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Abstract

Accurately predicting human decision-making under risk and uncertainty is a long-
standing challenge in behavioral science and AI. We introduce BEAST Gradient
Boosting (BEAST-GB), a hybrid model integrating behavioral insights derived from
a behavioral model, BEAST, as features in a machine learning algorithm. BEAST-
GB won CPC18, an open choice prediction competition, and outperforms deep
learning models on large datasets. It demonstrates strong predictive accuracy and
generalization across experimental contexts, highlighting the value of integrating
domain-specific behavioral theories with machine learning to enhance prediction
of human choices.

∗An extended version of this paper is available at https://arxiv.org/abs/1904.06866v2
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1 Introduction

Predicting human decision-making under risk and uncertainty is a longstanding challenge in eco-
nomics, psychology, and artificial intelligence. Despite decades of effort [3, 10, 16, 17, 9], no
model accurately describes and predicts choices under risk and uncertainty, even for the most basic
stylized tasks, like choice between lotteries (probabilistic options with varying payoffs). Traditional
behavioral models aim to describe and explain human choice but often struggle with generalization
across contexts, fail to capture the full range of human behavior, and rarely achieve high predictive
accuracy [7]. Conversely, pure machine learning (ML) models optimized for prediction accuracy
often miss the domain-specific insights essential for capturing human choice behavior effectively and
efficiently [14, 12].

This paper introduces BEAST Gradient Boosting (BEAST-GB), a novel hybrid model that combines
the predictive power of ML with insights from the behavioral model BEAST (Best Estimate and
Sampling Tools). We demonstrate BEAST-GB’s efficacy using three large datasets of human choice
between lotteries: a recent choice prediction competition (CPC18, [13]), the largest publicly available
dataset of human choice under risk and uncertainty [4], and an ensemble of published data used to
compare predictions of dozens of classical behavioral models [9]. The results show that BEAST-GB
won the prediction competition and outperforms both deep learning models trained on large datasets
and existing behavioral models. Importantly, BEAST-GB exhibits strong domain generalization [18],
making it effective in novel and unseen contexts. Our findings highlight that integrating behavioral
theories with ML models can yield better predictions than using either approach independently.

2 Methods

2.1 BEAST-GB Model Description

BEAST-GB is a hybrid model that combines BEAST, a promising behavioral model of decision-
making [7], with Gradient Boosting (XGBoost[5]). The model predicts human decisions in tasks
involving choices between lotteries, which form the foundation of rational economic theory [15, 17]
and the analysis of deviations from rationality [10, 16]. Integration of the behavioral theory in
BEAST-GB is done using engineered features that are derived from BEAST’s core assumptions.
Notably, these assumptions are very different than those made by mainstream decision models. For
example, while mainstream models like prospect theory [10], assume stable preferences, BEAST
incorporates mental sampling, acknowledging potential biases and fluctuating decision-making
processes alongside sensitivity to expected values. Specifically, BEAST assumes decision-makers
use a small mental sample of possible outcomes from available options, with a potentially biased
sampling process. The mental sampling process reflects four behavioral tendencies: choosing options
that minimize immediate regret, choosing options that maximize the worst outcome, choosing options
that maximize the probability of the best possible payoff sign, and choosing options that are expected
to lead to the best outcome had all of the outcomes been equally likely.

The features used in BEAST-GB are defined by Plonsky et al. [14] and presented in Table 1. In
addition to the set of raw features that describe the available lotteries (referred to as objective features),
BEAST-GB leverages three sets of behavioral features:

• Naïve features: Simple properties like differences in expected values or standard deviations.

• Psychological insight features: Capturing deeper behavioral mechanisms from BEAST,
such as sensitivity to the probability that one option provides a better outcome than another
in a single draw, corresponding with BEAST’s assumption that people choose options that
minimize immediate regret.

• Behavioral foresight feature: The direct prediction of BEAST for each choice task.

2.2 Datasets

We evaluate BEAST-GB on three datasets that assess human decision-making under risk and uncer-
tainty (see A.3 for more details).
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CPC18 An open choice prediction competition (CPC) dataset containing 270 binary choice tasks
between lotteries (see Figure 1). The competition’s training set included 210 tasks, while 60 tasks
served as the held-out test set. Choice tasks were randomly selected from a predefined space of
decisions under risk, ambiguity, and experience (the "Objective" features in Table 1), and cover
classical behavioral phenomena like the Allais [2] and Ellsberg [6] paradoxes. The dataset consists of
694,500 decisions made by 926 subjects across 25 trials each, first without feedback and then with
feedback on the outcomes of previous choices.

