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ABSTRACT

Recently, the superiority of Transformer for long-term time series forecasting
(LTSF) tasks has been challenged, particularly since recent work has shown that
simple models can outperform numerous Transformer-based approaches. This
suggests that a notable gap remains in fully leveraging the potential of Transformer
in LTSF tasks. Consequently, this study investigates key issues when applying
Transformer to LTSF, encompassing aspects of temporal continuity, information
density, and multi-channel relationships. We introduce the Placeholder-enhanced
Technique (PET) to enhance the computational efficiency and predictive accuracy
of Transformer in LTSF tasks. Furthermore, we delve into the impact of larger
patch strategies and channel interaction strategies on Transformer’s performance,
specifically Long Sub-sequence Division (LSD) and Multi-channel Separation and
Interaction (MSI). These strategies collectively constitute a novel model termed
PETformer. Extensive experiments have demonstrated that PETformer achieves
state-of-the-art performance on eight commonly used public datasets for LTSF,
surpassing all existing models. The insights and enhancement methodologies pre-
sented in this paper serve as valuable reference points and sources of inspiration
for future research endeavors. Anonymous source code repository is available at:
https://anonymous.4open.science/r/PETformer-main-4BF5.

1 INTRODUCTION

Long-term time series forecasting (LTSF) highlights a wide range of applications across diverse
fields such as transportation, weather, energy, and healthcare, and has remained a prominent topic
in academic research for an extended period (Zhou et al., 2021). Owing to advancements in deep
learning, Transformer-based models have achieved groundbreaking results in various deep learn-
ing fields (Vaswani et al., 2017; Lin et al., 2022), and this trend has also extended to the LTSF
domain (Wu et al., 2021; Zhou et al., 2022; Woo et al., 2022; Du et al., 2023).

Despite attempts to encourage the use of Transformer in LTSF, their efficacy has been challenged
by Dlinear (Zeng et al., 2023), which attained unexpected results through a single-layer feedforward
neural network, surpassing the state-of-the-art Transformer-based models of its time. Subsequently,
PatchTST (Nie et al., 2023) inherited Dlinear’s channel-independent technique and introduced the
concept of patching from computer vision (Dosovitskiy et al., 2020), significantly enhancing Trans-
former performance in LTSF tasks and reaffirming the viability of Transformer. While the achieve-
ments of PatchTST are encouraging, there remains a lack of comprehensive understanding within
the community regarding the optimal utilization of Transformer in the LTSF domain. To this end,
this paper endeavors to investigate the following aspects and offer appropriate solutions.

Temporal continuity LTSF tasks exhibit consistent and continuous temporal dependencies be-
tween input and output data. The original Transformer encoder-decoder architecture was initially
developed for natural language processing tasks, utilizing positional encoding and decoder recur-
sion to maintain temporal relationships in the input and output sequences, correspondingly (Vaswani
et al., 2017). While prior dominant Transformer-based LTSF models follow this architecture (Zhou
et al., 2021; Wu et al., 2021; Zhou et al., 2022), recent studies indicate that the cross-attention mech-
anism between the encoder and decoder restricts the performance of LTSF (Li et al., 2023).
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Figure 1: Comparison of different application techniques for Transformer in LTSF.

PatchTST addressed this concern by the Flattening technique, avoiding encoder-decoder informa-
tion loss through the encoder-only architecture. However, the utilization of Flattening on lengthy
sequences introduces a heavy linear-flatten-layer, resulting in an excessive increase in parameter
count compared to the Transformer feature extraction module itself. To address this, the Feature
Head1 architecture emerges as a viable solution, preserving the advantages of an encoder-only ar-
chitecture while mitigating the drawbacks of Flattening. Nonetheless, Feature Head struggles to
fully preserve temporal features due to the compression of extensive temporal information into a
single constrained vector, particularly for longer-term future horizons.

To overcome this limitation, we propose the Placeholder-enhanced Technique (PET), integrating
both historical and future data segments as inputs to the Transformer model (see Figure 1). Each
placeholder represents a segment of future data to be predicted. PET architecture, as opposed to
other architectures, delivers advantages such as (i) improved computational efficiency, particularly
through the token-wise predictor, which significantly reduces parameter requirements in the pre-
diction head (by over 99% compared to Flattening architecture), and (ii) the functional fusion of
Encoder and Decoder components, facilitating the direct modeling of relationships between histori-
cal and future data on a coherent temporal plane.

Information density and multi-channel relationships Time series data, similar to images, is a
low-density information source, as individual data points do not provide meaningful semantic infor-
mation. PatchTST draws inspiration from the ViT approach in computer vision (Dosovitskiy et al.,
2020), partitioning the original sequence into patches to extract sufficient semantic information.
However, unlike static RGB channels in images, multivariate time series data (MTS) exhibits a vari-
able number of channels with intricate relationships. Therefore, in contrast to ViT’s direct channel
mixing (DCM) approach, PatchTST inherits Dlinear’s channel-independent approach to simplify the
modeling of complex relationships among multiple variables.

In this work, we build upon PatchTST’s patch and channel-independent strategies, with distinctions
that (i) we explore larger patches, referred to as Long Sub-sequence Division (LSD), demonstrating
improved performance through richer semantic information (ii) we investigate channel relationship
modeling, termed Multi-channel Separation and Interaction (MSI), revealing the complexity of mod-
eling relationships among multiple variables in time series data.

In summary, this paper makes the following contributions:

• From the perspectives of temporal continuity, information density, and multi-channel rela-
tionships, we systematically explore the optimal application architecture for Transformer
in the context of LTSF and propose a novel model termed PETformer.

• We introduce the PET architecture, enabling direct modeling of relationships between his-
torical and future sequences in LTSF tasks through attention mechanisms, resulting in en-

1To the best of our knowledge, we are the first to introduce the Feature Head technique in LTSF tasks.
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hanced predictive performance. The design of the token-wise predictor in PET architecture
significantly reduces the model’s parameter count.

• Extensive experiments demonstrate that PETformer achieves state-of-the-art performance
on eight public datasets for LTSF, surpassing all currently available models.

2 RELATED WORK

Long-term time series forecasting In the domain of LTSF, traditional time series prediction meth-
ods, such as ARIMA (Box & Pierce, 1970), VAR (Kilian & Lütkepohl, 2017), DeepAR (Salinas
et al., 2020), ConvLSTM (SHI et al., 2015), LSTnet (Lai et al., 2018), TCN (Bai et al., 2018;
Sen et al., 2019), have shown limitations when dealing with extended look-back and forecasting
horizons. The Transformer model, harnessing the self-attention mechanism, inherently possesses
the capability to model long-term dependencies (Vaswani et al., 2017). Consequently, a consid-
erable body of work has been dedicated to adapting the Transformer architecture for LTSF tasks,
including LogTrans (Li et al., 2019), Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2021a),
Autoformer (Wu et al., 2021), and Fedformer (Zhou et al., 2022).

However, the applicability of the Transformer to LTSF tasks has been questioned by Dlinear (Zeng
et al., 2023), which introduced a channel-independent strategy that significantly improved the per-
formance of simple models in LTSF. The emergence of channel-independent strategies has also
stimulated the development of numerous channel-independent-based methods (Das et al., 2023;
Wang et al., 2023b; Han et al., 2023). PatchTST (Nie et al., 2023) has also adopted this strategy
and introduced patch techniques from computer vision (Dosovitskiy et al., 2020; Liu et al., 2021b)
to effectively enhance the performance of Transformer in LTSF, thereby providing strong evidence
that the Transformer still excels in LTSF. In this paper, we are dedicated to further exploring the
performance of the Transformer in the context of LTSF.

