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Abstract
A simple and effective method for the inference-
time alignment and scaling test-time compute of
generative models is best-of-n sampling, where n
samples are drawn from a reference policy, ranked
based on a reward function, and the highest rank-
ing one is selected. A commonly used analytical
expression in the literature claims that the KL di-
vergence between the best-of-n policy and the
reference policy is equal to log(n)− (n− 1)/n.
We disprove the validity of this claim, and show
that it is an upper bound on the actual KL diver-
gence. We also explore the tightness of this upper
bound in different regimes, and propose a new
estimator for the KL divergence and empirically
show that it provides a tight approximation. We
also show that the win rate of the best-of-n policy
against the reference policy is upper bounded by
n/(n+ 1) and derive bounds on the tightness of
this characterization. We conclude with analyzing
the tradeoffs between win rate and KL divergence
of the best-of-n alignment policy, which demon-
strate that very good tradeoffs are achievable with
n < 1000.

1. Introduction
Generative language models have shown to be effective gen-
eral purpose tools to solve various problems. While many
problems can be solved in a zero-shot manner, the output
from the so-called reference model may not be outright de-
sirable, e.g., it may violate safety rules or may not solve a
math problem correctly. Alignment (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022)
and test-time compute scaling (Brown et al., 2024; Snell
et al., 2024) aim at remedying this issue by further nudging
the outcome to improve a reward function while not drifting
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too far from the reference model.

Recently, there has been a proliferation of methods for
alignment, which include KL-regularized reinforcement
learning (Christiano et al., 2017; Ouyang et al., 2022),
controlled decoding (Yang & Klein, 2021; Mudgal et al.,
2024), SLiC (Zhao et al., 2022), direct preference optimiza-
tion (Rafailov et al., 2023), and best-of-n finetuning (Tou-
vron et al., 2023). At their core, these methods try to solve
the following regularized optimization problem:1

max
π(·|x)

Ey∼π(·|x)r(x,y)− βDKL(π(·|x)‖πref(·|x)), (1)

where πref denotes a reference language model; r(x,y) ∈ R
represent a scalar reward associated with response y for
prompt x; and the KL divergence DKL(q(·|x)‖p(·|x)) is
defined as

DKL(q(·|x)‖p(·|x)) := Ey∼q(·|x) log
q(y|x)

p(y|x)
.

Note that Equation (1) has a closed-form solution (Korbak
et al., 2022b;a):

π∗β(y|x) ∝ πref(y|x)e
1
β r(x,y), (2)

which defines an exponential family of distributions with
nice properties (Yang et al., 2024a). We also define the
KL divergence averaged over prompts as Dµ

KL(q‖p) :=
Ex∼µDKL(q(·|x)‖p(·|x)), where µ is a distribution over
prompts. Notice that a small KL divergence between the
aligned policy and the reference policy is desired because
it implies that the capabilities of the reference policy are
largely preserved (Gao et al., 2023; Coste et al., 2024;
Eisenstein et al., 2024), which is also theoretically analyzed
by Balashankar et al. (2025, Appendix B).

To compare different alignment techniques, it is customary
to produce tradeoff curves that measure expected reward
(or win rate) as a function of DKL(π‖πref) for some aligned
policy π. Guarantees on the KL divergence capture the
preservation of the core capabilities of the model and tighter
estimates on the KL divergence help give guarantees that

1While theoretically we analyze this optimization problem as
a function of the prompt x, in practice we can only solve it by
taking another expectation over a set of prompts x ∼ µ.
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the model doesn’t lose core capabilities that were present
in the reference checkpoint. Thus, it is desirable to improve
the reward with the least drift measured in KL divergence.

Despite all the advancements in alignment, a simple, popu-
lar, and well-performing method for alignment remains to
be the best-of-n policy (Nakano et al., 2021; Stiennon et al.,
2020). In fact, Gao et al. (2023); Mudgal et al. (2024); Eisen-
stein et al. (2024) show that best-of-n consistently achieves
compelling win rate vs KL tradeoff curves, that even dom-
inate those of KL-regularized reinforcement learning and
other more involved alignment policies. Llama 2 (Touvron
et al., 2023) uses best-of-n as a teacher outcomes to further
finetune the base model. Mudgal et al. (2024) extended
best-of-n through q-learning to block-wise best-of-n de-
coding. This has also led to recent research on distilling
best-of-n into new models (Gui et al., 2024; Amini et al.,
2025; Sessa et al., 2025; Qiu et al., 2024). Hughes et al.
(2024); Beetham et al. (2024) use best-of-n as an effective
method for jailbreaking. Best-of-n is also used as a strong
baseline in scaling inference-time compute (Brown et al.,
2024; Snell et al., 2024). This overwhelming empirical suc-
cess motivates our theoretical investigation of the best-of-n
alignment policy.

Subsequent to this work, Yang et al. (2024a) provided theo-
retical reasoning for the performance of best-of-n by show-
ing it achieves asymptotically optimal reward-KL tradeoffs.
Gui et al. (2024) characterized the win rate vs KL gap to be
small in the asymptotic regime of a language model whose
outcomes have infinitesimally small likelihood. Sun et al.
(2024) made best-of-n faster through speculative rejection.
Mroueh (2024) provided information-theoretic bounds on
reward vs KL tradeoffs for best-of-n.

Best-of-n. Let x be a given input prompt to the language
model. Let y1, . . . ,yn be n i.i.d. samples drawn from
πref(·|x). The best-of-n strategy selects2

y = yk∗ where k∗ := arg max
k∈[n]

r(x,yk). (3)

This process inherently leads to sampling from a new policy
that is aligned to the reward, denoted by π(n). Notice that
π(1) = πref, and increasing n increases the reward at the
cost of drifting away from the base model.

Our goal in this paper is to better understand the best-of-n
alignmnet policy. In particular, we are interested in theo-
retical guarantees on Dµ

KL(π(n)‖πref) for different values of
n. A commonly used expression in the literature (Stiennon
et al., 2020; Hilton & Gao, 2022; Coste et al., 2024; Gao
et al., 2023; Go et al., 2023; Scheurer et al., 2023) claims

Dµ
KL(π(n)‖πref)

claim
== K̃Ln := log(n)− (n− 1)/n. (4)

This formula is commonly used to demonstrate reward-KL

2We define [n] := {1, . . . , n}.
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Figure 1. The analytical formula (log(n) − (n − 1)/n) (Equa-
tion (4)), the exact KL divergence (Equation (5)), and the proposed
estimator (Equation (25)), for Example 1, illustrating a case where
the gap between the analytical formula and the exact KL diver-
gence is unbounded.

tradeoffs for the best-of-n policy. Let us further inspect this
formula using a toy example.

Example 1. Consider an unprompted model with x = ∅ (no
input) and binary output, y ∈ {0, 1}. Let the two outcomes
be equiprobable, i.e., πref(0) = πref(1) = 1

2 . Further, let
r(0) = 0, and r(1) = 1, i.e., outcome 1 is more desirable
than outcome 0. In this example, we can compute π(n) in
closed form. Specifically, we can see that π(n)(0) = 1

2n and
π(n)(1) = 1− 1

2n . Thus,

DKL(π(n)‖πref) = log(2)− h
(

1

2n

)
, (5)

where h(·) is the binary entropy function.3 We compare
the exact closed-form expression for KL divergence with
the analytical formula in Equation (4). As can be seen in
Figure 1 (and is evident from Equation (5)), the true KL
is upper bounded by log(2) for all n, whereas K̃Ln grows
unbounded as n→∞. We also report a new estimator for
KL divergence that closely mirrors the true KL divergence.

As we learnt from Example 1, the KL divergence between
the best-of-n policy and the reference policy may be quite
different from what the analytical formula used in the litera-
ture suggests. In the rest of this paper, we shed some light
on this formula, derive bounds on the KL divergence, and
propose a new estimator for the KL divergence that better
captures the behavior of the KL divergence. We also theo-
retically reason about the win rate vs KL tradeoffs for the
best-of-n policy, and justify its widespread use in language
model alignment.

2. Derivation of the Best-of-n Policy
Our first step is to provide a derivation for the best-of-n
policy under two simplifying assumptions. Let r(x,y) ∈ R
represent the scalar reward of response y in context x.

