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Abstract

Extractive summaries are usually presented as001
lists of sentences with no expected cohesion be-002
tween them. In this paper, we propose a method003
to enforce cohesion whilst controlling for re-004
dundancy in summaries, in cases where the005
input exhibits high redundancy. The pipeline006
controls for content redundancy in the input as007
it is consumed, and balances informativeness008
and cohesion during sentence selection. Our009
sentence selector simulates human memory to010
keep track of cohesive chains while building011
the summary, enforcing cohesive ties between012
noun phrases. Extensive experiments, both au-013
tomatic and human, revealed that it is possible014
to extract highly cohesive summaries that are015
as informative as summaries optimizing only016
for informativeness. The extracted summaries017
exhibit a smooth topic transition between sen-018
tences as signaled by lexical chains, with chains019
spanning adjacent or near-adjacent sentences.020

1 Introduction021

Automatic text summarization is the task of pro-022

cessing a document(s) and producing a shorter023

text, the summary, that retains the gist of the in-024

formation, with many variations along the years025

(Nenkova et al., 2011). Extractive summariza-026

tion selects content units (usually sentences) and027

presents their concatenation as the summary. It028

remains challenging to control the specific con-029

tent units so that the summary ends up being030

non-redundant and informative, with much previ-031

ous work modeling these qualities during docu-032

ment understanding (Peyrard et al., 2017; Xiao and033

Carenini, 2020; Gu et al., 2022). However, coher-034

ence control has received less attention (Barzilay035

and Lapata, 2008; Wu and Hu, 2018), partly be-036

cause merely reliably evaluating whether a text is037

coherent remains challenging (Goyal et al., 2022;038

Steen and Markert, 2022; Zhao et al., 2023).039

We introduce an extractive summarization040

methodology that implements two control mech-041

anisms at different stages of processing: the first 042

one to control redundancy during input understand- 043

ing, and the second one to control the trade-off 044

between informativeness and cohesion during sum- 045

mary extraction. Cohesion is the property of a text 046

to function as a unified whole, exhibiting thematic 047

links –called cohesive ties– between nearby sen- 048

tences (Hassan and Halliday, 1976). In contrast, 049

coherence refers to the discourse organization of a 050

text, usually signaled by discourse markers. When 051

building extractive summaries by concatenating 052

sentences, we argue that controlling for cohesion 053

is a better-defined task than aiming to control co- 054

herence, especially if no sort of post-editing (e.g. 055

replacing discourse markers) is applied (Zajic et al., 056

2007; West et al., 2019; Mallinson et al., 2020). A 057

potential benefit of producing a more cohesive text 058

is that it is easier to read and understand for hu- 059

mans, especially when the knowledge domain is 060

highly technical, as reported by previous work in 061

psycholinguistics (Kintsch, 1990) and automatic 062

summarization (Barzilay and Elhadad, 2002). 063

In our pipeline, summary properties are con- 064

trolled in the following way. On the one hand, 065

summary redundancy is addressed by controlling 066

the redundancy levels of the input text, following 067

previous findings (Carbonell and Goldstein, 1998; 068

Xiao and Carenini, 2020). The pipeline consumes 069

input text in a cascaded way: first splitting the input 070

into contiguous passages, then consuming passages 071

one at a time so as to minimize their semantic simi- 072

larity with already selected passages. 073

On the other hand, informativeness and cohesion 074

are directly modeled during summary extraction. 075

Extraction is done in a sentence-by-sentence fash- 076

ion, quantifying summary properties independently 077

at each step. The objective is to select a highly 078

cohesive sentence that is informative enough. We 079

introduce a sentence selector that incrementally 080

builds cohesive chains of noun phrases and mod- 081

els chain interaction. The selector, KVD-SELECT, 082
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keeps track of chains currently active by simulating083