Choices13k The largest publicly available dataset for human choice under risk, Choices13k includes
9,831 binary choice tasks, similar to CPC18 (i.e, with the same objective features), where Amazon
Mechanical Turk users made five repeated choices between lotteries with feedback. Introduced to
explore ML models’ predictive power in larger datasets [4, 12], Choices13k allows comparison of
BEAST-GB with state-of-the-art pure ML models.

HAB22 An ensemble dataset containing 1,565 one-shot choice tasks from various published studies,
recently assembled for a large-scale comparison of over 50 behavioral models of risky choice [9]. The
dataset includes tasks that differ from those in CPC18 and Choices13k, featuring large differences in
expected values and no feedback, and allows testing model robustness and generalization across its
15 different experimental contexts.

2.3 Evaluation

Following previous works [7, 12], we focus on the models’ ability to predict the aggregate behavior of
decision-makers. Hence, the models aim to predict choice rates—the proportion of participants choos-
ing each option in a new task. We assess model performance using two key metrics: Mean Squared
Error (MSE), which quantifies the difference between the predicted and observed choice rates,
measuring the model’s accuracy, and a completeness score (see A.1), representing the proportion of
predictable variation in the data that the model captures[8]:

Completeness =
MSErandom − MSEmodel

MSErandom − MSEirreducible

where MSErandom is the MSE for random guessing and MSEirreducible is the irreducible sampling error.
This score evaluates how well the model captures systematic behavioral patterns beyond random
fluctuations.

In CPC18, which includes a hidden test set, the models are compared based only on their predictive
accuracy in the (single) test set. In Choices13k and HAB22, models are evaluated based on 50
repetitions of a 90-10 split of the choice tasks to train and test sets, with the reported metrics the
average of the performance in the 50 test sets.

2.4 Feature Importance Analysis

To assess which features contribute most to the predictive performance of BEAST-GB, we conduct
two types of feature importance analysis:

Feature Removal: We systematically remove sets of features (naïve, psychological, or foresight)
and retrain the model to evaluate how prediction accuracy changes. This process helps determine the
relative importance of each feature set.

SHAP Values: We compute SHAP (Shapley Additive Explanations) values [11] to quantify the
contribution of individual features to each prediction. SHAP values provide insight into how different
behavioral features influence the model’s predictions.

3 Results

3.1 Predictive accuracy

CPC18 Sixty-nine researchers from 34 institutions across 16 countries registered to submit pre-
dictions to the CPC, with 20 models (including BEAST-GB) submitted on time. BEAST-GB won
the competition, achieving the lowest MSE (0.0056) on the held-out test set. Its completeness score
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was 93%, indicating that it captures nearly all of the predictable variability in the data. Notably,
submissions of pure ML approaches performed significantly worse.

Choices13k BEAST-GB set a new state-of-the-art in predictive accuracy for this dataset, with
an MSE of 0.0084 and a completeness score of 96%. This accuracy is 25% better than the most
expressive neural network model previously reported [12], which did not leverage behavioral theory.
Additionally, we tested the sample efficiency by training the models on increasing proportions of the
train data. As shown in Figure 2, BEAST-GB demonstrated significant improvements in learning
speed: Trained on just 2% of the data (176 tasks), it surpassed the accuracy of a neural network
trained on the entire dataset (9̃000 tasks).

HAB22 BEAST-GB significantly outperformed all 50+ behavioral models previously tested on the
HAB22 dataset, including various versions of prospect theory, achieving a completeness score of
95% (see Figure 3). This suggests that BEAST-GB captures systematic patterns in human behavior
even in one-shot tasks without feedback, underscoring its robustness. Interestingly, despite BEAST’s
relatively poor performance on this dataset (completeness score of 36%), BEAST-GB’s integration
with machine learning enables it to excel, highlighting the value of ML in enhancing less flexible
behavioral models.

3.2 Feature importance analysis

Feature importance analysis consistently highlighted the importance of the behavioral foresight
feature (BEAST’s prediction). Specifically, In SHAP value analysis, the foresight feature consistently
had the largest SHAP value across all datasets, and in the feature removal analysis, removing this
feature usually led to the largest reduction in accuracy. This highlights the critical role of BEAST’s
original predictions, even in cases where its point predictions are poor, as observed in the HAB22
dataset. This may imply that BEAST captures key behavioral patterns even though it is biased in
some contexts, and highlights how the use of ML can improve predictions of good but inflexible
behavioral models.

