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Abstract—Pre-trained Visual-Language Models (VLMs) have
demonstrated powerful performance on various downstream
tasks. Recently, many prompt tuning methods represented by
Context Optimization (CoOp) have effectively adapted VLMs
to few-shot tasks. However, the CoOp-based methods suffer
from overfitting to base classes, which impairs the model’s
generalization to new classes. Considering that meta-learning
excels at generalizing to new classes, we combine meta-learning
with CoOp-like vision-language model fine-tuning methods to
improve performance on few-shot generation tasks. In this paper,
we present a novel Meta-learning-based Multi-Textual Prompt
tuning (MMTP) method, which learns multiple textual prompts
leveraging meta-learning to enhance the visual-language model’s
representation and generalization capabilities. Specifically, we
introduce multi-textual prompts to enhance the representation
of the model for improving the recognition of base classes.
Simultaneously, we employ meta-learning to optimize prompt
training, bolstering the model’s generalization to new classes.
Extensive experiments demonstrate the superiority of our method
under base-to-new generalization and cross-domain generaliza-
tion settings. Furthermore, we also conduct ablation studies to
validate the effectiveness of each component.

Index Terms—prompt tuning, meta-learning, few-shot tasks,
visual-language models

I. INTRODUCTION

Recently, large-scale pre-trained Visual-Language Models

(VLMs), such as CLIP [1] and ALIGN [2], have exhibited

impressive performance across a variety of downstream tasks.

However, some particular tasks like few-shot tasks [3] are still

universally acknowledged as highly challenging due to the

limited number of samples available. Additionally, limitations

in computational resources make it difficult for ordinary users

to adapt VLMs to few-shot tasks. Fortunately, researchers have

proposed many parameter-efficient fine-tuning techniques [4]–

[6], among which prompt tuning stands out as a straightfor-

ward and effective approach [7]–[9].

Prompt tuning is initially introduced in the field of natural

language processing [10]–[12], and gradually applied to fine-

tune visual-language models like CLIP. In practice, the original

prompt of CLIP proves to be inaccurate because the hand-

crafted template lacks the necessary context information of the

current task. To this end, prompt tuning methods like Context

Optimization (CoOp) [13], have emerged as a new paradigm,
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Fig. 1: Illustration of different prompt tuning methods.
(a)CoOp [13], (b)KgCoOp [14] and (c)our MMTP. Our

method is based on KgCoOp and introduces a new constraint

of multiple prompts. (TE: Text Encoder, IE: Image Encoder)

employing a modest set of learnable vectors (soft prompts)

instead of manual prompts (Fig.1(a)). The soft prompts are

learned from a few training samplers with the pre-trained

parameters fixed, which achieves significant improvement.

However, the learned prompts are prone to overfitting to

the base classes, which hampers their generalization ability

when applied to new classes, particularly on few-shot tasks.

Recently, several methods have focused on tackling this is-

sue. Building upon CoOp, CoCoOp [15] incorporates the

image-conditional feature as a prompt bias to improve the

generalizability to new classes. ProGrad [16] only updates

the aligned prompt, thereby alleviating the general knowledge

forgetting. Furthermore, KgCoOp [14] preserves the original

CLIP generalization ability by introducing an auxiliary loss

to reduce the difference between the learnable prompts and

the hand-crafted prompts. Unfortunately, these methods still

exhibit limitations in generalizing to new classes, with several

performing less effectively than the zero-shot CLIP model.

How to balance the performance between the base and new

classes on few-shot tasks remains a significant challenge.

To address this challenge, in this paper, we propose a novel

Meta-learning-based Multi-Textual Prompt tuning (MMTP)

method for visual-language models as shown in Fig.1(c).

MMTP learns multiple textual prompts leveraging meta-

learning to enhance the model’s performance on few-shot

tasks. Specifically, considering the single prompt struggles to

comprehensively depict the image content and descriptions of

same category can be elaborated from different perspectives,



we introduce multiple learnable prompts to enhance the rep-

resentation of the model. Meanwhile, we employ the meta-

learning to optimize the prompt parameters. Meta-learning

acquires better parameter initialization in a learn-to-learn man-

ner, thereby improving the model’s generalization capability to

adapt to new tasks.

