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Abstract

Generalized sliced-Wasserstein distance is a vari-
ant of sliced-Wasserstein distance that exploits the
power of non-linear projection through a given
defining function to better capture the complex
structures of probability distributions. Similar
to the sliced-Wasserstein distance, generalized
sliced-Wasserstein is defined as an expectation
over random projections which can be approxi-
mated by the Monte Carlo method. However, the
complexity of that approximation can be expen-
sive in high-dimensional settings. To that end, we
propose to form deterministic and fast approx-
imations of the generalized sliced-Wasserstein
distance by using the concentration of random
projections when the defining functions are poly-
nomial function and neural network type func-
tion. Our approximations hinge upon an impor-
tant result that one-dimensional projections of
a high-dimensional random vector are approxi-
mately Gaussian.

1. Introduction

Sliced-Wasserstein (SW) distance (Bonneel et al., 2015) has
become a core member in the family of probability metrics
that are based on optimal transport (Villani, 2008). Com-
pared to Wasserstein distance, SW provides a lower compu-
tational cost thanks to the closed-form solution of optimal
transport in one-dimensional setting. In particular, when
dealing with probability measures with at most n support
points, the computational complexity of SW is O(n logn)
while that of Wasserstein distance is O(n?logn) (Pele &
Werman, 2009). Furthermore, the memory complexity of
SW is only O(n) in comparison with O(n?) of Wasserstein
distance (due to the storage of a cost matrix). Additionally,
the statistical estimation rate (or the sample complexity) of
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SW does not depend on the dimension (denoted as d) like
Wasserstein distance. In particular, the sample complex-
ity of the former is O(n~1/2) (Bobkov & Ledoux, 2019),
whereas it is of O(n~'/?) (Fournier & Guillin, 2015) for
the latter. Therefore, the SW does not suffer from the curse
of dimensionality.

Due to the practicality of SW, several improvements and
variants of that distance have been explored recently. For
instance, selective discriminative projecting direction tech-
niques are proposed in (Deshpande et al., 2019; Nguyen
et al., 2021a;b); a SW variant that augments original mea-
sures to higher dimensions for better linear separation is
introduced in (Chen et al., 2022); a SW variant on the
sphere is defined in (Bonet et al., 2022); a SW variant that
uses convolution slicer for projecting images is proposed
in (Nguyen & Ho, 2022b). However, the prevailing trend
of the current work on SW is focused on its application. In-
deed, SW is used in generative modeling (Deshpande et al.,
2018; Nguyen & Ho, 2022a; Dai & Seljak, 2021; Nguyen
et al., 2023), domain adaptation (Wu et al., 2019), cluster-
ing (Kolouri et al., 2018), and Bayesian inference (Nadjahi
etal.,, 2020a; Yi & Liu, 2021).

To further enhance the ability of SW, (Kolouri et al., 2019)
propose using non-linear projecting defining functions for
SW instead of conventional linear projecting. This exten-
sion leads to a generalized class of sliced probability dis-
tances, named the generalized sliced-Wasserstein (GSW)
distance. Despite being more expressive, GSW also needs
to be approximated by the Monte Carlo method as SW. In
greater detail, the definition of GSW is an expectation over
random projections via certain defining functions of Wasser-
stein distance between corresponding one-dimensional pro-
jected probability measures. In general, the expectation is
intractable to compute; hence, Monte Carlo samples are
used to approximate the expectation as mentioned. It is
shown in both theory and practice that the number of Monte
Carlo samples (the number of projections) should be large
for good performance and approximation of sliced probabil-
ity metrics (Nadjahi et al., 2020b).

Contribution. In this work, we aim to overcome the projec-
tion complexity of the GSW by deriving fast approximations
of that distance that do not require using Monte Carlo ran-
dom projecting directions. We follow the approach of deter-
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ministic approximation of the SW in (Nadjahi et al., 2021),
which utilizes the Gaussian concentration of the distribu-
tion of low-dimensional projections of high-dimensional
random variables (Sudakov, 1978; Diaconis & Freedman,
1984). Our paper covers the settings when the (non-linear)
defining functions are polynomial function with odd de-
gree and neural network type, which had been discussed
in (Kolouri et al., 2019), while the result for circular func-
tion setting is left for future work. It should be emphasized
that despite sharing the same framework as (Nadjahi et al.,
2021), the error analysis in our paper is much more challeng-
ing due to the structures of considered defining functions,
which requires us to derive non-trivial combinatorial results
to handle.

Organization. The paper is organized as follows.
We provide background on Wasserstein distance, sliced-
Wasserstein distance and its fast approximation, as well as
revisit the generalized sliced-Wasserstein distance in Sec-
tion 2. We then study the fast approximation of the gener-
alized sliced-Wasserstein distance when the defining func-
tion is polynomial with odd degree in Section 3 and when
the defining function is neural network type in Section 4.
Meanwhile, the approximation when the defining function
is circular is briefly discussed in Appendix B. Finally, we
give empirical results for the approximation errors of the
proposed approximated generalized sliced-Wasserstein dis-
tance in Section 5 before concluding the paper in Section 6.
The remaining proofs of key results in the paper are deferred
to Appendix A.

Notation. We use the following notations throughout our
paper. Firstly, we denote by N the set of all positive integers.
For any d € N and p € N, P,(R?) stands for the set
of all probability measures in R? with finite moments of
order p whereas S4~! := {# € R? : ||f|| = 1} denotes
the d-dimensional unit sphere where || - || is the Euclidean
norm. Additionally, y4 represents the Gaussian distribution
in RY, A/(0,d 1) in which I is an identity matrix of size
d x d. Meanwhile, we denote L' (R?%) := {f : RY - R :
Jga | f(2)]dz < oo} as the set of all absolutely integrable
functions on R?. Next, for any set A, we denote by |A| its
cardinality. Finally, for any two sequences (a,,) and (b,,),
the notation a,, = O(b,,) indicates that a,, < Cb,, for all
n € N where C is some universal constant.

2. Background

In this section, we first revisit Wasserstein distance and the
conditional central limit theorem for Gaussian projections.
We then present background on sliced-Wasserstein distance
and its fast approximation. Finally, we recall the definition
of generalized sliced-Wasserstein distance, which is mainly
focused on in this paper.

