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ABSTRACT

Ensembles are a very effective way of increasing both the robustness and accu-
racy of a learning system. Yet they are memory and compute intensive; in a
naive ensemble, n networks are trained independently and n networks must be
stored. Recently, BatchEnsemble (Wen et al., 2020b) and MIMO (Havasi et al.,
2020) has significantly decreased the memory footprint with classification per-
formance that approaches that of a naive ensemble. We improve on these meth-
ods with MixtureEnsembles, which learns to factorize ensemble members with
shared parameters by constructing each layer with a linear combination of tem-
plates. Then, each ensemble member is defined as a different set of linear combi-
nation weights. By modulating the number of templates available, MixtureEnsem-
bles are uniquely flexible and allow easy scaling between the low-parameter and
high-parameter regime. In the low parameter regime, MixtureEnsembles outper-
forms BatchEnsemble on both ImageNet and CIFAR, and are competitive with
MIMO. In the high-parameter regime, MixtureEnsembles outperform all base-
lines on CIFAR and ImageNet. This flexibility allows users to control the pre-
cise performance-memory cost trade-off without making any changes in the back-
bone architecture. When we additionally tune the backbone architecture width, we
can outperform all baselines in the low-parameter regime with the same inference
FLOP footprint.

1 INTRODUCTION

Ensembles are one of the most commonly used tools in predictive modelling; they frequently are a
critical component of data science competitions (Atwood et al., 2020; Ostyakov & Nikolenko, 2019)
because the averaged predictions of multiple models will typically be more accurate than any single
ensemble member. Ensembles of neural networks are particularly effective; the stochasticity in the
initialization and training of the neural network results in differing models which have decorrelated
errors (Fort et al., 2019). They have been shown to increase robustness, calibration, and accuracy
(Lakshminarayanan et al., 2016; Dietterich, 2000). Nevertheless, they are memory and compute
intensive, because the multiple models need to be trained, stored, and used for inference. Even just
storing the resulting models could become a burden for edge devices, which often have specially
designed parameter-efficient networks (Howard et al., 2017).

Several methods have been proposed to make ensembles more parameter efficient, such as
BatchEnsemble (Wen et al., 2020b), HyperBatchEnsemble (Wenzel et al., 2020), and TreeNet (Lee
et al., 2015). All of these methods leverage cross-ensemble parameter sharing in some form, in order
to decrease the parameter footprint of the ensemble. Having ensemble networks share parameters
can save the storage requirements of the overall ensemble. MIMO (Havasi et al., 2020) minimizes
both parameter count and inference time by ensembling subnetworks within a single backbone.
While network size can be reduced in other ways, such as with pruning (LeCun et al., 1990; Gale
et al., 2019; Lee et al., 2019) or weight quantization (Nagel et al., 2019; Jin et al., 2020), such reduc-
tion methods are complementary to parameter sharing methods. In this work, we focus on finding
more efficient and flexible ways for ensembles to share parameters.

Savarese & Maire (2019) and Plummer et al. (2020) find that parameters can be shared across lay-
ers of the same network with little performance penalty. This is accomplished by creating weights
through a linear combination of templates between identical layers in a network. This allows for
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Figure 1: An overview of our MixtureEnsembles method. The parameter bank holds templates
shared by all ensemble members. The layer weights of each ensemble member are composed as a
linear combination of the template parameters. The exact combination strategy is determined by the
linear combination weights α and is learned automatically together with the weights. Therefore,
each ensemble member only costs a small number of additional parameters – the size of “com-
biner weights” α and the member-specific BatchNorm parameters, making this a memory efficient
ensembling method.

effective parameter re-use across layers, enabling much smaller models to achieve competitive ac-
curacy with the fully-parameterized model. However, these prior works have only addressed shar-
ing within a single network and have not studied sharing in network ensembles. An optimal sharing
scheme in an ensemble maximizes not only individual member accuracy but also ensemble diversity.