3h(x) := −x log(x)− (1− x) log(1− x), for all x ∈ (0, 1),
and h(0) = h(1) := 0. Further, note that all logarithms in this
paper are to the base e.
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Assumption 2.1. We assume that the reward r(x,y) is
unique for all x,y.

Assumption 2.2. Let Y∗ := {y |maxx∈X πref(y|x) > 0}.
We assume that the language model is such that |Y∗| <∞,
i.e., there are finite possible outcomes (in each context).

Note that Assumptions 2.1-2.2 are fairly non-restrictive and
make the presentation of the results clearer.

The following result gives the probability mass function
(PMF) of the best-of-n policy.

Lemma 2.3. Under Assumptions 2.1-2.2, for all n ∈ N, the
PMF of the best-of-n policy is given by

π(n)(y|x) = Fπref(y|x)n −F−πref
(y|x)n, (6)

where for any distribution π,

Fπ(y|x) := Pz∼π(·|x)[r(x, z) ≤ r(x,y)], (7)

F−π (y|x) := Pz∼π(·|x)[r(x, z) < r(x,y)]. (8)

Proof. Let Yx be the set of all possible outcomes of the lan-
guage model, given prompt x, i.e., Yx := {y | πref(y|x) >
0}. Further, let Lx := |Yx| < ∞ (Assumption 2.2). We
order all possible Lx outcomes as {ỹi}i∈[Lx] such that if
r(x, ỹj) > r(x, ỹi), then j > i. In other words, ỹ1 is the
least desirable outcome associated with the lowest reward,
and ỹLx is the most desirable outcome associated with the
highest reward.

First notice that sampling from πref is equivalent to sampling
u ∼ U [0, 1], and returning ỹi, such that

Fπref(ỹi−1|x) ≤ u < Fπref(ỹi|x). (9)

Similarly, sampling from the best-of-n strategy is akin to
sampling u1, . . . , un

i.i.d.∼ U [0, 1], and returning ỹi, such that

Fπref(ỹi−1|x) ≤ max
k∈[n]

uk < Fπref(ỹi|x). (10)

On the other hand, we know that the CDF of the maximum
of u1, . . . , un

i.i.d.∼ U [0, 1], for all τ ∈ [0, 1] is given by

P

[
max
k∈[n]

uk ≤ τ
]

= τn. (11)

Hence, for all n ∈ N, the PMF of the best-of-n policy,
denoted as π(n) is given by

π(n)(ỹi|x) = Fπref(ỹi|x)n−Fπref(ỹi−1|x)n ∀i ∈ [Lx],
(12)

where Fπref(ỹ0|x) := 0, and

Fπref(ỹi|x) =
∑
l∈[i]

πref(ỹl|x). (13)

The proof is completed by noticing that Fπref(ỹi−1|x) =
F−πref

(ỹi|x).

Notice that if n = 1, then π(1)(y|x) = πref(y|x). For
any n, Lemma 2.3 gives a closed-form expression for
π(n)(y|x), which we will use subsequently to derive the-
oretical guarantees on the KL divergence and win rate of
best-of-n.

We also remark that we can extend this PMF to π(τ) for real
τ ≥ 1. While it may not be immediately clear how to sample
from this extension, it is used for best-of-n distillation (Gui
et al., 2024; Amini et al., 2025; Sessa et al., 2025) and we
also use it to give bounds in Section 7.

3. Relations Between the KL Divergence and
the Analytical Formula

Our first result shows that the analytical formula is an up-
per bound on the (context-dependent) KL divergence. The
proofs for this result and several subsequent results are rele-
gated to Appendix A.

Theorem 3.1. For any n ∈ N, and any x, let K̃Ln be
defined in (4). Then,

DKL(π(n)(·|x)‖πref(·|x)) ≤ K̃Ln = log(n)− n− 1

n
.

Corollary 3.2. For any n, and any prompt distribution µ,

Dµ
KL(π(n)‖πref) = Ex∼µDKL(π(n)(·|x)‖πref(·|x)) ≤ K̃Ln.

Proof. This directly follows from Theorem 3.1.

Subsequent to this work, Mroueh (2024) has extended this
result to a larger class of stochastic processes (with poten-
tially continuous support such as diffusion models) through
the application of the strong data processing inequality. In
Appendix B, we also extend this result to derive bounds
on the KL divergence of the blockwise best-of-n decod-
ing (Mudgal et al., 2024), which generally allows to reach
similar reward vs KL tradeoffs with 10x smaller n. In the
rest of this section, we characterize the gap defined as fol-
lows:

G
(n)
KL (x) := K̃Ln −DKL(π(n)(·|x)‖πref(·|x)) ≥ 0. (14)

3.1. Upper Bounds on the Gap

We need a definition to state the upper bound results.

Definition 3.3. A model πref is called δ-bound if
πref(y|x) ≤ δ for all y ∈ Y∗ and x.

In particular, we are interested in characterizing the gap for
a δ-bound model for a small δ, which is a model with all
outcomes having small likelihoods. Next, we state our main
upper bound.

3
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Theorem 3.4. The gap in Equation (14) is upper bounded
by

G
(n)
KL (x) ≤ 2n(n− 1)e−H2(πref|x), (15)

where H2(πref|x) is the conditional Rényi entropy of order
2 of the language model given context x, and Hα(π) for
any distribution π is defined as

Hα(π|x) :=
1

1− α
log

∑
y∈Y∗

(π(y|x))
α

 . (16)

Corollary 3.5. Let πref(y|x) ≤ δ for all y ∈ Y∗, i.e., πref is
δ-bound. Then, the gap in Equation (14) is upper bounded
by

G
(n)
KL (x) ≤ 2n(n− 1)δ. (17)

Proof. The proof follows by noticing that H2(πref|x) ≥
log(1/δ) and invoking Theorem 3.4.

Intuitively, if the model outcomes are fairly low probability,
making it unlikely to get the same sample twice or more in
the n outcomes for best-of-n, the analytical formula K̃Ln
in (4) could be relatively accurate, and the gap is bounded
above. In other words, if πref is a δ-bound model, and n is
sufficiently small such that n2δ � 1, then

DKL(π(n)(·|x)‖πref(·|x)) ≈ log(n)− n− 1

n
. (18)

This assumption is left implicit in the derivation of Hilton &
Gao (2022) for the KL divergence of best-of-n.

3.2. Lower Bounds on the Gap

In this section, we characterize cases where the gap may be
large. To this end, let us define

εn := πref(y|x), where y ∼ π(n)(·|x). (19)

Note that εn is a random function of x. In the limit as
n→∞, we define

ε∞ := πref(ymax(x)|x), (20)

where ymax(x) = arg maxy∈Y∗ r(x,y). Notice that ε∞ is
a deterministic function of x.
Theorem 3.6. Let ε∞ > 0 be defined in Equation (20). For
n ∈ N, the gap between the analytical formula in Equa-
tion (4) and KL divergence is lower bounded by

G
(n)
KL (x)≥(1− (1− ε∞)n)

(
log

nε∞
1− (1− ε∞)n

− n− 1

n

)
− (n− 1)(1− ε∞)n log(1− ε∞) > 0. (21)

Corollary 3.7. As n→∞, the gap is lower bounded by

G
(n)
KL (x) ≥ log(nε∞) + on(log n). (22)

In particular, when nε∞ � 1, then the gap grows un-
bounded as we already observed in Example 1.

4. Proposed Estimator for KL Divergence
Motivated by the derivation of the best-of-n policy in
Lemma 2.3, we propose a new estimator for the KL di-
vergence. As a warm-up, first notice the following upper
bound:

Lemma 4.1. For any n ∈ N and any x,

DKL(π(n)(·|x)‖πref(·|x))

≤ Ey∼π(n)

[
log

(
1− (1− πref(y|x))n

πref(y|x)

)]
.

Therefore we may suggest to use the following alternate
estimator for KL divergence

D̂KL,loose(εn) := log

(
1− (1− εn)n

εn

)
, (23)

where εn is defined in Equation (19). Note that the expected
value of D̂KL,loose(εn) is an upper bound on the KL diver-
gence between the best-of-n policy and the reference policy.
However, this estimator is loose by an additive constant of
(n− 1)/n, especially when nεn � 1.

