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ABSTRACT

The fundamental motivation for time series generation tasks lies in addressing the
pervasive challenge of data scarcity. However, we have identified a critical limita-
tion: existing time series generation models are prone to substantial performance
degradation when trained on limited data. To tackle this issue, we propose a novel
framework that integrates data priors to enhance the robustness and generalization
of time series generation under data-scarce conditions. Our framework is structured
around a two-stage pipeline: pre-training and fine-tuning. In the pre-training stage,
the model is trained on synthetic time series datasets to learn data priors, which
encode the fundamental statistical properties and temporal dynamics of time series
data. Subsequently, during the fine-tuning stage, the model is refined using a
small-scale target dataset to adapt to the specific distribution of the target domain.
Extensive experimental evaluations demonstrate that our framework mitigates per-
formance degradation caused by data scarcity, achieving state-of-the-art results in
time series generation tasks. This work not only advances the field of time series
modeling but also provides a scalable solution for real-world applications where
data availability is often limited.

1 INTRODUCTION
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Figure 1: Performance drop in time series genera-
tion models on the Stock dataset with varying size.

Time series generation (TSG) stands as a cor-
nerstone problem across diverse domains, in-
cluding finance, energy, and healthcare (Lim &
Zohren, 2021). Recent advancements (Goodfel-
low et al., 2014; Kingma & Welling, 2013; Chen
et al., 2018) in machine learning have propelled
significant progress in this area, with diffusion
models emerging as a particularly promising
approach due to their capacity to model intri-
cate temporal dependencies and produce high-
fidelity sequences (Ho et al., 2020; Galib et al.,
2024; Yuan & Qiao, 2024; Coletta et al., 2023;
Narasimhan et al., 2024a). However, the effi-
cacy of these models is heavily contingent upon
access to large-scale, high-quality datasets—a
requirement that is often impractical in real-
world settings.

In numerous practical scenarios, the acquisition of extensive time series data is hindered by privacy
constraints (Alaa et al., 2021), prohibitive collection costs, or the infrequency of specific events.
Consequently, time series generation under data-scarce conditions has emerged as a critical yet
underexplored research frontier (Li et al., 2024a). Traditional models, when applied directly to
small-sample datasets, frequently exhibit substantial performance degradation, as shown in Figure 1.

To tackle the challenge of data scarcity, we leverage large-scale time series datasets as data priors.
We posit that these prior datasets may encapsulate partial yet informative characteristics of the target
datasets. Grounded in this hypothesis, we introduce a novel two-stage training framework built
upon diffusion models. During the first stage, diffusion model undergoes pre-training on a synthetic
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dataset to learn the prior distribution of time series data, akin to the role of a foundational model.
In the second stage, the model is fine-tuned on a limited target dataset, enabling the adaptation of
the prior distribution to the target distribution. By decoupling the training process into these two
distinct phases, our experimental results demonstrate that the proposed framework achieves superior
utilization of synthetic priors and scarce real-world data. The key contributions of this work are
summarized as follows:

• We uncover a critical yet frequently overlooked issue: state-of-the-art time series generation
models suffer from severe performance degradation under data scarcity, highlighting a
significant gap in existing research. Thus, we introduce PreDiff, an innovative paradigm
for time series generation designed to address data scarcity.

• By integrating data priors with a meticulously crafted pre-training and fine-tuning strategy,
PreDiff enhances the modeling of target data distributions and effectively mitigates
performance degradation induced by limited data availability.

• We find that: 1) A larger data prior improves the performance of PreDiff; 2) PreDiff
effectively handles both trend-dominated and periodic time series, even under extreme data
scarcity; 3) PreDiff is flexible, integrating various diffusion-based TSG modules and data
priors. 4) We also investigate the impact of different data priors. The higher the feature
overlap between the data prior and the target data, the better the performance.

2 RELATED WORK

Recent advancements in time series generation have explored various architectures, including genera-
tive adversarial network (GAN) (Yoon et al., 2019; Seyfi et al., 2022; Wang et al., 2023), variational
autoencoders (VAEs) (Desai et al., 2021; Lee et al., 2023; Li et al., 2023; Naiman et al., 2023),
Transformer (Li et al., 2024b), and hybrid approaches (Rubanova et al., 2019; Kidger et al., 2021;
Zhou et al., 2023; Alaa et al., 2021), often combined with neural networks like long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997), gated recurrent unit (GRU) (Cho et al., 2014),
and Transformer (Vaswani et al., 2017). These methods effectively capture temporal patterns but
often struggle with challenges such as mode collapse and instability.

Diffusion models (Ho et al., 2020), originally designed for image generation, have gained trac-
tion in time series generation due to their interpretability and ability to model complex data dis-
tributions. Methods like Diff-TS (Yuan & Qiao, 2024), DiffWave (Kong et al., 2021), TIME
WEAVER (Narasimhan et al., 2024a), and ImagenTime (Naiman et al., 2024) PaD-TS (Li et al., 2025)
leverage diffusion processes to enhance temporal pattern modeling. FIDE (Galib et al., 2024) further
extends diffusion models to handle rare and extreme events by incorporating frequency-domain strate-
gies. (Jing et al., 2024) synthesizes time series by manipulating existing time series. Additionally,
constrained generation approaches, such as those by (Coletta et al., 2023; Narasimhan et al., 2024b),
address specific constraints but often overlook the challenge of data scarcity.

Despite these advancements, the issue of time series generation under data scarcity remains under-
studied. This gap motivates our work, as data scarcity can significantly hinder model performance.
We propose PreDiff to address this challenge, emphasizing the importance of robust generation
methods in data-limited scenarios. Although relevant work (Gonen et al., 2025) is being done to
address this issue, it heavily relies on the distribution of the training dataset and suffers from poor
generalization (See also Appendix J).

3 BACKGROUND

Problem Definition Let X1:τ = (x1, . . . , xτ ) ∈ Rτ×d denote a time series spanning τ time steps,
where d is the dimensionality of the observed signals. The goal of TSG is to learn a generative model
µθ that maps from a latent space Z to the time series space X , generating new sequences xgen that
align with the real data distribution Preal(x):

xgen = µθ(z), z ∼ Pz, (1)

where Pz is a prior distribution over the latent space (e.g., Gaussian).

2
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Figure 2: Framework of PreDiff, where means we only update the model parameters from step
T to step t0 in pre-training phase. means that we train the model parameters from step t0 to step 0
in the fine-tuning phase, while keeping the parameters frozen in the pre-training phase.

Challenges in Small-Sample Regimes When the time series length τ is small or the dataset is
limited, traditional generative methods (e.g., training directly on the entire dataset) face several
challenges: 1) Overfitting Risk: Models trained on scant data tend to memorize specific sequences
rather than learn the true distribution, yielding poor generalization and low-quality outputs. 2)
Insufficient Diversity: With few examples, generators fail to reproduce the full variability of the
real data, producing samples that underrepresent the range of true patterns and incur distributional
shifts. 3) Weak Temporal Modeling: Complex dependencies—trends, seasonality, or irregular fluc-
tuations—are difficult to capture when data are scarce, leading to synthetic series that mischaracterize
the underlying temporal structure.

Diffusion Process for TSG Diffusion-based methods for TSG typically involve two processes: the
forward process and the reverse process.