human memory according to the Micro-Macro the-084

ory, henceforth KvD (Kintsch and van Dijk, 1978),085

a psycholinguistic theory of discourse comprehen-086

sion and production. Working memory –a type087

of short-term memory– is modeled as a limited-088

capacity buffer of lexical chains, forcing the model089

to keep only the most salient chains.090

We test our methodology on newswire multi-091

document summarization and single-long docu-092

ment summarization of scientific articles, patents,093

and government reports. Across domains, exten-094

sive experiments show that, first, our system is ef-095

fective at incrementally building an input sequence096

with lower content redundancy, which translated097

to a significant reduction in summary redundancy.098

Second, the proposed sentence selector managed099

to maintain summaries informative while improv-100

ing cohesion significantly: over 15% more noun101

phrases and over 20% more sentences were con-102

nected through cohesive ties w.r.t a greedy selector.103

Tailored human evaluation campaigns revealed that104

cohesion has a positive impact on perceived in-105

formativeness, and that our extracted summaries106

exhibit chains covering adjacent or near-adjacent107

sentences. Closer inspection showed that topics108

flow smoothly across extracted summaries with no109

abrupt change or jumps.110

In summary, our contributions are as follows:111

• We propose a cascaded encoder capable of con-112

suming arbitrary long textual input that controls113

the level of content redundancy the rest of the114

pipeline is exposed to.115

• We propose a summary extraction method that116

models informativeness and cohesion indepen-117

dently and allows to control the balance between118

the two when building the summary.119

• Automatic and human experiments show the ef-120

fectiveness of our control mechanisms and how121

summary properties can be balanced according122

to user needs in a straightforward way.123

2 Related Work124

Previous work has modeled cohesion during docu-125

ment understanding by keeping track of tied named126

entities (Barzilay and Lapata, 2008; Guinaudeau127

and Strube, 2013), topic flow (Barzilay and El-128

hadad, 2002), or by implementing discourse theo-129

ries (Jeon and Strube, 2020). Most similar to our130

approach, Fang (2019) introduced an implementa-131

tion of the KvD theory that models cohesion and132

informativeness during document understanding, 133

assigns a single importance score to each sentence, 134

and employs a greedy sentence selector. In con- 135

trast, we quantify summary properties separately, 136

and model cohesion by implementing KvD during 137

sentence selection. This approach provides a more 138

explicit way to control the contribution of each 139

property during summary extraction. 140

Similar ways to control summary properties 141

during summary selection have only focused on 142

minimizing redundancy (Carbonell and Goldstein, 143

1998; Fabbri et al., 2019; Xiao and Carenini, 2020), 144

where the extractive summary is regarded as a list 145

of sentences with no particular order to them, a 146

design choice possibly influenced by the format of 147

available benchmarks such as CNN/DM (Hermann 148

et al., 2015) and DUC. However, seminal work 149

highlighted the role of redundancy in text (Walker, 150

1993; Tauste, 1995), and how its presence is a result 151

of human memory limitations (Johnstone, 1994). 152

In this work, we provide evidence that control- 153

ling for cohesion constitutes a better strategy for 154

providing the end-user with a more comprehensi- 155

ble summary, formatted as a multi-sentence cohe- 156

sive text instead of a list of sentences. Our results 157

show that this setup is especially effective when the 158

knowledge domain is highly technical, and when a 159

sentence ordering cannot be inferred from the input 160

trivially, e.g. in multi-document summarization. 161

3 Problem Formulation 162

We tackle the task of extractive summarization as a 163

sentence scoring step followed by a selection step. 164

Figure 1 shows the pipeline of the system, in which 165

sentences are scored in a cascaded fashion, as fol- 166

lows. First, the input is segmented into blocks of 167

contiguous sentences and the block selector mod- 168

ule then selects blocks based on their relevancy 169

and their redundancy w.r.t. already selected blocks. 170

Second, a local encoder obtains block-level repre- 171

sentations for each sentence in the block. After 172

all document blocks are processed, all these en- 173

codings are concatenated into a single embedding 174

sequence and passed to the global context encoder, 175

which will obtain a document-aware representa- 176

tion of each sentence. Finally, a selection module 177

will extract a subset of sentences and present them 178

as the summary in the order they were extracted. 179

The pipeline is designed to be capable of consum- 180

ing documents of arbitrary length, offering further 181

control over levels of information redundancy the 182
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Figure 1: Our extraction pipeline: local extraction step
m adds local sentences to D′; at sentence selection step
t, KvD-Select balances informativeness of candidate st
with cohesion of summary Ŝ.

sentence selector is exposed to. We now proceed to183

elaborate on each module of the proposed pipeline.184

3.1 Block Segmentation and Selection185

Processing starts by segmenting the document(s) D186

into fixed-length overlapping blocks, each of which187

includes preceding and subsequent wordpieces,188

providing surrounding context. Then, blocks are189

selected iteratively until a predefined budget (total190

number of wordpieces) is met. At step m, block191

bm is selected such that192

bm = argmax
b∈B\B̂

[λbLR(b)− (1− λb) max
bj∈B̂

Sim(b, bj)] (1)193

where B̂ is the set of blocks already selected,194

Sim(x, y) is the cosine similarity between TF-IDF195

vectors of blocks x and y, and λb allows to con-196

trol the mix of both terms. LR(b) is the continuous197

LexRank score of block b (Erkan and Radev, 2004),198

calculated over the complete graph of blocks in D,199

LR(b) =
d

|B| + (1− d)
∑

v∈adj[b]