Interestingly, in the Choices13k dataset, removing the foresight feature early in training severely
impaired prediction accuracy, but its impact diminished as more data was used. Eventually, the
model performed nearly as well without it, suggesting that with sufficient data, the ML component
of BEAST-GB can learn the proper integration of the psychological insights underlying BEAST
without direct access to BEAST’s predictions. However, removal of the psychological insight features
themselves resulted in a significant decline in performance, even with large training data, and the
worst performance occurred when both the psychological insight and the behavioral foresight features
were removed, underscoring the continued importance of behavioral theory in prediction tasks, even
with large datasets.

3.3 Domain generalization

While BEAST-GB excels in making accurate predictions within specific experimental contexts, we
also examined its ability to generalize across different contexts. Using the HAB22 dataset, which
contains 15 distinct experimental contexts, we trained BEAST-GB on data from 14 contexts and
tested its performance on the 15th. Remarkably, BEAST-GB achieved a completeness score of 85%,
predicting well even without access to data from the unseen context.

Further analysis showed that BEAST-GB generalizes better across contexts than observed participant
behavior. When predicting choice rates of known tasks across different contexts, BEAST-GB reached
a completeness score of 92%, significantly outperforming a model that assumes that the behavior
of one sample of participants in an experimental context generalizes to another sample in another
context (in an identical choice task). These results (Figure 4) suggest that BEAST-GB captures
generalizable decision-making patterns that transcend individual contexts.

4 Discussion

BEAST-GB demonstrates the strength of hybrid models by successfully integrating behavioral theory
with machine learning, offering a novel approach to predicting human decision-making under risk
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and uncertainty. Its ability to incorporate BEAST, an interpretable model of human choice, into a
powerful machine learning framework highlights the value of combining qualitative insights from
behavioral science with the quantitative precision of AI systems.

A key strength of BEAST-GB is that it derives its predictive power from BEAST’s clear, interpretable
assumptions, such as mental sampling and sensitivity to expected values. This makes the model
highly explainable compared to typical machine learning models, which often function as black boxes.
BEAST-GB’s predictions are highly correlated with those of the behavioral model BEAST, which
ensures that the behavioral foundation is preserved while allowing the model to overcome BEAST’s
limitations, such as bias in specific contexts. SHAP analyses further support this, showing that
BEAST’s predictions significantly contribute to the model’s overall performance, even in domains
where BEAST alone performs poorly.

This hybrid approach also generalizes well across domains, as evidenced by BEAST-GB’s perfor-
mance on unseen experimental contexts within the HAB22 dataset. Not only does the model excel in
its trained contexts, but it also outperforms direct empirical generalizations of human behavior in new
domains, indicating its robustness and broad applicability. Further, because BEAST-GB is heavily
based on an interpretable psychological model that assumes similar behavioral tendencies regardless
of the exact problem structure, it should be straightforward to generalize BEAST-GB to other tasks
of decisions under risk and uncertainty. For example, to predict behavior in multiple (rather then
binary) choice tasks, one only needs to tweak the Psychological Insight features of BEAST-GB so
they would capture the same behavioral tendencies (like choosing options that minimize immediate
regret) but given more choice options.

The development of BEAST-GB has implications beyond choice prediction under risk. We replicated
the process by which this hybrid model was developed (transformation of a strong behavioral model
to features ingrained in ML) in a different domain—human choice in Market Entry Games—and
achieved similar success. This demonstrates that this approach has the potential for broader applica-
bility in other areas of human behavior.

Furthermore, the scalability of BEAST-GB is a notable advantage. BEAST-GB simplifies the use of
BEAST by incorporating its features without the need for retraining, making it more computationally
efficient. This efficiency is especially important in large datasets like Choices13k, where BEAST-GB
learns much faster than purely data-driven models and requires fewer training examples to achieve
high accuracy. This suggests that behavioral insights play a crucial role in making machine learning
models both faster and more generalizable.

In conclusion, BEAST-GB illustrates how integrating behavioral theories into machine learning
models can enhance predictive accuracy, interpretability, and generalization. As the workshop
explores interdisciplinary approaches to behavioral modeling, BEAST-GB serves as a compelling
case for the potential of hybrid models to bridge the gap between behavioral science and AI.
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A supplemental material - Additional Methods

A.1 Completeness Score Calculation

Completeness is defined as:

Completeness =
MSErandom − MSEmodel

MSErandom − MSEirreducible

where MSErandom is the MSE of random guessing (as defined in Fudenberg et al.[8]), MSEmodel is the
MSE of the model in question, and MSEirreducible represents the irreducible error, or the part of the
total error presumed to be unpredictable.