We leverage the following guiding principle in our method: we want to learn ensemble members
which are related in parameter space, enabling parameter sharing, but are diverse in function space,
enabling effective ensembling. Based on this principle, we propose a novel ensembling method,
MixtureEnsembles. MixtureEnsembles define each ensemble member by a unique set of linear
coefficients that combine shared templates, in addition to independent Batch normalization (BN)
layers. (An overview of our MixtureEnsembles can be found on Figure 2.) This results in a diverse
ensemble which gives competitive results. Further, this formulation allows us to precisely tune the
total number of parameters in the ensemble, since it is just a hyper-parameter and is not tied to the
network architecture. As the number of parameters goes up, so does the accuracy of the model. This
allows the user to easily trade off overall accuracy for memory, and for us to increase parameter
count without prohibitive training time increases.

In short, our contributions are as follows:

1. We generalize cross-layer parameter sharing techniques to create a new efficient ensembling
technique which allows parameter sharing both between layers and ensemble members.

2. We show this allows for precise control over the memory-accuracy trade-off by decoupling pa-
rameter count from architecture, increasing usability of efficient ensembling methods. This al-
lows to decrease our parameter count with more graceful degradation than baselines (Figure 3),
and also allows us to increase the number of parameters without prohibitive training time in-
creases. Our method is competitive in the low-parameter regime, and outperforms even naive
ensembles in the high-parameter regime. When we additionally tune the backbone width, we can
outperform all existing methods for a given memory and inference FLOP footprint.

3. We demonstrate that ensemble member redundancy is minimized through a diversity analysis of
our trained ensembles despite MixtureEnsembles sharing parameters.

2 RELATED WORK

Efficient Ensembles: Ensembles have long been known to improve predictive accuracy and uncer-
tainty estimates of classification models (Dietterich, 2000; Lakshminarayanan et al., 2016). More
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Figure 2: The MixtureEnsemble training and infeerence pipeline. Each ensemble member is in-
stantiated from a shared parameter bank, and is trained independently on the same samples with a
cross-entropy loss. At inference, we average predictions from the members.

recently, Fort et al. (2019) characterized ensembles by measuring diversity of the learned functions;
the authors find that differently initialized neural networks converge to functions that have indepen-
dent predictions. This decorrelation is what enables deep ensembles to outperform single models.

There has been much recent interest in efficient implementations of ensembles. MC-dropout uses
dropout at inference time to construct ensemble members (Gal & Ghahramani, 2016). Multiheaded
networks have been studied as a form of computationally cheaper ensembling in Teterwak & Torre-
sani (2014) and Lee et al. (2015); where a shared initial trunk then bifurcates into different classifi-
cation heads. These classification heads are considered as different ensemble members. Because of
the shared trunk, this significantly decreases computational and memory costs of the ensemble at a
small accuracy penalty. A clever riff on this shared trunk idea is MIMO (Havasi et al., 2020), which
concatenates several samples in the input layer and has to classify each with a multi-headed output.
Therefore, the network has to learn M subnetworks to classify the images, and this functions as
an effective ensemble. Most similar to our work is BatchEnsemble (Wen et al., 2020b), which has
introduced a factorization scheme which constructs each layers’ parameters as a Hadamard product
between a full set of weights shared between all ensemble members and a simple rank-1 matrix
which is different for each ensemble member. This significantly decreases the memory overhead of
the network. In our work we develop a similar, but more flexible and more performant framework.

Parameter Sharing: For single models, there has been much interest in cross-layer sharing for
efficient computation. Savarese & Maire (2019) devise a cross-layer parameter sharing scheme
where parameters are linear combinations of templates, and templates are shared amongst layers
of same shape and size. Plummer et al. (2020) devise a more flexible version of this model called
ShapeShifterNetworks. These models reduce parameter footprints of models, reducing their mem-
ory usage and communication cost, at a very small penalty to predictive performance. In this work
we leverage such techniques to construct more efficient and flexible ensembles. Another model of
this flavor is the Isometric Neural Network (Sandler et al., 2019; Zhmoginov et al., 2021), where all
layers are the same shape and size, and therefore can very efficiently share layers.

