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Abstract—Pre-trained Visual-Language Models (VLMs) have
demonstrated powerful performance on various downstream
tasks. Recently, many prompt tuning methods represented by
Context Optimization (CoOp) have effectively adapted VLMs
to few-shot tasks. However, the CoOp-based methods suffer
from overfitting to base classes, which impairs the model’s
generalization to new classes. Considering that meta-learning
excels at generalizing to new classes, we combine meta-learning
with CoOp-like vision-language model fine-tuning methods to
improve performance on few-shot generation tasks. In this paper,
we present a novel Meta-learning-based Multi-Textual Prompt
tuning (MMTP) method, which learns multiple textual prompts
leveraging meta-learning to enhance the visual-language model’s
representation and generalization capabilities. Specifically, we
introduce multi-textual prompts to enhance the representation
of the model for improving the recognition of base classes.
Simultaneously, we employ meta-learning to optimize prompt
training, bolstering the model’s generalization to new classes.
Extensive experiments demonstrate the superiority of our method
under base-to-new generalization and cross-domain generaliza-
tion settings. Furthermore, we also conduct ablation studies to
validate the effectiveness of each component.

Index Terms—prompt tuning, meta-learning, few-shot tasks,
visual-language models

I. INTRODUCTION

Recently, large-scale pre-trained Visual-Language Models
(VLMs), such as CLIP [1] and ALIGN [2], have exhibited
impressive performance across a variety of downstream tasks.
However, some particular tasks like few-shot tasks [3] are still
universally acknowledged as highly challenging due to the
limited number of samples available. Additionally, limitations
in computational resources make it difficult for ordinary users
to adapt VLMs to few-shot tasks. Fortunately, researchers have
proposed many parameter-efficient fine-tuning techniques [4]—
[6], among which prompt tuning stands out as a straightfor-
ward and effective approach [7]-[9].

Prompt tuning is initially introduced in the field of natural
language processing [10]-[12], and gradually applied to fine-
tune visual-language models like CLIP. In practice, the original
prompt of CLIP proves to be inaccurate because the hand-
crafted template lacks the necessary context information of the
current task. To this end, prompt tuning methods like Context
Optimization (CoOp) [13], have emerged as a new paradigm,
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Fig. 1: Illustration of different prompt tuning methods.

(a)CoOp [13], (b)KgCoOp [14] and (c)our MMTP. Our
method is based on KgCoOp and introduces a new constraint
of multiple prompts. (TE: Text Encoder, IE: Image Encoder)

employing a modest set of learnable vectors (soft prompts)
instead of manual prompts (Fig.1(a)). The soft prompts are
learned from a few training samplers with the pre-trained
parameters fixed, which achieves significant improvement.

However, the learned prompts are prone to overfitting to
the base classes, which hampers their generalization ability
when applied to new classes, particularly on few-shot tasks.
Recently, several methods have focused on tackling this is-
sue. Building upon CoOp, CoCoOp [15] incorporates the
image-conditional feature as a prompt bias to improve the
generalizability to new classes. ProGrad [16] only updates
the aligned prompt, thereby alleviating the general knowledge
forgetting. Furthermore, KgCoOp [14] preserves the original
CLIP generalization ability by introducing an auxiliary loss
to reduce the difference between the learnable prompts and
the hand-crafted prompts. Unfortunately, these methods still
exhibit limitations in generalizing to new classes, with several
performing less effectively than the zero-shot CLIP model.
How to balance the performance between the base and new
classes on few-shot tasks remains a significant challenge.

To address this challenge, in this paper, we propose a novel
Meta-learning-based Multi-Textual Prompt tuning (MMTP)
method for visual-language models as shown in Fig.1(c).
MMTP learns multiple textual prompts leveraging meta-
learning to enhance the model’s performance on few-shot
tasks. Specifically, considering the single prompt struggles to
comprehensively depict the image content and descriptions of
same category can be elaborated from different perspectives,



we introduce multiple learnable prompts to enhance the rep-
resentation of the model. Meanwhile, we employ the meta-
learning to optimize the prompt parameters. Meta-learning
acquires better parameter initialization in a learn-to-learn man-
ner, thereby improving the model’s generalization capability to
adapt to new tasks.

