obtained
by temporally accumulating multiple consecutive LIDAR sweeps with error filtering. We adopt the
official validation split with 1000 samples and remove outliers in the guidance points by comparing
each point to the local minimum depth within a 7 x 7 window. DDAD (Guizilini et al., 2020) features
a 360° multi-camera rig and long-range LiDAR with depth measurements up to 250m The official
validation set provides 3950 samples per camera at a resolution of 1936 x 1216. In our experiments,
we use only the front-facing camera and randomly subsample 20 of the available depth measurements
as sparse input, applying the same LiDAR filtering procedure as in KITTI.

Evaluation Protocol. Following recent work (Viola et al., 2024), we report four commonly used

metrics to compared d; and GT depth d;. The Mean Absolute Error(MAE), Root Mean Squared
Error(RMSE), Absolute Relative depth (AbsRel), and inlier percentage 7 are defined as follows:

1 5 1 5
MAE = &> |di —dil, RMSE= |53 (di—d;)?,
ieQ i€Q (6)

1 - . R
AbsRel = — Z |d; — d;|/d;, T = [max(d/d,d/d) < 1.05],
1€Q
where [-] is the Iverson bracket.

Training details. We train our model on four A100 GPUs for 70K steps, with an effective batch size
of 12 (6 samples per GPU, accumulated over two forward passes), at input resolution 640 x 480.
Gradient accumulation is applied to stabilize optimization under limited hardware resources. We
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Table 1: Benchmark study of depth estimation methods. All methods are evaluated on KITTI (Geiger
et al., 2012) and DDAD (Guizilini et al., 2020), respectively, and each data set contains two metrics.
All the metric are reported in meters. The best and second best scores are highlighted in bold and
underline.

Method Venue KITTI DDAD Avg
MAE| RMSE| | MAE, RMSE| | MAE, RMSE|

NLSPN (Park et al., 2020) ECCV’20 | 1.335 2.076 2.498 9.231 1.917 5.654
CompletionFormer (Zhang et al., 2023) | CVPR’23 | 0.952 1.935 2.518 9.471 1.735 5.703
DepthLab (Liu et al., 2024) arXiv'24 | 0.921 2.171 4.498 8.379 5.425 5.275
Marigold (Ke et al., 2024) CVPR’24 | 1.765 3.361 22.872  32.661 12.319  18.011
PromptDA (Lin et al., 2025) CVPR’25 | 0.934 2.803 2.107 7.494 1.521 5.149
PriorDA (Wang et al., 2025b) arXiV’25 | 1.705 4.083 4.745  12.330 | 3.225 8.207
MVSAnywhere (Izquierdo et al., 2025) | CVPR’25 | 1.704 3.562 4.182 11.539 2.943 7.551
Ours-A (only sparse prompt) - | 0.769 2.626 2.211 6.114 1.490 4.370
Ours-B (only semi-densify prompt) - | 0.802 2.451 2.426 6.776 1.614 4.614
Ours-C (only DSAA) - | 1.102 2.318 3.126 8.036 2.114 5.177
Ours - | 0.602 2.218 2.024 5.976 1.313 4.097

adopt component-wise learning rates: the matching encoder and cost-volume MLP use an initial
learning rate of 2¢~* until step 70k, then 2e~° thereafter. The depth decoder and the mono/multi
cue combiner are initialized at 1e~* and linearly decay to 1e~7. The reference image encoder starts
at le~® and linearly decays to 1e~®. A weight decay of 2e~* is applied across all parameters. We
initialize the model from MVSAnywhere (Izquierdo et al., 2025) pretrained weights. For the first
10k steps, we adopt a stage-wise schedule: all parameters are frozen except MLP layers and the
DSAA module, allowing rapid adaptation of prompt-conditioned components without destabilizing
the backbone. Afterward, we unfreeze all modules and perform end-to-end fine-tuning. To improve
robustness and generalization to missing or noisy prompts, we regularize the prompts during training
with stochastic dropout and additive noise. Concretely, we randomly drop prompt regions with a
fixed probability and inject zero-mean noise into both the prompt values and their confidence maps,
discouraging over-reliance on any single prompt and encouraging cross-view consistency.

4.2 EXPERIMENTAL RESULTS

Evaluation on KITTI and DDAD Dataset. We first validate the proposed method on KITTI and
DDAD datasets. During test stage, images are resized to 640 x 480 and the number of source views
is fixed to 7. We use OneFormer (Jain et al., 2023) to obtain a sky mask, which is applied during
inference to suppress unreliable matches in sky regions. Evaluation follows the official protocol,
and we report MAE and RMSE over valid pixels. As summarized in Tab. 1, Prompt-MVS delivers
substantial gains over the MVSAnywhere baseline without prompts in KITTI dataset, reducing
MAE by 64.67% and RMSE by 37.73% overall. As for DDAD dataset, Prompt-MVS achieves
an average MAE of 2.024 and RMSE of 5.976, outperforming all competing methods. Moreover,
compared with prompt-based monocular depth estimators, our multi-view formulation leverages
geometric constraints and cross-view consistency to achieve lower overall error than both classical
and learning-based monocular baselines. Qualitative results in Fig. 2 further show that Prompt-MVS
produces more accurate depth with markedly fewer outliers.