Forward Process. A sample x0 ∼ q(x) from the data distribution is gradually corrupted into standard
Gaussian noise xT ∼ N (0, I) through a series of diffusion steps. The transition at each step t is
parameterized by: q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt ∈ (0, 1) controls the amount

of noise added at step t.

Reverse Process. A neural network learns to gradually denoise the sample through the reverse
transition: pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where µθ(xt, t) and Σθ(xt, t) are learned
parameters. The reverse process is trained to approximate the true posterior q(xt−1|xt).

Training Objective Following (Ho et al., 2020), the denoising model µθ(xt, t) is trained using a
weighted mean squared error (MSE) loss: L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, where ϵθ(xt, t) predicts the

noise added during the forward process. This objective can be interpreted as optimizing a weighted
variational lower bound on the data log-likelihood.

4 METHOD: PREDIFF

Figure 2 illustrates the framework of PreDiff, which consists of three main components: (1) the
construction of a time series prior dataset Xprior, (2) pre-training of a diffusion model based on
Xprior, and (3) fine-tuning on a small-scale target dataset Xtarget.

Synthesis of Xprior Data scarcity often leads to reduced diversity in the target dataset. To mitigate
the impact of data scarcity during the pre-training phase, we construct a prior dataset Xprior to cover
a broader data distribution. The construction of Xprior is flexible: it can be derived from large-scale
real-world datasets (e.g., Time-MOE (Shi et al., 2024) and Monash dataset (Godahewa et al., 2021))
or synthetic datasets (e.g., ForecastPFN (Dooley et al., 2024)). Specifically, ForecastPFN decomposes
synthetic time series data into periodic, global, and noise components, then models these components
using mathematical formulations. Unless otherwise specified, this paper uses synthetic datasets
generated by ForecastPFN as the prior to validate the effectiveness of PreDiff. The details of
ForecastPFN can be found in Appendix A. The impact of the prior dataset on generation performance
will be discussed in Section I.

3
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Pre-training Phase Traditional diffusion models are typically trained on large datasets. However,
training diffusion models directly on limited samples often results in significant performance degra-
dation (see Figure 1). To address this, we pre-train the latter half of the diffusion model (i.e., from
the intermediate noise state t to the pure noise state T ) using the prior dataset Xprior. Specifically,
during each epoch of pre-training, we randomly select a diffusion step t within the interval [t0, T ] and
forward diffuse xt ∼ Xprior to xT . For the forward diffusion method p, we default to the approach
proposed by (Ho et al., 2020), though this can be adjusted based on specific requirements. The model
then predicts the noise at step t using the time series generation network µθ(xt, t). During this phase,
the model optimizes only over randomly selected steps within [t0, T ], and the loss function is defined
as:

Lpre = Et∼[t0,T ],xt∼Xprior

[
∥µθ(xt, t)− ϵ∥2

]
, (2)

where t0 is the segmentation point.
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Figure 2. Framework of PreDiff, where means we only update the model parameters from step T to step t0 in pre-training phase.
means that we train the model parameters from step t0 to step 0 in the fine-tuning phase, while keeping the parameters frozen in the

pre-training phase.

function is defined as:

Lft = Etf∼(0,t0),x0∼Xtarget

[
∥µθ(xtf , tf )− ϵ∥2

]
. (6)

Fine-tuning on the target dataset enhances the model’s per-
ception of the target domain distribution, enabling more
accurate generation of time series data that aligns with prac-
tical requirements. While the pre-training phase learns the
distribution from t to T , the fine-tuning phase focuses on
modeling the distribution from 0 to t, further improving
generation precision.

4.4. Pretrain, Finetune, and Sampling Details

During pre-training, perturbations are applied to Xprior in
the forward process to ensure that the denoising diffusion
process leverages the temporal prior distribution in Xprior.
This adjustment enhances the effectiveness of our proposed
paradigm in capturing and retaining critical information
during pre-training. The fine-tuning process is similar to
pre-training, except that it uses the dataset Xtarget. Our
framework is flexible, allowing various diffusion model vari-
ants to be directly integrated into PreDiff. As shown in
Figure 2, we can replace the Diffusion-based TSG Methods
in both the pre-training and fine-tuning phases with meth-
ods such as DDPM (Ho et al., 2020) and Diff-TS (Yuan
& Qiao, 2024). The sampling process follows the same
procedure as DDPM, and Appendix D provides the specific
implementation details of our method.

5. Experiments
The following experiments are designed to address four key
questions to demonstrate the effectiveness of the proposed
method.

• RQ1: Does PreDiff outperform the baseline meth-
ods?

• RQ2: Is the performance improvement of PreDiff

Algorithm 1 Training Strategy

Require: Prior dataset Xprior (for pretraining), target
dataset Xtarget (for fine-tuning), Diffusion model pa-
rameters θ, Number of diffusion steps T , Step size αt.

1: Stage 1: Pretrain on Prior Dataset
2: Initialize model parameters θ randomly.
3: for each sample x0 in Xprior do
4: Randomly choose t between t0 to T .
5: Add noise to x0 to obtain xt:

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I).

6: Update model µθ by minimizing pretrain loss Lpre.
7: end for
8: Stage 2: Fine-tune on Target Dataset
9: Load pretrained parameters θ from Stage 1.

10: for each sample x0 in Xt do
11: Randomly choose t between 0 to t0.
12: Fine-tune µθ by minimizing fine-tune loss Lft.
13: end for

attributed to its two-stage architecture?

• RQ3: Can the generated data be evaluated on down-
stream tasks to demonstrate its effectiveness?

• RQ4: Is it possible to investigate the applicability of
data priors?

5.1. Experimental Setup

Datasets. We conduct extensive evaluations on four widely-
used public datasets: Stock, Energy, ETTh, and fMRI (Ang
et al., 2023). Comprehensive descriptions of these datasets,
including their domains, characteristics, and preprocessing
steps, are provided in Appendix B. To emulate real-world
scenarios where only partial observations are available, we
employ a percentage-based splitting strategy (e.g., 10% of
the Stock dataset). Specifically, a random split point is se-
lected within the full dataset, and the data is segmented

4

By incorporating prior knowledge, the model
expands the target data distribution during pre-
training, leveraging the diverse scenarios of syn-
thetic data to provide a broader modeling space
and enhance generation capabilities, particularly
when the target data distribution is narrow.

Fine-tuning Phase During fine-tuning, we train
the first half of the diffusion model (i.e., from the
target state 0 to the intermediate noise state t0)
using the target dataset Xtarget. Specifically, in
each epoch of fine-tuning, we randomly select a
step tf within the interval (0, t0) and forward dif-
fuse x0 ∼ Xtarget to xtf using the same forward
diffusion method p. The model then predicts the
noise at step tf using the pre-trained network µθ.
During this phase, the model optimizes only over
randomly selected steps within (0, t0), and the loss
function is defined as:

Lft = Etf∼(0,t0),x0∼Xtarget

[
∥µθ(xtf , tf )− ϵ∥2

]
. (3)

Fine-tuning on the target dataset enhances the model’s perception of the target domain distribution,
enabling more accurate generation of time series data that aligns with practical requirements. While
the pre-training phase learns the distribution from t to T , the fine-tuning phase focuses on modeling
the distribution from 0 to t, further improving generation precision.