Placeholder-enhanced techniques The Placeholder technique shares similarities with the cur-
rently popular Masking technique in the unsupervised pretraining domain. BERT initially intro-
duced the Masking technique in natural language processing tasks, employing bidirectional Trans-
former to predict randomly masked text segments (Devlin et al., 2018). Subsequently, this technique
has witnessed significant development in the computer vision domain (He et al., 2022; Bao et al.,
2022; Xie et al., 2022). In the time series domain, attempts have also been made to leverage masking
for unsupervised pretraining learning (Zerveas et al., 2021; Dong et al., 2023). It is worth noting
that these techniques primarily focus on unsupervised pretraining for representation learning. In
contrast to unsupervised learning approaches where known sequences are marked at random posi-
tions, this paper masks unknown future sequences for prediction, transforming random masking into
semantically explicit placeholders.

3 MODEL ARCHITECTURE

The main architecture of PETformer, as depicted in Figure 2, takes input X =
{
x1
t , x

2
t , · · · , xd

t

}
l
t=1,

where l signifies the length of the historical look-back window. Initially, it separates X into d inde-
pendent channel sequences, resulting in X ′ =

{
X1, X2, · · · , Xd

}
. Subsequently, the independent

sequences Xi are partitioned into patches of length w and transformed into input embeddings, gen-
erating n tokens. These tokens are then input into the placeholder-enhanced Transformer encoder
for feature extraction. This process yields m tokens for each independent sequence, amounting to
a total of d × m tokens after feature extraction from all d channels. The d × m tokens are then
transposed to obtain m × d tokens, which undergo the inter-channel interaction module for inter-
channel feature extraction. Finally, the tokens are fed into the token-wise predictor, which employs
parameter-sharing linear layer for individual patch output prediction. After concatenation, the final
output Y =

{
y1t , y

2
t , · · · , ydt

}
h
t=1 is obtained, where h refers to the length of the forecast horizon.

We will now provide detailed explanations of each module below.
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Figure 2: The PETformer model architecture.

(a) Full attention (b) No inter-future attention (c) No inter-history attention (d) Only future focuses on history

Figure 3: Different attention modes between history and future.

3.1 SUB-SEQUENCE DIVISION AND TOKENIZATION

For the given historical data, each independent channel sequence Xi ∈ Rl is divided into n sub-
sequences Xi

patched ∈ Rn×w, where n is determined by the sub-sequence window length w and
the stride length s, i.e., n =

⌊
l−w
s + 1

⌋
. Subsequently, each sub-sequence is mapped to a dmodel

dimensional vector through a parameter-sharing linear layer, resulting in Xi
token ∈ Rn×dmodel .

For the future data to be predicted, the same tokenization strategy is employed. A learnable place-
holder p ∈ Rdmodel is initially initialized, representing a future sub-sequence of length w. Subse-
quently, for a prediction horizon of h time steps, m placeholders are needed to represent the future,
yielding Y i

token ∈ Rm×dmodel . In this case, m =
⌊
h−w
s + 1

⌋
.

3.2 PLACEHOLDER-ENHANCED TRANSFORMER ENCODER

The placeholder-enhanced Transformer encoder takes an independent channel token sequence as
input. Initially, a learnable placeholder is replicated m times and concatenated with the n tokens of
input to form a sequence of n+m tokens, which is then augmented with learnable position encoding.
In this sequence, the first n tokens encompass historical data, while the last m tokens signify the
future information to be learned, thereby facilitating direct interaction between historical and future
information. The encoder contains N feature extraction blocks, wherein the token sequence in each
block undergoes intra-channel token feature interaction through a single Transformer encoder layer,
succeeded by batch normalization (Ioffe & Szegedy, 2015) and residual connection (He et al., 2016).
The Transformer encoder layer here is consistent with the vanilla Transformer (Vaswani et al., 2017).
Finally, the encoder outputs the last m tokens, which contain learned future prediction information.

Although the placeholders provide future-aware prior knowledge, they are not real future data, and
whether more interaction should be done between historical data and placeholders is a question
worth exploring. To this end, we explores four different attention modes (see Figure 3):
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Figure 4: Different inter-channel interactions.

• Full attention (FA): This constitutes the standard operation, wherein bidirectional atten-
tion is conducted both within and between historical data and placeholders.

• No inter-future attention (NIFA): Historical data interact with each other and provide
information to the placeholders. However, the placeholders do not interact with each other,
nor do they provide information to the historical data..

• No inter-history attention (NIHA): Conversely, historical data can be kept unchanged,
allowing only placeholders to interact with each other and continuously learn future infor-
mation from the existing historical data.

• Only future focuses on history (OFFH): This configuration combines both NIFA and
NIHA modes, where each placeholder independently focuses on historical information.

3.3 INTER-CHANNEL INTERACTION

Although Dlinear (Zeng et al., 2023) and PatchTST (Nie et al., 2023) have demonstrated that the
simple channel separation strategy is sufficient to achieve high-level performance, considering the
inter-channel dependencies might prove advantageous in predicting future information for certain
scenarios. Therefore, we have incorporated an optional inter-channel feature extraction module into
PETformer. Specifically, this work explores several methods for extracting inter-channel features
(see Figure 4):

• No Channel Interaction (NCI): This strategy entails channel independence without addi-
tional inter-channel interactions, capturing potential dependencies between channels solely
through the shared parameters within the Transformer encoder.

• Self-Attention (SA): Building upon the NCI approach, SA utilizes self-attention mecha-
nisms to extract inter-channel features.

• Channel Identifier (CI): Extending from NCI, the CI strategy leverages channel identifiers
to distinguish different channels more effectively. This enables the model to discern distinct
channel patterns. Channel identifier technology has recently emerged as a substitute for
complex graph neural networks in spatial modeling (Shao et al., 2022).

• Cross-Attention (CA): CA represents a fusion of the SA and CI strategies. It uses channel
identifiers as queries, replacing the original self-attention queries, thereby modeling inter-
channel dependencies through cross-attention mechanisms.

3.4 INSTANCE NORMALIZATION AND LOSS FUCTION

Instance normalization Besides the global preprocessing normalization of data, we also employ
RevIN (Kim et al., 2021; Ulyanov et al., 2016) to tackle the distribution shift issue in time-series
data between training and test sets. RevIN normalizes each individual sample prior to inputting it
into the model and denormalizes it after obtaining the output from the model.

Loss function We utilize Smooth L1 loss (Girshick, 2015), which amalgamates the advantages
of both L1 loss and L2 loss. This combined approach offers a more stable gradient, mitigating the
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likelihood of gradient explosion or decay during the training phase. In this work, the loss function
is defined as follows:

L(Y, Ŷ ) =
1

d · h

h∑
t=1

d∑
i=1

ρsmooth(y
i
t − ŷit),

where

ρsmooth(x) =

{
0.5x2 for |x| < 1

|x| − 0.5 otherwise.

4 EXPERIMENTS

In this section, we present the main results of PETformer on multivariate and univariate time se-
ries forecasting tasks, as well as ablation experiments and model analyses. More details and other
supplementary experiments are available in Appendix A.