We have conducted experiments in different settings. In the

base-to-new class generalization setting, our method improves

the harmonic mean accuracy of CoOp and KgCoOp by 8.44%

and 3.1%, respectively. In the cross-domain generalization

setting, our method attains the best average performance com-

pared with others. Additionally, we conduct ablation studies

to substantiate the effectiveness of our method.

Overall, our paper makes the following key contributions:

• We propose a novel prompt tuning method for the visual-

language model by incorporating multi-textual prompt

and meta-learning optimization, which greatly improves

the performance both on base and new classes.

• We evaluate our method on various few-shot generaliza-

tion tasks. Experiment results show MMTP achieves com-

petitive performance among all compared approaches.

II. METHOD

A. Preliminaries
Existing CoOp-based methods are proposed based on Con-

trastive Language-Image Pre-training (CLIP) [1] which incor-

porates two types of encoders: image encoder f(·) and text

encoder g(·). CLIP produces the textual embedding wclip
i =

g(pclipi ), where pclipi is the hand-crafted prompt as “a photo

of a [classi]”, and the class token is the specific class name.

Different from the manual prompt of CLIP, soft prompt

represented by CoOp [13] is pcoopi = {v1, v2, ..., vL, classi},

where classi is the i-th class name and each vector vj(j ∈
{1, 2, ..., L}) has the same dimension. The predicted probabil-

ity of image x for class i is formulated as

P(y = i|x) = exp(sim[f(x), g(pcoopi )]/τ)
∑Nc

j=1 exp(sim[f(x), g(pcoopj )]/τ)
, (1)

where sim[·, ·] denotes the cosine similarity, Nc is the number

of classes, and τ is the temperature parameter learned by CLIP.

B. Multi-Textual Prompt Tuning
In order to arouse better representation of the model, we

propose a multi-textual prompt tuning method. The multi-

textual prompt is formulated as

pmmtp
i = {v1, v2, ..., vL, classi}Np , (2)

where L is the length of a prompt and Np is the num-

ber of multiple prompts. These learnable context vectors

{v1, v2, ..., vL}Np are shared with all classes. Here, for the

np-th learnable prompt, we can specific it as

p
mmtp np

i = {{v1, v2, ..., vL}np , classi}, (3)

The textual embeddings based on each prompt are repre-

sented as w
mmtp np

i = g(p
mmtp np

i ), so the formula (1) can

be rewritten as

Pnp(y = i|x) = exp(sim[f(x),w
mmtp np

i )]/τ)
∑Nc

j=1 exp(sim[f(x),w
mmtp np

j )]/τ)
, (4)

where np ∈ {1, 2, ..., Np}, Pnp(y = i|x) represents the

predicted probability of image x for class i under np-th set of

prompts.

We have improved the loss function of CoOp-based method

to adapt on our multi-textual prompt tuning method. Formally,

the Cross-Entropy loss which applied to calculate the dis-

crepancy of multiple category prediction P and label y, is

calculated using all NP prompts as

Lcls =
1
Np

∑Np

i=1 LCE(P
i, y). (5)

To further promote the diversity description of multiple

learnable prompts, we design similarity regularization con-

straints between multiple sets of category predictions:

Lsim = 1
C2

Np

∑Np

i=1

∑Np

j=i+1 sim[Pi,Pj ], (6)

where C is the abbreviation of Combination, thus C2
Np

=
Np(Np − 1)/2.

Inspired by KgCoOp [14], we also use Lkg to reserve orig-

inal knowledge from manual CLIP prompt as a regularization:

Lkg = 1
Nc·Np

∑Nc

i=1

∑Np

np=1 ||w
mmtp np

i −wclip
i ||22, (7)

Overall, the loss for optimization of prompt tuning is

L = Lcls + λ1Lsim + λ2Lkg, (8)

where λ1 and λ2 are loss balancing hyper-parameters.