2.1. Wasserstein Distance

Let p > 1 and u, v be two probability measures on RY, d >
1, with finite moments of order p. Then, the p-Wasserstein
distance between p and v is defined as follows:

1
W, = inf —y||Pd ’
)= (ot [ e alranten)

where || - || denotes the Euclidean norms, and II(4, v) is the
set of all probability measures on R? x R¢ which admit y
and v as their marginals.

Next, we review an important result about the concen-
tration of measure phenomenon, which states that under
mild assumptions, one-dimensional projections of a high-
dimensional random vector are approximately Gaussian.
Specifically, we have the following theorem.

Theorem 2.1 ((Reeves, 2017)). For any d > 1, let p be
the distribution of X1.4 = (X1,...,Xq4). Assume that i €
P (Rd), then there exists a universal constant C > 0 such
that:

LW 03 N (0.4 1) ) < € Zal)

where 0* : R — R denotes the linear form x + (0, x),
0 p indicates the push-forward measure of j1 by 6* and

Za(p) = 7 { () + [ma(p) By ()]
()7 By ()7 . M)

mz(ﬂ) =E [HXl:dHQ] 7A(M) =E H||X1:d“2 - mz(M)H )
By(p) = BY* [[(X1.a, X1.0)[*] 5

with k € {1,2} and X, is an independent copy of X1.q4.

It is worth noting that the above result only holds for the
2-Wasserstein distance.

2.2. Sliced-Wasserstein Distance And Its Fast
Approximation

To adapt the result of Theorem 2.1 to the sliced-Wasserstein
setting, (Nadjahi et al., 2021) introduce a new version of SW
distance in which projections are sampled from the Gaussian
distribution rather than uniformly on the unit sphere as usual.
In particular,

Sliced-Wasserstein Distance: For any p > 1, the sliced-
Wasserstein distance of order p with Gaussian projections
between two probability measures p € P,(R?) and v €
P, (RY) is defined as follows:

s = ([ W smna®) . @



Fast Approximation of the Generalized Sliced-Wasserstein Distance

The notation 6% is equivalent to the Radon Transform of
1 given the projecting direction §* (Kolouri et al., 2019). By
leveraging Theorem 2.1, (Nadjahi et al., 2021) provide the
following bound for the sliced-Wasserstein distance between
any two probability measures with finite second moments.

Proposition 2.2 (Nadjahi et al., 2021)). Let p, v € Po(R?)
be two probability measures in R?. Consider two Gaus-
sian distributions n, = N(0,d"'ma(pn)) and n, =
N(0,d " my(v)), where ma(11), ma(v) are given in equa-
tion (1). Then, there exists a universal constant C' > 0 such
that:

[SWa(pa,v) = W mo)| < C(Eal) +Za)?, (3)
where Z4(u) and Z4(v) are defined in equation (1).

Note that equation (3) can be simplified by using the closed-
form expression of Wasserstein distance between two Gaus-
sians distributions 7, and 7,,, which is given by

Vina () = V/ma(v]).

According to (Nadjahi et al., 2021), Z4 () and Z4(v) cannot
be shown to converge to 0 if the data are not centered. For-
tunately, they demonstrate that there is a relation between
SWs(u,v) and SWo(fi, 7), where i and 7 are centered
versions of p and v, respectively.

Proposition 2.3 ((Nadjahi et al., 2021)). Let u,v € Ps (Rd)
be two probability measures in R® with respective means
my, and m,,. Then, the sliced-Wasserstein distance of order
2 between p and v can be decomposed as:

Wo (s ) = d =%

SW3(u,v) = SW3 (5, 0) +d~ my —my |2, (4)

As a consequence, (Nadjahi et al., 2021) successfully derive
a deterministic approximation for SWs(u, v) as follows:

—2
SW o, v) = W3, m) +d~Hlm —mu |2 (5)

2.3. Generalized Sliced-Wasserstein Distance

Inspired by the approximation of SW distance in equa-
tion (5), we manage to extend that result to the setting of
generalized sliced-Wasserstein (GSW) distance in this work.
Before exploring the aforementioned extension, it is neces-
sary to recall the definition of the GSW distance.

Generalized Sliced-Wasserstein Distance: Let g be a
defining function (Kolouri et al., 2019) and 4 be the Dirac
delta function, then the generalized Radon transform (GRT)
of an integrable function I € L!(R?), denoted by GI, is
defined as follows:

GI(t,0) := /Rd I(x)o(t — g(x,0))dx. (6)

When g(x,0) = (z,0), GRT reverts into the conventional
Radon Transform which is used in SW distance. By using
the GRT, the GSW distance is given by:

GSW (1, v) := (/R we (QIM(-,9),gfu('79))d’yd(9)>

where I, I, € L'(R?) are probability density functions of
measures p and v, respectively. Here, with a slight abuse of
notation, we use W, (1, v) and W, (1, I,,) interchangeably.
In this paper, we will also use the pushforward measures
notation to define GSW e.g., g’tii denotes the GRT of p
given the defining function g and its parameter 6.

In order for the GSW distance to become a proper metric, the
GRT must be essentially an injective function. There is a line
of work (Homan & Zhou, 2017; Beylkin, 1984) studying
the sufficient and necessary conditions for the injectivity of
GRT, which finds that the GRT is injective when g is either a
polynomial defining function or a circular defining function.
By contrast, it is non-trivial to show that GRT is injective
when g is a neural network type function; therefore, GSW,
in this case, is a pseudo-metric.

As mentioned in Section 2.1, the result in Theorem 2.1
only applies to the 2-Wasserstein distance. Thus, we only
consider the GSW of the same order throughout this paper.

3. Polynomial Defining Function

In this section, we consider the problem of finding a
deterministic approximation for the generalized sliced-
Wasserstein distance under the setting when the defining
function ¢ is a polynomial function with an odd degree,
which is defined as follows:

Definition 3.1 (Polynomial defining function). For a
multi-index & = (a1,...,04) € N% and a vector =
(71,...,74) € RY, we denote |a| = a1 + ... + ag and
x> = z7'...25*. Then, a polynomial defining func-
tion with an odd degree m is given by: gpoy(x,0) =
Z|a\=m9amaa where 0 = (0a)ja|=m € S?~1 with

g = ("%") be the number of non-negative solutions

to the equation oy + ... 4+ ag = m.