To compute MSEirreducible, we estimate the expected MSE of a perfect hypothetical model that
accurately predicts the population choice rate in a task. The observed error of the perfect theoretical
model in task i is the sampling error. The computed MSEirreducible can be expanded as follows:

MSEirreducible =
1

N

N∑
i=1

(µi − x̄i)
2 =

1

N

N∑
i=1

(µi − xi)
2
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where µi is the true population choice rate for task i and xi is the observed sample choice rate.

The expected value of MSEirreducible is therefore:

E(MSEirreducible) =
1

N

N∑
i=1

E
(
(µi − x̄i)

2
)
=

1

N

N∑
i=1

Var(xi) ≈
1

N

N∑
i=1

S2
i

ni

where S2
i is the sample variance for task i, and ni is the sample size for task i. Therefore, our estimate

for MSEirreducible is the average of the squared standard errors.

A.2 BEAST-GB training and implementation.

BEAST-GB is an XGB algorithm that uses the features detailed in Table 1. We implemented the
following pipeline to train BEAST-GB on each choice dataset. First, we generated the features for
each choice task. This notably includes generating the choice rate prediction of the original BEAST
model for that choice task (without refitting BEAST to the new data). Second, we coded categorical
features to numeric using dummy coding. Third, because in particular datasets some features may
turn out completely constant and/or duplicates of other features, we removed such features from the
data. Fourth, we randomly split the data to a train and a held-out test set (unless the data was already
organically split, like in CPC18). Fifth, we standardized all features by subtracting their mean and
dividing by their standard deviation in the train set. Sixth, we tuned the algorithm’s hyperparameters
using five repetitions of 5-fold cross validation implemented on the train set. Finally, we trained the
algorithm on the full train set with the chosen hyperparameters and generated its predictions for the
held-out test set.

A.3 Dataset details

Similar to the paradigm used in CPC15 [7], the experimental paradigm in CPC18 involved binary
choice under risk, under ambiguity, and from experience. As seen in Figure 1, decision-makers are
faced with descriptions of two lotteries (Option A and Option B) and are asked to choose between
them repeatedly for 25 trials. In the first five trials, they do not get any feedback, but as of the 6th
trial they get full feedback concerning the outcomes generated by each option (both the obtained and
the forgone payoffs are revealed). Choice options in CPC18 may include up to 10 outcomes, may
involve ambiguity (i.e., probabilities of potential outcomes are not revealed to the decision maker),
and may be correlated between them.

The Choices13k dataset was originally presented by Bourgin et al.[4] and includes 13,006 binary
choice tasks. Tasks were generated by the task generation algorithm used in CPC15[7] and are
therefore all members of the same space used in CPC18 that extends it. The data includes, for each
choice task, the proportion of times in which participants chose Option B. As in Peterson et al.[12],
we removed from the dataset tasks in which one of the options was ambiguous and tasks in which
participants did not receive any feedback, resulting with a dataset containing 9,831 risky choice tasks
in which participants made five consecutive choices with full feedback after each choice

HAB22 includes data assembled by He et al[9] from 15 different experimental contexts published in
seven distinct papers by various researchers. In each experimental context, participants made multiple
one-shot choices between binary lotteries with up to two outcomes without feedback. Hence, the
experimental task here is different than those used in CPC18 and Choice13k. Moreover, some choice
tasks in this dataset are very different than those used in the other two datasets of choice under risk
and uncertainty we use in this paper. Specifically, the difference between the EVs of the lotteries in
some choice tasks here are especially large. In total, the HAB22 data includes 1565 choice tasks,
although some of these are identical but were run in different experimental contexts and are thus
treated as distinct.

Originally, He et al [9] used four additional experimental contexts in their analyses. However, the
data in these contexts is not usable for our purposes[1]. In three contexts, the data they used to train
their behavioral models included errors (specifically, the actual choice data was wrongly linked with
the identity of the choice tasks participants observed) and in a fourth, participants faced the same
choice tasks more than once, leading the same choice task to be included both in the train and test
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Figure 1: A decision-making task used in CPC18. Human decision makers choose between A and B
repeatedly for 25 trials, and get full feedback after each choice starting trial 6. The participant here
chose Option B.

set of the behavioral models. Hence, we could not properly compare BEAST-GB to the behavioral
models in these contexts and thus chose to drop them.