Table 1: Summary of Dataset Characteristics

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity ILI Traffic Weather

Dimension 7 7 7 7 321 7 862 21
Frequency 1 hour 1 hour 15 mins 15 mins 1 hour 7 days 1 hour 10 mins

Length 17,420 17,420 69,680 69,680 26,304 966 52,696 52,696

Dataset We conducted extensive experiments on eight widely used public datasets, including
ETTs (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021), Electricity, ILI, Weather, and Traf-
fic (Wu et al., 2021), covering energy, transportation, medical, and weather domains. Table 1
presents key characteristics of the eight datasets.

Baselines and metrics We choose state-of-the-art and representative LTSF models as our base-
lines, comprising Transformer-based models like PatchTST (Nie et al., 2023), Crossformer (Zhang
& Yan, 2023), FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021), and Informer (Zhou
et al., 2021), in addition to non-Transformer-based models such as Dlinear (Zeng et al., 2023) and
Micn (Wang et al., 2023a). To assess the performance of these models, we employ widely used
evaluation metrics: Mean Squared Error (MSE) and Mean Absolute Error (MAE). In every table
presented in this paper, the best results are emphasized in bold, whereas the second are underlined.

4.1 MAIN RESULTS

Table 2 presents the outcomes of multivariate long-term forecasting. Overall, PETformer achieves
state-of-the-art performance on all prediction step settings for the eight datasets, outperforming all
baseline methods. On average, compared to the most recent advanced model PatchTST, PETformer
achieves a 4.7% MSE improvement and a 3.7% MAE improvement. Notably, for Dlinear, which has
questioned the efficacy of Transformer in LTSF, PETformer achieves a 24.3% MSE improvement
and a 14.9% MAE improvement.

Furthermore, PETformer still achieves the best performance on the full ETT datasets in univariate
prediction scenarios, outperforming all baselines (Table 3). On average, compared to PatchTST,
PETformer achieves a 4.9% MSE improvement and a 2.3% MAE improvement. This demonstrates
that the PETformer’s designs indeed bring more useful prior knowledge to time series prediction
tasks.

4.2 ABLATION STUDIES AND ANALYSES

We conducted ablation experiments on three datasets of varying scales and numbers of variables
(ETTh1, Weather, and Traffic) to thoroughly assess the effectiveness of the proposed methods.

4.2.1 PLACEHOLDER-ENHANCED TECHNIQUE

Table 4 presents the outcomes of the ablation study for PET. The native Encoder-Decoder archi-
tecture in the Transformer yields the poorest performance, corroborating that cross self-attention
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Table 2: Multivariate long-term series forecasting results. PETformer employs a look-back window
length of l = 72 for the ILI dataset and l = 720 for the remaining datasets. The forecast horizon
h ∈ {24, 36, 48, 60} is set for the ILI datasets and h ∈ {96, 192, 336, 720} is set for the others.

Models PETformer
(ours)

PatchTST
(2023)

Dlinear
(2023)

MICN
(2023)

Crossformer
(2023)

FEDformer∗
(2022)

Autoformer∗
(2021)

Informer∗
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.347 0.377 0.376 0.408 0.378 0.402 0.404 0.429 0.380 0.419 0.376 0.415 0.435 0.446 0.941 0.769
192 0.390 0.404 0.416 0.423 0.415 0.425 0.475 0.484 0.419 0.445 0.423 0.446 0.456 0.457 1.007 0.786
336 0.419 0.418 0.425 0.440 0.447 0.448 0.482 0.489 0.438 0.451 0.444 0.462 0.486 0.487 1.038 0.784
720 0.437 0.449 0.448 0.470 0.480 0.489 0.599 0.576 0.508 0.514 0.469 0.492 0.515 0.517 1.144 0.857

ETTh2

96 0.272 0.329 0.275 0.338 0.282 0.346 0.289 0.354 0.383 0.420 0.332 0.374 0.332 0.368 1.549 0.952
192 0.338 0.374 0.338 0.378 0.350 0.396 0.408 0.444 0.421 0.450 0.407 0.446 0.426 0.434 3.792 1.542
336 0.328 0.380 0.329 0.380 0.410 0.437 0.547 0.516 0.449 0.459 0.4 0.447 0.477 0.479 4.215 1.642
720 0.401 0.439 0.379 0.422 0.587 0.544 0.834 0.688 0.472 0.497 0.412 0.469 0.453 0.490 3.656 1.619

ETTm1

96 0.282 0.325 0.293 0.342 0.306 0.345 0.301 0.352 0.295 0.350 0.326 0.390 0.51 0.492 0.626 0.560
192 0.318 0.349 0.328 0.365 0.335 0.365 0.344 0.380 0.339 0.381 0.365 0.415 0.514 0.495 0.725 0.619
336 0.348 0.372 0.362 0.394 0.373 0.391 0.379 0.401 0.419 0.432 0.392 0.425 0.51 0.492 1.005 0.741
720 0.404 0.403 0.414 0.420 0.422 0.422 0.429 0.429 0.579 0.551 0.446 0.458 0.527 0.493 1.133 0.845

ETTm2

96 0.160 0.248 0.163 0.255 0.164 0.259 0.177 0.274 0.296 0.352 0.18 0.271 0.205 0.293 0.355 0.462
192 0.217 0.288 0.221 0.292 0.233 0.314 0.236 0.310 0.342 0.385 0.252 0.318 0.278 0.336 0.595 0.586
336 0.274 0.326 0.270 0.329 0.291 0.355 0.299 0.350 0.410 0.425 0.324 0.364 0.343 0.379 1.27 0.871
720 0.345 0.376 0.347 0.378 0.407 0.433 0.421 0.434 0.563 0.538 0.41 0.420 0.414 0.419 3.001 1.267

Electricity

96 0.128 0.220 0.130 0.223 0.133 0.230 0.151 0.260 0.198 0.292 0.186 0.302 0.196 0.313 0.304 0.393
192 0.144 0.236 0.147 0.240 0.147 0.244 0.165 0.276 0.266 0.330 0.197 0.311 0.211 0.324 0.327 0.417
336 0.159 0.252 0.164 0.257 0.162 0.261 0.183 0.291 0.343 0.377 0.213 0.328 0.214 0.327 0.333 0.422
720 0.195 0.286 0.203 0.292 0.196 0.294 0.201 0.312 0.398 0.422 0.233 0.344 0.236 0.342 0.351 0.427

ILI

24 1.204 0.687 1.356 0.732 2.000 0.987 2.483 1.058 3.217 1.198 2.624 1.095 2.906 1.182 4.657 1.449
36 1.246 0.709 1.244 0.705 2.202 1.026 2.370 0.987 3.136 1.199 2.516 1.021 2.585 1.038 4.65 1.463
48 1.446 0.760 1.604 0.791 2.278 1.059 2.371 1.007 3.331 1.236 2.505 1.041 3.024 1.145 5.004 1.542
60 1.430 0.774 1.648 0.860 2.478 1.111 2.513 1.055 3.609 1.265 2.742 1.122 2.761 1.114 5.071 1.543

Traffic

96 0.357 0.240 0.367 0.253 0.385 0.269 0.445 0.295 0.487 0.274 0.576 0.359 0.597 0.371 0.733 0.410
192 0.376 0.248 0.382 0.259 0.395 0.273 0.461 0.302 0.497 0.279 0.61 0.380 0.607 0.382 0.777 0.435
336 0.392 0.255 0.396 0.267 0.409 0.281 0.483 0.307 0.517 0.285 0.608 0.375 0.623 0.387 0.776 0.434
720 0.430 0.276 0.433 0.287 0.449 0.305 0.527 0.310 0.584 0.323 0.621 0.375 0.639 0.395 0.827 0.466

Weather

96 0.146 0.186 0.147 0.198 0.169 0.231 0.167 0.231 0.144 0.208 0.238 0.314 0.249 0.329 0.354 0.405
192 0.190 0.229 0.190 0.241 0.213 0.273 0.212 0.271 0.192 0.263 0.275 0.329 0.325 0.370 0.419 0.434
336 0.241 0.271 0.243 0.284 0.260 0.314 0.275 0.337 0.246 0.306 0.339 0.377 0.351 0.391 0.583 0.543
720 0.314 0.323 0.305 0.328 0.315 0.353 0.312 0.349 0.318 0.361 0.389 0.409 0.415 0.426 0.916 0.705

Avg. 0.427 0.369 0.448 0.383 0.565 0.434 0.623 0.455 0.756 0.490 0.651 0.472 0.713 0.497 1.629 0.825

∗ denotes that the data originates from PatchTST (Nie et al., 2023).