In the inference phase, we get multiple category predictions

of the image, and the final category prediction is calculated as

the mean value of multiple predictions:

P = 1
Np

∑Np

i=1 P
i. (9)

C. Meta-learning Optimization
We first initialize the multi-textual prompt

({v1, v2, ..., vL}Np ) via contrastive learning between image

and text while keeping the backbone frozen. Specifically, we

design a novel batch sampling method with random number

of classes in each batch. Such sampling method exposes the

model confronting with new tasks in each iteration, aiming

to learn better initialization.

Subsequently, we construct meta-tasks T which denote the

set of M subtask τi with training dataset{(Dsup, Dque)
(i)}Mi=1,

where each task has both support and query data. The classes

in the support and query data are non-overlapping. Dsup and

Dque are randomly split from the base class dataset Dbase

in each iteration. Dsup is regarded as the data in simulated

base classes, and Dque is data in simulated new classes. We

adopt a bi-level optimization [17] method to enhance the

generalization to new class tasks, this meta-learning process

in each meta-task can be formalized as

θ∗ = argmin
θ′

L(θ′;Dque)

s.t. θ′ = argmin
θ

L(θ;Dsup),
(10)

where we refer θ as the simplification of the learnable

{v1, v2, ..., vL}Np and the calculation of L is as Eq.(8). Each

optimization iteration has the inner loop and outer loop. In

the inner loop, the parameters are updated on Dsup and the

computation graph of network is remained. Then in the outer

loop, we hope the parameters outputted from the inner loop
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Fig. 2: An overview of our proposed MMTP. First, we use contrastive learning to initialization by random classes sample on

base class. Subsequently, the model learns better initialization and undergoes fine-tuning through meta-learning optimization.

Finally, we test the model’s generalization on new classes.

(θ′) can have satisfied performance on Dque, and finally get

the optimized θ∗.
The overall meta-learning process is to ask itself:“Did the

parameter learned on simulated base classes can help to

improve the generalization on simulated new classes?” We use

it as meta-objective to update θ as:
minθ

∑
τi∈T L(θ − α∇θLτi(θ,Dsup), Dque). (11)

After the meta-learning optimization, the model can be

extended to tasks with new classes. The details are in Alg.1.

Algorithm 1 Meta-learning Optimization

Input: Meta-tasks T ; Learning rate α and β
Output: Prompt parameters θ∗

1: Initialize θ with contrastive learning

2: while no converge or reach max steps do
3: Sample batch of tasks τi from T
4: for all τi do
5: Sample mini-batch disup in Di

sup from τi
6: Compute Lτi based on disup according to Eq.(8)

7: Update θ′i ← θ − α∇θLτi(θ, d
i
sup)

8: Sample mini-batch dique in Di
que from τi

9: end for
10: Update θ∗ ← θ − β∇θ

∑
τi∈T Lτi(θ

′
i, d

i
que)

11: end while
III. EXPERIMENTS

A. Experimental Setup
We validate the effectiveness of MMTP on base-to-new

generalization and cross-domain generalization setting.
Datasets. For base-to-new generalization, we evaluate on

11 benchmarks datasets: ImageNet [18], Caltech [19], Ox-

fordPets [20], StanfordCars [21], Flowers [22], Food101 [23],

FGVCAircraft [24], EuroSAT [25], UCF101 [26], DTD [27],

and SUN397 [28]. For cross-domain generalization [29], we

use the ImageNet as the source domain and its variants

(ImageNet-V2 [30], ImageNet-Sketch [31], ImageNet-A [32]

and ImageNet-R [33]) as the target domains.
Baselines. We use existing CoOp-based methods for com-

parison, e.g., CoOp [13], CoCoOp [15], ProGrad [16], Kg-

CoOp [14], PLOT [34], LASP [35], MaPLe [36] and TCP [37].

Recently, there have been some excellent works, but they

have introduced other large models like ChatGPT [38] to

get additional knowledge, so we do not report them in the

results(e.g., PromptKD [39], CoPrompt [40], HPT [41]).