Pretrain, Finetune, and Sampling Details During pre-training, perturbations are applied toXprior

in the forward process to ensure that the denoising diffusion process leverages the temporal prior
distribution in Xprior. This adjustment enhances the effectiveness of our proposed paradigm in
capturing and retaining critical information during pre-training. The fine-tuning process is similar
to pre-training, except that it uses the dataset Xtarget. Our framework is flexible, allowing various
diffusion model variants to be directly integrated into PreDiff. As shown in Figure 2, we can
replace the Diffusion-based TSG Methods in both the pre-training and fine-tuning phases with
methods such as DDPM (Ho et al., 2020) and Diff-TS (Yuan & Qiao, 2024). The sampling process
follows the same procedure as DDPM, and Appendix D provides the specific implementation details
of our method.

5 EXPERIMENTS

The following experiments are designed to address four key questions to demonstrate the effectiveness
of the proposed method. 1) RQ1: Does PreDiff outperform the baseline methods? 2) RQ2: Is
the performance improvement of PreDiff attributed to its two-stage architecture? 3) RQ3: Can
the generated data be evaluated on downstream tasks to demonstrate its effectiveness? 4) RQ4: Is it
possible to investigate the applicability of data priors?
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5.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive evaluations on four widely-used public datasets: Stock, Energy,
ETTh, and fMRI (Ang et al., 2023). Comprehensive descriptions of these datasets, including their
domains, characteristics, and preprocessing steps, are provided in Appendix B. To emulate real-world
scenarios where only partial observations are available, we employ a percentage-based splitting
strategy (e.g., 10% of the Stock dataset). Specifically, a random split point is selected within the full
dataset, and the data is segmented proportionally to reflect the challenges of limited data availability
in practical settings.

Baselines. To rigorously assess the performance of our proposed method, we compare it against
a suite of state-of-the-art time series generation models, including TimeGAN (Yoon et al., 2019),
TimeVAE (Desai et al., 2021), DiffWave (Kong et al., 2021), DiffTime (Coletta et al., 2023), Diff-
TS (Yuan & Qiao, 2024), and FIDE (Galib et al., 2024). These baselines represent a diverse range
of methodologies, from generative adversarial networks and variational autoencoders to advanced
diffusion-based approaches. Unless otherwise specified, the size of Xprior is set to 100K. Detailed
configurations, hyperparameters, and implementation specifics for each baseline are meticulously
documented in Appendix C.

Evaluation Metrics. In extreme data-scarce settings, generated time series often lack sufficient
quality for reliable forecasting or classification. To overcome this, we employ the TSGBench
evaluation framework (Ang et al., 2023), which quantifies both global and local similarities between
real and synthetic series (see Appendix E for details). We measure: 1) Global Similarity Metrics:
MDD (Mean Distribution Distance), ACD (Auto-Correlation Distance), SD (Spectral Distance), and
KD (Kernel Distance). 2) Local Similarity Metrics: ED (Euclidean Distance) and DTW (Dynamic
Time Warping). Smaller values of these metrics are preferred.

Table 1: The comprehensive comparison of
PreDiff against state-of-the-art time series
generation models on the Stock dataset at vary-
ing data availability levels (100%, 70%, 40%,
and 10%). Red text denotes the best results, and
blue text denotes the second-best.

Models TimeGAN TimeVAE DiffTime DiffWave FIDE Diff-TS PreDiff

Metric (2019) (2021) (2023) (2021) (2024) (2024) (Ours)

MDD↓ 0.373 0.358 0.365 0.357 0.359 0.349 0.356
ACD↓ 0.054 0.058 0.059 0.046 0.066 0.053 0.051
SD↓ 0.359 0.335 0.336 0.341 0.345 0.322 0.328
KD↓ 1.696 1.698 1.609 1.597 1.603 1.594 1.598
ED↓ 1.093 1.116 1.104 1.111 1.105 1.087 1.061

10
0%

DTW↓ 2.899 2.910 2.901 2.896 2.901 2.897 2.906

MDD↓ 0.855 0.851 0.845 0.831 0.827 0.810 0.797
ACD↓ 0.082 0.085 0.079 0.100 0.091 0.085 0.088
SD↓ 0.403 0.402 0.405 0.387 0.395 0.386 0.377
KD↓ 1.856 1.853 1.854 1.837 1.845 1.823 1.805
ED↓ 1.145 1.151 1.160 1.156 1.187 1.145 1.139

70
%

DTW↓ 2.978 2.983 2.976 2.964 2.958 2.943 2.921

MDD↓ 1.166 1.181 1.166 1.177 1.164 1.163 1.158
ACD↓ 0.424 0.444 0.424 0.417 0.421 0.419 0.414
SD↓ 1.217 1.213 1.218 1.206 1.215 1.206 1.209
KD↓ 1.054 1.041 1.043 1.050 1.049 1.041 1.033
ED↓ 1.393 1.375 1.379 1.371 1.386 1.364 1.362

40
%

DTW↓ 3.498 3.502 3.505 3.497 3.499 3.489 3.474

MDD↓ 1.754 1.776 1.766 1.782 1.787 1.764 1.724
ACD↓ 0.742 0.761 0.777 0.764 0.765 0.751 0.728
SD↓ 1.471 1.477 1.471 1.470 1.476 1.455 1.342
KD↓ 1.661 1.675 1.669 1.662 1.669 1.643 1.629
ED↓ 1.514 1.560 1.506 1.525 1.532 1.511 1.499

10
%

DTW↓ 3.930 3.957 3.913 3.924 3.921 3.905 3.898

Table 2: Comprehensive comparison of
PreDiff against six baselines across four
datasets 10% data availability. Lower values
indicate better performance.

Models TimeGAN TimeVAE DiffTime DiffWave FIDE Diff-TS PreDiff

Metric (2019) (2021) (2023) (2021) (2024) (2024) (Ours)

MDD↓ 1.754 1.776 1.766 1.782 1.787 1.764 1.724
ACD↓ 0.742 0.761 0.777 0.764 0.765 0.751 0.728
SD↓ 1.471 1.477 1.471 1.470 1.476 1.455 1.342
KD↓ 1.661 1.675 1.669 1.662 1.669 1.643 1.629
ED↓ 1.514 1.560 1.506 1.525 1.532 1.511 1.499

St
oc

k

DTW↓ 3.930 3.957 3.913 3.924 3.921 3.905 3.898

MDD↓ 0.558 0.552 0.564 0.563 0.555 0.547 0.524
ACD↓ 0.635 0.626 0.627 0.645 0.639 0.625 0.608
SD↓ 0.755 0.755 0.744 0.759 0.760 0.738 0.729
KD↓ 0.431 0.440 0.419 0.409 0.421 0.421 0.410
ED↓ 1.632 1.634 1.652 1.642 1.642 1.635 1.609

fM
R

I

DTW↓ 7.248 7.239 7.245 7.249 7.252 7.238 7.222

MDD↓ 0.885 0.889 0.902 0.885 0.905 0.889 0.872
ACD↓ 1.036 1.033 1.038 1.019 1.024 1.027 1.009
SD↓ 0.372 0.362 0.358 0.38 0.353 0.362 0.369
KD↓ 1.674 1.668 1.677 1.668 1.673 1.671 1.661
ED↓ 1.098 1.073 1.091 1.074 1.089 1.091 1.081