Table 3: Univariate long-term series forecasting results.

Models PETformer
(ours)

PatchTST
(2023)

Dlinear
(2023)

MICN
(2023)

FEDformer∗
(2022)

Autoformer∗
(2021)

Informer∗
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.052 0.174 0.055 0.179 0.056 0.185 0.056 0.179 0.079 0.215 0.071 0.206 0.193 0.377
192 0.066 0.201 0.070 0.202 0.077 0.218 0.071 0.203 0.104 0.245 0.114 0.262 0.217 0.395
336 0.075 0.217 0.077 0.225 0.085 0.228 0.086 0.229 0.119 0.270 0.107 0.258 0.202 0.381
720 0.079 0.225 0.087 0.232 0.159 0.322 0.150 0.316 0.142 0.299 0.126 0.283 0.183 0.355

ETTh2

96 0.120 0.272 0.127 0.273 0.122 0.269 0.128 0.271 0.128 0.271 0.153 0.306 0.213 0.373
192 0.156 0.316 0.168 0.328 0.166 0.320 0.175 0.328 0.185 0.330 0.204 0.351 0.227 0.387
336 0.164 0.328 0.172 0.338 0.188 0.349 0.192 0.354 0.231 0.378 0.246 0.389 0.242 0.401
720 0.208 0.367 0.223 0.382 0.311 0.454 0.268 0.418 0.278 0.420 0.268 0.409 0.291 0.439

ETTm1

96 0.026 0.120 0.026 0.121 0.028 0.125 0.027 0.123 0.033 0.140 0.056 0.183 0.109 0.277
192 0.039 0.148 0.039 0.150 0.045 0.156 0.043 0.154 0.058 0.186 0.081 0.216 0.151 0.310
336 0.052 0.171 0.053 0.173 0.055 0.175 0.052 0.173 0.084 0.231 0.076 0.218 0.427 0.591
720 0.070 0.201 0.072 0.206 0.076 0.209 0.075 0.206 0.102 0.250 0.110 0.267 0.438 0.586

ETTm2

96 0.062 0.181 0.063 0.186 0.061 0.179 0.063 0.183 0.067 0.198 0.065 0.189 0.088 0.225
192 0.087 0.222 0.094 0.230 0.095 0.234 0.091 0.225 0.102 0.245 0.118 0.256 0.132 0.283
336 0.118 0.264 0.120 0.265 0.122 0.265 0.121 0.265 0.130 0.279 0.154 0.305 0.180 0.336
720 0.163 0.317 0.171 0.321 0.173 0.324 0.172 0.317 0.178 0.325 0.182 0.335 0.300 0.435

Avg. 0.096 0.233 0.101 0.238 0.114 0.251 0.111 0.247 0.126 0.268 0.133 0.277 0.225 0.384

∗ denotes that the data originates from PatchTST (Nie et al., 2023).

may lead to the loss of temporal dependency transmission in LTSF (Li et al., 2023). The Flat-
tening technique substantially enhances Transformer performance, aligning with observations in
PatchTST (Nie et al., 2023). Although, to the best of our knowledge, the Feature Head technique
has not been applied in the LTSF domain, our research indicates that its performance surpasses the
Flattening technique. As anticipated, our PET approach achieves the best results, regardless of the
attention mode in PET, demonstrating the superiority of the PET method. Furthermore, the Full At-
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tention (FA) mode outperforms the other three modes, indirectly substantiating that allowing more
historical and future data to interact directly at the same level of attention is advantageous.

Table 4: Ablation study of the PET. Various application techniques for Transformer, as depicted
in Figure 1, are incorporated. In the case of PET, we evaluated different attention modes between
historical and future data, as illustrated in Figure 3.

Models Enc-dec Flattening Feature Head PET/FA† PET/NIFA PET/NIHA PET/OFFH

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.399 0.409 0.377 0.402 0.350 0.382 0.348 0.379 0.347 0.378 0.352 0.381 0.349 0.379
192 0.435 0.439 0.416 0.427 0.391 0.408 0.389 0.403 0.390 0.403 0.388 0.403 0.390 0.403
336 0.472 0.456 0.449 0.447 0.425 0.434 0.419 0.420 0.422 0.419 0.425 0.422 0.425 0.421
720 0.513 0.496 0.469 0.476 0.445 0.462 0.435 0.447 0.450 0.456 0.443 0.453 0.453 0.457

Weather

96 0.196 0.257 0.145 0.189 0.145 0.186 0.145 0.184 0.145 0.185 0.147 0.186 0.147 0.187
192 0.239 0.289 0.193 0.235 0.191 0.231 0.190 0.228 0.190 0.229 0.191 0.230 0.191 0.230
336 0.299 0.331 0.245 0.278 0.242 0.273 0.241 0.270 0.241 0.270 0.242 0.271 0.241 0.270
720 0.371 0.388 0.323 0.334 0.318 0.328 0.312 0.322 0.314 0.323 0.311 0.322 0.311 0.322

Traffic

96 0.400 0.305 0.368 0.252 0.362 0.252 0.361 0.247 0.361 0.246 0.375 0.259 0.371 0.256
192 0.419 0.313 0.387 0.261 0.389 0.268 0.377 0.253 0.380 0.254 0.384 0.259 0.385 0.259
336 0.422 0.316 0.402 0.269 0.407 0.278 0.394 0.263 0.395 0.263 0.398 0.266 0.399 0.268
720 0.466 0.336 0.443 0.290 0.451 0.303 0.430 0.282 0.433 0.283 0.434 0.287 0.438 0.289

Avg. 0.386 0.361 0.351 0.322 0.343 0.317 0.337 0.308 0.339 0.309 0.341 0.312 0.342 0.312

† denotes the default mode in this work.

Additionally, the advantages of the PET architecture extend beyond prediction accuracy and also
manifest in parameter efficiency and computational performance. PatchTST utilizes the Flattening
technique, wherein n tokens of dimension d output from the Transformer encoder would be flatten
into a single token, followed by an linear layer (n × d, h) for final prediction. The prediction
phase necessitates n × d × h learnable parameters, which is quite substantial. In contrast, the PET
architecture’s token-wise prediction head requires significantly fewer parameters, namely d× w.

Table 5: Comparison of runtime measurements with differ-
ent models. These results are based on the in-720-out-720
task of the ETTm1 dataset, using a Transformer with a hid-
den dimension of 128 and a layer count of 3.