Accordingly, the generalized sliced-Wasserstein distance in
this case is denoted as poly—GSW.

Subsequently, we introduce some necessary notations for
our analysis. Let X = (Xi,...,Xy)! and ¥ =
(Y1,...,Yy) T be random vectors following probability dis-
tributions ;1 € Po(R?) and v € Py(R?), respectively. For
an odd positive integer m € N, by denoting j, and v,
as the probability distributions in R? of random vectors
U:=(XY)a=m ERTand V := (Y¥)|q|=m € RY, we
find that there is a connection between the GSW distance
and the SW distance as follows:
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Proposition 3.2. Let j1, v € Po(R?) be two probability mea-
sures in R? with finite second moments and 1, v, € P2(R?)
be defined as above where q = (mcti;l) withm € Nis an
odd positive integer. Then, we have: poly—GSWos(u,v) =

SWQ([LQ, Vq).

Proof of Proposition 3.2. For § € RY, we denote ggoly :
RY — R as a function & — gpoly(, ). It follows from the
definition of poly—GSW distance that

poly — GSW; (u, v)
= [ W3 (bt (g ) 0)
R4
:/R Wg(eg/‘qa equ)d'qu) = SW22(:“L17 Vg)-

Hence, we obtain the conclusion of this proposition. O

As a consequence, the original problem of approximating
the poly—GSW distance between p and v boils down to
estimating the SW distance between i, and v,. Combining
this result with Proposition 2.2, we obtain the following
bound for the poly—GSW distance between y and v.

Theorem 3.3. For any probability measures ji,v € Py(R?)
with finite second moments, there exists a universal constant

C > 0 such that
malia) = o) |

< CO(Eq(pg) +Zq(vg))7,

poly—GSWa(u,v) — ¢~ =

[N

where my({) and Z4(() are defined as in equation (1) for
¢ € {ug g}

It is observed that components in the above approximation
error, which are Z,(1q) and Z4(v4), cannot be shown to
converge to 0 as d — oo unless p, and v, are centered. We
overcome this issue by using the following equality:

poly—GSW3 (1, v) =poly—GSW; (i1, 7)

+ a7 lmy, —m, 1%,

where me, ¢ are mean and centered versions of ¢ for
¢ € {uq, vy} This equality is achieved by putting Proposi-
tion 2.3 and Proposition 3.2 together. Thus, we firstly try to
approximate poly—GSWZ(ji, 7). It is sufficient to estimate
My M, Wa(j1q) = E[[|U?] — [[E[U]]?, and ma(7,) =
E[|V*] - |[E[V]|*. Let {z ")} ], and {y)} L, be sam-
ples drawn from probability distributions y and v, respec-
tively. Denote U(xz) = (U;(x)){_; := (£%)|a|=m, and
V(y) = (Vi(y))ie = (Y*)|a|=m, be two g-dimensional
vectors. Then, the estimators of ma(fiy), ma2(74), m,, and

m,,, can be calculated as:

) = 3o (B (B

N N

=1

~

ma(7,) =

Z;'v:1 V?( (j)) ZjV:1 Vil (j)) 2
( N : _( N : ) )

-

i=1

1 N

N
1 ; )
5= (4) 5 o= (4
mll«q - NZU(SU )? ml/q - sz(y )
Jj=1 Jj=1
Corollary 3.4. Consequently, an approximation of the
poly—GSWy(u, v) can be written as

poly—GSW (i, v) = "' (m(nq) - ﬁu@))g

+ g Iy, — |12

To validate our approximation of poly—GSWa(u,v), we
provide in the following theorem an upper bound for the
approximation error (2, (1,) + E,(v4)) 2.

Theorem 3.5. Let (X;);en and (Y;);en be sequences of
independent random variables in R with zero means such
that E[X "] < oo and E[Y;'™] < oo for all j € N, where
m is an odd positive integer. For d € N, let X = {X; };-1:1
andY = {Y; };-l:l and denote by u, v the distributions of
XY, respectively, while 114, v4 are defined as above. Then,

m

(Eq(pg) + Eq(Vq))% <O(d +), @)

Remark 3.6. When m = 1, the polynomial defining func-
tion reduces to the linear case gpoiy (¢, 8) = (x, 0), leading
to the fact that poly—GSW, (i, v) = SW, (i, v) for any
p > 1land u,v € P,(RY). Under that setting, the ap-
proximation error in Theorem 3.5 approaches O at a rate

of (d_é ), which matches the result provided in [(Nadjahi
et al., 2021), Corollary 1].

We now provide the proof of Theorem 3.5.
Proof of Theorem 3.5. Recall that

Zalita) = 4 {Alpg) + (a2 (1) B (1)) 2
+ ma(p) " Ba(n) 7). (8)

Thus, it is sufficient to bound ma(1q), A(pg) and By (pg)
for k € {1,2}. For any a € R? such that || = m, by
using the Holder’s inequality, we have
E[(X*)?] =E [X7* ... X;*]
<E[xZm]™ R (X

2m
R

VAN
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which leads to the following bound for my (1, ):

ma(pg) = D EI(X%)? <q max E[X™).
la|=m

Denote U := (X
(A = B[ U2

*)|a|=m as a g-dimensional vector, then
- ]E||UH2‘ is upper bounded by

Var[[U[] = Var | >~ (X*)?

|la|=m

- Y Cov [(Xa)Q, (XP)2

lee|=[Bl=m

Note that if two terms X< and X? do not share any
variables, then they are independent which implies that

Cov [(X"‘)27 (Xﬂ)Q} = 0. Otherwise, by denoting o =
(a1,...,aaq), B = (B1,... I
Cov [(X)2, (XP)?] ‘ is bounded by

s |(x?) ]

—E[X{™ . X E (X! X

< @)™ @ XK
x (X)L )

m1\ 2
< max (E[X}™])

, Ba4) and using the Holder’s in-
equality,

Next, applying part (ii) of the Lemma 3.7 (cf. the end of
this proof), we obtain that [A(u,)]? is upper bounded by

([(m _1 mzd?m—l + O(d2m‘2)) max E[X ;™).