Parameter Pruning: A different approach to parameter efficiency is parameter pruning (Hoefler
et al., 2021). Gale et al. (2019) show that pruning can decrease the parameter count with only small
performance penalties, with only a few tricks. Frankle & Carbin (2018) call these pruned networks
a lottery ticket, and show that if you rewind weights of the pruned topology to their initialization,
one can train a highly-performant network. However, sparse operations are not well suited to current
hardware accelerators. In order to take advantage of dense operations, Li et al. (2016) proposed to
prune entire filters. Still, pruning methods cannot leverage parameter sharing.

Parameter Sharing for Multi-task learning: Cross-model sharing has also been explored in the
context of multi-task learning. There, the intuition is that different tasks might share the same
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information. One basic form of this is a neural network with multiple heads, one for each task as
Zhang et al. (2014) do for facial landmark detection and Collobert & Weston (2008) do for NLP.
Moving away from hard sharing as with a shared trunk towards a soft sharing, methods like Cross-
stitch Networks (Misra et al., 2016) and AdaShare (Sun et al., 2019) learn what they should share
between tasks. In this work we aim to learn what to share between two independent models trained
on the same task, instead of multiple tasks.

3 METHOD: MIXTUREENSEMBLES

In this section, we describe our method for template sharing across layers and ensemble members,
allowing for more parameter efficient ensembles. We build on the parameter sharing techniques that
Savarese & Maire (2019) and Plummer et al. (2020) introduced for single models in order to create
ensembles of models using shared parameters.

3.1 MODEL ARCHITECTURE

Defining a Single Ensemble Member: For a single model, as in Savarese & Maire (2019), we
can group layers of the same type and shape together. Each one of these groups is assigned a set
of parameters, which we call a Parameter Group, which is fraction f of the overall parameter blob
P . This fraction f is determined by the proportion of parameters used by layers in that group in a
standard, non-factorized network. For example, if there are 4 identical residual blocks in a network
which together make up 25 percent of the networks parameters, f would be 0.25. Within a parameter
group g, the parameters are split into a set of templates T of size n, each with the shape of the layer
of the group. Then, each layer is defined as a linear combination of a subset these templates:

θj =
∑
l∈t

αlTl (1)

where t is a subset of templates T , θj are the weights of layer j, and α is a learned scalar multiplier
associated with template l. If t and T are unequal sets, then each layer belonging to a particular
parameter group g is assigned templates to linearly combine in a round robin fashion, as described
in the next section. It is important to note that we are combining parameters instead of features.
This allows for each ensemble member to learn a function that is significantly different from the
other members. Finally, when fewer parameters have been allocated to a group than needed (or
when there is only a single layer of a particular shape), a single traditional (non-factorized) layer is
constructed, to be shared amongst all ensemble members in order to conserve the parameter budget.

Assigning templates to layers: When the parameter group g contains more parameters than is
needed for the templates t, it would be inefficient to not use the excess parameters. Therefore, as in
Plummer et al. (2020), the templates are assigned to layers within a group in a round robin fashion.
This allows for the most efficient use of parameters, without excessive parameter sharing.

Introducing More Ensemble Members: Up to this point, we have described how to construct a
single ensemble member, which leverages cross-layer parameter sharing. However, our goal is to
also enable cross ensemble-member parameter sharing.

In MixtureEnsembles, additional ensemble members are simply an additional set of linear combina-
tion weights α. More formally, the parameters for layer j in ensemble member i are:

θj,i =
∑
l∈t

αl,iTl (2)

The α parameters are randomly initialized, seperately for each ensemble member. In this way,
each ensemble member gets a pseudo-independent set of weights. We find that a simple random
initialization is sufficient to generate a diverse ensemble.