Here we propose a different estimator to close this gap. To
derive the estimator, first notice the following result.

Corollary 4.2. Let

dn(ε) :=(1− ε)n
(

log n+ (n− 1) log(1− ε)− n− 1

n

)
+ (1− (1− ε)n) log

(
1− (1− ε)n

ε

)
. (24)

Recall the definition of ε∞ in Equation (19). Then,

DKL(π(n)(·|x)‖πref(·|x)) ≤ dn(ε∞).

Note that Corollary 4.2 could not be directly used to derive
an estimator for the KL divergence because we do not ob-
serve ε∞ when performing the best-of-n policy. Inspired by
this result, and given that we can only observe εn, we put
forth the following practical estimator on the KL divergence.

Definition 4.3. Let εn be defined in (19). Then, we propose
the following estimator for the KL divergence of the best-
of-n policy and the reference policy:

D̂KL(εn) := dn(εn). (25)

Note that the estimator proposed in Definition 4.3 is a ran-
dom variable that depends on εn. We conjecture that in
expectation it provides an upper bound on the true KL di-
vergence.

Conjecture 4.4. Let εn be defined in (19). Then,

DKL(π(n)(·|x)‖πref(·|x)) ≤ Ey∼π(n)(·|x)

[
D̂KL(εn)

]
.

4



Theoretical guarantees on the best-of-n alignment policy

100 101 102 103 104 105

n

0

2

4

6

8

10

D
KL

 (b
es

t-o
f-n

 ||
 

re
f)

L = 10

Analytical formula (Eq. (4))
Alternate bound (Eq. (23))
Proposed estimator (Eq. (25))
Exact KL

100 101 102 103 104 105

n

0

2

4

6

8

10

D
KL

 (b
es

t-o
f-n

 ||
 

re
f)

L = 102

Analytical formula (Eq. (4))
Alternate bound (Eq. (23))
Proposed estimator (Eq. (25))
Exact KL

100 101 102 103 104 105

n

0

2

4

6

8

10

D
KL

 (b
es

t-o
f-n

 ||
 

re
f)

L = 103

Analytical formula (Eq. (4))
Alternate bound (Eq. (23))
Proposed estimator (Eq. (25))
Exact KL

100 101 102 103 104 105

n

0

2

4

6

8

10

D
KL

 (b
es

t-o
f-n

 ||
 

re
f)

L = 104

Analytical formula (Eq. (4))
Alternate bound (Eq. (23))
Proposed estimator (Eq. (25))
Exact KL

Figure 2. The analytical formula (log(n) − (n − 1)/n), Equa-
tion (4), the alternate bound, Equation (23), the proposed esti-
mator, Equation (25), and the exact KL divergence, for uniform
distributions supported on alphabets of size L = 10, 102, 103, 104

respectively.

While we don’t offer a mathematical proof for Conjec-
ture 4.4, tens of thousands of randomly generated numerical
experiments suggest that it holds true.

Let us further inspect the proposed estimator and its variance.
We first show that it is strictly upper bounded by K̃Ln.

Lemma 4.5. For any realization of εn, we have

0 ≤ D̂KL(εn) ≤ K̃Ln, (26)

and hence

Ey∼π(n)(·|x)

[
D̂KL(εn)

]
≤ K̃Ln. (27)

Given this, we can immediately bound the variance of the
estimator too. Lemma 4.5 implies that standard devia-
tion of the estimator is upper bounded by log n, which in
turn implies that if the estimator is averaged over M =
O(log n log 1

δ ) draws from the best-of-n model, the stan-
dard deviation is guaranteed to be smaller than δ. Given that
we are generally interested in n < 1000, the dependence on
n is mild. Having said that, given each of the M batches
contains n iid samples (total of M × n iid samples), one
should be able to build a bootstrapped estimator for the
variance with better guarnatees.

In what follows we numerically inspect the proposed esti-
mator in a few scenarios, and compare it with the analytical
formula and the exact KL divergence between the best-of-n
policy and the reference policy.

The first set of examples, in Figure 2, are uniform dis-
tributions over alphabets of varying sizes. Notice that
εn = ε∞ = 1

L for a uniform distribution, and hence
the estimator in Equation (25) and Equation (23) are de-
terministic. As can be seen KL divergence saturates around
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Figure 3. The analytical formula (log(n) − (n − 1)/n), Equa-
tion (4), the alternate bound, Equation (23), the proposed estimator,
Equation (25), and the exact KL divergence, for two cherry picked
examples. In the left panel, the output is supported on an alphabet
of size 5, where the highest reward outcome has a probability of
10−4 and the rest of the probability mass is uniformly distributed
over the rest of the outcomes. In the right panel, the output is sup-
ported on an alphabet of size 200, where the three highest reward
outcomes have probabilities 10−5, 10−3 and 10−1 respectively.
The rest of the probability mass is uniformly distributed over the
rest of the outcomes.

n ≈ L. For n
L � 1, the analytical formula of Equation (4),

log(n)− (n− 1)/n, has a small gap with the actual KL di-
vergence (which was also theoretically established in Corol-
lary 3.5). On the other hand, when n

L � 1, the gap between
log(n)− (n− 1)/n and the actual KL divergence becomes
large and unbounded (which was also theoretically establish
in Corollary 3.7). The alternate bound in Equation (23) cap-
tures the behavior of the KL divergence for n

L � 1 and has
a finite gap. However, it has a gap of (n− 1)/n for n

L � 1
as previously discussed. Finally, we also observe that the
proposed estimator in Equation (25) follows the behavior of
the true KL divergence closely in all examples.

In the second set of examples, we cherry pick the probability
mass function on the outcome to create different behaviors
of the KL divergence, shown in Figure 3. In the left panel,
the output is supported on an alphabet of size 5, where the
highest reward outcome has a probability of 10−4 and the
rest of the probability mass is uniformly distributed over the
rest of the outcomes. We observe that KL divergence satu-
rates early until the highest reward outcome is discovered
with n ≈ 104. In the right panel, the output is supported
on an alphabet of size 200, where the highest reward out-
come has a probability of 10−5, the second highest reward
outcome has a probability of 10−3, and the third highest
reward outcome has a probability of 10−1. The rest of the
probability mass is uniformly distributed over the rest of
the outcomes. As can be seen, the KL divergence starts to
saturate until the next high reward is outcome is discovered
around n ≈ 103 and n ≈ 105. As can be seen, the analyti-
cal formula in Equation (4) does not capture the behavior
of the KL divergence at all whereas the alternate bound in
Equation (23) is much better aligned with the actual be-
havior. Finally, we observe that the proposed estimator in
Equation (25) closely follows the actual KL divergence. We
would like to recall that the proposed estimator is random
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Figure 4. The analytical formula (log(n) − (n − 1)/n), Equa-
tion (4), better upper bound (Corollary 4.2, Appendix C), the
proposed estimator, Equation (25), and the exact KL divergence,
for four cherry picked examples from the Alpaca dataset (Taori
et al., 2023) using Gemma 9B IT model (Gemma et al., 2024) with
reward the log-likelihood of response under the reference model.

and we have plotted the expected value of the estimators,
whereas in practice both estimators are subject to variance
due to the randomness in the value of εn (Equation (19)). To
capture the deviation from mean, we compute the tilted min
and tilted max (see Appendix C.2 for the definition), which
are also plotted in Figure 3. As can be seen, in cases where
εn could widely vary based on whether a certain outcome
appears in the set of n outcomes, the variance could be high.

In Figure 4, we compare the estimates for four cherry picked
examples from the Alpaca dataset (Taori et al., 2023) using
Gemma 9B IT model (Gemma et al., 2024) with reward
being the log-likelihood of the reference model. Note that
for two examples where ε∞ is large, i.e., the prompts that
induce less entropy in the response, such as “What is the
capital of France?”, the proposed estimator outperforms the
analytical formula in Equation (4) considerably and lies very
close to the better upper bound in Corollary 4.2, whereas
K̃Ln (Equation (4)) is loose even for n ≈ 20. The details on
the prompts used can be found in Appendix C. In Figure 5,
we repeat the same experiment but change the reward to the
negative of length to prefer more concise responses and see
similar trends. We also include experiments with machine
translation in Appendix C.3.