We have conducted experiments in different settings. In the
base-to-new class generalization setting, our method improves
the harmonic mean accuracy of CoOp and KgCoOp by 8.44%
and 3.1%, respectively. In the cross-domain generalization
setting, our method attains the best average performance com-
pared with others. Additionally, we conduct ablation studies
to substantiate the effectiveness of our method.

Overall, our paper makes the following key contributions:

o We propose a novel prompt tuning method for the visual-

language model by incorporating multi-textual prompt
and meta-learning optimization, which greatly improves
the performance both on base and new classes.

o We evaluate our method on various few-shot generaliza-

tion tasks. Experiment results show MMTP achieves com-
petitive performance among all compared approaches.

II. METHOD

A. Preliminaries

Existing CoOp-based methods are proposed based on Con-
trastive Language-Image Pre-training (CLIP) [1] which incor-
porates two types of encoders: image encoder f(-) and text
encoder g(-). CLIP produces the textual embedding w<"”
g(pe), where pc"" is the hand-crafted prompt as “a photo
of a [class;]”, and the class token is the specific class name.

Different from the manual prompt of CLIP, soft prompt
represented by CoOp [13] is p;°”? = {v1, va, ...,vL,class; },
where class; is the i-th class name and each vector v;(j €
{1,2,...,L}) has the same dimension. The predicted probabil-
ity of image x for class i is formulated as

exp(sim[f (x), g(p{°™")] /7)
S, exp(sim[f(x), g(p5°)] /1)

where sim][-, -] denotes the cosine similarity, N, is the number
of classes, and 7 is the temperature parameter learned by CLIP.

Py =ix) = (1

B. Multi-Textual Prompt Tuning

In order to arouse better representation of the model, we
propose a multi-textual prompt tuning method. The multi-
textual prompt is formulated as

¢ N
p,""" = {v1,va,...,vp, class; } 7, 2)

where L is the length of a prompt and N, is the num-
ber of multiple prompts. These learnable context vectors
{v1,va,...,vr}V» are shared with all classes. Here, for the
np-th learnable prompt, we can specific it as

p;nmtp‘"P = {{v1,v2, ..., vp}n,, class; }, 3)

The textual embeddings based on each prompt are repre-
sented as w;nmtp == g( l-ﬂmtp -7, so the formula (1) can
be rewritten as

Pro(y = ijx) = SR, w; 1)/T)

SO, exp(sim[f (x), wi " ")] /1)

» (4)

where n, € {1,2,..,N,}, P"(y = i|x) represents the
predicted probability of image x for class ¢ under n,-th set of
prompts.

We have improved the loss function of CoOp-based method
to adapt on our multi-textual prompt tuning method. Formally,
the Cross-Entropy loss which applied to calculate the dis-
crepancy of multiple category prediction P and label y, is
calculated using all Np prompts as

Las = 5 ity Lop(Ply). )

To further promote the diversity description of multiple

learnable prompts, we design similarity regularization con-
straints between multiple sets of category predictions:

N, N . R
Lsim = % 21:131 Ej:pi+1 s1m[Pl, Pj]y (6)
p
where C' is the abbreviation of Combination, thus CJQVP =
N, (N, —1)/2.
Inspired by KgCoOp [14], we also use Ly, to reserve orig-
inal knowledge from manual CLIP prompt as a regularization:

Ne N, tp_ ;

Lig = ﬁ > i an:l [ wf“p”; )
Overall, the loss for optimization of prompt tuning is

L= Ecls + Alﬁsim + >\2£kgv (8)

where \; and A5 are loss balancing hyper-parameters.

In the inference phase, we get multiple category predictions
of the image, and the final category prediction is calculated as
the mean value of multiple predictions:

Ny i
P= NL S Pl )

C. Meta-learning Optimization
We  first  initialize ~ the  multi-textual  prompt

({v1,v2,...,up}N?) via contrastive learning between image
and text while keeping the backbone frozen. Specifically, we
design a novel batch sampling method with random number
of classes in each batch. Such sampling method exposes the
model confronting with new tasks in each iteration, aiming
to learn better initialization.