Evaluation on Static Scenes. To assess robustness in such motion degenerate regimes, we evaluate
Prompt-MVS on KITTI 2011_09_.0026 and DDAD 000193 sequences. As reported in Tab. 2, we
compare methods using MAE, RMSE AbsRel, and the inlier rate 7. Prompt-MVS surpasses the
baseline method MVSA (Izquierdo et al., 2025) in KITTI scene and has the largest inliers. While
in DDAD scene, Prompt-MVS outperforms all competing methods across every metric, indicating
that our multi-view prompt fusion is better suited to real-world autonomous-driving scenarios and
remains robust under motion degeneracy.

4.3 ABLATION STUDY

Effects of Proposed Components. To verify the effectiveness of Prompt-MVS, we conduct ablation
studies on key components of our pipeline. As shown in Tab. 3, we evaluate the model under
various configurations. The comparison between Ours-A and Ours-B highlights the importance
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Figure 2: Experiment results on DDAD (top) and KITTI (bottom). Our method has better visual
results compared to LiDAR-prompt monocular depth estimation methods.

Table 2: Benchmark study of depth estimation methods on static scenes. All methods are evaluated on
2011.09-29_0026 sequence of KITTI (Geiger et al., 2012), and 000193 sequence of DDAD (Guizilini
et al., 2020), respectively, and each data set contains four metrics MAE and RMSE are reported in
meters, AbsRel and T are reported in percentage. The best and second best scores are highlighted in
bold and underline.

KITTI-Static DDAD-Static
MAE, RMSE| AbsRell 71 |MAE| RMSE| AbsRel, Tt

Depth Pro (Bochkovskii et al., 2024) 0.971 2.122 0.064  60.029 | 6.851 14.677 0.206 9.131

Method

PromptDA (Lin et al., 2025) 0.872 2365  0.045  72.666 | 7.676 17573 0209  22.085
PriorDA (Wang et al., 2025b) 1.324 3395  0.084 67.009 | 5961 13536  0.226  42.224
MVSAnywhere (Izquierdo et al., 2025) | 8.890  11.231  0.655 15132 | 5.146 13220  0.160  47.973
Ours | 3439 10289  0.096 81.468 | 2.585  8.867  0.068  84.208

of prompt densification—a simple yet critical step that enriches sparse metric priors and improves
their spatial coverage. Furthermore, the results from Ours-B and Ours-C demonstrate that both the
confidence-aware aggregation and the DSAA modules contribute meaningfully to performance. When
all components are combined, the full model achieves the best results, confirming the synergistic
design of Prompt-MVS.

Effects of Prompt Absence. To simulate common LiDAR blind spots in autonomous driving
scenarios, we evaluate depth prediction performance when prompts are absent. Specifically, we
remove the point cloud prompts from the reference view and discard prompts from 4 out of the
7 source views. As shown in Fig. 3, compared to the baseline, our method maintains strong
performance in this degraded setting, with only marginal degradation in depth accuracy relative to
the full-prompt case. This demonstrates the robustness of Prompt-MVS to missing geometric priors.

Effects of Prompt Density. We further conduct experiments on the impact of the prompt density.
We sample the LiDAR prompt of DDAD dataset with different configurations, i.e., 64 lines and 16
lines. As shown in Tab. 3, since denser prompts provide more accurate metric prior, our method
consistently outperforms the baseline approach and achieves significant results under the guidance of
a higher number of LiDAR lines, revealing the upper limit of our approach.

5 CONCLUSION

This paper presents Prompt-MVS, a unified framework for robust metric depth estimation that
effectively bridges the gap between sparse geometric prompts and multi-view consistency. By syner-
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Figure 3: Prompt Absence Cases. We discard the prompt of reference image and part of the source
view images. Our method surpass baseline method (Izquierdo et al., 2025) with limited degradation
comapred to the full-prompt case. Red cross refers to ignore prompt.

Table 3: Ablation study of Prompt Density. All methods are evaluated on the validation sequence of
DDAD (Guizilini et al., 2020). Each data set contains four metrics MAE and RMSE are reported in
meters, AbsRel and T are reported in percentage. The best scores are highlighted in bold.

DDAD-64 Lines DDAD-16 Lines
MAE|, RMSE| AbsRel, 71 |MAE|, RMSE| AbsRel, 7

PromptDA (Lin et al., 2025) 2.669 8.672 0.628  78.924 | 3.432 9.800 0.082 70.106
PriorDA (Wang et al., 2025b) | 2.653 8.268 0.055  80.583 | 3.407 9.532 0.078  66.551

Ours | 1583 5405  0.049 87488 | 1870 5862  0.061 81.935

Method

gistically fusing absolute scale priors with dense epipolar constraints, our approach overcomes the
fundamental limitations of each modality: it remains reliable under motion degeneracy where MVS
fails, and generalizes well even with sparse or incomplete prompting. We design a confidence-aware
fusion mechanism and a depth—spatial alternating attention module which leverage the complemen-
tary strengths of absolute scale anchoring and multi-view cues, achieving superior performance
under challenge scenarios in autonomous driving such as motion degeneracy and partial observ-
ability. Experiments show state-of-the-art results in depth accuracy and 3D reconstruction quality,
demonstrating the effectiveness of structured cross-modal integration for real-world 3D perception.

Limitations. Our method assumes calibrated cameras and accurate pose estimates, which may not
always be available in wild environments. Additionally, the performance may degraded considering
temporal coherence and consistency, due to the mono-depth decoder. Future work may explore the
spatial-temporal consistency and extension to non-calibrated scenes.
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