5. Win Rate of the Best-of-n Policy
So far, we provided theoretical guarantees on the KL diver-
gence of the best-of-n policy with respect to the reference
policy. In this section, we extend our study to characterize
the win rate of the best-of-n policy against the reference
policy. Let win of y against z in context x be defined as:

wr(y�z|x) :=1(r(x,y)>r(x, z))+
1(r(x,y)=r(x, z))

2
.
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Figure 5. The analytical formula (log(n) − (n − 1)/n), Equa-
tion (4), better upper bound (Corollary 4.2, Appendix C), the
proposed estimator, Equation (25), and the exact KL divergence,
for four cherry picked examples from the Alpaca dataset (Taori
et al., 2023) using Gemma 9B IT model (Gemma et al., 2024) with
reward the negative length of the response.

In other words, wr(y � z|x) indicates whether response y
wins over response z in context x using the judge r. Then,
let the win rate of policy π over the reference policy πref for
prompt x be defined as

Wr(π(·|x)‖πref(·|x)):=Ey∼π(·|x)Ez∼πref(·|x)wr(y�z|x).
(28)

It is clear thatWr(πref(·|x)‖πref(·|x)) = 0.5 and the goal
of alignment is to improve win rate beyond 0.5 (with the
lowest KL divergence between the two models). We further
define the following, averaged over prompt distribution µ :

Wµ
r (π‖πref) := Ex∼µWr(π(·|x)‖πref(·|x)). (29)

Note that it is clear that if y ∼ π(·|x) and z ∼ πref(·|x),
then wr(y � z|x) is an unbiased estimator for win rate of
policy π against πref.

We analyze the win rate and derive theoretical guarantees.
Let Fπ and F−π be defined in Equation (7) and Equation (8),
respectively. We define calibrated reward as:

Cπref(x,y) :=
Fπref(y|x) + F−πref

(y|x)

2
. (30)

With this definition in place, notice that win rate could be
expressed as follows.

Lemma 5.1. The win rate of any policy π against reference
policy πref could be expressed as

Wr(π(·|x)‖πref(·|x)) = Ey∼π(·|x)

[
Cπref(x,y)

]
. (31)

Notice that the above result suggests that the win rate of
any policy only depends on reward and the reference policy
through the calibrated reward function, Cπref(x,y). Hence,
this notion of calibration may be used as a canonical trans-
formation of the reward for preference optimization against

6
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a given reference policy. In fact, this transformation is theo-
retically proposed as the objective in IPO (Azar et al., 2024)
and is the key to best-of-n distillation (Gui et al., 2024;
Amini et al., 2025; Sessa et al., 2025; Yang et al., 2024b)
and inference-aware alignment (Balashankar et al., 2025).

Lemma 5.2. The win rate of best-of-n policy against πref

is given by

Wr(π
(n)(·|x)‖πref(·|x))

=
∑
y

(
Fπref(y|x)n −F−πref

(y|x)n
)
Cπref(x,y).

Proof. This is proved by plugging Lemma 2.3 into
Lemma 5.1.

Our next result is an upper bound on the win rate of best-
of-n policy. Intuitively, observe that the win rate could be
estimated by drawing (n+ 1) samples from πref, associat-
ing n to the best-of-n model and the remaining one to the
reference model. Hence, the best-of-n model gets n-to-1
chances of winning against the reference model, unless there
is a draw due to samples with the same reward value. Thus,
intuitivelyWr(π

(n)(·|x)‖πref(·|x)) ≈ n
n+1 . We formalize

this as an upper bound on the win rate.

Theorem 5.3. For all, n, and all x, the win rate of best-of-n
policy is upper bounded by

Wr(π
(n)(·|x)‖πref(·|x)) ≤ n

n+ 1
. (32)

In the rest of this section, we derive bounds on the gap
between this upper bound and the actual win rate:

G
(n)
W (x) :=

n

n+ 1
−Wr(π

(n)(·|x)‖πref(·|x)) ≥ 0. (33)

5.1. Upper Bounds on the Win Rate Gap

Unlike the KL divergence, it is clear that G(n)
W (x) could not

grow unbounded, and is upper bounded by 1
2 .

Theorem 5.4. The win rate gap is upper bounded by

G
(n)
W (x) ≤ n− 1

2
e−H2(πref|x), (34)

where H2(·) denotes the Rényi entropy of order 2 defined in
Equation (16).

Corollary 5.5. Let πref(y|x) ≤ δ for all y ∈ Y∗, i.e., πref

is δ-bound. Then,

G
(n)
W (x) ≤ n− 1

2
δ. (35)

Proof. The proof follows by noticing that H2(πref|x) ≥
log(1/δ) and invoking Theorem 5.4.

Given this upper bound, the win rate of best-of-n would be
fairly close to n

n+1 if πref is a δ-bound model, and n is suffi-
ciently small such that nδ � 1, by combining Theorem 5.3
and Corollary 5.5, we get

Wr(π
(n)(·|x)‖πref(·|x)) ≈ n

n+ 1
, (36)

which is the claim of Gui et al. (2024, Theorem 2) for the
win rate of best-of-n

5.2. Lower Bounds on the Win Rate Gap

Our next result characterizes the cases where the gap is
bounded away from 0.

Theorem 5.6. Let ε∞ > 0 be defined in Equation (20).
Then,

G
(n)
W (x) ≥ n

n+ 1
(1− (1− ε∞)n+1)

− (1− (1− ε∞)n)
(

1− ε∞
2

)
> 0.

Corollary 5.7. As n→∞, we have

G
(n)
W (x) ≥ ε∞

2
(1 + on(1)). (37)

As n→∞, G(n)
W (x)→ ε∞

2 , which is bounded from 0.

6. Rewind-and-Repeat:
Rejection Sampling Beyond Best-of-n

The best-of-n policy is a form of rejection sampling. An-
other form is called rewind-and-repeat, where the process of
generating a response and scoring it is repeated until a cer-
tain threshold on reward is met (Kim et al., 2025). A more
involved blockwise variant of this process is recently used
by Li et al. (2024). Formally, let x be a given input prompt
to the model, and let {yk}∞k=1 be a sequence of infinite i.i.d.
samples drawn from πref(·|x). Then, rewind-and-repeat
accepts yM such that

r(x,yM ) ≥ Φ and ∀k < M : r(x,yk) < Φ, (38)

where Φ ∈ R is the threshold on reward. In other words, yM
is the first draw whose reward reaches a certain threshold
Φ. We also call M the (random) number of trials until the
threshold is met, which determines the cost of inference
from the model. We denote the resulting policy by πΦ.

It is natural to ask: how do the win rate vs KL tradeoffs
of rewind-and-repeat compare with that of best-of-n? To
answer this question, first we define

wΦ(x) := Ey∼πref(·|x)[1(r(x,y) ≥ Φ)] (39)

as the probability of drawing a sample from the reference
policy that meets the threshold. Hence, the expected number
of trials to output an outcome is E[M ] = 1/wΦ(x).

Next, let us derive the PMF of rewind-and-repeat policy.
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Lemma 6.1. The probability mass function (PMF) of the
rewind-and-repeat policy is given by

πΦ(y|x) =

{
πref(y|x)
wΦ(x) if r(x,y) ≥ Φ

0 if r(x,y) < Φ
. (40)

The proofs are deferred to Appendix A.4. Given its PMF,
next we derive KL divergence and win rate of the rewind-
and-repeat policy and the reference policy.

Lemma 6.2. We have

DKL(πΦ(·|x)‖πref(·|x)) = log
1

wΦ(x)
, (41)

Wr(πΦ(·|x)‖πref(·|x)) = 1− 1

2
wΦ(x). (42)

Thus, by sweeping Φ in R, we will effectively sweep wΦ in
[0, 1], and obtain the respective win rate vs KL divergence
tradeoff for the rewind-and-repeat policy. Note that the
KL divergence was recently derived by Kim et al. (2025,
Appendix A.5) and we provide a proof for completeness.

So far, we derived a characterization of the KL divergence
of the rewind-and-repeat policy. However, when the number
of outcomes of a model is large, similarly to the case of
best-of-n, estimating the KL divergence is intractable.