Subsequently, we construct meta-tasks 7 which denote the
set of M subtask 7; with training dataset{(Dyuyp, Dgue) P},
where each task has both support and query data. The classes
in the support and query data are non-overlapping. D, and
Dgye are randomly split from the base class dataset Dpqe
in each iteration. Dy, is regarded as the data in simulated
base classes, and D, is data in simulated new classes. We
adopt a bi-level optimization [17] method to enhance the
generalization to new class tasks, this meta-learning process
in each meta-task can be formalized as

6% = argmin £(0'; Dyye)

g (10)

sit. 0 =arg min L(6; Dgyp),

where we refer 6 as the simplification of the learnable
{v1,va,...,vr }¥» and the calculation of £ is as Eq.(8). Each
optimization iteration has the inner loop and outer loop. In
the inner loop, the parameters are updated on D, and the
computation graph of network is remained. Then in the outer
loop, we hope the parameters outputted from the inner loop
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Fig. 2: An overview of our proposed MMTP. First, we use contrastive learning to initialization by random classes sample on
base class. Subsequently, the model learns better initialization and undergoes fine-tuning through meta-learning optimization.

Finally, we test the model’s generalization on new classes.

(0") can have satisfied performance on Dg,e, and finally get
the optimized 6*.

The overall meta-learning process is to ask itself:“Did the
parameter learned on simulated base classes can help to
improve the generalization on simulated new classes?” We use
it as meta-objective to update 6 as:

ming ZneT L0 —aVoLy, (0, Dsup), Dgue)- (11

After the meta-learning optimization, the model can be

extended to tasks with new classes. The details are in Alg.1.

Algorithm 1 Meta-learning Optimization

Input: Meta-tasks 7; Learning rate « and f3
Output: Prompt parameters 6*
1: Initialize € with contrastive learning
2: while no converge or reach max steps do
3: Sample batch of tasks 7; from T
4 for all 7; do
5 Sample mini-batch d},,, in D}, from 7;
6: Compute L, based on dy,,, according to Eq.(8)
7 Update 0; <— 0 — aVeL-,(0,d;,,)
8 Sample mini-batch dg,,. in Dy, from 7;
9 end for
10 Update 6% <= 0 — 8V Y. 7 L, (0],d0,.)
11: end while

III. EXPERIMENTS

A. Experimental Setup

We validate the effectiveness of MMTP on base-to-new
generalization and cross-domain generalization setting.

Datasets. For base-to-new generalization, we evaluate on
11 benchmarks datasets: ImageNet [18], Caltech [19], Ox-
fordPets [20], StanfordCars [21], Flowers [22], Food101 [23],
FGVCAircraft [24], EuroSAT [25], UCF101 [26], DTD [27],
and SUN397 [28]. For cross-domain generalization [29], we
use the ImageNet as the source domain and its variants
(ImageNet-V2 [30], ImageNet-Sketch [31], ImageNet-A [32]
and ImageNet-R [33]) as the target domains.

Baselines. We use existing CoOp-based methods for com-
parison, e.g., CoOp [13], CoCoOp [15], ProGrad [16], Kg-
CoOp [14], PLOT [34], LASP [35], MaPLe [36] and TCP [37].

Recently, there have been some excellent works, but they
have introduced other large models like ChatGPT [38] to
get additional knowledge, so we do not report them in the
results(e.g., PromptKD [39], CoPrompt [40], HPT [41]).

Training details. Our implementation is based on Kg-
CoOp’s code!. We use ViT-B/16 CLIP as the backbone model
and report the accuracy averaged over 3 runs. The prompt’s
length L is set as 8 and the number of prompts IV, is 3. A\; and
Ao are set to 1.0 and 8.0. In meta-learning optimization, the
number of meta task is 25. We randomly divide the support
set and the query set on the base classes data in a 1:1 ratio
during each iteration. o and 3 are set to 1.0e-3 and 3.5e-3.
Other settings are maintained consistent with KgCoOp. We
rent HPS with RTX 4090 as the experiment platform.