1<5<d

Finally, we need to bound B (p,) and Ba(p,). By utilizing
the Cauchy-Schwarz inequality, we have By (1q) < Ba(pg)-
Thus, it is sufficient to bound Bz (114). Let us denote by X’
an independent copy of X and U’ := (X'%)| 4=, then

2

wuy=| 3y x°x'®
|ae|=m
= Y (xex )2+ Y xexPx X )
la|=m a#B

Noting that E[X* X?] = 0 if this product contains a vari-
able of degree 1. Otherwise, using the Holder inequal-
ity as in the above calculation, we have E[X*X"] <
max <j<q E[X?™] by the Holder inequality. Thus, tak-
ing the expectation of equation (9), and using part (iii) of

Lemma 3.7 (cf. the end of this proof), we have

2
E[(U,U")?*] <0(d™) <max ]E[X2m]> :

1<5<d
Therefore, By (j1q) < O(d™/?) maxi<j<qa E[X?™]. In
summary, we get
< m 2m
ma(pg) < O(d™) max ELXG™],
A <O dm—1/2 E X4m 1/2
(1g) < O( ){f?f‘fd [X; ]} :
Bi(pq) < Ba(ptg) < O(d™/?) max E[XF™].  (10)

1<5<

Combining above results with equation (8) with a note that
q~' = O(d™™), we obtain that Hq(uq) < O(d~7%). Sim-
ilarly, we have Z,(r,) < O(d~%). Hence, we reach the
conclusion of the theorem. O

Lemma 3.7. For two positive integer numbers d € N and
m € N, let P]* be the set of all multivariate polynomials of
T1,...,2q of degree m. Then, the followings hold:

d(d—l—l)...(d—i—m—l)‘

m!

(i) [Pl = (") =

(ii) Let AT} be the set of all pairs of polynomials P, () €
P such that there is at least one variable appear-
ing in the two polynomials. Then, there exists two
polynomials P, and Pfhm of variable d with degree
2m — 1 and the leading coefficient 1/((m — 1)!)? such
that Pfl,m (d) < |A7| < P ,,.(d) forany d € N.

(iii) Let B]' be the set of all pairs of polynomials P,Q €
P such that the product of two polynomials in each
pair does not contain a variable with degree 1. Then,
there exist two polynomials Pg ,,, and Pém of vari-
able d with degree m such that Pf , (d) < |BJ'| <
Py i (d)-

The proof of Lemma 3.7 is deferred to Appendix A.2.

4. Neural Network Type Function

Using the polynomial defining function in Section 3 yields
an interesting approximation for the generalized sliced-
Wasserstein distance, which generalizes the result in [(Nad-
jahi et al., 2021), Theorem 1] for the linear case. However,
the memory complexity of polynomial projections grows
exponentially with the dimension of data d and the degree of
the polynomial, therefore, restricting their usage in machine
learning and deep learning applications. To address that
issue, we consider in this section the problem of approxi-
mating the generalized sliced-Wasserstein distance equipped
with a neural network type defining function.
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Prior to introducing the definition of a neural network type
defining function, let us present some necessary notations
for this section. Firstly, recall that X = (X,..., X4)" and
Y = (Y1,...,Yy) " are random vectors having probability
distributions p € Po(R?) and v € Po(R?), respectively.
Then, let n be the number of layers of a neural network,
we denote by (-)(1), ...,©™ p random matrices of size
d x d such that they are independent of X and Y, and their
entries are i.i.d random variables following a zero-mean
Gaussian distribution N'(0,d~!). Now, we are ready to
define a neural network type defining function.

Definition 4.1 (Neural network type defining function).
Let x,0 be two vectors in R% and 9(1),...,9(") be
random matrices defined as above, then a neural net-
work type defining function is given by gneural(z,0) =
0,00 . @™g). Accordingly, the generalized sliced-
Wasserstein distance with this neural network type defining
function is denoted as neural-GSW.

Next, we consider a random vector X~ =
(X5, ., X" € RY (resp. Y* = (Y7,...,Y)D)
which is achieved by multiplying n random matrices

@(1), cee ©™ (each corresponding to a layer of the neural
network) and X (resp. Y):
x =0,  emx, (11)
vy =0l . ey, (12)

Based on the above definitions, we also attain in this sec-
tion a relation between the neural-GSW distance and SW
distance. In particular,

Proposition 4.2. Let u* and v* be two probability measures
corresponding to the random vectors X* and Y™ given in
equations (11) and (12), we obtain

neural-GSWa(u,v) = SWa(u*,v").

Proof of Proposition 4.2. For § € R?, we denote gﬁeum :
R¢ — R as a function z — Gneural (2, 0). Tt follows from
the definition of poly—GSW distance that

neural — GSW2(u, v)
= [, W2 ((Gheaot, Gt ) 7500
= [ Wi 0507)0(0) = SWE "),
Thus, we reach the conclusion of this proposition. O

Consequently, deriving an approximation of the
neural-GSW between p and v is equivalent to esti-
mating the SW distance between p* and v*. Putting
this result and Proposition 2.2 together, we achieve the
following bound for the neural—-GSW (p, v).

Theorem 4.3. For any probability measures ji,v € Po(R?)
with finite second moments, there exists a universal constant
C > 0 such that

neural—-GSWa(u,v) — d_%‘\/mQ(u*) — /my(v*) |‘
< C(Ealp*) +Zq(v))3,

where mo(C) and Z4(C) are defined as in equation (1) for
Ce{p vl

Subsequently, we estimate the values of mo(p*) and ma (v*).
Since ©), ..., 0™ are independent random matrices
with zero means and they are independent of X and Y,
it follows from equations (11) and (12) that E[X *] = 0 and
E[Y™] = 0. In other words, p* and v* are zero-mean distri-
butions. Therefore, let {x (/) }2 ) and {yU )}f[:l be samples
drawn from p and v, respectively, we compute estimations
of ma(p*) and mo(v*) as follows:

1SN, 1SN,
my(p*) = N Z ||93(j)||27 my (V") = N Z HZ/(J)||2~
j=1

Jj=1

Corollary 4.4. As a consequence, an approximation of
neural—GSW(u, v) can be written as

neurj—\GSWE(u, v)=d* <\/ﬁ\12(ﬂ*) - \/1?12(1/*)>2.