Models PETformer PatchTST Autoformer Informer

Train Time (s/epoch) 22.2 35.1 55.4 43.1
MACs (MMac) 96.7 308 441 358
Pred. Layer Parameters 6.19k 8.30M 903 903
Total Parameters 480k 8.71M 602k 703k
Max Memory (MB) 475 2,231 3,324 1,352

Table 5 presents runtime measure-
ments with different models. Com-
pared to PatchTST, which requires
a hefty 8.3 million parameters for
its heavy flattening-prediction head,
PETformer’s lightweight token-wise
prediction head demands only 6.19
thousand parameters, representing a
reduction of over 99%. In terms of
the proportion of prediction head pa-
rameters relative to the total model
parameters, PETformer accounts for
just 1.3%, as opposed to PatchTST’s
nearly 95%. Allowing more learnable parameters to influence the feature extraction module of the
Transformer, rather than the linear prediction head, may be a key reason for PETformer outperform-
ing PatchTST. Moreover, in metrics such as training time and maximum memory usage, PETformer
outperforms other models, highlighting the high computational efficiency of the PET architecture.

4.2.2 LONG SUB-SEQUENCE DIVISION AND MULTI-CHANNEL SEPARATION AND
INTERACTION

Table 6 presents the outcomes of the ablation study for LSD and MSI. The point-wise attention ap-
proach yielded the poorest performance. In contrast, the LSD approach demonstrated significantly
better results. Notably, as the window size of the sub-sequence incrementally increased, the LTSF
performance continued to improve. Although the performance improvement due to the growth of
w has not yet saturated, larger values of w cannot be explored in this work since w = 48 already
represents the greatest common divisor of h ∈ {96, 192, 336, 720}. While the concept of LSD is
not novel (i.e., it inherits the patch strategy from PatchTST), we have substantiated that larger win-
dow sub-sequence divisions offer richer semantic information within the Transformer architecture,
thereby directly influencing the performance of LTSF.
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Table 6: Ablation study of the LSD and MSI. For the LSD, a comparison of performance between
using single points and sub-sequences (various window lengths w ∈ {6, 12, 24, 48}) as input gran-
ularity is presented. For the MSI, The direct channel mixing (DCM) approach is compared with the
MSI approach (various strategies illustrated in Figure 4). The ’-’ symbol denotes out-of-memory
issues encountered in our experimental environment.

Models Ponit LSD/w=6 LSD/w=12 LSD/w=24 LSD/w=48 DCM MSI/NCI MSI/SA MSI/CI MSI/CA

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.910 0.424 0.435 0.424 0.361 0.390 0.349 0.380 0.347 0.377 0.409 0.435 0.348 0.379 0.348 0.379 0.349 0.378 0.349 0.378
192 0.920 0.472 0.517 0.472 0.406 0.416 0.392 0.405 0.390 0.404 0.470 0.476 0.389 0.403 0.389 0.403 0.394 0.407 0.393 0.407
336 0.815 0.539 0.636 0.539 0.435 0.430 0.424 0.425 0.419 0.418 0.512 0.503 0.419 0.419 0.419 0.420 0.415 0.417 0.426 0.426
720 0.832 0.604 0.719 0.604 0.461 0.468 0.456 0.458 0.437 0.449 0.626 0.574 0.444 0.452 0.435 0.447 0.454 0.458 0.453 0.461

W
ea

th
er 96 0.159 0.202 0.159 0.200 0.149 0.189 0.146 0.186 0.146 0.186 0.147 0.195 0.145 0.185 0.145 0.184 0.145 0.185 0.144 0.184

192 0.206 0.243 0.206 0.244 0.193 0.233 0.189 0.229 0.190 0.229 0.198 0.245 0.189 0.228 0.189 0.228 0.188 0.229 0.189 0.228
336 0.255 0.289 0.256 0.284 0.244 0.274 0.241 0.271 0.241 0.271 0.255 0.291 0.241 0.270 0.241 0.270 0.242 0.272 0.241 0.271
720 0.323 0.333 0.326 0.340 0.315 0.327 0.312 0.324 0.314 0.323 0.321 0.340 0.315 0.323 0.313 0.322 0.311 0.322 0.314 0.324

Tr
af

fic

96 - - 0.437 0.316 0.378 0.251 0.365 0.243 0.357 0.240 1.530 0.621 0.357 0.240 0.363 0.249 0.359 0.243 0.365 0.248
192 - - 0.485 0.356 0.392 0.257 0.382 0.250 0.376 0.248 1.516 0.614 0.376 0.248 0.377 0.253 0.375 0.249 0.386 0.257
336 - - 0.492 0.345 0.413 0.270 0.397 0.258 0.392 0.255 1.546 0.631 0.392 0.255 0.393 0.262 0.393 0.257 0.400 0.265
720 - - 0.485 0.327 0.483 0.326 0.435 0.278 0.430 0.276 1.566 0.644 0.430 0.276 0.430 0.282 0.431 0.278 0.438 0.285

Avg. - - 0.429 0.371 0.352 0.319 0.341 0.309 0.337 0.306 0.758 0.464 0.337 0.307 0.337 0.308 0.338 0.308 0.341 0.311

As for MSI, the DCM approach yielded the least favorable results in our experiments, suggesting
that the DCM approach might severely disrupt intra-channel temporal dependencies within MTS.
Conversely, the simple channel-independent strategy (i.e., NCI) significantly outperformed DCM,
consistent with the observations of Dlinear and PatchTST. Although channel independence is po-
tent, the absence of channel interaction in the context of multivariate time series forecasting appears
to be a less desirable attribute. We further explored several channel interaction methods on top
of the channel-independent strategy (i.e., first extracting temporal features through the channel-
independent strategy and then extracting inter-variable features through channel interaction). Our
observations include: (i) MSI results also substantially outperform DCM, demonstrating that extract-
ing temporal features within channels before inter-variable feature extraction is a superior choice
compared to directly extracting channel features. (ii) Several additional channel interaction methods
did not yield significant advantages over channel independence, prompting further considerations as
outlined below.

We hypothesize that this phenomenon arises due to MTS exhibiting varying numbers of channels,
leading to intricate and challenging-to-estimate inter-channel relationships. For instance, in the
ETTh1 dataset, which contains only 7 variables, inter-channel interaction can result in marginal per-
formance improvements. Conversely, in the Traffic dataset with its 862 variables, the inter-channel
relationships become too complex for the model to effectively handle. From this perspective, a
channel-independent strategy may currently represent the optimal choice, aligning with the recent
proliferation of channel-independent-based approaches. Nevertheless, this also underscores the on-
going challenges in devising technical solutions capable of accurately modeling such intricate rela-
tionships within multivariate time series. It points to potential avenues for future research aimed at
effectively modeling the intricate interrelationships among multivariate channels.

5 CONCLUSION

In this paper, we have investigated the factors influencing the Transformer’s performance in the
LTSF domain, considering three potential perspectives: temporal continuity, information density,
and multi-channel relationships. We introduced a comprehensive solution, PETformer, with its key
design component, the Placeholder-enhanced Technique (PET), which not only enhances prediction
accuracy but also improves computational efficiency. The experimental results conducted on eight
public datasets have clearly demonstrated that PETformer outperforms existing models, achieving
state-of-the-art performance. We have also conducted an extensive set of ablation experiments and
a systematic analysis of the factors contributing to the success of PETformer. We posit that these
insights can provide valuable guidance and inspiration for future research in the realm of time series
tasks. In particular, the exploration of more effective modeling of relationships between multiple
variables represents a promising and important direction for future research.
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A APPENDIX

In this section, we present the experimental details of PETformer and provide additional supportive
experiments to further demonstrate its effectiveness. The organization of this section is as follows:

• Appendix A.1 provides details on the datasets, baselines, configurations, and environments
used in the experiments.