B. Base-to-New Class Generalization

The performance for base-to-new class generalization on
11 image recognition datasets with 16-shot samples is shown
in Table I. MMTP demonstrates superior performance over
all methods in the harmonic mean of base and new classes,
achieving the highest accuracy of 80.10%. Moreover, MMTP
also performs best on new classes on 7 out of 11 datasets,
and improves the average accuracy from 76.11% to 76.92%
surpassing LASP for new classes. The results prove MMTP
improves base-to-new generalization under few-shot setting.

C. Cross-Domain Generalization

To further verify the generalization of MMTP, we conduct
the cross-domain generalization experiment. Only minor mod-
ifications were made to the base-to-new experiment setting,
we train the model with all classes of ImageNet in D,
and Dg,. in 16-shot during meta-learning and test on four
variants of ImageNet dataset. Compared to the basic method,
our method is better able to adapt to various domain through
the “learn to learn” approach. We consider the diverse styles of
ImageNet which inherently possesses some shifting data help
for the domain generalization. In Table II, MMTP generalizes

to cross-domain data with the best average accuracy 60.41%.
Uhttps://github.com/htyao89/KgCoOp



TABLE I: Comparison with existing methods on base-to-new generalization. The best results are in bold and the second-best

results are underlined. (HM:Harmonic Mean)

Dataset Sets CoOp CoCoOp ProGrad KgCoOp PLOT LASP MaPLe TCP MMTP
(IICV22)  (CVPR22)  (ICCV23) (CVPR23) (ICLR23) (CVPR23) (CVPR23) (CVPR24) (Ours)
Base 82.69 80.47 82.48 80.73 83.98 83.18 82.28 84.13 83.56
Average New 63.22 71.67 70.75 73.60 71.72 76.11 75.14 75.36 76.92
HM 71.66 75.83 76.16 77.00 77.37 79.48 78.55 79.51 80.10
Base 76.47 75.98 77.02 75.83 77.30 76.25 76.66 77.27 77.56
ImageNet New 67.88 70.43 66.66 69.66 69.37 71.17 70.54 69.87 69.80
HM 71.92 73.10 71.46 72.78 73.40 73.62 73.47 73.38 7347
Base 98.00 97.96 98.02 97.72 98.53 98.17 97.74 98.23 98.45
Caltech101 New 89.81 93.81 93.89 94.39 92.80 94.33 94.36 94.67 95.30
HM 93.73 95.84 95.91 96.03 95.58 96.21 96.02 96.42 96.85
Base 93.67 95.20 95.07 94.65 94.50 95.73 95.43 94.67 95.84
OxfordPets New 95.29 97.69 97.63 97.76 96.83 97.87 97.76 97.20 97.96
HM 94.47 96.43 96.33 96.18 95.65 96.79 96.58 95.92 96.89
Base 78.12 70.49 77.68 71.76 79.07 75.23 72.94 80.80 77.96
StanfordCars New 60.40 73.59 68.63 75.04 74.80 71.77 74.00 74.13 75.11
HM 68.13 72.01 72.88 73.36 76.88 73.46 73.47 77.32 76.51
Base 97.60 94.87 95.54 95.00 97.93 97.17 95.92 97.73 98.12
Flower102 New 59.67 71.75 71.87 74.73 73.53 73.53 72.46 75.57 77.60
HM 74.06 81.71 82.03 83.65 83.99 83.71 82.56 85.23 86.67
Base 88.33 90.70 90.37 90.05 89.80 91.20 90.71 90.57 90.85
Food101 New 82.26 91.29 89.59 91.70 91.37 91.90 92.05 91.37 91.98
HM 85.19 90.99 89.98 91.09 90.58 91.54 91.38 90.97 91.41
Base 40.44 3341 40.54 36.21 42.13 38.05 37.44 41.97 42.31
FGVCAircraft ~ New 22.30 23.71 27.57 33.55 33.73 33.20 35.61 34.43 38.15
HM 28.75 27.74 32.82 34.83 37.46 35.46 36.50 37.83 40.12
Base 80.60 79.74 81.26 80.29 82.20 80.70 80.82 82.63 82.17
SUN397 New 65.89 76.86 74.17 76.53 73.63 79.30 78.70 78.20 78.57
HM 72.51 78.27 77.55 78.36 77.68 80.00 79.75 80.35 80.33
Base 79.44 77.01 7735 77.55 81.67 81.10 80.36 82.77 78.87
DTD New 41.18 56.00 52.35 54.99 43.80 62.57 59.18 58.07 62.76
HM 54.24 64.85 62.45 64.35 57.09 70.64 68.16 68.25 69.90
Base 92.19 87.49 90.11 85.64 93.70 95.00 94.07 91.63 91.23
EuroSAT New 54.74 60.04 60.89 64.34 62.67 83.37 73.23 74.73 76.97
HM 68.69 71.21 72.67 73.48 75.11 88.86 82.35 82.32 83.50
Base 84.69 82.33 84.33 82.89 86.60 85.53 83.00 87.13 85.84
UCF101 New 56.05 73.45 74.94 76.67 75.90 78.20 78.66 80.77 81.92
HM 67.46 77.67 79.35 79.65 80.90 81.70 80.77 83.83 83.84