Training details. Our implementation is based on Kg-

CoOp’s code1. We use ViT-B/16 CLIP as the backbone model

and report the accuracy averaged over 3 runs. The prompt’s

length L is set as 8 and the number of prompts Np is 3. λ1 and

λ2 are set to 1.0 and 8.0. In meta-learning optimization, the

number of meta task is 25. We randomly divide the support

set and the query set on the base classes data in a 1:1 ratio

during each iteration. α and β are set to 1.0e-3 and 3.5e-3.

Other settings are maintained consistent with KgCoOp. We

rent HPS with RTX 4090 as the experiment platform.

B. Base-to-New Class Generalization
The performance for base-to-new class generalization on

11 image recognition datasets with 16-shot samples is shown

in Table I. MMTP demonstrates superior performance over

all methods in the harmonic mean of base and new classes,

achieving the highest accuracy of 80.10%. Moreover, MMTP

also performs best on new classes on 7 out of 11 datasets,

and improves the average accuracy from 76.11% to 76.92%

surpassing LASP for new classes. The results prove MMTP

improves base-to-new generalization under few-shot setting.

C. Cross-Domain Generalization
To further verify the generalization of MMTP, we conduct

the cross-domain generalization experiment. Only minor mod-

ifications were made to the base-to-new experiment setting,

we train the model with all classes of ImageNet in Dsup

and Dque in 16-shot during meta-learning and test on four

variants of ImageNet dataset. Compared to the basic method,

our method is better able to adapt to various domain through

the “learn to learn” approach. We consider the diverse styles of

ImageNet which inherently possesses some shifting data help

for the domain generalization. In Table II, MMTP generalizes

to cross-domain data with the best average accuracy 60.41%.
1https://github.com/htyao89/KgCoOp



TABLE I: Comparison with existing methods on base-to-new generalization. The best results are in bold and the second-best

results are underlined. (HM:Harmonic Mean)

Dataset Sets CoOp CoCoOp ProGrad KgCoOp PLOT LASP MaPLe TCP MMTP
(IJCV22) (CVPR22) (ICCV23) (CVPR23) (ICLR23) (CVPR23) (CVPR23) (CVPR24) (Ours)

Base 82.69 80.47 82.48 80.73 83.98 83.18 82.28 84.13 83.56
Average New 63.22 71.67 70.75 73.60 71.72 76.11 75.14 75.36 76.92

HM 71.66 75.83 76.16 77.00 77.37 79.48 78.55 79.51 80.10
Base 76.47 75.98 77.02 75.83 77.30 76.25 76.66 77.27 77.56

ImageNet New 67.88 70.43 66.66 69.66 69.37 71.17 70.54 69.87 69.80
HM 71.92 73.10 71.46 72.78 73.40 73.62 73.47 73.38 73.47

Base 98.00 97.96 98.02 97.72 98.53 98.17 97.74 98.23 98.45
Caltech101 New 89.81 93.81 93.89 94.39 92.80 94.33 94.36 94.67 95.30

HM 93.73 95.84 95.91 96.03 95.58 96.21 96.02 96.42 96.85
Base 93.67 95.20 95.07 94.65 94.50 95.73 95.43 94.67 95.84

OxfordPets New 95.29 97.69 97.63 97.76 96.83 97.87 97.76 97.20 97.96
HM 94.47 96.43 96.33 96.18 95.65 96.79 96.58 95.92 96.89
Base 78.12 70.49 77.68 71.76 79.07 75.23 72.94 80.80 77.96

StanfordCars New 60.40 73.59 68.63 75.04 74.80 71.77 74.00 74.13 75.11
HM 68.13 72.01 72.88 73.36 76.88 73.46 73.47 77.32 76.51

Base 97.60 94.87 95.54 95.00 97.93 97.17 95.92 97.73 98.12
Flower102 New 59.67 71.75 71.87 74.73 73.53 73.53 72.46 75.57 77.60

HM 74.06 81.71 82.03 83.65 83.99 83.71 82.56 85.23 86.67
Base 88.33 90.70 90.37 90.05 89.80 91.20 90.71 90.57 90.85

Food101 New 82.26 91.29 89.59 91.70 91.37 91.90 92.05 91.37 91.98
HM 85.19 90.99 89.98 91.09 90.58 91.54 91.38 90.97 91.41