• Appendix A.2 presents more ablation experiments about RevIN and Smooth L1 loss.

• Appendix A.3 investigates the impact of the look-back window length on model perfor-
mance.

• Appendix A.4 discusses the effect of channel separation on the model’s ability to predict
individual channels.

• Appendix A.5 presents the results of the robustness experiments conducted to assess the
model’s stability to random seed perturbations.

• Appendix A.6 showcases the results on the large datasets to demonstrate the model’s pre-
dictive ability.

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We use the most popular multivariate datasets in LTSF, including ETT2 (ETTh1, ETTh2, ETTm1,
ETTm2), Electricity3, ILI4, Traffic5, and Weather6. These datasets encompass various domains,
such as energy, healthcare, transportation, and weather. The dimensions of each dataset range from
7 to 862, with frequencies ranging from 10 minutes to 7 days. The length of the datasets varies from

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
5https://pems.dot.ca.gov/
6https://www.bgc-jena.mpg.de/wetter/
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966 to 69,680 data points. We split all datasets into training, validation, and test sets in chronological
order, using a ratio of 6:2:2 for the ETT dataset and 7:1:2 for the remaining datasets. For a more
detailed discussion on the datasets, we recommend referring to the Autoformer paper (Wu et al.,
2021).

A.1.2 BASELINES

We choose state-of-the-art and the most representative LTSF models as our baselines, including both
Transformer-based and non-Transformer-based models, as follows:

• PatchTST (Nie et al., 2023): the current state-of-the-art LTSF model as of July 2023. It
utilizes channel-independent and patch techniques and achieves the highest performance
by utilizing the native Transformer.

• Dlinear (Zeng et al., 2023): a highly insightful work that employs simple linear models and
trend decomposition techniques, outperforming all Transformer-based models at the time.
This work inspired us to reflect on the utility of Transformer in LTSF and indirectly led to
the birth of PETformer in our study.

• Micn (Wang et al., 2023a): another non-Transformer model that enhances the performance
of CNN models in LTSF through down-sampled convolution and isometric convolution,
outperforming many Transformer-based models. This excellent work has been selected for
oral presentation at ICLR 2023.

• Crossformer (Zhang & Yan, 2023): similar to PatchTST, it utilizes the patch technique
commonly used in the computer vision domain. However, unlike PatchTST’s independent
channel design, it leverages cross-dimension dependency to enhance LTSF performance.
This outstanding work has also been selected for oral presentation at ICLR 2023.

• FEDformer (Zhou et al., 2022): it employs trend decomposition and Fourier transformation
techniques to improve the performance of Transformer-based models in LTSF. It was the
best-performing Transformer-based model before Dlinear.

• Autoformer (Wu et al., 2021): it combines trend decomposition techniques with an auto-
correlation mechanism, inspiring subsequent work such as FEDformer.

• Informer (Zhou et al., 2021): it proposes improvements to the Transformer model by uti-
lizing a sparse self-attention mechanism and generative-style decoder, inspiring a series of
subsequent Transformer-based LTSF models. This work was awarded Best Paper at AAAI
2021.

PETformer exhibited more robust performance with an ultra-long look-back window (i.e., l =
720), while the baseline models showed significant performance variations across different look-
back window lengths. To fairly evaluate the performance of PETformer and baseline models,
we conducted additional experiments with the other models using look-back window lengths of
l ∈ {24, 48, 72, 144} for the ILI dataset and l ∈ {96, 192, 336, 720} for the other datasets, and
selected the best result from these experiments as their final outcome in Tables 2 and 3.

We performed these experiments on their publicly available official repositories, prioritizing their
default parameters and only modifying the look-back window length l and the prediction horizon h.
The official open-source codes for these baseline models are as follows:

• PatchTST: https://github.com/yuqinie98/patchtst
• Dlinear: https://github.com/cure-lab/LTSF-Linear
• Micn: https://github.com/wanghq21/MICN
• Crossformer: https://github.com/Thinklab-SJTU/Crossformer
• FEDformer: https://github.com/MAZiqing/FEDformer
• Autoformer: https://github.com/thuml/Autoformer
• Informer: https://github.com/zhouhaoyi/Informer2020

It should be noted that reproducing these experiments requires a significant amount of computational
resources. To save computational resources, the data for FEDformer, Autoformer, and Informer were
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directly sourced from PatchTST (Nie et al., 2023) since its reproduction strategy is consistent with
our work.

A.1.3 CONFIGURATIONS

By default, PETformer utilizes 4 layers of Transformer encoder with a hidden dimension of 512,
multi-head attention with 8 heads, a dropout rate of 0.5, and a feedforward factor of 2. The default
LSD strategy employs a patch length of 48. The default loss function is Smooth L1 Loss, with the
FA mode in the PET setting and the NCI mode in the MSI setting. For detailed information, please
refer to our forthcoming open-source code release.

A.1.4 ENVIRONMENTS

All experiments in this study are implemented in PyTorch and conducted on two NVIDIA V100
GPUs, each with 16GB of memory.

A.2 MORE ABLATION STUDIES ABOUT REVIN AND SMOOTH L1 LOSS

We conducted more ablation experiments about RevIN and Smooth L1 loss and compared them with
PatchTST, as presented in Table 7. Here are the conclusions drawn:

• Regardless of the use of normalization functions or different loss functions, PETformer
outperforms PatchTST.

• Smooth L1 loss combines L1 and L2 losses. Compared to using L2 loss, adopting Smooth
L1 loss increases MSE error slightly while decreasing MAE error. Taking a holistic view,
we opted for Smooth L1 loss. However, it’s important to note that the differences in perfor-
mance due to different loss functions are generally small, thus the choice of error function
isn’t the key factor for PETformer’s success.

• RevIN is a technique to mitigate distribution shifts in time series, which consistently im-
proves performance across different models. PatchTST defaulted to using RevIN and we
followed suit. Therefore, as a technique gaining traction in the LTSF field, RevIN serves as
a foundation for PETformer’s success, but it is not the key factor. The innovative design of
PETformer is what sets it apart from other models.

Table 7: Ablation study of loss functions and RevIN. The best results are highlighted in bold.

Settings Smooth L1 Loss + RevIN L2 Loss + RevIN Smooth L1 Loss - RevIN

Models PETformer PatchTST PETformer PatchTST PETformer PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.282 0.325 0.292 0.339 0.280 0.337 0.301 0.353 0.287 0.338 0.311 0.363
192 0.318 0.349 0.334 0.366 0.319 0.361 0.334 0.374 0.322 0.362 0.341 0.379
336 0.348 0.372 0.362 0.386 0.348 0.384 0.362 0.394 0.364 0.396 0.375 0.409
720 0.404 0.403 0.422 0.416 0.405 0.416 0.421 0.422 0.412 0.416 0.421 0.42

Traffic

96 0.357 0.240 0.376 0.251 0.358 0.250 0.367 0.253 0.449 0.243 0.398 0.244
192 0.376 0.248 0.390 0.255 0.374 0.255 0.382 0.259 0.470 0.250 0.414 0.252
336 0.392 0.255 0.398 0.260 0.390 0.262 0.396 0.267 0.497 0.260 0.435 0.260
720 0.430 0.276 0.437 0.282 0.428 0.283 0.433 0.287 0.548 0.285 0.512 0.285

Weather

96 0.146 0.186 0.148 0.191 0.146 0.192 0.147 0.198 0.144 0.192 0.154 0.207
192 0.190 0.229 0.193 0.234 0.190 0.234 0.190 0.241 0.194 0.248 0.194 0.243
336 0.241 0.271 0.243 0.273 0.239 0.273 0.243 0.284 0.247 0.297 0.243 0.282
720 0.314 0.323 0.311 0.326 0.308 0.324 0.305 0.328 0.306 0.337 0.309 0.341

Furthermore, we noted an interesting phenomenon: When RevIN is not used, PETformer’s MAE
is nearly on par with PatchTST on the Traffic dataset, but there is a significant difference in MSE.
We speculate this might be due to the window-wise prediction approach causing more oscillations in
edge predictions, leading to higher MSE values. Of course, these differences require further in-depth
investigation in future work.
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Table 8: The performance of PETformer on different look-back window lengths of l ∈
{48, 96, 192, 336, 480, 720}. The best results are highlighted in bold.