Our main result in this section is an unbiased estimator of
the KL divergence of the rewind-and-repeat procedure.

Theorem 6.3. For n ≥ 1, let Hn :=
∑n
i=1

1
i be the n-th

Harmonic number and H0 = 0. Further, let M be the
number of trials to achieve an outcome in the rewind-and-
repeat policy. Then,

DKL(πΦ(·|x)‖πref(·|x)) = E[HM−1]. (43)

Hence, we propose HM−1 as an (unbiased) estimator for
the KL divergence of the rewind-and-repeat procedure with
respect to the reference policy.

7. Win rate vs KL Divergence Tradeoffs
Thus far, we characterized the KL divergence and win rate
of best-of-n. In practice, it is customary to compare differ-
ent alignment methods based on their win rate at a certain
KL divergence from the reference policy. Note that Theo-
rem 3.1 implies that the win rate (or expected reward) vs
KL tradeoffs reported in the literature that use the analytical
formula in Equation (4) (Gao et al., 2023; Go et al., 2023;
Mudgal et al., 2024; Scheurer et al., 2023) are conservative
and the actual tradeoff curve of the best-of-n policy is in fact
guaranteed to be no worse than what is reported. To further
substantiate this point, let us revisit Example 1 and report
the win rate vs KL divergence tradeoff curve (Figure 6),
where we used the actual win rate in all cases.4 The actual

4In practice, the win rate could be estimated using the unbiased
estimator given by the win random variable in Equation (28).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
DKL(best-of-n|| ref)

0.50

0.55

0.60

0.65

0.70

0.75

wi
n-

ra
te

 a
ga

in
st

 b
as

e 
po

lic
y

log(n) (n 1)/n (Eq. (4))
Proposed estimator (Eq. (25))
Exact KL (Eq. (5))

Figure 6. The win rate against reference policy vs KL divergence
tradeoff curve for the best-of-n policy. We have used the analytical
formula (log(n)− (n− 1)/n), Equation (4), the exact KL diver-
gence, Equation (5), and the proposed estimator, Equation (25),
for producing the tradeoffs from Example 1, illustrating a case
where the actual win rate vs KL divergence tradeoff curve for the
best-of-n policy is more favorable than the one predicted if using
the upper bound formula, log(n)− (n− 1)/n.

win rate vs KL divergence tradeoff is more favorable than
that portrayed by using the formula in Equation (4). In this
example, the best-of-n policy in the limit of large n, reaches
a KL divergence of log(2) and a win rate of 0.75.

Definition 7.1. Let W : R+ → [0, 1] be a function
that takes in D ≥ 0 and outputs W (D). Let Dn =
DKL(π(n)(·|x)‖πref(·|x)). We say that W is an upper
bound on the tradeoff curve of best-of-n if for all n,
Wr(π

(n)(·|x)‖πref(·|x)) ≤W (Dn). Alternatively, we say
that W is a lower bound on the tradeoff curve of best-of-n
if for all n,Wr(π

(n)(·|x)‖πref(·|x)) ≥W (Dn).

We can turn our existing bounds into straightforward lower
and upper bounds on the tradeoff curve for best-of-n. (see
Appendix A.5). We conjecture a tighter upper bound.

Conjecture 7.2. For any x and a given πref, let the function
W0(D) = `−1(D) where for all τ ∈ [0.5, 1),

`(τ) = log
τ

1− τ
+

1

τ
− 2.

W0 is an upper bound on the tradeoff curve of best-of-n.

Example 2. We consider a ternary language model with
alphabetX = {0, 1, 2}, ordered from least preferred to most
preferred, with probabilities given by πref = (0.3, 0.6, 0.1).
Hence, the calibrated reward in Equation (30) is given by
(0.3, 0.75, 0.95). The set of solutions to the KL-regularized
RL problem are given by Equation (2). We also compute
the best-of-n solutions (for continuous n) using Lemma 2.3
and rewind-and-repeat using Lemma 6.1. Before discussing
the win rate vs KL divergence tradeoffs, we first visualize
the set of solutions on the probability simplex in Figure 7
and observe that the solutions could be very different. When
we consider the win rate vs KL tradeoffs for this example
(Figure 8), we observe that the tradeoffs are strikingly close
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(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

ref = (0.3, 0.6, 0.1)

win rate optimal
best-of-n
rewind-and-repeat

Figure 7. The set of solutions for Ex-
ample 2: win rate optimal is achieved
by varying β in Equation (2), best-of-
n is given by Lemma 2.3, and rewind-
and-repeat is given by Lemma 6.1.
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Figure 8. Win rate vs KL tradeoff for Exam-
ple 2. The tradeoff curve of Best-of-n is close
to win rate optimal, and both are better than
rewind-and-repeat.
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Figure 9. Win rate vs KL tradeoff for Exam-
ple 3. The tradeoff curve of Best-of-n is close
to win rate optimal and the limit behavior, and
both are better than rewind-and-repeat.

for best-of-n and win rate optimal models, matching recent
findings of Yang et al. (2024a); Gui et al. (2024).
Example 3. We consider a language model with low prob-
ability outcomes, and a calibrated reward, and plot win rate
vs KL divergence tradeoffs in Figure 9, and observe that
in this asymptotic regime where we observe that the trade-
off curve offered by best-of-n is almost optimal and offers
better tradeoffs compared to rewind-and-repeat.

8. Conclusion
We studied the best-of-n alignment policy and derived its
probability mass function (Lemma 2.3). We proved that
an analytical formula used in the literature for the KL di-
vergence of the best-of-n policy with the reference policy,
log(n) − (n − 1)/n in Equation (4), is false, and only an
upper bound on the KL divergence (Theorem 3.1). We de-
rived bounds on the gap between this formula and the KL
divergence where we roughly showed the following: Let y
be a draw from the best-of-n policy. Let εn be the proba-
bility mass of y under the base model. Then, if nεn � 1,
the gap between the formula in Equation (4) and the exact
KL divergence is small (Theorem 3.4); and if nεn � 1, the
gap between the two may be large and unbounded (Theo-
rem 3.6). We proposed a new estimator for the KL diver-
gence (Definition 4.3), which we demonstrated to capture
the behavior of the KL divergence on several numerical ex-
periments. We showed that the win rate of best-of-n against
the reference policy is upper bounded by n/(n+ 1) (The-
orem 5.3). Similarly to the KL divergence, we provided
upper (Theorem 5.4) and lower (Theorem 5.6) bounds on
the gap between the actual win rate and the bound. We
compared best-of-n with another form of rejection sampling
through rewind-and-repeat and showed its superiority both
theoretically and empirically. We also extended the bounds
to blockwise best-of-n (Mudgal et al., 2024).

While our results showed that best-of-n offers better trade-

offs on reward vs KL divergence (where KL divergence
captures preservation of the core model capabilities) com-
pared to rewind-and-repeat, the latter is more effective in
driving reward up for a given compute budget which is im-
portant in test-time compute scaling. Hence, it remains to be
seen how to best design a method that achieves Pareto opti-
mal tradeoffs between compute, reward, and KL divergence
(which captures preservation of capabilities other than what
is captured by reward). This might involve combining the
rewind-and-repeat with best-of-n and could be an area for
future work.

Impact Statement
This paper presents theoretical investigations of best-of-n
sampling and other test-time rejection sampling algorithms,
which is a simple yet effective method for test-time align-
ment of generative models. One of the major findings of
this paper is that a widely used formula for KL divergence
of the best-of-n policy and the reference policy is a theo-
retical upper bound on the actual KL divergence. This may
help ensure that the capabilities of the reference model are
largely preserved in the aligned model. For example, this
may help compliance or risk-management teams preserve
safety by guaranteeing that the policy that is served does not
drift too far from a safe reference policy.

Our work also showed that best-of-n is an effective (and
almost optimal) test-time alignment method which comes
with theoretical guarantees on win rate vs KL divergence
tradeoffs motivating its use for improving the capabilities
and safety of models. On the flip side, this also shows
why best-of-n with an adversarial reward may be used to
effectively jailbreak generative models. We hope future
work can benefit from our findings in making best-of-n
more effective, and can also devise safeguards against best-
of-n jailbreaks.
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A. Proofs of the main results of the paper
A.1. Proofs of Section 3

We provide the proofs of the main results of the paper. To do so, we need to state two further auxiliary lemmas.