E
T

T
h

DTW↓ 3.066 3.057 3.070 3.065 3.074 3.064 3.049

MDD↓ 1.470 1.462 1.461 1.469 1.454 1.456 1.427
ACD↓ 0.367 0.365 0.365 0.381 0.361 0.352 0.317
SD↓ 0.671 0.669 0.669 0.675 0.649 0.655 0.652
KD↓ 2.110 2.105 2.099 2.105 2.127 2.106 2.094
ED↓ 1.741 1.742 1.730 1.739 1.743 1.738 1.722

E
ne

rg
y

DTW↓ 7.230 7.235 7.232 7.217 7.234 7.228 7.216

5.2 RESULTS (RQ1)

Study on Stock Dataset This example experiment on the Stock dataset reveals several intriguing
phenomena that provide valuable insights and motivate further investigation through additional
experiments. In Table 1, across all data availability levels, PreDiff consistently outperforms
or matches the performance of other models. PreDiff demonstrates strong performance even

5
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under extreme data scarcity (10% data). As data availability decreases, PreDiff’s performance
degradation is more gradual compared to other models, highlighting its robustness. PreDiff’s
performance is not limited to a single metric but extends across all six metrics, indicating its ability
to capture both global and local properties of time series.

PreDiff outperforms all baselines, including recent models like FiDE and Diff-TS, which are
specifically designed for time series generation. This underscores the effectiveness of PreDiff’s
two-stage training framework, which leverages synthetic data for pre-training and fine-tunes on target
data.

PreDiff vs. Baselines on 10% Data We evaluated PreDiff against baseline methods on
four real-world datasets with 10% data availability. As shown in Table 2, PreDiff consistently
outperforms other methods, demonstrating its ability to generate high-quality time series data across
diverse domains, even under limited data conditions.

The results unequivocally demonstrate that PreDiff sets a new benchmark for time series genera-
tion, achieving superior performance across diverse datasets and metrics. Compared with Diff-TS,
PreDiff’s success highlights the importance of its two-stage training strategy, which combines
synthetic data pre-training with target data fine-tuning to enhance generalization and robustness.
PreDiff’s consistent performance across datasets and metrics makes it a highly practical solution
for real-world applications, where data diversity and quality are often limited.

Table 3: Comprehensive comparison of PreDiff
and Diff-TS across four datasets under varying data
availability levels.

Per(%) 100% 70% 40% 10%

Models Diff-TS PreDiff Diff-TS PreDiff Diff-TS PreDiff Diff-TS PreDiff

MDD↓ 0.349 0.356 0.810 0.797 1.163 1.158 1.764 1.724
ACD↓ 0.053 0.051 0.085 0.088 0.419 0.414 0.751 0.728
SD↓ 0.322 0.328 0.386 0.377 1.206 1.209 1.455 1.342
KD↓ 1.594 1.598 1.823 1.805 1.041 1.033 1.643 1.629
ED↓ 1.087 1.061 1.145 1.139 1.364 1.362 1.511 1.499

St
oc

k

DTW↓ 2.897 2.906 2.943 2.921 3.489 3.474 3.905 3.898

MDD↓ 0.294 0.288 0.311 0.305 0.392 0.374 0.547 0.524
ACD↓ 0.198 0.194 0.239 0.202 0.467 0.432 0.625 0.608
SD↓ 0.154 0.137 0.277 0.271 0.429 0.401 0.738 0.729
KD↓ 0.118 0.106 0.153 0.159 0.282 0.258 0.421 0.410
ED↓ 0.873 0.877 0.938 0.932 1.236 1.202 1.635 1.609

fM
R

I

DTW↓ 6.088 6.071 6.216 6.201 6.623 6.594 7.238 7.222

MDD↓ 0.307 0.292 0.508 0.493 0.529 0.511 0.889 0.872
ACD↓ 0.201 0.188 0.227 0.209 0.295 0.286 1.027 1.009
SD↓ 0.217 0.206 0.225 0.213 0.257 0.239 0.362 0.369
KD↓ 0.598 0.574 0.664 0.673 0.739 0.721 1.671 1.661
ED↓ 0.821 0.823 0.902 0.870 0.917 0.908 1.091 1.081

E
T

T
h

DTW↓ 2.288 2.269 2.503 2.475 2.554 2.549 3.064 3.049

MDD↓ 0.960 0.951 1.068 1.066 1.139 1.131 1.456 1.427
ACD↓ 0.243 0.237 0.287 0.289 0.327 0.319 0.352 0.317
SD↓ 0.324 0.308 0.378 0.372 0.463 0.446 0.655 0.652
KD↓ 1.431 1.418 1.756 1.739 1.969 1.930 2.106 2.094
ED↓ 1.046 1.048 1.153 1.151 1.346 1.329 1.738 1.722

E
ne

rg
y

DTW↓ 6.541 6.549 6.825 6.821 6.952 6.949 7.228 7.216

PreDiff vs. Diff-TS We further eval-
uated the performance of Diff-TS and
PreDiff on four datasets at varying data
availability levels (100%, 70%, 40%, and
10%). Here, we employ Diff-TS as
the diffusion-based TSG module within
PreDiff to further validate the effective-
ness of the proposed training framework.

The Stock dataset exhibits strong trend char-
acteristics, resulting in significant distribu-
tional shifts when split into smaller subsets.
In contrast, the ETTh dataset, with its pro-
nounced periodicity, shows minimal distribu-
tional changes when divided. As shown in
Table 3, the performance of both models de-
grades more gradually on Stock as data avail-
ability decreases. For ETTh, performance
remains stable at 100%, 70%, and 40% data
levels but drops significantly at 10%.

Notably, PreDiff onsistently outperforms
or matches the performance of Diff-TS across
all scenarios. PreDiff demonstrates strong
performance even under extreme data scarcity
(10% data). As data availability decreases,
PreDiff’s performance degradation is more gradual compared to Diff-TS, highlighting its robustness.
PreDiff outperforms Diff-TS in nearly all scenarios, particularly under low data availability (10%
and 40%). This underscores the effectiveness of PreDiff’s two-stage training framework, which
leverages synthetic data for pre-training and fine-tunes on target data. These results validate the
effectiveness of our proposed framework in handling both trend-dominated and periodic time series
data, even under extreme data scarcity.

Additionally, we explore the flexibility of PreDiff by integrating different diffusion models as the
TSG module. Results (see Appendix F) confirm the adaptability of our approach across different
diffusion-based generative models.
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Figure 3: (a) The performance of Pre-training Only, Fine-tuning Only and PreDiff on 70% of the
Energy dataset. (b) The performance of full-range training and two-stage training on 10% of the
Stock dataset.

5.3 ABLATION STUDY (RQ2)

Validation of Two-stage Strategy To validate the effectiveness of the proposed two-stage training
framework, we conduct ablation experiments to assess the contribution of each stage by comparing
three configurations: (1) Pre-training Only (w/o Fine-tuning): Training solely on Xprior without
target data fine-tuning. (2) Fine-tuning Only (w/o Pre-training): Training directly on the target
data, omitting pre-training. (3) Datasets Mixing: Combine synthetic and target samples into a single
training set to test whether performance gains arise merely from increased data volume. (4) Full
Model (PreDiff): Pre-train on prior data, then fine-tune on the target data.