Finally, we provide in the following theorem an upper bound
. . —_ —_ 1
of the approximation error (E4(p*) + Z4(v*))=.

Theorem 4.5. Let (X;);en and (Y;),en be sequences of
independent random variables in R with zero means such
that E[X ] < 00 and E[Y}'] < oo forall j € N. Ford € N,
let X = {X;}}_, and Y = {Y;}I_, and denote by v
the distributions of X,Y, respectively, while u*,v* are
defined as above. Then, we have

(Za(p®) + Ea(v™))? <O@BTd T +d75),  (13)
where n € N is the number of neural network layers.

When there are no layers, i.e. n = 0, the neural defining
function reduces to the classic case gneural(x, ) = (x,0),
implying that neural -GSW,(u,v) = SWp(u, v) for any
p > land p,v € Py(RY). Additionally, the approxima-
tion error in Theorem 4.5 goes to 0 at the same rate as in
[(Nadjahi et al., 2021), Corollary 1], which is of (’)(d‘é).

Proof sketch of Theorem 4.5. The full proof of Theo-
rem 4.5 is in Appendix A.1. From the definition of Z;(u*)
in equation (1), it is sufficient to bound mz(p*), A(p*) and
By (p*) for k € {1,2}. Thus, this proof is divided into three
parts :
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Bounding m(;*): As X and ()7, are independent,

2
d d d
o (1) (n)
m2('u’ ) - Z E Z o Z 6]0J1 '.®jn—1anj”
Jo=1 Ji=1 Jn=1
d d d n @
7 2 2
D IDIND BN | LY [CHISHED A
jo=171=1 Jn=11=1

Bounding A(u*): It follows from the definition of A(p*) in
equation (1) that [A(x*)]? < Var(|| X *||?). Thus, [A(u*)]?
is upper bounded by

2
d d d
(1) (n)
Var Z Z e Z 630]1 : 9]71 1Jn j"
Jo=1 \J1=1 Jn=1
2
_ (1) (")
- dvar Z Z 61]1 Jn lanj
Ji=1 Jn=1
d d 2
1 e
+d(d — 1)Cov[ Sy el el L x;
Jji1=1 Jn=1

2

d
Z Z 62J1 @§: 1Jn ] ] (15)

J1=1 Jn=1

Regarding the variance term in equation (15): Since X
and (@")7_ are independent, this term is equal to

Z Cov [@(1) @(n) lee( ) @(n) ij
o1 AR S Vb JE_4327 0
O, .0l X0, el X, } (16)
JoJ1 Jn 1] In j'n 1J
where the sum is subject to tuples (34,42, 3%,3%) with

.7

it = (]O,...,]n) such that j§ = 1. It is easy to see
that if (51,32, 4°,4*) is not a reducible tuple (defined in
Lemma 4.6), the respected covariance value in equation (16)
equals 0. Thus, by utilizing part (i) of Lemma 4.6 (cf. the
end of this proof), the variance term in equation (15) is
bounded by O(3™).

Regarding the covariance term in equation (15): This
term is equal to

My a0 (n)
Zcov[ el mxﬁ@jgﬁ...@ji e
(1) (n) R
@jgﬁ...@ﬂ lann® ..@jiiljzxjﬁ}, (17)

where the sum is subject to tuples( e ; 43, g )w1thj =
(§&,...,J%) such that j§ = j2 = 1, j§ = jd = 2. Itis

obvious that if (5,42, 5%, 4*) is not a reducible tuple as
in the definition of Lemma 4.6 (cf. the end of this proof),
the respected value of the covariance term in equation (17)
equals 0. Therefore, by using part (ii) of Lemma 4.6, the
covariance term in equation (15) is bounded by O(3™)/d.

Putting the above results together, we obtain that
A(p*) < O(3%d3). (18)

Bounding By (u*): By the Cauchy-Schwartz inequality, we
have By (u*) < Ba(u*). Therefore, it is sufficient to bound
Bs(p*). Let X *' be an independent copy of X *, then

d
Z 2(X;")? +ZX X;Xr'xy
Jj=1 i#]

(X

As X* and X*' are independent, we have

E[(X)2(X])?] = (Bl(x;)2)?

— 9 2

=B Z el

J1 Jn=1

d d 9
> (o) (e,)

[ J1=1 Jn=1

e\ X,

Jn—1Jn

2
n i 2 — *\21)2
(d max, dnE[X }> (jmax E[(X7)°])",

and E[X;*X;-‘X;"X;f’] = (]E[X;‘X;f})2 = Ofori # j, Thus,
we have

") < 0(d?). (19)

From equations (14), (18) and (19), we obtain =;(p*) <
O(3%d~2 + d~%). Similarly, we have Zy(v*) <
O(3%d~2 + d~1). Hence, we conclude the theorem. [

Bi(p*) < Ba(p

Lemma 4.6. Let us consider tuples ((3%,7j1,...,jb),

(jg7j]?""7j’?l,)’ (jg’j%?""j?],)’ (j(%ﬂji&"'?j'ﬁ))’ Where
j¥ is a positive integer number in [1, d).

We call a tuple to be reducible if for eachi € {0,1...,n —
1}, there exists a way to divide the set {1,2, 3,4} into two
disjoint subsets {p, q} and {r, s} such that j} = ji, j* | =
jg+1> ]; = st’ j[+1 = jf+1- Then,

(i) The number of reducible tuples such that j; = j& =

jo = j& = 1is a 2n-degree polynomial of variable d.

(ii) The number of reducible tuples such that ji = j& =
1, jg’ = jg = 2 is a polynomial of variable d of degree
2n with the highest coefficient of 1.

The proof of Lemma 4.6 is deferred to Appendix A.3.
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Figure 1. Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of projections between
empirical distributions on samples that are drawn from Multivariate Gaussian distributions and Gamma distributions.
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Figure 2. Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of projections between
empirical distributions on samples that are drawn from autoregressive processes of order one AR(1).