B supplemental material - Additional Results

The following figures present the main results of the comparative analyses in Choices13k and HAB22.
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Figure 2: Test set performance on Choices13k data. Data was split to 90% training and 10% held-out
test data, and models were trained on fixed and increasing proportions of the training data. This
process was repeated 50 times, and results reflect the average test set MSE over these 50 splits. Neural
PT (Neural Prospect Theory) and Context dependent performance is taken directly from Peterson et
al. (2021).

Figure 3: Test set performance on HAB22 data. Performance is evaluated based on 10-fold cross
validation on choice tasks, and 5-fold cross validation on participants in experimental contexts. That
is, models predict choice rates of new participants in new tasks (see Methods). Error bars represent
±1 SE for the mean over the 50 test sets. Models, except BEAST and BEAST-GB, were evaluated by
He et al., 2022 and details on the models can be found there.
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Figure 4: Predictive accuracy in domain generalization task of predicting behavior in the 762 instances
where a choice task that appears in the test dataset also appeared in one or more of the train datasets.
Training data always includes 14 experimental contexts to predict the 15th context. Behavioral
models’ predictions are set to be the average training prediction (i.e., best fit) in the target task across
all subjects in the training data. “Other experiments” prediction is the average observed behavior
across all subjects in the training data in the target task. Error bars represent ±1 SE for the mean over
the 762 prediction errors. Models, except BEAST and BEAST-GB, were evaluated by He et al., 2022
and details on the models can be found there.
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Table 1: Features used in BEAST-GB

Name Description
Objective
Ha HA - High payoff in Option A. When Option A has multiple outcomes, HA is the

EV of the lottery in Option A.
pHa pHA - Probability of HA.
La LA - Low payoff in Option A.
LotShapeA Shape of the distribution of the lottery in Option A.
LotNumA Number of outcomes in distribution of the lottery in Option A. When Option A does

not have multiple outcomes, LotNumA = 1.
Hb HB - High payoff in Option B. When Option B has multiple outcomes, HB is the

EV of the lottery in Option B.
pHb pHB - Probability of HB .
Lb LB - Low payoff in Option B.
LotShapeB Shape of the distribution of the lottery in Option B.
LotNumB Number of outcomes in distribution of the lottery in Option B. When Option B does

not have multiple outcomes, LotNumB = 1.
Amb Indicator for an ambiguous choice task (1 if True, 0 otherwise).
Corr Sign of correlation between generated payoffs in the two options (-1, 0, or 1).
block The block number in repeated choice tasks (each block corresponds to 5 trials).
Feedback Indicator for block with feedback (1 if True, 0 otherwise).
Dataset Dataset from which task is taken.

Naive
diffEVs Difference between the payoff EV of Option B and the payoff EV of Option A.
diffSDs Difference between the payoff SD of Option B and the payoff SD of Option A.
diffMinsa Difference between the minimal payoff of B and the minimal payoff of A.
diffMaxs Difference between the maximal payoff of B and the maximal payoff of A.

Psychological Insight
diffBEV0 Difference between the “best estimate” of the EVs as per BEAST, before feedback.
diffBEVfb Difference between the “best estimate” of the EVs as per BEAST, after feedback.
pBbet_Unbiased1 Difference between the probability that Option B provides better payoff than Option

A, as estimated by BEAST before feedback.
diffUV Difference between the EV of Option B when all its outcomes are transformed to be

equally likely and the EV of Option A when all its outcomes are equally likely.
pBbet_Uniform Difference between the probability that Option B provides better payoff than Option

A, when both options are transformed so that their outcomes are equally likely.
RatioMin Ratio between the smaller and the higher minimal outcomes of the two options.
SignMax The sign of the maximal possible payoff in the task (-1, 0, or 1).
diffSignEV Difference between the EV of Option B when all outcomes are sign-transformed and

the EV of Option A when all outcomes are sign-transformed.
pBbet_Sign1 Difference between the probability that Option B provides better payoff than Option

A, as estimated by BEAST before feedback and after all payoffs are sign transformed.
pBbet_SignFB Difference between the probability that Option B provides better payoff than Option

A, as estimated by BEAST after feedback and after all payoffs are sign transformed.
Dom Trinary indicator for the option that stochastically dominates another (1 = B dominates

A; -1 = A dominates B; 0 = neither option has dominance).

Behavioral Foresight
BEASTpred The quantitative point prediction of BEAST for the choice task (and block).

Notes: This is an exhaustive list of every feature used in this paper as part of BEAST-GB. When run
on particular datasets, some features may be completely constant and others may be duplicates of
other existing features. In such cases, these features are removed before running the algorithm.
a diffMins belongs to both the naive and the psychological feature sets.
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