As shown in Figure 3(a), the full two-stage approach consistently outperforms all alternatives across
every metric, demonstrating its superior ability to integrate synthetic and real data for high-quality
time-series generation under data scarcity.

Validation of t To evaluate the impact of the boundary step t in the two-stage training framework
on time series generation, we designed the following ablation experiments: (1) Full-Range Training:
Train the model on Xprior to learn the generation process from 0 to T , then continue training on the
target data from 0 to T . (2) Two-Stage Training: Train the model on Xprior to learn the generation
process from t to T , then fine-tune on the target data from 0 to t.

Experiments conducted on 70% of the Energy dataset (see Figure 3 (b) show that full-range training
performs poorly due to its susceptibility to overfitting, which negatively impacts the second training
phase. In contrast, the two-stage training framework demonstrates significant advantages by explicitly
separating long-term and short-term dynamics. This approach improves the precision and dynamic
alignment of generated data while enhancing training efficiency and model generalization.

5.4 VALIDATION ON DOWNSTREAM CLASSIFICATION TASK (RQ3)

We assess the utility of our generated time series for downstream classification by using the EEG Eye
State dataset (Dua et al., 2017) to create a blink-detection task. Employing a “train on real, test on
synthetic” protocol for computing the DS metric, we first train a two-layer LSTM solely on the real
data, then evaluate its accuracy on synthetic series produced by various generation methods. At just
10% real-data availability (Table 4), our approach yields statistically significant accuracy gains over
all baselines, demonstrating its superior performance in data-scarce downstream scenarios.

Table 4: Classification accuracy in EEG Eye dataset.

Models TimeGAN TimeVAE DiffTime DiffWave FIDE Diff-TS PreDiff

Accuracy 0.529 0.543 0.601 0.587 0.591 0.605 0.622
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5.5 APPLICABILITY OF DATA PRIORS (RQ4)

Table 5: The results of PreDiff on different
Xprior datasets with 100K and 10M data.

Size Metric ForecastPFN SNIP Monash

100K MDD 1.724 2.016 1.718
ACD 0.728 0.754 0.832
SD 1.342 1.359 1.351
KD 1.629 1.763 1.922
ED 1.499 1.636 1.526

DTW 3.898 3.973 3.872

10M MDD 1.697 2.001 1.736
ACD 0.736 0.772 0.851
SD 1.354 1.327 1.377
KD 1.624 1.729 1.939
ED 1.485 1.685 1.511

DTW 3.825 3.985 3.872

Effect of Different Xprior To investigate the
impact of different prior datasets Xprior on the
performance of PreDiff, we employ Fore-
castPFN (Dooley et al., 2024), SNIP (Mei-
dani et al., 2023), and the real-world Monash
dataset (Godahewa et al., 2021) as priors. The
dataset sizes are set to 100K and 10M , respec-
tively. The results are shown in Table 5.

Across both dataset sizes, ForecastPFN con-
sistently achieves the best performance in the
majority of metrics. This suggests that Fore-
castPFN provides a strong prior for capturing
temporal patterns and distributional properties,
making it highly effective for PreDiff. SNIP
consistently underperforms compared to Fore-
castPFN and Monash across most metrics, particularly in MDD, ACD, and ED. This suggests that
SNIP’s simulated data may not adequately capture the complexity of real-world time series, limiting
its utility as a prior for PreDiff.

WhenXprior is sampling from ForecastPFN, increasing the dataset size from 100K to 10M generally
improves performance across all priors, as evidenced by lower metric values. Larger datasets
consistently improve performance, underscoring the importance of data scale in training effective
priors for PreDiff.

However, when Xprior is drawn from SNIP or Monash, enlarging the prior set actually degrades
performance. This stems from stock data’s strong seasonality and trend patterns, which ForecastPFN
can faithfully reproduce—thus boosting generation quality. Consequently, one should prioritize priors
whose distribution closely matches that of the target data.

Guide for Choice of Xprior. The core idea of PreDiff is to extract shared features from data priors
to enhance the representations for target tasks in low-resource scenarios. When selecting data priors,
we aim to choose those that are highly relevant to the data distribution of the target task. In cases
where such priors are unavailable or poorly aligned, we generate synthetic data with more diverse
features tailored to the target task—where ”features” refer to those most critical to task performance.
For example, in time series forecasting, the most influential features are typically seasonality and
trend. The data priors used in this work are specifically designed to incorporate diverse seasonal and
trend patterns, thereby facilitating the learning of transferable shared features for forecasting tasks.

Size of Xprior. we further investigate the impact of Xprior size on the performance of PreDiff
(See Appendix H). A size of 100K may be sufficient for many scenarios, while larger sizes (e.g.,
10M ) can be used when higher precision is critical.

Analysis of t0. The boundary step t0 in PreDiff marks where pre-training on synthetic priors ends
and fine-tuning on target data begins. Appendix Table 12 shows that the best t0/T decreases as the
target dataset size grows, reflecting a more diffusion steps are considered in pre-training when richer,
larger real datasets better capture the true distribution.

5.6 COMPREHENSIVE COMPARISON AGAINST IMAGENFEW (GONEN ET AL., 2025)

To comprehensively evaluate the robustness of the proposed framework under varying data scarcity,
we conduct experiments on three benchmark datasets: Energy, Stocks, and ETTh. We compare
the performance of ImagenFew with the baseline PreDiff across four different data availability
ratios (100%, 70%, 40%, and 10%). Unlike PreDiff, which requires additional pre-training and
synthetic data generation, ImagenFew directly adapts to limited real data without relying on auxiliary
supervision.

As shown in Table 6, PreDiff demonstrates clear advantages in key metrics such as ACD, ED, and
DTW, regardless of the data availability level. These advantages become more pronounced under
low-data scenarios, indicating that PreDiff is able to capture a relatively complete distribution of
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Table 6: Comprehensive comparison of ImagenFew against PreDiff across three datasets under
varying data availability levels (100%, 70%, 40%, and 10%). Best results are highlighted in red.

Dataset Metrics 100% 70% 40% 10%

ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff

Energy

MDD↓ 0.314 0.951 0.339 1.066 0.399 1.131 0.487 1.427
ACD↓ 0.444 0.237 0.738 0.289 1.281 0.319 2.256 0.317
SD↓ 0.425 0.308 0.527 0.372 0.526 0.446 1.504 0.652
KD↓ 12.953 1.418 21.889 1.739 17.901 1.930 151.784 2.094
ED↓ 1.094 1.048 1.146 1.151 1.253 1.329 1.462 1.722

DTW↓ 6.610 6.549 6.872 6.821 7.346 6.949 8.447 7.216

Stocks

MDD↓ 0.288 0.356 0.318 0.797 0.365 1.158 0.401 1.724
ACD↓ 0.116 0.051 0.114 0.088 0.251 0.414 0.352 0.728
SD↓ 0.310 0.328 0.372 0.377 0.447 1.209 0.488 1.342
KD↓ 2.020 1.598 2.236 1.805 2.601 1.033 2.681 1.629
ED↓ 1.189 1.061 1.179 1.139 1.212 1.362 1.174 1.499

DTW↓ 3.060 2.906 3.031 2.921 3.126 3.474 3.055 3.898

ETTh

MDD↓ 0.023 0.292 0.024 0.493 0.027 0.511 0.031 0.872
ACD↓ 0.244 0.188 0.287 0.209 0.358 0.286 0.487 1.009
SD↓ 0.085 0.206 0.026 0.213 0.079 0.239 0.164 0.369
KD↓ 0.364 0.574 0.149 0.673 0.383 0.721 0.186 1.661
ED↓ 6.026 0.823 6.094 0.870 6.078 0.908 6.148 1.081

DTW↓ 16.747 2.269 16.970 2.475 16.915 2.549 17.058 3.049

real data even in extreme data-scarcity conditions. This, to some extent, reflects the effectiveness of
our approach in the pre-training stage, where diverse synthetic data scenarios are leveraged to expand
the target data distribution.