5. Experiments

In this section, we focus on testing the approximation error
of our proposed approximated GSW. In particular, we try to
increase the dimension of simulated data to see the change
of the approximation error, namely, the IL; distance between
the approximated GSW and the Monte Carlo GSW with
a huge number of projections, e.g., 20000. For all experi-
ments, we repeat the process 100 times and report the mean
and the standard deviation each time.

Approximation error on Multivariate Gaussian and
Gamma: In this setup, we first generate two sets of n = 10*
d-dimensional samples from two Multivariate Gaussian dis-
tributions (0, I;) and N'(1,2I;). We denote two empiri-
cal distributions as g = L 3" | 6, andvg = L3 6,
We then compute our approximated GSW and the Monte
Carlo GSW with the polynomial defining function (degree
3 and 5) and the neural defining function. Finally, we plot
the approximation error with respect to the number of di-
mensions in Figure 1. From the figure, we observe that the

approximation error has a decreasing trend when the number
of dimensions increases for all defining functions. A simi-
lar phenomenon happens when we use empirical samples
from multivariate random variables where each dimension
follows Gamma(1, 2) and Gamma(1, 3). We also observe
that the error in the Gamma case is larger than in the Gaus-
sian case. The reason is that our approximation is based on
the closed form of Wasserstein between two Gaussians.

Approximation error on autoregressive processes of or-
der one (AR(1)): We would like to recall that in AR(1)
process, X; = aX;_1+¢&, where € [0, 1] and {g;}"_, are
i.i.d. real random variables with E[e;] = 0 that have finite
second-order moment. We use this process with 10* 4 d to
generate samples. We only take the last d steps while the
previous steps are for “burn in” that guarantees the station-
ary solution of the process. We generate empirical samples
{z;}?, and {y;}_; using the same Gaussian noise (Stu-
dent noise). We report the approximation errors for different
values of o and defining functions in Figure 2. Similar to
the previous experiment, the approximation error decreases
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when the number of dimensions increases.

6. Conclusion

In this paper, we establish deterministic and fast approxima-
tions of the generalized sliced-Wasserstein distance without
using random projections by leveraging the conditional cen-
tral limit theorem for Gaussian projections. In both cases
of polynomial defining function and neural network type
function, we provide a rigorous guarantee that under some
mild assumptions on two input probability measures, the
approximation errors approach zero when the dimension
increases. Finally, we carry out some simulation studies
on different types of probability distributions to justify our
theoretical results.
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Supplementary Materials for
“Fast Approximation of the Generalized Sliced-Wasserstein Distance”

In this supplementary material, we firstly provide proofs of remaining results in Appendix A. Then, we present the
approximation of the generalized sliced-Wasserstein distance when the defining function is circular in Appendix B.

A. Proof of Remaining Results

This appendix is devoted to show the proofs of Theorem 4.5, Lemma 3.7 and Lemma 4.6.

A.1. Proof of Theorem 4.5

Given the definition of Z4(u*) as follows:
Za(r%) = A7 AG) + Ima) By ()] V2 + o) /2 By ()7, 0)

this proof consists of bounding ma(1*), A(p*), and By (p*) for k € {1,2}.

An upper bound of mo(p*): Firstly, let us recall the definition of mg(p*):

d d d
* * n 1 n
my(u*) = B[ X[ =E[leV ... emx| =Y E | > ... Y el e X,

Jo=1 Jji=1 Jn=1
Since X and 6(1), ceey O™ are independent, we have

d d d
mo(p) =Y B |30 CIVSEN IS ¢

S 3D I 3 | LI CEE SR

n 1 2
=d"x o > EX]]
Gn=1
d
2
= 2 ElXj]
j’lli]‘
< 2] —
dlr%a%(dE[Xj] O(d)

An upper bound of A(;*): It is worth noting that

(A = [E[1X°1 - BIX7IP]] < B QXTI ~ BIXCP] = Var(1 X)),
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As aresult, A(u*) can be bounded as follows:

2
d d d d
* * 1 n
(G < Var | DX = Var | 30 32 3 00,00, X,
1=1 Jo=1 \Jj1=1 jn=1
2
: é : (1) (n)
=D Var || > > 0505 X,
Jo=1 Ji=1 Jn=1
2
é : (1) (n) (n)
+ 2 Z COV Z e Z @j()jl @Jn 1Jn j” Z Z 97().71 @.772 1Jn j’
1<jo<jp<d J1=1 jp=1 ji=1  jp=1
2
- N1
= d Var Z Z @1]1 Jn 1]77,Xj
Ji=1 Jn=1
2 2
d d
n 1 n
aa-neo | (Y3l e xS el e x| en
Ji=1 Jn=1 J1=1 Jn=1
where the last equality is due to the fact that (9(1), cee ©™ are i.i.d random matrices.
We now try to bound the variance term in equation (21). As 6(1), ey O™ are independent of X *, we get

2

Var Z Z ®1J1 J: 1Jn Xj

Jj1=1 Jn=1

= Z Cov {@ . @(n X n@(i 2 - @(n) .X @(1 . @(n) s X j3 @ 1)4 .. .@(,Z) 4 Xj;%} , (22)
(G1,42,5%,94) Joit Jn—1dn ST i Jn_13 In—1In
J7537:3753

where (51,42, 7%, 5%) isatuple of 5° = (ji, ..., %) such that j§ = 1. It can be seen that if (5, 52, 7°, 5*) is not a reducible

tuple as in the definition of Lemma 4.6, the respected covariance value in the sum in equation (22) is equal to 0. However,
when (51,52, 5%, 4%) is a reducible tuple, we have

Cov[Ol), .00 ,xu00,. 60f X6l el  x.elh., el .x
JoJ1 " J n ]

Jh_1dh 33 493 VARV Jm_1dn

97N 1/2
< <]ET {(@5”] o L xel,. el .x D < [ el L xpell el LX) D
(1 (=[(e00.) = (6002, ]) ) el %Xia} B [xsxa])”
<(TT([oy )=l ) zle = leg,0]) ") ([ =[xz [xt] 2 fx])
1
<—- max E [X‘-l] . (23)

Using part (¢) of Lemma 4.6 about the number of reducible tuples, we obtain

2

Var Z Z 91]1 ]:l uan <0O(3") max E [X4] (24)

1<5<d
Jj1=1 Jn=1
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Subsequently, we will bound the covariance term in equation (21).