Additionally, each ensemble member gets its own set of Batch Normalization (BN) layers (Ioffe &
Szegedy, 2015); since the feature statsitics of each ensemble member are likely to be substantially
different. Critically, each additional ensemble member has a very small memory overhead. For
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Method Params Accuracy NLL ECE
Baseline (Havasi et al., 2020) 36.5M 96.0 0.159 2.3 %

BatchEnsembles (Havasi et al., 2020) 36.5M 96.2 0.143 2.1 %
BatchEnsembles + EnsembleBN (Wen et al., 2020a) 36.5M 96.2 n/a 1.8 %

MIMO (Havasi et al., 2020) 36.5M 96.4 0.123 1.0 %
MixtureEnsembles (Ours) 36.5M 96.3 0.120 0.8 %

Naive Ensemble 146M 96.6 0.114 1.0 %
MixtureEnsembles (Ours) 120M 96.6 0.119 0.8 %

Table 1: CIFAR-10. For Accuracy, higher is better. For NLL and ECE, lower is better. All models
use the WRN-28-10 architechture. We find that in the low parameter regime, MixtureEnsembles
outperforms the baseline on 2 out of 3 metrics. In the high parameter regime, we match or exceed
naive ensembles on all metrics with 17% fewer parameters.

example, for a WRN-28-10 as is used for our CIFAR-100 and CIFAR-100-C experiments, each
ensemble member costs a few thousand parameters: the 105 linear combination weights plus the
BN parameters.

3.2 TRAINING AND INFERENCE

Training the Ensemble: We train the ensemble simply by feeding the same input batch to each
ensemble member. Each ensemble member is trained independently with a standard cross-entropy
loss. We found that that the system is otherwise plug-and-play with a vanilla classification network.
Because each ensemble member has a different initialization of α parameters and BN layers, the
members become independent and form an effective ensemble.

Inference: As in a naive ensemble, at inference time, each input sample gets propagated through
each ensemble member. Then, we average the softmax outputs of each member to get a final proba-
bility distribution. Since each ensemble member learns a different function, it makes its classification
decision based on slightly different input features. Then, averaging the outputs allows the ensemble
to make a robust decision. Although we do need to forward-propagate through each ensemble mem-
ber, this can be trivially parallelized on the inference device as long as it has sufficient accelerator
hardware, because ensemble members can be run in parallel.

Parameter Efficiency and Flexibility: The number of parameters in the model is simply a hyper-
parameter. This makes for a very flexible system. If the user is constrained by memory, they can
simply make the parameter groups used for constructing templates smaller. On the other hand,
if the target system has fewer constraints and requires more predictive performance, the user can
train with more parameters. This flexibility is a significant advantage over competing methods,
such as BatchEnsemble and MIMO. To adapt the number of parameters in those methods, one must
adjust the network architecture such as increasing the number of feature channels. Architecture
adjustments have side-effects such as compute cost (number of FLOPS) and learning dynamics.
No other hyper-parameters, or parts of the training procedure, are changed when we adjust the the
number of parameters; we treat MixtureEnsemble as a plug-and-play system.

Computational Costs: The training and inference cost of MixtureEnsembles is comparable to base-
lines, while improving accuracy. Although at first glance MIMO is more computationally efficient
than MixtureEnsembles, at train time it actually repeats each batch 4 times, making it computa-
tionally comparable to other baselines. At inference time MIMO appears to be more efficient than
other efficient ensembling methods. However, MIMO does not share parameters between ensemble
members; it is better characterized as method which finds smaller subnetworks which function as an
ensemble within a larger network. We can explicitly make our subnetworks smaller by decreasing
the width of the ensemble members, decreasing the number of inference FLOPS. Normalizing by
inference FLOPS, MixtureEnsembles perform better than MIMO.

MixtureEnsembles also have a memory storage advantage; for a given parameter count Mix-
tureEnsembles have better performance than baselines.