TABLE II: Comparison with existing methods on Cross-
domain generalization. (‘*’ denotes the performance obtained
by our implementation)

Source Target

ImageNet  -V2 -S -A -R | Avg
CLIP 66.73 60.83 46.15 47.77 7396 | 57.17
PLOT 63.01 55.11  33.00 21.86 55.61 | 41.39
CoOp 71.51 6420 4799 49.71 7521 | 59.28
CoCoOp 71.02 64.07 4875 50.63  76.18 | 59.90
ProGrad 72.24 64.73 47.61 4939 7458 | 59.07
TCP* 70.68 64.43  48.66 5040 7493 | 59.70
KgCoOp 71.20 64.10 48.67 50.69 76.70 | 60.11
LASP 71.10 6396 49.01 50.70 77.07 | 60.19
MaPLe 70.72 64.07 49.15 5090 7698 | 60.26
MMTP 70.84 64.51 48.86 51.24 77.03 | 60.41

TABLE III: Ablation on different components.
Multi-Textual

Meta-Learning New | oM

Prompt Optimization Base
(a) 80.73  73.60 | 77.00
(®) v 81.26  76.65 | 78.89
(c) v 8241 74.81 | 7837
(d) v v 83.56 76.92 | 80.10
1 100
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Fig. 3: Ablation on the number Fig, 4: Ablation on different
of prompts train-test paradigm

D. Ablation study

Effect of different components. We remove different com-
ponents of the MMTP as illustrated in Table III. The baseline is
KgCoOp [14]. The Meta-learning Optimization demonstrates
remarkable improvements in new classes. Moreover, Multi-
textual Prompt also plays a vital role in enhancing the per-
formance. Examining the last row reveals that all combined
components contribute to the performance of MMTP.

Effect of the number of prompts. We calculate the vari-
ance for drawing Fig.3. The results demonstrate that increasing
the number of prompts beyond three leads to diminishing
benefits, because redundancy among the prompts reduces their
ability to provide diverse perspectives. Furthermore, consider-
ing the training cost, we think that three is the optimal number.

Effect of different train-test paradigm. As shown in Fig.
4, we compared three prompt train-test paradigms: 1) single
prompt training and testing, 2) multiple prompt training with
single prompt testing, and 3) multiple prompt training and
testing. The last showed the best results, highlighting the
performance and validating the efficacy of MMTP.

IV. CONCLUSION

In this paper, we propose a novel Meta-learning-based
Multi-Textual Prompt tuning (MMTP) method for VLMs to
improve the discrimination and generalization of the learnable
prompt. Specifically, we adopt meta-learning to learn multiple
textual prompts for enhance the model’s performance on few-
shot tasks. Extensive experiments across 11 datasets for base-
to-new class generalization and 4 datasets for cross-domain
generalization demonstrate the effectiveness of our method.
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