2
(1) (n) (n)
Cov Z Z O -+ 95,0 uann Z Z 9231 0510 Xin
Jji=1 Jn=1 ji1=1 Jn=1
- Y cov[e Lo xpel, el L xpel, el xzel, . el .4Xj4]7 25)
-]0-71 In— ljn ” -7 ]1 In— 1-]n In— 1-7n In—1In n

(34.5%.3%.3%)

where (5,42, 5%,4%) is a tuple of 5* = (8, ...,71) such that j} = j2 = 1, j§ = j& = 2. Note that if (G4, 4%, 3%, 4 is
not a reducible tuple as in the definition of Lemma 4.6, the respected covariance value in the sum in equation (25) is equal to
0. By contrast, when (5, 5%, %, j*) is a reducible tuple, note that if for each £ € {0,1,...,n}, we have j} = 52, j3 = ji
and j} # j3, we have

Cov [0, .00 xu6l... 0 Lxz6l., . el  xel.,. el X.|-o

Jh_1dk n o JoJi Jn—1In 3 0J1 Iy 133 Jn—1Jn

There are a total of [d(d — 1)]™ such tuples. Otherwise, by following the same arguments in the calculation in equation (23),
we get

n

Cov Ol .0 xuel,. . .6F) . xs 6, el  xel. e X

Jsai I R FA TS LIRS LA )

max E [XJ .

<
VR eI Jno1dn T n] = q2n {Zi<n

Thus, using part (i¢) of the Lemma 4.6 about the number of reducible tuples, we obtain an upper bound of the covariance
term in equation (21)

2

2
- SNt (n) - oG () o@3") 4
Cov || DD @6 5 X | o[ Do Do 65 5 X | | <= max E[X]]. 26)

ji=1 Jn=1 j1=1 Jn=1

Putting the equations (21), (24), and (26) together, we have [A(u*)]> < O(3"d) maxi<;j<q E [X |, which implies that

A(p*) < O(3%d3).

An upper bound of By (1*): Finally, we need to bound By (u*) for k € {1,2}. By applying the Cauchy-Schwartz
inequality, we get By (u*) < Ba(u*). Thus, it is sufficient to bound Bo(u*). Denote by X*' = (X;/,..., X4') an
independent copy of X* = (X7, ..., X}), we consider
>y
(X", X*)? ZX X =) (XA 2 Y XPXpXPX
j=1 1<i<j<d

Since X* and X*' are i.i.d random vectors, we have for any 1 < j < d that
97\ 2

d d
E[(X)*(X:)) = B2 = [E|[ S ... Y el ..o X,

Jj1=1 Jn=1

d d
>3 (O) (o) X

Jj1=1 Jn=1

1 2 2
< (d" — 21 = 211 .
< (o, =071) = (o2

2
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Meanwhile, for 1 < i # j < d, we get

ELX;X; X7 X)) = (BLX; X;))?

2
d d d d
_ (1) (n) (1 (n)
=|E| ... Y ey ..o x| (> ...> e ..o X,
Jji=1 Jn=1 Jji=1 Jn=1
=0.
Consequently, we obtain E[( X *, X*")?] < dmaX1§j§d(E[X]2])2, which leads to
*) < (3 2 — 7).
&w)fdﬂg@EWA O(d?)
In summary, we have
my () < O(d),
A(p") < 033 d?),
Bi(i") < Ba(i*) < 0(d?)
By plugging those results into equation (20), we obtain
Ea(p) < OBEd"F +d7)
Likewise, we also have Z4(v*) < O(3% d-2 + d_i). Hence, we reach the conclusion of the theorem, which is
(Ba(n") +Za(v))% < OBFd 4 +d %)
A.2. Proof of Lemma 3.7
Part (i). Recall that an element of the set P} is of the form P(x1,...,zq) := 21" ... 25, where a; € N U {0} for all
ie{l,...,d} and Zle a; = m. Therefore, the cardinality of P} is equal to the number of non-negative integer solutions
of the following equation:
a4+ ... +aqg =m.
Thus, we obtain that | P = (4T,
Part (ii). For any ¢ € {1,...,d}, let A; be the set of all pairs of elements in P* such that both two elements in each pair
contain ;. Then, by using the principle of inclusion-exclusion, we have
d d
STlAil = > lAin A < AR <> AL 27)
i=1 1<i<j<d i=1
Compute |A;|: It is worth noting that for any pair (P,Q) € A;, we have P(xy,...,z4)/z; € P7"! and
Q(z1,...,xq)/x; € P;"il. Since P is not necessarily different from (), then we have
, d+m—2\°
A =12 pp = e = () 28)
m—

Compute |A; N A;|,i < j: Similarly, note that for each (P,Q) € A; N A;, we have P(x1,...,x4)/(ziz;) € P72 and
Q(z1,...,24)/(ziz;) € P72 Then, we obtain

(29)

B B B d+m —3\2
AN A = PP < |Pp2] = | Py 2|2—( ) .

m—2
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Plugging the results in equations (28) and (29) into equation (27), we get

2 2 2
dd+m—2 ~dd—1)(d+m—3 <|A7 < d d+m—2 .
m—1 2 m—2 m—1
Hence, we achieve the conclusion of this part.

Part (iii). The product of two elements in each pair in B} has the form
AR

where a; # 1 is an integer number for any ¢ € {1,...,d}, and a1 + ... + ag = 2m. We now count how many tuples
(a1,...,aq) satisfy those constraints.

* Assume that exactly k elements of {a1, ..., aq} are greater than 1 while others equal 0. There are a total of (Z) such
tuples.

* Next, we consider a subset of k elements of {ay,...,aq} such that they are greater than 1 and they sum up to
2m. Without loss of generality, we can assume that this subset is {a1,...,ax}. Then, we have a; > 2 for all
1€{l,...,k},and a; + as + ...+ ax = 2m, or equivalently, (a; — 2) + ...+ (ax — 2) = 2m — 2k. Thus, there are

(2;1_—2_1@1) = (2’”2__’?'1) ways to choose (a;)¥_; such thata; > 2forall 1 <i < kanda; + ...+ a; = 2m.