Moreover, the performance of PreDiff remains relatively stable as the amount of available data
decreases, exhibiting stronger robustness. In particular, under the 10% data availability setting,
the ACD and ED metrics remain stable (e.g., ACD on the Energy dataset increases only slightly
from 0.237 to 0.317), which further validates the effectiveness of its prior knowledge integration
mechanism.

To enhance the fairness of the comprehensive comparison experiments, we further adopt the
PreDiff data partitioning and preprocessing strategy uniformly for both models. From the results
in Appendix Table 10, the performance of ImagenFew exhibits a significant decline after uniformly
adopting the data partitioning and preprocessing strategy of PreDiff.

It is worth noting that this marked performance drop of ImagenFew confirms its dependence on
specific data preprocessing methods. Furthermore, analysis reveals that, compared with the data
partitioning and preprocessing strategy of ImagenFew, the design of PreDiff in this aspect is more
reasonable and realistic: first, in the time series domain, sensor failures and malfunctions often lead
to data collection containing only short continuous segments, which is a common scenario of data
scarcity. Second, normalizing on the complete dataset before resampling implicitly introduces global
statistical features, causing a distribution shift between randomly sampled data and real-world scarce
scenarios. This makes it difficult to accurately simulate data scarcity conditions and, to some extent,
undermines fairness.

6 CONCLUSIONS

In this work, we address the critical challenge of data scarcity in time series generation, a pervasive
issue that significantly hampers the performance of generative models. We propose PreDiff, a
novel two-stage framework that leverages data priors to enhance the robustness and generalization
of time series generation under data-limited conditions. By decoupling the training process into
pre-training on synthetic datasets and fine-tuning on small-scale target datasets, PreDiff effectively
bridges the gap between synthetic priors and real-world data distributions.

Future research directions include exploring hybrid priors that combine the strengths of synthetic
and real-world datasets, as well as extending PreDiff to other domains where data scarcity is a
significant challenge. We believe that our work provides a foundational framework for addressing
data scarcity in time series generation and inspires further advancements in this important area.
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ETHICS STATEMENT

PreDiff enables high-quality time series generation in data-scarce scenarios, but it may pose societal
and ethical risks. Synthetic data could be misused for fraud or to evade detection systems, particularly
in financial, medical, or industrial contexts. Moreover, biases in synthetic priors may propagate
through the model, leading to unfair performance in downstream tasks. The indistinguishability
between real and synthetic data may also challenge data accountability and transparency. Finally, if
fine-tuning on real data is not properly controlled, there is a risk of privacy leakage. We recommend
responsible dataset design, fairness evaluation, and usage safeguards to mitigate these risks.
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A FORECASTPFN (DOOLEY ET AL., 2024)

Most existing time-series forecasting methods rely on large amounts of training data. However, in
real-world applications, initial observations are often very limited, sometimes with only 40 data
points or fewer. In this context, the applicability of traditional methods is restricted, while the
performance of existing zero-shot forecasting methods heavily depends on the quality and diversity
of the pretraining data. This study introduces ForecastPFN, the first zero-shot time-series forecasting
model trained entirely on synthetic data distributions. Extensive experiments demonstrate that
ForecastPFN achieves superior performance in zero-shot forecasting tasks compared to state-of-the-
art methods, with significantly faster inference speeds.

ForecastPFN is a Prior-Data Fitted Network (PFN) trained offline to approximate Bayesian inference.
The model requires no training on new data and makes predictions in a single forward pass. This
method introduces a new synthetic data generation method. It is a modular synthetic data generation
framework was designed to simulate the diversity of real-world time-series data, incorporating multi-
scale seasonal trends, global linear and exponential trends, and Weibull-based noise.The synthetic data
generation process balances complexity and trainability to ensure robust forecasting performance.

The synthetic time series is modeled as a combination of two independent components: the underlying
trend (ψ) and noise (zt).Trend: Includes linear and exponential trends to capture global patterns.
Seasonality: Captures multi-scale periodic trends (e.g., weekly, monthly, yearly). Noise: Based on
the Weibull distribution, designed with an expected value of 1 to ensure independence from trends
and seasonality.

The time series yt is defined as the product of the following components:

yt = ψ(t) · zt = trend(t) · seasonal(t) · zt
• Trend Component:

trend(t) = (1 +mlin · t+ clin) ·
(
mexp · ctexp

)

where the parameters of the linear and exponential trends (e.g., mlin, clin,mexp, cexp) are
sampled from normal distributions.

• Seasonal Component:

seasonalν(t) = 1 +mν

⌊pν/2⌋∑

f=1

[
cf,ν sin

(
2πft

pν

)
+ df,ν cos

(
2πft

pν

)]

where ν ∈ {week,month, year} represents the time scale, pν is the period length, and cf,ν ,
df,ν are harmonic coefficients.

• Noise Component:

zt = 1 +mnoise · (z − z̄), z ∼ Weibull(1, k)

where mnoise and k control the intensity and shape of the noise distribution, respectively.

Diversity: The sampling ranges of the parameters are designed to cover a wide variety of possible
patterns, simulating diverse real-world time-series behaviors. Trainability: The structure of the
synthetic data ensures that the model does not diverge or stall during training, despite the diversity
in the data. Balancing Signal and Noise: Multiplicative noise is used instead of additive noise to
maintain a consistent signal-to-noise ratio across different time-series trends.

B DATASET

We evaluate our proposed method on four publicly available datasets to demonstrate its effectiveness
across diverse domains:

• Stock: This dataset comprises daily historical Google stock data from 2004 to 2019,
including trading volume, high, low, opening, closing, and adjusted closing prices. It is
widely used for financial time series analysis.

13
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• Energy: This dataset records the energy consumption of appliances in a low-energy building,
providing insights into energy usage patterns.

• ETTh (Electricity Transformer Temperature): A benchmark dataset for long-term time
series forecasting (Zhou et al., 2021), containing hourly records of power load, transformer
temperature, and other electricity-related metrics.

• fMRI: A synthetic dataset for causal discovery, consisting of simulated blood oxygen level-
dependent (BOLD) time series. We select a subset with 50 features for our experiments.

Table 7: Dataset Details.

Dataset # of Samples dim l Link
Stocks 3773 6 24 https://finance.yahoo.com/quote/GOOG
Energy 19711 28 24 https://archive.ics.uci.edu/ml/datasets
ETTh 17420 7 24 https://github.com/zhouhaoyi/ETDataset
fMRI 10000 50 24 https://www.fmrib.ox.ac.uk/datasets

Table 7 shows the statistics of the datasets and all datasets are available online via the link. l is the
length of generated time series. To ensure fairness, all datasets are preprocessed using the TSGBench
pipeline (Ang et al., 2023), which includes data splitting, normalization, and standardization. For
experiments involving partial data (e.g., 10% of the Stock dataset), we randomly select a split point
and segment the data proportionally to simulate real-world scenarios with limited data availability.