5



Under review as a conference paper at ICLR 2022

Method Params Clean Corrupt FLOPS
Baseline (Havasi et al., 2020) 36.5M 79.8 51.4 1x

BatchEnsembles (Havasi et al., 2020) 36.5M 81.5 54.1 4x
BatchEnsembles + EnsembleBN (Wen et al., 2020a) 36.5M 81.9 54.1 4x

MIMO (Havasi et al., 2020) 36.5M 82.0 53.7 1x
MixtureEnsembles (Ours) 36.5M 82.2 52.9 4x

Thin MixtureEnsembles (Ours) 36.5M 82.3 54.2 1x
Naive Ensemble 146M 82.7 54.1 4x

MixtureEnsembles (Ours) 120M 82.9 54.7 4x

Table 2: Accuracy on CIFAR-100 (clean) and CIFAR-100-C (corrupted). All ensembles were of size
4 and use the same WRN-28-10 architechture, excpet for thin MixtureEnsembles, which use WRN-
28-5. We find that our WRN-28-10 model is competitive with MIMO at 36.5 million parameters,
but our WRN-28-5 model outpeforms MIMO with the same inference footprint. With more param-
eters our MixtureEnsembles WRN-28-10 achieves the highest performance overall while reducing
parameter count by 17% relative to naive ensembles. Baseline corresponds to a single WRN-28-10
model trained with cross-entropy. FLOPS refers to inference-time FLOPS, relative to the baseline.

Method Parameters NLL ECE FLOPS
Baseline (Havasi et al., 2020) 36.5M 0.875 8.6% 1x

BatchEnsembles (Havasi et al., 2020) 36.5M 0.740 5.6% 4x
BatchEnsembles + EnsembleBN (Wen et al., 2020a) 36.5M n/a 2.8% 4x

MIMO (Havasi et al., 2020) 36.5M 0.690 2.2% 1x
MixtureEnsembles (Ours) 36.5M 0.702 2.7% 4x

Thin MixtureEnsembles (Ours) 36.5M 0.689 2.4% 1x
Naive Ensemble 146M 0.666 2.1% 4x

MixtureEnsembles (Ours) 120M 0.666 2.2% 4x

Table 3: Negative Log-Likelihood and Expected Calibration Error on the CIFAR-100 test set. Lower
is better. Once again we are competitive with MIMO at lower parameter counts, and are competitive
with naive ensembles at 17% lower parameter count. Baseline corresponds to a single WRN-28-10
model trained with cross-entropy.

4 BENCHMARK EXPERIMENTS

We evaluate our method on three standard benchmarks: CIFAR-10, CIFAR-100 and ImageNet.
Additionally, as one of the advantages of ensembles is their robustness to out-of-distribution data,
we evaluate the robustness of our method on CIFAR-100-C.

4.1 CIFAR-10, CIFAR-100, AND CIFAR-100-C

We showcase CIFAR results in Tables 1, 2, 3, and 4. For all CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) models except Thin Mixture Ensembles, we train a WRN-28-10 network architecture.
Thin Mixture Ensembles are WRN-28-5 models. These thinner models match the inference-time
FLOPS of MIMO, yet have higher accuracy. Trying to make MIMO thinner reduces performance
(see Figure 3). Additional training details are in the Appendix.

We compute accuracy for both CIFAR-100 and CIFAR-100-C. CIFAR-100-C (Hendrycks & Di-
etterich, 2019) is a verson of the CIFAR-100 test set which is corrupted with distortions such as
Gaussian blur and JPEG compression at various severities. We evaluate accuracy in addition to
the calibration metrics of Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE)
(Naeini et al., 2015; Guo et al., 2017).