Input Length 48 96 192 336 480 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.389 0.392 0.376 0.387 0.369 0.385 0.358 0.381 0.353 0.380 0.347 0.377
192 0.443 0.424 0.429 0.417 0.414 0.410 0.397 0.404 0.388 0.402 0.390 0.404
336 0.488 0.445 0.467 0.433 0.437 0.420 0.419 0.417 0.422 0.423 0.419 0.418
720 0.482 0.462 0.471 0.459 0.449 0.450 0.443 0.453 0.438 0.447 0.437 0.449

ETTh2

96 0.299 0.340 0.288 0.339 0.284 0.338 0.281 0.333 0.270 0.329 0.272 0.329
192 0.383 0.393 0.367 0.388 0.353 0.381 0.345 0.376 0.338 0.374 0.338 0.374
336 0.397 0.410 0.369 0.398 0.349 0.394 0.336 0.380 0.330 0.378 0.328 0.380
720 0.426 0.438 0.409 0.433 0.391 0.423 0.385 0.422 0.387 0.426 0.401 0.439

ETTm1

96 0.468 0.413 0.316 0.341 0.292 0.328 0.281 0.324 0.279 0.323 0.282 0.325
192 0.514 0.437 0.366 0.367 0.333 0.353 0.321 0.351 0.320 0.349 0.318 0.349
336 0.554 0.462 0.398 0.390 0.366 0.376 0.356 0.372 0.352 0.370 0.348 0.372
720 0.601 0.489 0.463 0.427 0.425 0.412 0.416 0.407 0.415 0.407 0.404 0.403

ETTm2

96 0.190 0.271 0.174 0.255 0.167 0.248 0.160 0.245 0.163 0.248 0.160 0.248
192 0.258 0.313 0.241 0.298 0.230 0.289 0.220 0.289 0.221 0.288 0.217 0.288
336 0.324 0.353 0.298 0.335 0.283 0.327 0.271 0.320 0.269 0.320 0.274 0.326
720 0.425 0.409 0.393 0.392 0.366 0.382 0.357 0.379 0.352 0.378 0.345 0.376

Electricity

96 0.222 0.292 0.171 0.254 0.138 0.229 0.131 0.223 0.128 0.221 0.128 0.220
192 0.217 0.290 0.179 0.263 0.154 0.244 0.147 0.238 0.145 0.236 0.144 0.236
336 0.235 0.307 0.195 0.279 0.177 0.268 0.163 0.255 0.161 0.253 0.159 0.252
720 0.272 0.337 0.234 0.311 0.206 0.291 0.203 0.289 0.198 0.286 0.195 0.286

Traffic

96 0.671 0.379 0.465 0.299 0.396 0.260 0.373 0.249 0.365 0.245 0.357 0.240
192 0.617 0.351 0.470 0.294 0.415 0.267 0.392 0.256 0.386 0.253 0.376 0.248
336 0.640 0.362 0.486 0.301 0.430 0.274 0.403 0.261 0.396 0.258 0.392 0.255
720 0.668 0.371 0.518 0.318 0.457 0.289 0.436 0.279 0.432 0.278 0.430 0.276

Weather

96 0.210 0.240 0.178 0.214 0.162 0.200 0.150 0.190 0.148 0.188 0.146 0.186
192 0.245 0.269 0.225 0.254 0.205 0.240 0.194 0.232 0.192 0.229 0.190 0.229
336 0.298 0.307 0.278 0.294 0.258 0.280 0.246 0.273 0.243 0.271 0.241 0.271
720 0.372 0.355 0.352 0.344 0.333 0.333 0.320 0.326 0.315 0.324 0.314 0.323

Avg. 0.404 0.368 0.342 0.339 0.316 0.325 0.304 0.319 0.300 0.317 0.298 0.317

A.3 VARYING LOOK-BACK WINDOW

The length of the look-back window is a crucial factor in time series forecasting tasks, as it deter-
mines the amount of past data that the model can incorporate. Generally, a model that can effectively
capture long-term temporal patterns is expected to exhibit better performance as the look-back win-
dow length increases. Therefore, we investigated the performance of PETformer under varying
look-back window lengths, specifically l ∈ {48, 96, 192, 336, 480, 720}. The experimental results,
as shown in Table 8, indicate that the performance of PETformer continuously improves as the
look-back window length increases. This demonstrates PETformer’s ability to model long-term
dependencies in time-series data effectively.

A.4 MULTI-CHANNEL SEPARATION

In this sub-section, we investigate why the MSI design can enhance predictive performance. We
believe that channel-separation strategy can enlarge the number of training samples and thereby
enhance the model’s ability to predict individual channels, leading to an overall improvement in the
predictive ability across multiple channels.

Table 9 defines Univariate as the univariate prediction based solely on the last channel of the dataset.
In contrast, MSI/NCI can be regarded as a pure univariate prediction task since it does not involve
any inter-channel interaction. However, it significantly increases the number of training samples
for univariate prediction tasks, as it utilizes data from all channels to perform univariate prediction.
We can see that MSI/NCI exhibits a considerable improvement over Univariate, demonstrating that
simply increasing the number of samples (even if they originate from other dimensions of the same
dataset) can enhance the model’s ability to predict a single channel. Note that the ETTh1, Weather,
Electricity, and Traffic datasets contain 7, 21, 321, and 862 multivariate variables, respectively.
Based on Table 9, we can observe that for the ETTh1 dataset, which contains only 7 variables, the
MSI design even exhibits a decline in performance compared to Univariate. However, when the
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Table 9: Results of PETformer on single-variable prediction under different modes. ”Univariate”
refers to the conventional univariate prediction task on the last dimension of the multivariate dataset.
The remaining modes are trained in a multivariate prediction manner and then predict the last di-
mension of the multivariate dataset..