C BASELINES

We compare our method against state-of-the-art models from three categories:

• GAN-based Models: TimeGAN, which uses a three-layer GRU architecture and the recom-
mended loss function settings (Yoon et al., 2019).

• VAE-based Models: TimeVAE, with a latent dimension of 8 and hidden layer sizes of 50,
100, and 200 (Desai et al., 2021).

• Diffusion-based Models: DiffWave (Kong et al., 2021), DiffTime (Coletta et al., 2023),
Diff-TS (Yuan & Qiao, 2024), and FIDE (Galib et al., 2024). For these models, we adjust
their architectures to ensure comparable parameter counts.

D IMPLEMENTATION DETAILS

All experiments are conducted on a high-performance machine equipped with an Intel® Core® i9
12900K CPU @ 5.20 GHz, 64 GB RAM, and an NVIDIA GeForce RTX 3090 GPU. This setup
ensures reproducibility and fairness across all comparisons.

To evaluate the performance of the proposed method, we compared it with the following baseline
models: (1) GAN-based: TimeGAN, (2) VAE-based: TimeVAE, and (3) Diffusion-based: DiffWave,
DiffTime, Diffusion-TS, and FIDE. For TimeGAN, we used the loss function settings recommended
in the original paper and employed a three-layer GRU architecture. For TimeVAE, we set the latent
dimension to 8 and experimented with hidden layer sizes of 50, 100, and 200. For DiffWave, DiffTime,
and FIDE, we adjusted the architecture parameters to ensure similar model sizes.

E EVALUATION METRICS

We adopt the rigorous evaluation framework of TSGBench, utilizing a comprehensive set of metrics
to assess both global and local properties of the generated time series:

14
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E.1 FEATURE-BASED MEASURES

1. MDD (Mean Distribution Distance): Measures the discrepancy in statistical distributions
between generated and real data.

2. ACD (Auto-Correlation Distance): Quantifies the similarity in temporal dependencies.

3. SD (Spectral Distance): Evaluates the alignment in frequency domain characteristics.

4. KD (Kernel Distance): Assesses the similarity in high-dimensional feature spaces.

Strong performance on these metrics indicates that the model effectively captures the underlying data
distribution, generating time series that preserve the global statistical and structural properties of the
real data.

E.2 DISTANCE-BASED MEASURES

1. ED (Euclidean Distance): Measures point-wise reconstruction accuracy.

2. DTW (Dynamic Time Warping): Evaluates temporal alignment and shape similarity,
accommodating non-linear time shifts.

Superior performance on these metrics demonstrates the model’s ability to accurately reconstruct
fine-grained temporal patterns, ensuring that the generated sequences align closely with the real data
in both timing and morphology.

F FLEXIBILITY OF PREDIFF

Table 8: The performance of different
variants on 10% of the Stock dataset.

Method DDPM Diff-TS

MDD↓ 1.747 1.724
ACD↓ 0.766 0.728
SD↓ 1.438 1.342
KD↓ 1.664 1.629
ED↓ 1.539 1.499

DTW↓ 3.928 3.898

Additionally, we explore the flexibility of PreDiff by
integrating different diffusion models as the TSG module.
This investigation aims to demonstrate the adaptability
of the proposed framework to various diffusion-based
architectures, further enhancing its applicability to diverse
time series generation tasks.

We conducted experiments on 10% of the Stock dataset,
implementing DDPM with a U-Net architecture. To en-
sure fairness, we adjusted U-Net’s parameters to match
those of PreDiff. Results confirm the adaptability of our
approach across different diffusion-based generative models.

G COMPREHENSIVE COMPARISON AGAINST IMAGENFEW

To comprehensively evaluate the robustness of the proposed framework under varying data scarcity,
we conduct experiments on three benchmark datasets: Energy, Stocks, and ETTh. We compare
the performance of ImagenFew with the baseline PreDiff across four different data availability
ratios (100%, 70%, 40%, and 10%). Unlike PreDiff, which requires additional pre-training and
synthetic data generation, ImagenFew directly adapts to limited real data without relying on auxiliary
supervision. This enables ImagenFew to maintain stable and competitive performance across both
high- and low-resource settings, highlighting its effectiveness in addressing data scarcity.

As shown in Table 9, PreDiff demonstrates clear advantages in key metrics such as ACD, ED, and
DTW, regardless of the data availability level. These advantages become more pronounced under
low-data scenarios, indicating that PreDiff is able to capture a relatively complete distribution of
real data even in extreme data-scarcity conditions. This, to some extent, reflects the effectiveness of
our approach in the pre-training stage, where diverse synthetic data scenarios are leveraged to expand
the target data distribution.

Moreover, the performance of PreDiff remains relatively stable as the amount of available data
decreases, exhibiting stronger robustness. In particular, under the 10% data availability setting,
the ACD and ED metrics remain stable (e.g., ACD on the Energy dataset increases only slightly
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Table 9: Comprehensive comparison of ImagenFew against PreDiff across three datasets under
varying data availability levels (100%, 70%, 40%, and 10%). Best results are highlighted in red.

Dataset Metrics 100% 70% 40% 10%

ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff

Energy

MDD↓ 0.314 0.951 0.339 1.066 0.399 1.131 0.487 1.427
ACD↓ 0.444 0.237 0.738 0.289 1.281 0.319 2.256 0.317
SD↓ 0.425 0.308 0.527 0.372 0.526 0.446 1.504 0.652
KD↓ 12.953 1.418 21.889 1.739 17.901 1.930 151.784 2.094
ED↓ 1.094 1.048 1.146 1.151 1.253 1.329 1.462 1.722

DTW↓ 6.610 6.549 6.872 6.821 7.346 6.949 8.447 7.216

Stocks

MDD↓ 0.288 0.356 0.318 0.797 0.365 1.158 0.401 1.724
ACD↓ 0.116 0.051 0.114 0.088 0.251 0.414 0.352 0.728
SD↓ 0.310 0.328 0.372 0.377 0.447 1.209 0.488 1.342
KD↓ 2.020 1.598 2.236 1.805 2.601 1.033 2.681 1.629
ED↓ 1.189 1.061 1.179 1.139 1.212 1.362 1.174 1.499

DTW↓ 3.060 2.906 3.031 2.921 3.126 3.474 3.055 3.898

ETTh

MDD↓ 0.023 0.292 0.024 0.493 0.027 0.511 0.031 0.872
ACD↓ 0.244 0.188 0.287 0.209 0.358 0.286 0.487 1.009
SD↓ 0.085 0.206 0.026 0.213 0.079 0.239 0.164 0.369
KD↓ 0.364 0.574 0.149 0.673 0.383 0.721 0.186 1.661
ED↓ 6.026 0.823 6.094 0.870 6.078 0.908 6.148 1.081

DTW↓ 16.747 2.269 16.970 2.475 16.915 2.549 17.058 3.049

from 0.237 to 0.317), which further validates the effectiveness of its prior knowledge integration
mechanism.