We find that our WRN-28-10 model is competitive with BatchEnsemble and MIMO at 36.5 million
parameters, yet outperforms even naive ensembles with higher numbers of parameters. The only dif-
ference in training was a single hyper-parameter; the number of parameters available to the model in
the parameter store. Neither BatchEnsemble’s nor MIMO have a way of interpolating between the
low-parameter and high-parameter regime without changing network architecture. A larger archi-

6



Under review as a conference paper at ICLR 2022

Method Parameters NLL ECE FLOPS
Baseline (Havasi et al., 2020) 36.5M 2.70 23.9% 1x

BatchEnsembles (Havasi et al., 2020) 36.5M 2.49 19.1% 4x
BatchEnsembles + EnsembleBN (Wen et al., 2020a) 36.5M n/a 19.1% 4x

MIMO (Havasi et al., 2020) 36.5M 2.28 12.9% 1x
MixtureEnsembles (Ours) 36.5M 2.17 10.3% 4x

Thin MixtureEnsembles (Ours) 36.5M 2.09 9.7% 1x
Naive Ensemble 146M 2.27 13.8% 4x

MixtureEnsembles (Ours) 120M 2.00 10.3% 4x

Table 4: NLL and ECE for CIFAR-C dataset of corrupted images from CIFAR. Lower is better.
We find that overparameterized MixtureEnsembles outperform even Naive Ensembles, and that our
WRN-28-5 model outperforms all competitors with the same FLOP footprint. Baseline corresponds
to a single WRN-28-10 model trained with cross-entropy.

tecture dramatically increases training time; for example scaling MIMO to 120M parameters would
result in over 3x the training FLOPS of our MixtureEnsembles. We further explore the behavior of
the model at various parameter operating points in Section 5.1.

In their paper the authors of MIMO demonstrated their benefits could not be achieved using an
ensemble of thin networks, but this is not true of our MixtureEnsembles. When we change the
trained model from WRN-28-10 to WRN-28-5 (Thin MixtureEnsembles), we can can outperform
MIMO at the same inference FLOP footprint. This experiment is motivated by the fact that MIMO
doesn’t share parameters between ensemble members, and instead learns subnetworks within a wider
network which become ensemble members. We can accomplish this explicitly by simply making
each ensemble member thin. Note that MixtureEnsembles can still perform inference on single thin
ensemble member when computational budgets are low unlike MIMO, further illustrating the greater
flexibility of our approach. We further note that we compare against two versions of BatchEnsemble
cited in the literature; with and without independent BatchNorm layers for each ensemble member.

4.2 IMAGENET

In order to test the system on a larger scale dataset, we train our model on ImageNet (Deng et al.,
2009). We use the standard ResNet-50 architecture. Additional training details are in the appendix.

To encourage maximum ensemble diversity for our ImageNet experiments, we assign disjoint tem-
plates within the parameter bank greedily. Once all disjoint templates have been assigned, templates
start being reused. Note that we found this unnecessary with CIFAR, and assigned the same tem-
plates to corresponding layers in different ensemble members. More details are in Section 3.1.

The results are in Table 4.2. In the low parameter regime, we find that results are competitive
with BatchEnsemble and MIMO, demonstrating that MixtureEnsembles improve over the ResNet-
50 baselines even on large scale visual recognition tasks. When we overparamterize MixtureEnsem-
bles, we once again outperform Naive Ensembles with only half of the parameters.

Method Parameters # Ensemble Members Top-1 Accuracy
Baseline 25.6M 1 76.4%

BatchEnsemble 25.6M 4 76.7%
MIMO 25.6M 3 77.5%

MixtureEnsemble (Ours) 25.6M 4 77.2%
Naive Ensemble 102.4M 4 77.5%

MixtureEnsemble (Ours) 51.2M 4 77.9%

Table 5: ImageNet Results on ResNet-50. MixtureEnsembles are competitive with other methods
in the low-parameter regime. In the high-parameter regime, we outperform Naive Ensembles with
50% fewer parameters.
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Figure 3: On the left, we show the effect of scaling parameters for different efficient ensembling
methods. MixtureEnsembles scale down most gracefully. On the right, we show the effect of number
of ensemble members for CIFAR-100. We find that across a number of parameter sizes, ensemble
size 4 is best.