Models Univariate MSI/NCI MSI/CI MSI/SA MSI/CA DCM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.052 0.174 0.051 0.170 0.050 0.171 0.051 0.171 0.051 0.170 0.053 0.176
192 0.066 0.201 0.067 0.197 0.067 0.198 0.068 0.199 0.068 0.198 0.070 0.203
336 0.075 0.217 0.081 0.224 0.079 0.222 0.080 0.223 0.082 0.225 0.076 0.218
720 0.079 0.225 0.092 0.238 0.084 0.228 0.093 0.240 0.094 0.240 0.115 0.266

Weather

96 0.0014 0.028 0.0008 0.020 0.0008 0.020 0.0008 0.020 0.0008 0.019 0.0012 0.025
192 0.0013 0.026 0.0011 0.023 0.0011 0.023 0.0011 0.023 0.0011 0.023 0.0014 0.027
336 0.0015 0.029 0.0013 0.026 0.0013 0.026 0.0013 0.026 0.0013 0.026 0.0018 0.031
720 0.0020 0.034 0.0018 0.031 0.0018 0.031 0.0018 0.031 0.0018 0.031 0.0025 0.037

Electricity

96 0.213 0.312 0.185 0.293 0.183 0.292 0.185 0.292 0.187 0.292 0.680 0.642
192 0.244 0.340 0.218 0.318 0.215 0.317 0.220 0.319 0.227 0.327 0.668 0.633
336 0.293 0.389 0.254 0.348 0.248 0.345 0.250 0.347 0.258 0.357 0.663 0.631
720 0.491 0.512 0.299 0.403 0.290 0.396 0.280 0.388 0.265 0.372 0.628 0.622

Traffic

96 0.118 0.195 0.101 0.166 0.101 0.165 0.101 0.166 0.108 0.178 0.582 0.580
192 0.119 0.195 0.106 0.170 0.106 0.172 0.107 0.175 0.115 0.185 0.611 0.596
336 0.120 0.198 0.106 0.174 0.105 0.173 0.104 0.173 0.114 0.189 0.627 0.606
720 0.140 0.224 0.124 0.197 0.122 0.194 0.119 0.191 0.132 0.208 0.559 0.566

Avg. 0.126 0.206 0.106 0.187 0.104 0.186 0.104 0.187 0.107 0.190 0.334 0.366

number of variables in the dataset increases significantly, resulting in a corresponding increase in
the number of training samples, MSI/NCI can achieve a substantial improvement over Univariate.

MSI/CI represents a further strategy, which adds channel identifiers to each channel on the basis of
MSI/NCI. Naturally, this further enhances the predictive ability on individual channels because it
provides the model with identification information for different channels.

In addition, MSI/SA, MSI/CA, and DCM can be regarded as multivariate-predict-univariate tasks
because they take into the interaction between channels. Here, MSI/SA and MSI/CA are both better
than Univariate, which indicates the effectiveness of the MSI design. However, DCM performs
relatively poorly, with much worse performance than Univariate. This fully demonstrates that the
direct mixing of channels can seriously disrupt the temporal information within individual channels.

A.5 ROBUSTNESS ANALYSIS

To ensure the robustness of our experimental findings, we conducted each experiment three times
using different random seeds: 2023, 2024, and 2025. The mean and standard deviation of the results
are summarized in Table 10, which shows that the variances are notably small. This indicates that
our model is robust to the choice of random seeds, and the reported results can be considered reliable.
Both the main text and the appendix present results obtained using a fixed random seed of 2023, and
these results are consistent with the results obtained using the other random seeds.

A.6 FORECAST SHOWCASES

In this sub-section, we present the prediction showcases of PETformer on the large datasets, as
shown in Figure 5 and Figure 6. We will illustrate this using the Electricity dataset as an example,
where PETformer successfully captures several crucial features:

• Periodicity: Electricity consumption exhibits daily cycles, with consumption rising during
the daytime, slightly decreasing around noon, and significantly dropping at night, except
for a slight increase in the evening. These patterns align with actual electricity consumption
trends, and PETformer successfully captures this periodicity.

• Seasonality: Electricity consumption also displays seasonal variations, such as higher us-
age on weekdays compared to weekends. PETformer’s predictions accurately capture these
variations.
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Table 10: Quantitative results of PETformer with fluctuations across different random seeds: 2023,
2024, and 2025.

Random seed 2023 2024 2025 Standard deviation

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.347 0.377 0.348 0.379 0.350 0.379 0.348±0.0014 0.378±0.0010
192 0.390 0.404 0.388 0.402 0.392 0.407 0.390±0.0020 0.404±0.0021
336 0.419 0.418 0.418 0.421 0.414 0.416 0.417±0.0028 0.419±0.0027
720 0.437 0.449 0.474 0.473 0.436 0.448 0.449±0.0216 0.457±0.0139

ETTh2

96 0.272 0.329 0.270 0.329 0.272 0.330 0.271±0.0011 0.329±0.0006
192 0.338 0.374 0.338 0.375 0.334 0.372 0.336±0.0019 0.374±0.0014
336 0.328 0.380 0.326 0.379 0.331 0.384 0.328±0.0025 0.381±0.0026
720 0.401 0.439 0.399 0.437 0.398 0.436 0.399±0.0016 0.437±0.0019

ETTm1

96 0.282 0.325 0.281 0.324 0.277 0.324 0.280±0.0023 0.324±0.0007
192 0.318 0.349 0.317 0.349 0.318 0.349 0.318±0.0007 0.349±0.0005
336 0.348 0.372 0.347 0.370 0.349 0.370 0.348±0.0010 0.371±0.0009
720 0.404 0.403 0.405 0.402 0.405 0.402 0.405±0.0005 0.402±0.0001

ETTm2

96 0.160 0.248 0.161 0.246 0.159 0.246 0.160±0.0007 0.247±0.0008
192 0.217 0.288 0.219 0.290 0.218 0.287 0.218±0.0009 0.288±0.0016
336 0.274 0.326 0.279 0.328 0.276 0.326 0.276±0.0024 0.327±0.0015
720 0.345 0.376 0.345 0.377 0.352 0.380 0.348±0.0041 0.378±0.0022

Electricity

96 0.128 0.220 0.128 0.220 0.128 0.220 0.128±0.0002 0.220±0.0002
192 0.144 0.236 0.144 0.236 0.144 0.236 0.144±0.0002 0.236±0.0002
336 0.159 0.252 0.158 0.252 0.158 0.251 0.159±0.0004 0.252±0.0006
720 0.195 0.286 0.193 0.284 0.194 0.284 0.194±0.0008 0.285±0.0010

Traffic

96 0.357 0.240 0.359 0.241 0.359 0.241 0.358±0.0010 0.241±0.0005
192 0.376 0.248 0.377 0.249 0.376 0.248 0.376±0.0006 0.249±0.0003
336 0.392 0.255 0.391 0.255 0.391 0.255 0.391±0.0004 0.255±0.0002
720 0.430 0.276 0.431 0.277 0.429 0.276 0.430±0.0006 0.276±0.0004

Weather

96 0.146 0.186 0.145 0.184 0.146 0.184 0.145±0.0002 0.185±0.0009
192 0.190 0.229 0.189 0.228 0.190 0.228 0.190±0.0007 0.228±0.0005
336 0.241 0.271 0.243 0.272 0.242 0.271 0.242±0.0009 0.271±0.0005
720 0.314 0.323 0.315 0.324 0.315 0.324 0.315±0.0004 0.324±0.0004

• Trends: Overall trends in electricity consumption are also present. In the Horizon-720
graph, the user’s consumption trend remains stable, and PETformer’s predictions align
with this trend.

These results underscore PETformer’s ability to effectively learn and model the underlying trends
and periodic patterns within time series data, thereby enabling accurate predictions of future data
trends.
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Figure 5: Prediction cases for the Electricity dataset with a look-back window length of l = 720 and
a forecast horizon of h ∈ {96, 192, 336, 720}.
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Figure 6: Prediction cases for the Traffic dataset with a look-back window length of l = 720 and a
forecast horizon of h ∈ {96, 192, 336, 720}.
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