Thus, there are 22:1 (z) (2’”,;_’“1_1) ways to choose a non-negative integer tuple (aq, ..., aq) suchthata; +...+aq = 2m
and a; # 1 forall¢ € {1,...,d}, which is a polynomial of d with degree m.

Subsequently, we consider a pair (P, Q) € B} such that P(x1,...,2q)Q(z1,...,2q) = 27" ... 23" where (a1,...,aq)
is a tuple of non-negative integers satisfying that a; > 2 forall ¢ € {1,...,k} (1 < k < d) while other a; equal 0, and

a1+ ...+ aq = 2m. Suppose that P and () can be written as

u u
P(xi,...,xq) = 21" ... xy",
v v,
Q(xy1,...,xq) =" ...z,
where u; and v; are non-negative integers for all ¢ € {1,...,d}. Then, we have

Ui + Vg = Ay,

forany i € {1,...,k}. Obviously, there are (1 +ay) ... (1 + aq) pairs of (u;)%, and (v;)%_, satisfying those constraints.
As a result, we have

d
2m —k —1
|Bi'| = (1+a1)...(1+ aq) ;()( . )

Note that

k\" 2m\ "
1§(a1+1)...(ak+1)§(a1+ ]:a” ) (Hm) <em

or equivalently,

(7T =2 (7

Hence, we reach the conclusion of this part.
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A.3. Proof of Lemma 4.6

Part (i). For n € N, we denote by S,, the set of all reducible tuples of the form ((j3,51,...,4%), (43,43, ..,52),
(33,73, 5 32), (45, 31, - - -+ i4)) such that j§ = j& = j3 = j¢ = 1. Among reducible tuples in S,,, let

* A, be the set of tuples such that j! = j2 = j3 = j2,

* B, be the set of tuples such that there exist a way to divide the set {1, 2, 3,4} into two disjoint subsets {p, ¢} and
{r, s} such that j; = ji, j; = j;,and jb # j;.

It is obvious that A, N B,, = § and A,, U B,, = S,,. Note that for any reducible tuple in A, 1, by removing the last
elements of its four sub-tuples, which are j. 15 j2 115 g3 15 ji 11, We receive a new reducible tuple belonging to either A,,
or B,,. Since j¥ ‘1 € [1,d] have d possible values, we obtain the following equation:

‘An+1| = d|An‘ + d|Bn|~

Subsequently, in order to form a reducible tuple in B,, ;1 from a reducible tuple in A,,, we can add 5.} 1, j2, |, j3 115 Jay
such that there exist a way to divide the set {1, 2, 3,4} into two disjoint subsets {p, ¢} and {r, s} such that j2 = j4, j7 = j?,
and j2 # j’. There are 1 () = 3 ways to choose two pairs (2, j4) and (j!, j$). As j2 € [1,d] have d possible values,
there are d ways to choose the pair (52, j2). Since j£ # j", we have d — 1 ways to choose the pair (5, j). Thus, there are
a total of 3d(d — 1) ways to form a reducible tuple in B,,;1 from a reducible tuple in A,,.

Next, we consider how to build a reducible tuple in B,,;; from a reducible tuple in B,,. For an arbitrary reducible tuple
in B,,, without loss of generality, we assume the last elements of its four sub-tuples are such that j! = 52, 53 = j* and
Jn 7 Jn- Then, by adding jy 1, j7 415 Jis1s Jnsr Such that iy = j24 1, Ji iy = Jppq and juyq # jo g, We obtain a
reducible tuple in By, ;1. There are d ways to choose the pair (j;_;, j2, 1) and d — 1 to choose the pair (j3 ., jn ;). Thus,
we have a total of d(d — 1) ways to form a reducible tuple in B,, ;1 from a reducible tuple in B,,. Therefore, we have the
following recursive formula:

[Busa| = 3(d? — d)|Au| + (d2 — d)|Bal.
By some simple calculations, we get |A;| = d and |B;| = 3(d? — d). Putting the above results together, we have
|A1| :da |B1‘ :3(d2_d)7
|An+1| = dlAn| + dan‘v
Bur] = 3(d2 — )| A| + (& — d)| By,

Then, by using the induction method, we obtain that |A,,| is a polynomial of variable d of degree 2n — 1 while | B,,| is a
polynomial of variable d of degree 2n. Hence, the number of reducible tuples such that ji = j2 = j3 = j& = 1 is equal to
|Sn| = |An| + |Bp|, which is also a polynomial of variable d of degree 2n.

Part (ii). We consider reducible tuples of the form ((48,41,...,3L), (52,52, ...,32), (38,73, -,32), (38, 4%, -, 9)
such that j§ = j2 = 1,43 = j§ = 2. Let A,, and B,, be defined as in part (i), then we obtain the same recursive formula:

[ Ans1] = d|An] +d|Bal,  |Basa| = 3(d* — d)|Au| + (d* — d)| Bal,

with the initial condition |A;| = d, | B1| = d? — d. Using the induction method, we receive the desired result.

B. Circular Defining Function

In this appendix, we present the challenge of approximating the generalized sliced-Wasserstein distance under the setting of
a circular defining function, which is defined as follows:

Definition B.1 (Circular defining function). Let & and 6 be vectors in R? while ¢ € RT be a positive real number. Then, the
circular defining function is given by

gcircular(m7 9) = ||.’11 — t@H,

where || - || is the Euclidean norm. In addition, the generalized sliced-Wasserstein in this case is denoted as circular—GSW.
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It can be seen that the circular defining function cannot be written as the inner product of § and some quantity dependent on
x. Therefore, under this setting, we are not able to utilize the conditional central limit theorem for Gaussian projections
in Theorem 2.1, which requires to project the input measures p and v along the direction of §. Additionally, we are also
incapable of demonstrating the relation between the circular—GSW distance and SW distance as in Proposition 3.2 (when
the defining function is polynomial) and Proposition 4.2 (when the defining function is neural network type) due to the same
reason. As a consequence, the problem of finding a deterministic approximation of the circular—GSW distance remains
open, and we believe that it is essential to develop a new technique to tackle the aforementioned issue, which is left for
future work.