Lemma A.1. For any 0 ≤ a < b ≤ 1, and n ∈ N,

(bn − an) log
bn − an

b− a
=

∫ b

a

nvn−1 log
(
nvn−1

)
dv − gn(a, b) ≤

∫ b

a

nvn−1 log
(
nvn−1

)
dv, (44)

where g(a, b) ≥ 0, and is given by

gn(a, b) := (bn − an)DKL(pv‖pu) = (bn − an) log
n(b− a)

bn − an
+ (n− 1)(bn log b− an log a)− n− 1

n
(bn − an), (45)

where for a ≤ w ≤ b, we define pv(w) = nwn−1

bn−an and pu(w) = 1
b−a .

Proof. Notice that

DKL(pv‖pu) =

∫ b

a

nvn−1

bn − an
log

nvn−1

bn−an
1
b−a

dv =

∫ b

a

nvn−1

bn − an
log

nvn−1(b− a)

bn − an
dv ≥ 0. (46)

The inequality is established by algebraic manipulation. The gap gn(a, b) is obtained by following Lemma A.2 to derive the
right-hand-side of the inequality in closed form.

Lemma A.2. The following identity holds:∫ b

a

nvn−1 log
(
nvn−1

)
dv = (bn − an) log n+ (n− 1) (bn log b− an log a)− n− 1

n
(bn − an). (47)

Proof. The proof is completed by noticing that d
dv (vn log v) = nvn−1 log v + vn−1.

Proof of Theorem 3.1.

DKL(π(n)(·|x)‖πref(·|x)) =
∑
y∈Y∗

(
Fπref(y|x)n −F−πref

(y|x)n
)

log
Fπref(y|x)n −F−πref

(y|x)n

πref(y|x)
(48)

≤
∑
y∈Y∗

∫ Fπref (y|x)

F−πref (y|x)

nvn−1 log
(
nvn−1

)
dv (49)

=

∫ 1

0

nvn−1 log
(
nvn−1

)
dv (50)

= log(n)− n− 1

n
, (51)

where Equation (49) follows from Lemma A.1, and Equation (51) follows from Lemma A.2.

Lemma A.3. For any 0 ≤ a < b ≤ 1, and n ∈ N,

gn(a, b) ≤ 2n(n− 1)(b− a)2. (52)
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Proof. Recall from Equation (45) that

gn(a, b) := (bn − an)DKL(pv‖pu), (53)

where pv(w) = nwn−1

bn−an and pu(w) = 1
b−a for a ≤ w ≤ b. We can further bound the KL divergence as

DKL(pv‖pu) ≤ max
w∈[a,b]

log
pv(w)

pu(w)
(54)

= max
w∈[a,b]

log
nwn−1(b− a)

bn − an
(55)

= log
nbn−1(b− a)

bn − an
(56)

= log
nbn−1∑n−1

j=0 b
n−1−jaj

. (57)

At this point, we will divide the proof into two cases depending on the value of a, b.

Case I. We first focus on the case when a < b/2. In this case,

DKL(pv‖pu) ≤ log
nbn−1∑n−1

j=0 b
n−1−jaj

(58)

≤ log n. (59)

Hence,

gn(a, b) ≤ (bn − an) log n (60)
≤ bn log n (61)

≤ b2 log n (62)

≤ 4(b− a)2 log n (63)

≤ 2n(n− 1)(b− a)2. (64)

Case II. For a ≥ b/2, notice that

DKL(pv‖pu) ≤ log
nbn−1∑n−1

j=0 b
n−1−jaj

(65)

≤ log
bn−1

b(n−1)/2a(n−1)/2
(66)

=
n− 1

2
log

b

a
(67)

≤ n− 1

2

(b− a)

a
(68)

≤ (n− 1)
(b− a)

b
, (69)

where the first inequality follows from AM-GM inequality. Hence,

gn(a, b) ≤ (bn − an)(n− 1)
(b− a)

b
(70)

= (b− a)

n−1∑
j=0

bn−1−jaj

 (n− 1)
(b− a)

b
(71)

≤ nbn−1(b− a)(n− 1)
(b− a)

b
(72)

= nbn−2(b− a)(n− 1)(b− a) (73)

≤ 2n(n− 1)(b− a)2. (74)
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The proof is completed by putting together Case I and Case II.

Proof of Theorem 3.4.

log(n)− n− 1

n
−DKL(π(n)(·|x)‖πref(·|x)) =

∑
y∈Y∗

gn(F−πref
(y|x),Fπref(y|x)) (75)

≤ 2n(n− 1)
∑
y∈Y∗

(Fπref(y|x)−F−πref
(y|x))2 (76)

= 2n(n− 1)
∑
y∈Y∗

(πref(y|x))2 (77)

= 2n(n− 1)e−H2(πref|x). (78)

where Equation (76) follows from Lemma A.3.

Proof of Theorem 3.6. Notice that the gap is at least lower bounded by the value of the gap for the highest reward outcome.
Hence,

log(n)− n− 1

n
−DKL(π(n)(·|x)‖πref(·|x)) ≥ gn(1− ε∞, 1), (79)

where gn(·, ·) is defined in Equation (45), and is given by

gn(1− ε∞, 1) = (1− (1− ε∞)n) log
nε∞

1− (1− ε∞)n
− (n− 1)(1− ε∞)n log(1− ε∞)− n− 1

n
(1− (1− ε∞)n), (80)

completing the proof.

Proof of Corollary 3.7. The proof is completed by the following inequalities:

gn(1− ε∞, 1) = (1− (1− ε∞)n) log
nε∞

1− (1− ε∞)n
− (n− 1)(1− ε∞)n log(1− ε∞)− n− 1

n
(1− (1− ε∞)n)

(81)

≥ (1− e−nε∞)

(
log

nε∞
1− (1− ε∞)n

+ (n− 1)
(1− ε∞)n

1− (1− ε∞)n
log

1

1− ε∞
− n− 1

n

)
(82)

≥ (1− e−nε∞)

(
log

nε∞
1− (1− ε∞)n

+ (n− 1)
ε∞(1− ε∞)n

1− (1− ε∞)n
− n− 1

n

)
(83)

= (1− e−nε∞)

(
log

nε∞
1− (1− ε∞)n

+
n− 1

n

(
nε∞

1− (1− ε∞)n
(1− ε∞)n − 1

))
(84)

≥ (1− e−nε∞)

(
log(nε∞)− n− 1

n

)
(85)

≥ (1− e−nε∞) log(nε∞)− 1. (86)

Hence, as n→∞,

gn(1− ε∞, 1) ≥ log(nε∞) + on(log n), (87)

which completes the proof.
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A.2. Proofs of Section 4

Proof of Lemma 4.1. The proof follows from:

DKL(π(n)(·|x)‖πref(·|x)) = Ey∼π(n)

[
log

(Fπref(y|x)n −F−πref
(y|x)n

πref(y|x)

)]
(88)

≤ Ey∼π(n)

[
log

(
1− (1− πref(y|x))n

πref(y|x)

)]
. (89)

Proof of Corollary 4.2. Recall that ε∞ = πref(ymax|x) where ymax ∼ π(∞)
y|x . Notice that

DKL(π(n)(·|x)‖πref(·|x)) ≤
∫ 1−ε∞

0

nvn−1 log
(
nvn−1

)
dv + (1− (1− ε∞)n) log

1− (1− ε∞)n

ε∞
, (90)

which follows the same lines as in the proof of Theorem 3.1 except that we singled out the highest reward outcome, and
bounded the rest of the terms. The proof is completed by invoking Lemma A.2 to express the integral in closed form.