Base 40.44 33.41 40.54 36.21 42.13 38.05 37.44 41.97 42.31
FGVCAircraft New 22.30 23.71 27.57 33.55 33.73 33.20 35.61 34.43 38.15

HM 28.75 27.74 32.82 34.83 37.46 35.46 36.50 37.83 40.12
Base 80.60 79.74 81.26 80.29 82.20 80.70 80.82 82.63 82.17

SUN397 New 65.89 76.86 74.17 76.53 73.63 79.30 78.70 78.20 78.57
HM 72.51 78.27 77.55 78.36 77.68 80.00 79.75 80.35 80.33

Base 79.44 77.01 77.35 77.55 81.67 81.10 80.36 82.77 78.87
DTD New 41.18 56.00 52.35 54.99 43.80 62.57 59.18 58.07 62.76

HM 54.24 64.85 62.45 64.35 57.09 70.64 68.16 68.25 69.90

Base 92.19 87.49 90.11 85.64 93.70 95.00 94.07 91.63 91.23
EuroSAT New 54.74 60.04 60.89 64.34 62.67 83.37 73.23 74.73 76.97

HM 68.69 71.21 72.67 73.48 75.11 88.86 82.35 82.32 83.50

Base 84.69 82.33 84.33 82.89 86.60 85.53 83.00 87.13 85.84
UCF101 New 56.05 73.45 74.94 76.67 75.90 78.20 78.66 80.77 81.92

HM 67.46 77.67 79.35 79.65 80.90 81.70 80.77 83.83 83.84

TABLE II: Comparison with existing methods on Cross-
domain generalization. (‘*’ denotes the performance obtained

by our implementation)

Source Target

ImageNet -V2 -S -A -R Avg.

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
PLOT 63.01 55.11 33.00 21.86 55.61 41.39
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
ProGrad 72.24 64.73 47.61 49.39 74.58 59.07
TCP* 70.68 64.43 48.66 50.40 74.93 59.70
KgCoOp 71.20 64.10 48.67 50.69 76.70 60.11
LASP 71.10 63.96 49.01 50.70 77.07 60.19
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26
MMTP 70.84 64.51 48.86 51.24 77.03 60.41

TABLE III: Ablation on different components.
Multi-Textual Meta-Learning

Base New HM
Prompt Optimization

(a) 80.73 73.60 77.00
(b) � 81.26 76.65 78.89
(c) � 82.41 74.81 78.37
(d) � � 83.56 76.92 80.10

Fig. 3: Ablation on the number

of prompts

92
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98

100
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Fig. 4: Ablation on different

train-test paradigm

D. Ablation study
Effect of different components. We remove different com-

ponents of the MMTP as illustrated in Table III. The baseline is

KgCoOp [14]. The Meta-learning Optimization demonstrates

remarkable improvements in new classes. Moreover, Multi-

textual Prompt also plays a vital role in enhancing the per-

formance. Examining the last row reveals that all combined

components contribute to the performance of MMTP.
Effect of the number of prompts. We calculate the vari-

ance for drawing Fig.3. The results demonstrate that increasing

the number of prompts beyond three leads to diminishing

benefits, because redundancy among the prompts reduces their

ability to provide diverse perspectives. Furthermore, consider-

ing the training cost, we think that three is the optimal number.
Effect of different train-test paradigm. As shown in Fig.

4, we compared three prompt train-test paradigms: 1) single

prompt training and testing, 2) multiple prompt training with

single prompt testing, and 3) multiple prompt training and

testing. The last showed the best results, highlighting the

performance and validating the efficacy of MMTP.

IV. CONCLUSION

In this paper, we propose a novel Meta-learning-based

Multi-Textual Prompt tuning (MMTP) method for VLMs to

improve the discrimination and generalization of the learnable

prompt. Specifically, we adopt meta-learning to learn multiple

textual prompts for enhance the model’s performance on few-

shot tasks. Extensive experiments across 11 datasets for base-

to-new class generalization and 4 datasets for cross-domain

generalization demonstrate the effectiveness of our method.
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