To enhance the fairness of the comprehensive comparison experiments, we further adopt the
PreDiff data partitioning and preprocessing strategy uniformly for both models.

Table 10: Comprehensive comparison of ImagenFew and PreDiff on three datasets under varying
data availability levels (100%, 70%, 40%, and 10%), with identical data partitioning and preprocessing
procedures. Best results are highlighted in red.

Dataset Metrics 100% 70% 40% 10%

ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff ImagenFew PreDiff

Energy

MDD↓ 0.302 0.951 0.416 1.066 0.487 1.131 0.595 1.427
ACD↓ 0.444 0.237 0.737 0.289 1.199 0.319 2.140 0.317
SD↓ 0.425 0.308 0.560 0.372 0.495 0.446 0.975 0.652
KD↓ 16.049 1.418 13.442 1.739 6.596 1.930 47.108 2.094
ED↓ 1.099 1.048 1.179 1.151 1.346 1.329 1.588 1.722

DTW↓ 6.635 6.549 7.046 6.821 7.869 6.949 9.128 7.216

Stocks

MDD↓ 0.287 0.356 0.529 0.797 0.552 1.158 0.873 1.724
ACD↓ 0.115 0.051 0.065 0.088 0.481 0.414 1.968 0.728
SD↓ 0.308 0.328 0.505 0.377 0.876 1.209 0.997 1.342
KD↓ 2.016 1.598 2.431 1.805 2.946 1.033 2.444 1.629
ED↓ 1.192 1.061 1.278 1.139 1.362 1.361 1.418 1.499

DTW↓ 3.068 2.906 3.272 2.921 3.526 3.474 3.554 3.898

ETTh

MDD↓ 0.187 0.292 0.385 0.493 0.678 0.511 0.884 0.872
ACD↓ 0.320 0.188 0.486 0.209 1.201 0.286 1.805 1.009
SD↓ 0.163 0.206 0.557 0.213 0.804 0.239 1.010 0.369
KD↓ 0.322 0.574 1.263 0.673 1.693 0.721 2.031 1.661
ED↓ 0.892 0.823 0.969 0.870 1.292 0.908 1.427 1.081

DTW↓ 2.513 2.269 2.721 2.475 3.682 2.549 4.035 3.049

From the results in Table 10, it can be observed that the performance of ImagenFew exhibits a
significant decline after uniformly adopting the data partitioning and preprocessing strategy of
PreDiff. For example, under the 10% data availability setting on the Stocks dataset, the ACD
metric of ImagenFew sharply drops from 0.352 to 1.968, while on the ETTh dataset with 10%
data availability, the ACD increases from 0.487 to 1.805. Moreover, the previously leading SD
and KD metrics of ImagenFew show clear degradation, indicating that its advantage in statistical
characteristics is substantially weakened under a fair comparison environment.
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It is worth noting that this marked performance drop of ImagenFew confirms its dependence on
specific data preprocessing methods. Furthermore, analysis reveals that, compared with the data
partitioning and preprocessing strategy of ImagenFew, the design of PreDiff in this aspect is more
reasonable and realistic: first, in the time series domain, sensor failures and malfunctions often lead
to data collection containing only short continuous segments, which is a common scenario of data
scarcity. Second, normalizing on the complete dataset before resampling implicitly introduces global
statistical features, causing a distribution shift between randomly sampled data and real-world scarce
scenarios. This makes it difficult to accurately simulate data scarcity conditions and, to some extent,
undermines fairness.

H SIZE OF Xprior

We observed that the synthetic prior dataset Xprior, generated using ForecastPFN (Dooley et al.,
2024), achieves strong performance. Therefore, we further investigate the impact of Xprior size on
the performance of PreDiff.

The results in Table 11 demonstrate that increasing the size of Xprior generally improves the
performance of PreDiff, as larger datasets provide more diverse and representative samples for
pre-training. While larger datasets yield better performance, the marginal gains diminish as the
dataset size grows beyond 100K. This suggests that a dataset size of 100K may offer a good balance
between performance and computational cost.

The best performance is achieved with the largest dataset size (10M ), as evidenced by the lowest
values in MDD, ED, and DTW. However, the 100K dataset size also performs exceptionally well,
achieving the best results in ACD, SD, and KD. For real-world applications, selecting an appropriate
Xprior size depends on the specific requirements for performance and computational efficiency. A
size of 100K may be sufficient for many scenarios, while larger sizes (e.g., 10M ) can be used when
higher precision is critical.

This analysis highlights the importance of dataset size in the performance of PreDiff and provides
practical guidance for selecting Xprior sizes in time series generation tasks.
Table 11: The performance of PreDiff with varying sizes of the
synthetic prior dataset Xprior ∈ {10K, 100K, 500K, 1M, 10M}
on the 10% of Stock dataset.

Size 10K 100K 500K 1M 10M

MDD 2.151 1.724 1.701 1.715 1.697
ACD 0.967 0.728 0.785 0.737 0.736
SD 1.727 1.342 1.344 1.378 1.354
KD 2.082 1.629 1.685 1.641 1.624
ED 1.904 1.499 1.545 1.479 1.485

DTW 4.294 3.898 3.86 3.895 3.825

Table 12: Optimal t0 values
on different data.

Dataset t0/T Data Size

Stock 0.8 3294
fMRI 0.5 10000
ETTh 0.2 17421

Energy 0.2 19737

I PARAMETERS ANALYSIS

The boundary step t0 in PreDiff marks where pre-training on synthetic priors ends and fine-tuning
on target data begins. Properly choosing t0 balances the synthetic and real data distributions. We
evaluated t0/T ratios of 20%, 50%, and 80% across multiple datasets and identified the optimal value
for each. Table 12 shows that the best t0/T decreases as the target dataset size grows, reflecting a
more diffusion steps are considered in pre-training when richer, larger real datasets better capture the
true distribution.

J COMPARISON OF TWO PRETRAINING STRATEGIES ON IMAGENFEW

We pretrain ImagenFew using both its original pretraining strategy and the pretraining strategy of
PreDiff, followed by fine-tuning under identical experimental settings. The resulting experimental
outcomes are presented in Table 13.

As shown in Table 13, the performance of ImagenFew under different pretraining strategies is
compared on the Stocks dataset with 10% data availability. The results indicate that the model
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Table 13: Comparison of ImagenFew under different pretraining strategies on the Stocks dataset with
10% data availability.

Pretraining Strategy ImagenFew w/ PreDiff Pretrain ImagenFew w/ Original Pretrain
DS↓ 0.478 0.4963
PS↓ 0.1429 0.1694
C-FID↓ 4.4694 5.8743
MDD↓ 1.0172 0.8404
ACD↓ 3.0636 2.2146
SD↓ 1.0429 1.0433
KD↓ 2.4053 2.4478
ED↓ 1.3426 1.5558
DTW↓ 3.3671 4.0789

pretrained with the PreDiff strategy outperforms the original pretraining strategy across multiple
key metrics, particularly under the data-scarce (10%) setting. By leveraging synthetic data for
pretraining and fine-tuning on target data, the PreDiff strategy effectively enhances the model’s
generalization ability and robustness, making its statistical distribution and autocorrelation more
consistent with real data. This demonstrates that the PreDiff pretraining strategy holds significant
advantages in generating high-quality time series data under data-scarcity conditions.
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