Proof of Lemma 4.5. Fist notice that for any 0 ≤ ε ≤ 1,

(1− (1− ε)n) log
1− (1− ε)n

ε
≤
∫ 1

1−ε
nvn−1 log

(
nvn−1

)
dv, (91)

which is implied by Lemma A.1 and setting b = 1 and a = 1− ε. The proof is completed by noticing that

D̂KL(εn) =

∫ 1−εn

0

nvn−1 log
(
nvn−1

)
dv + (1− (1− εn)n) log

1− (1− εn)n

εn
, (92)

and

K̃Ln =

∫ 1−εn

0

nvn−1 log
(
nvn−1

)
dv +

∫ 1

1−εn
nvn−1 log

(
nvn−1

)
dv. (93)
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A.3. Proofs of Section 5

Proof of Lemma 5.1. Recall the definition of Fπ and F−π , hence

Ez∼πref(·|x) [Wr(y � z|x)] = Ez∼πref(·|x)

{
1(r(x,y) > r(x, z)) +

1

2
1(r(x,y) = r(x, z))

}
=

1

2

(
Fπref(y|x) + F−(y|x)

)
, (94)

which completes the proof.

Lemma A.4. For 0 ≤ a ≤ b ≤ 1, let

hn(a, b) :=
n

n+ 1
(bn+1 − an+1)− 1

2
(bn − an)(b+ a). (95)

We have
hn(a, b) ≥ 0. (96)

Equivalently,
1

2
(bn − an)(b+ a) ≤ n

n+ 1
(bn+1 − an+1). (97)

Proof. Let us consider the function hn(a, v) for fixed a as a function of v. Given that hn(a, a) = 0, it suffices to show that
∂
∂vhn(a, v) ≥ 0 for all 0 ≤ a ≤ v ≤ 1. We have

∂

∂v
hn(a, v) = nvn − n

2
vn−1(v + a)− 1

2
(vn − an) (98)

=
1

2

(
nvn−1(v − a)− (vn − an)

)
(99)

≥ 0, (100)

completing the proof.

Lemma A.5. The following is an upper bound on hn(a, b) :

hn(a, b) ≤ n− 1

2
(b− a)2. (101)

Proof. We have

hn(a, b) =
n

n+ 1
(bn+1 − an+1)− 1

2
(bn − an)(b+ a) (102)

= (b− a)

(
n

n+ 1

n∑
i=0

bian−i − 1

2
(a+ b)

n−1∑
i=0

bian−1−i

)
(103)

= (b− a)

(( n

n+ 1
− 1

2

)
(an + bn) +

( n

n+ 1
− 1
) n−1∑
i=1

aibn−i

)
(104)

≤ (b− a)

(
n− 1

2(n+ 1)
(an + bn)− n− 1

n+ 1
an
)

(105)

= (b− a)
n− 1

2(n+ 1)
(bn − an) (106)

≤ (b− a)2n(n− 1)

2(n+ 1)
bn−1 (107)

≤ n− 1

2
(b− a)2, (108)

completing the proof.
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Proof of Theorem 5.3. Note that

Wr(π
(n)(·|x)‖πref(·|x)) =

1

2

∑
y∈Y∗

(
Fπref(y|x)n −F−πref

(y|x)n
)

(Fπref(y|x) + F−πref
(y|x)) (109)

≤ n

n+ 1

∑
y∈Y∗

(
Fπref(y|x)n+1 −F−πref

(y|x)n+1
)

(110)

=
n

n+ 1
, (111)

where Equation (109) follows from Lemma 5.2 and Equation (110) follows from Lemma A.4.

Proof of Theorem 5.4. We have

n

n+ 1
−Wr(π

(n)(·|x)‖πref(·|x)) =
∑
y∈Y∗

hn(F−πref
(y|x),Fπref(y|x)) (112)

≤ n− 1

2

∑
y∈Y∗

(Fπref(y|x)−F−πref
(y|x))2 (113)

=
n− 1

2

∑
y∈Y∗

(πref(y|x))2 (114)

=
n− 1

2
e−H2(πref|x), (115)

where Equation (113) follows from Lemma A.5.

Proof of Theorem 5.6. Recall Lemma A.4. Therefore,

G
(n)
W (x) ≥ hn(1− ε∞, 1) ≥ 0. (116)

The proof is completed by noticing from Equation (95) that

hn(1− ε∞, 1) =
n

n+ 1
(1− (1− ε∞)n+1)− (1− (1− ε∞)n)

(
1− ε∞

2

)
. (117)

Proof of Corollary 5.7. As n→∞,

n

n+ 1
(1− (1− ε∞)n+1)− (1− (1− ε∞)n)

(
1− ε∞

2

)
=
ε∞
2

(1 + on(1)), (118)

which completes the proof.
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A.4. Proofs of Section 6

Proof of Lemma 6.1. The proof is completed by observing that with probability wΦ(x) a good outcome is obtained, and
with probability (1− wΦ(x)) the trial is repeated.

Proof of Lemma 6.2. First consider the KL divergence as follows:

DKL(πΦ(·|x)‖πref(·|x)) = Ey∼πΦ(·|x) log
πΦ(y|x)

πref(y|x)
(119)

= Ey∼πΦ(·|x) log
1

wΦ(x)
(120)

= log
1

wΦ(x)
. (121)

Next, let us consider the win rate:

Wr(πΦ(·|x)‖πref(·|x)) = (1− wΦ(x))× 1 + wΦ(x)× 1

2
(122)

= 1− 1

2
wΦ(x), (123)

completing the proof.

Proof of Theorem 6.3. Let wΦ(x) be the probability of selecting a good sequence. Then, we note that

− log(wΦ(x))

wΦ(x)
=

∞∑
k=1

Hk(1− wΦ(x))k,

where for k ≥ 1 Hk =
∑n
i=1

1
i is the k-th Harmonic number and H0 = 0. Hence,

− log(wΦ(x)) =

∞∑
k=1

Hk(1− wΦ(x))kwΦ(x).

Let M be the location of the first one (the number of trials). Then,

P (M = k) = (1− wΦ(x))k−1wΦ(x).

Hence, the following is an unbiased estimator of − log(wΦ(x)):

HM−1.
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A.5. Proofs of Section 7

Theorem A.6. For any x and a given πref, let the function WL(DL) be implicitly defined for τ ≥ 1:

WL(τ) =
τ

τ + 1
− τ − 1

2
e−H2(πref|x),

DL(τ) = log(τ)− τ − 1

τ
.

WL is a lower bound on the tradeoff curve of best-of-n.

Proof. This is obtained by putting together Theorem 3.1 and Theorem 5.4.

Theorem A.7. For any x and a given πref, let the function WU (DU ) be implicitly defined for τ ≥ 1:

WU (τ) =
τ

τ + 1
,

DU (τ) = log(τ)− τ − 1

τ
− 2τ(τ − 1)e−H2(πref|x).

WU is an upper bound on the tradeoff curve of best-of-n.

Proof. This is obtained by combining Theorem 5.3 and Theorem 3.4.
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B. KL divergence of blockwise best-of-n
While best-of-n could be viewed as a sequence-level rejection sampling, most generative models perform decoding step by
step. For example, language models perform generation token-by-token or diffusion models perform generation through
several denoising steps. Best-of-n could be extended to exert control at different levels of granularity. In particular, best-of-n
has been extended to provide control through blockwise decoding (Mudgal et al., 2024), where a block of length B is
decoded n times and one with highest token-level reward is selected, and decoding is continued as such. Blockwise decoding
could also be viewed as a simple form of tree search and also beam search. Our main result in this section characterizes the
KL diveregnce of blockwise best-of-n with respect to the reference policy.

For the purpose of this section, we assume that the fully decoded response y := (y1, . . . , yT ) consist of T intermediate
steps (which are tokens in the context of language model and denoising steps in the context of diffusion). For the purposes
of this section, we focus on the presentation using generative language models. We let yT = EOS be a special token that
determines the end of sequence. The autoregressive decoding could be further explained as follows. In the first decoding
step, the model π assigns a probability distribution over the first token given by π(·|x), and one token y1 is drawn from
this distribution. Next, the second token, y2 is drawn from π(·|x, y1), and so on. In short, in each step a token is drawn
from π(·|x, yt−1) where yt := (y1, . . . , yt). Note that through the chain rule, any language model could be equivalently
expressed as a next-token predictor.