5 ANALYSIS

5.1 SCALING PROPERTIES: PARAMETERS

One fundamental feature of our model is the ease with which we can scale the number of parameters.
Therefore, it is natural to study how one can trade off performance and memory requirements in our
system. We run experiments that show how, as we increase the number of parameters, the system
becomes more and more competitive in both accuracy and uncertainty metrics.

We find that as we increase the number of parameters, accuracy improves. This allows the user
to choose an operating point for their use case. In the extremely low parameter regime; we only
lose a little bit of performance compared to the baseline. In the high parameter regime, we even
outperform naive ensembles. Results are shown in Figure 3.

We train an ensemble of size 4 at each of the following points: 7 million parameters, 15 million
parameters, and 36.5 million parameters. For the 7 million parameter case, we need to make a slight
modification to the training procedure; instead of grouping parameters by layer type we instead
have a single parameter group for all layers. As in Plummer et al. (2020), we then reshape the single
parameter blob separately for each layer, to form templates for the layer. There will sometimes
be extra parameters in the blob not needed for the templates for a particular layer; in that case
parameters are selected in a round-robin fashion for subsequent layers.

5.2 SCALING NUMBER OF ENSEMBLE MEMBERS

In addition to varying the number of parameters, we also varied the number of ensemble members
across several ensemble parameter sizes. We see that across all sizes, 4 ensemble members is the
optimal (see Figure 3). We hypothesize that sharing templates is also a form of regularization,
since the update of one member also perturbs the parameters of another member. Furthermore,
as the number of ensemble members grows, the number of parameters per member becomes more
constrained, decreasing the per-member accuracy.

5.3 INTERPOLATION ANALYSIS OF DIVERSITY

Inspired by similar analysis in Fort et al. (2019) and Neyshabur et al. (2020), in Figure 4 we interpo-
late between two ensemble members in parameter space to see if the models indeed are in different
optimization basins. We accomplish this by interpolating parameters, and leaving Batch Normal-
ization (Ioffe & Szegedy, 2015) in train mode because accumulated statistics are not meaningful
at interpolated points. If the interpolates have high accuracy, this indicates the ensemble members
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Method Params Accuracy Diversity
Naive Ensemble (Havasi et al., 2020) 146M 82.7 0.88

MixtureEnsembles (ours) 36.5M 82.1 0.78
MixtureEnsembles (ours) 120M 82.9 0.85

BatchEnsembles + EnsembleBN (Wen et al., 2020a) 36.5M 81.9 0.4
MIMO (Havasi et al., 2020) 36.5M 82.0 0.91

Table 6: Diversity. MixtureEnsembles are more diverse than BatchEnsembles, the other shared
parameter model. Although our 120M model is slightly less diverse than Naive Ensembles, the
performance is higher, indicating that average member accuracy is higher. This suggests that Mix-
tureEnsembles are also an effective regularizer.

landed in the same optimization basin and therefore are not as diverse as they could be. We find that
interpolates have much decreased accuracy compared to the end points, supporting the idea that our
model learns independent ensemble members.

We can see that although all networks experience some degree of accuracy drop between ensemble
members, the accuracy drop for the low-parameter model is significantly lower. This seems to
indicate that as the function space becomes constrained with a lower number of parameters in the
parameter bank, the ensemble diversity starts to suffer.

We additionally use a diversity metric introduced in Fort et al. (2019), which measure the fraction
of differing predictions by two ensemble members, normalized the by the error of one of them.
We present these results in Table 6; we can see that Mixture Enesmbles are more diverse than all
other shared parameter methods. One interesting finding is that 120M parameter MixtureEnsembles
outperform Naive Ensembles, yet have lower diversity. Looking deeper, the individual model ac-
curacies are improved for MixtureEnsembles (average naive 79.89% vs average Mixture Ensemble
80.36%) Therefore, it seems like MixtureEnsembles are also an effective regularizer. This could
come from the fact that the parameter factorization limits the space of possible weights, or from
the parameter sharing. This is especially interesting because WRN-28-10 is already a highly opti-
mized model from a hyper-parameter perspective. Of note is that one of the ensemble members from
MixtureEnsembles gives higher performance (80.49% for the best model) than a single naive model
(80.1%). Therefore one could use MixtureEnsembles to train a highly performant single model.