Blockwise best-of-n decoding rule was recently proposed by Mudgal et al. (2024). Here, the decoder samples n blocks
of length B tokens from the reference model and accepts one with highest reward. Formally, if the decoder has already
decoded yt and the context is x, then

zB := arg max
{zB

(k)
}k∈[n]

r(x, yt, zB(k)), (124)

where zB(k) is the k-th continuation of length B drawn independently from the reference model:

{zB(k)}k∈[n]
i.i.d.∼ πref(·|x, yt), (125)

and decoding continues until EOS is reached. We call the resulting distribution π(n)
B . Note that when B →∞, π(n)

B becomes
the sequence level best-of-n distribution, π(n).

Here, we assume we have access to a reward model can produce scalar values for r(x, yt) for any partially decoded sequence
yt, which extends the definition of a reward model to also score partial sequences in addition to fully decoded sequences.
Mudgal et al. (2024) argue that for this extension to be meaningful the extended function should encode the value function
for the sequence-level reward model. However, for the purposes of bounding the KL divergence, we don’t care how the
token-level reward function is obtained.

In the blockwise best-of-n decoding, control is applied more frequently than the sequence-level best-of-n, and the blockwise
decoding enables to effectively score an exponentially large number of fully decoded sequences (similarly to how beam
search works). Thus, intuitively the effective n would be exponentially larger and the KL divergence would be expected to
grow linearly with the number of times control is applied, i.e., |y|/B where |y| is the length of the decoded sequence and B
is the block length. Next, we formalize this intuition by recalling Theorem B.1.

Theorem B.1. Let a decoder, π(n)
B , perform block-wise best-of-n with blocks of length B steps. Further, let y be draw from

this decoder in context x such that |y| is the length of y, i.e., the total number of decoding steps. Then,

DKL(π
(n)
B (·|x)‖πref(·|x)) ≤ E

y∼π(n)
B (·|x)

⌈ |y|
B

⌉
K̃Ln,

where d·e is the ceiling operator (smallest larger integer), and K̃Ln is defined in Equation (4).

Proof. Let us consider all possible outcomes for decoding a block of length B. The outcomes either finish and we reach
EOS withing the block. We call this event E = 1, or leads to a partially decoded sequence z = zB , and we call this outcome
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E = 0. In this case, we write y = (zB , s).

DKL(π
(n)
B (·|x)‖πref(·|x)) =E

y∼π(n)
B (·|x)

log
π

(n)
B (y|x)

πref(y|x)
(126)

=E
y∼π(n)

B (·|x)

{
1(E = 1) log

π
(n)
B (y|x)

πref(y|x)

}
+ E

y∼π(n)
B (·|x)

{
1(E = 0) log

π
(n)
B (y|x)

πref(y|x)

}
(127)

=E
y∼π(n)

B (·|x)

{
1(E = 1) log

π
(n)
B (y|x)

πref(y|x)

}

+ E
zB∼π(n)

B (·|x)
E

s∼π(n)
B (·|x,zB)

{
1(E = 0)

(
log

π
(n)
B (zB |x)

πref(zB |x)
+ log

π
(n)
B (s|x, zB)

πref(s|x, zB)

)}
(128)

=E
y∼π(n)

B (·|x)

{
1(E = 1) log

π
(n)
B (y|x)

πref(y|x)

}
+ E

zB∼π(n)
B (·|x)

{
1(E = 0) log

π
(n)
B (zB |x)

πref(zB |x)

}

+ E
zB∼π(n)

B (·|x)
E

s∼π(n)
B (·|x,zB)

{
1(E = 0) log

π
(n)
B (s|x, zB)

πref(s|x, zB)

}
(129)

≤K̃Ln + E
zB∼π(n)

B (·|x)

{
1(E = 0)DKL(π

(n)
B (·|x, zB)‖πref(·|x, zB))

}
(130)

≤K̃Ln + E
zB∼π(n)

B (·|x)
1(E = 0)E

s∼π(n)
B (·|x,zB)

⌈ |s|
B

⌉
K̃Ln (131)

=E
y∼π(n)

B (·|x)

⌈ |y|
B

⌉
K̃Ln, (132)

where Equation (131) follows from recursively applying the same procedure to the subsequent blocks.

This theorem immediately suggests that d |y|B eK̃Ln could be used as an estimator for the KL divergence of block-wise
best-of-n, and in expectation the estimator provides an upper bound on the KL divergence of blockwise best-of-n and
the reference model. Sequence-level best-of-n could be viewed as blockwise best-of-n with B → ∞, and Theorem B.1
simplifies to Theorem 3.1 in this asymptotic regime.
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C. Experiments
C.1. Details of experiments on Alpaca dataset

We select the following four prompts from the Alpaca dataset (Taori et al., 2023).

P1 Transform the following sentence into a yes/no question. It is going to rain tomorrow.

P2 Describe the function of a computer motherboard.

P3 What is the capital of France?

P4 Give three tips for staying healthy.

We plot results based on Gemma 2 9B parameter instruction tuned model (Gemma et al., 2024) with temperature one. We
further modify the prompts as per the instructions in https://ai.google.dev/gemma/docs/formatting. We
use log-likelihood of the reference model as the reward. To get the better upper bound we use Corollary 4.2, where we
bound ε∞ using 100 samples.

C.2. Computation of tilted min/max

We compute the tilted average of the estimator defined by (Li et al., 2023, Equation (2)):

1

t
logEy∼π(n)(·|x)

[
etdn(εn)

]
. (133)

Note that Equation (133) recovers miny∼π(n)(·|x) [dn(εn)] for t→ −∞, and maxy∼π(n)(·|x) [dn(εn)] for t→∞ (Li et al.,
2023). To capture the variance, we call the value for t = −1 the tilted min, and the value for t = 1 the tilted max. The tilted
min/max capture the low/high quantiles of the value of the estimator and their difference portrays the deviation from the
mean.

C.3. Experiments with machine translation prompts

In this section, we demonstrate the value of the new estimator using machine translation prompts.

P1 Translate the next sentences to German. I want to buy bread.

P2 Translate the next sentences to French. I want to buy bread.

P3 Translate the next sentences to German. A simple and effective method for the inference-time alignment and scaling
test-time compute of generative models is the best-of-n policy, where n samples are drawn from a reference policy,
ranked based on a reward function, and the highest ranking one is selected. A commonly used analytical expression
in the literature claims that the KL divergence between the best-of-n policy and the reference policy is equal to
log(n) − (n − 1)/n. We disprove the validity of this claim, and show that it is an upper bound on the actual KL
divergence. We also explore the tightness of this upper bound in different regimes, and propose a new estimator for
the KL divergence and empirically show that it provides a tight approximation. We also show that the win rate of the
best-of-n policy against the reference policy is upper bounded by n/(n + 1) and derive bounds on the tightness of
this characterization. We conclude with analyzing the tradeoffs between win rate and KL divergence of the best-of-n
alignment policy, which demonstrate that very good tradeoffs are achievable with n < 1000.

P4 Translate the next sentences to French. A simple and effective method for the inference-time alignment and scaling
test-time compute of generative models is the best-of-n policy, where n samples are drawn from a reference policy,
ranked based on a reward function, and the highest ranking one is selected. A commonly used analytical expression
in the literature claims that the KL divergence between the best-of-n policy and the reference policy is equal to
log(n) − (n − 1)/n. We disprove the validity of this claim, and show that it is an upper bound on the actual KL
divergence. We also explore the tightness of this upper bound in different regimes, and propose a new estimator for
the KL divergence and empirically show that it provides a tight approximation. We also show that the win rate of the
best-of-n policy against the reference policy is upper bounded by n/(n + 1) and derive bounds on the tightness of
this characterization. We conclude with analyzing the tradeoffs between win rate and KL divergence of the best-of-n
alignment policy, which demonstrate that very good tradeoffs are achievable with n < 1000.
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Figure 10. The analytical formula (log(n)− (n− 1)/n), Equation (4), better upper bound (Corollary 4.2, Appendix C), the proposed
estimator, Equation (25), and the exact KL divergence, for four machine translation examples using Gemma 9B IT model (Gemma et al.,
2024) with reward the log-likelihood of response under the reference model.
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Figure 11. The analytical formula (log(n)− (n− 1)/n), Equation (4), better upper bound (Corollary 4.2, Appendix C), the proposed
estimator, Equation (25), and the exact KL divergence, for four machine translation examples using Gemma 9B IT model (Gemma et al.,
2024) with reward the negative length of response under the reference model.
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