Figure 4: Linear interpolations in parameter space, with different numbers of parameters in an
ensemble of size 4. We plot accuracy vs interpolation point. Because the accuracy takes a significant
dip, we can tell that the ensemble members are independent and find different local minima.

6 CONCLUSION

In this work, we propose MixtureEnsembles, a novel and efficient ensembling method. Mix-
tureEnsembles leverage both cross-layer and cross-ensemble member sharing. MixtureEnsembles
well across a wide range of paramter size operating points, allowing for a user to easily choose
performance-memory usage tradeoff. They give state-of-the-art results on both CIFAR and Ima-
geNet datasets, and we show that the ensemble members are indeed independent.
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7 ETHICS STATEMENT

Ensembles are more robust and better calibrated than single models, which can translate directly to
fairer and safer deployments. For example, the Inclusive Images Challenge (Atwood et al., 2020) al-
lowed competitors to train on images from one geographical region (e.g. the global North) and eval-
uate on a different geographical region (e.g. the global South). The winning solution by Ostyakov
& Nikolenko (2019) uses a very large ensemble, illustrating the great potential of ensembles. De-
creasing parameter cost of ensembles, as our method does, makes training and deploying ensembles
more accessible.

Although efficient ensembling does indeed increase robustness of models, we caution readers that
even more robust and accurate models should not be trusted blindly. It is prudent to thoroughly
audit all models before and during deployment, and carefully consider how building and deploying
them may affect the lives of others. We additionally note that the ImageNet dataset may contain
personally identifiable information. However, it remains a commonly used benchmark and therefore
is an important comparison.

8 REPRODUCIBILITY STATEMENT

We provide all training details in the Appendix, and provide code in the Supplementary Materials.
At acceptance, we will provide GitHub repository for readers.
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A APPENDIX

A.1 CIFAR TRAINING DETAILS

For CIFAR-100 experiments, we use the common WRN-28-10 Zagoruyko & Komodakis (2016)
architecture. We train for 200 epochs with an initial learning rate of 0.1. We use SGD with a
Nestorov momentum value of 0.9. We use a weight decay value of 5e−4 on all parameters except
weight coefficients. We decay the learning rate by a factor of 0.2 at 60,120,and 180 epochs. We
use a batch size of 128, and use asynchronous BatchNorm across two devices (so BatchNorm batch
size is 64). We pad images by 4 pixels and crop to 32 x 32 pixels, and also randomly flip and
normalize such that it is zero-mean for training. At test time, we just normalize with no other image
transformations.

For Thin BatchEnesmble, we use WRN-28-5 and train for 1000 epochs to match the train FLOPS
of MIMO. We decay learning rate at epochs 300,600, and 900. We also use parameter banks even
when there is only a single layer within a model which has a particular shape in a group (see Section
3.1), reducing implicit regularization for the narrower model. Otherwise training is the same as for
WRN-28-10 models.

A.2 IMAGENET TRAINING DETAILS

For ImageNet experiments, we use the ResNet-50 architecture He et al. (2016). We train for 90
epochs with a learning rate of 1.6. We use SGD with non-Nestorov momentum value of 0.9. We use
a batch size of 1024. We decay the learning rate at epochs 30, 60, and 80 by a factor of 0.1. We use a
label smoothing value of 0.1, and a weight deay of 0.0001. The weight decay is not applied to batch
norm parameters. We do a linear warmup for the first 10 epochs. We use standard Inception-style
data augmentation.
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