Sim(b, v)∑
z∈adj[v] Sim(z, v)

LR(v)

200

where d is the damping factor and adj(b) is the set201

of block nodes adjacent to b. This module balances202

block relevancy (as proxied by centrality) and input203

redundancy in a straightforward way by linearly 204

combining their scores. After an optimal block is 205

selected, it is sent to the local encoder module. 206

3.2 Local Encoder (LE) 207

Given block b as a sequence of wordpieces span- 208

ning contiguous sentences, the local encoder will 209

obtain representations for each sentence covered 210

in b. This module is trained as a local extractive 211

summarizer itself, under sequence labeling formu- 212

lation where each sentence in the block is labeled 213

as yℓi ∈ {0, 1} to indicate whether sentence si is 214

selected or not. Then, sentence representation hi 215

is defined as the average embedding over si word- 216

pieces, obtained from a LongT5 encoder (Guo et al., 217

2022). Finally, the probability of si being locally 218

selected is defined as P (yℓi | si, b; θℓ) = σ(W ℓ·hi), 219

and the module is trained using cross-entropy loss 220

independently from the rest of the pipeline. Dur- 221

ing inference, the local encoder consumes one 222

block, selects N sentences and adds them to D′ 223

–containing all locally selected sentences so far–, 224

and their corresponding embeddings to Hℓ. 225

3.3 Global Context Encoder (GCE) 226

Given the sequence of local sentence embeddings 227

Hℓ, this module obtains the sequence of globally- 228

aware representations Hg as follows. Sequence Hℓ 229

is passed through a self-attention layer (Vaswani 230

et al., 2017), i.e. gt = SelfAttn(ht, Hℓ),∀ht ∈ Hℓ. 231

Similarly to the LE module, the probability of se- 232

lecting st ∈ D′ is P (ygt | st, D′; θg) = σ(W g · gt), 233

where ygt ∈ {0, 1} indicates whether st is selected 234

or not for the final, global summary, and also 235

trained using cross-entropy loss. 236

3.4 Sentence Selection 237

Finally, candidate summary Ŝ is built by selecting 238

one sentence at a time from D′, taking into account 239

the informativeness and cohesion of each candidate 240

sentence w.r.t. the already selected sentences. At 241

selection step t, the optimal sentence is given by 242

st = argmax
s∈D′\Ŝt−1

[λselfI(s) + (1− λsel)fC(Ŝ
t)] (2) 243

where function fI estimates the informativeness 244

of candidate sentence s, fC estimates the cohe- 245

sion of candidate summary Ŝt = [Ŝt−1; s], and 246

λsel ∈ [0, 1] is a parameter that allows to con- 247

trol their trade-off. Following Xiao and Carenini 248

(2020), we take the probability of selecting s given 249

by the global context encoder module as a proxy 250
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for informativeness, i.e. fI(s) = P (yg | s,D′; θg).251

In the next section, we elaborate on how fC models252

and enforces cohesion during sentence selection.253

4 Cohesion during Summary Extraction254

Cohesion is a language mechanism that enables255

a sequence of sentences to function as a unified256

whole (Hassan and Halliday, 1976). It does so by257

linking semantic units in a text through cohesive258

ties, regardless of the grammatical or discourse259

structure these units are part of. In particular, lexi-260

cal cohesion links units with the same lexical form,261

synonyms, or units in the same semantic field. Fur-262

thermore, units tied cohesively can be grouped in263

chains by their semantic similarity. Whilst the mere264

presence of two or more chains does not guarantee265

a cohesive effect, their interaction can be a reli-266

able proxy for cohesion (Morris and Hirst, 1991;267

Barzilay and Elhadad, 1997).268

In this paper, we focus on modeling lexical cohe-269

sive ties between noun phrases in nearby sentences270

of a summary by controlling the interaction be-271

tween lexical chains.272

4.1 KvD Select273

The proposed selector, KVD-SELECT, calculates274

cohesion score fC by simulating the processes in275

working memory during text production. The pro-276

cedure is based on the Micro-Macro Structure the-277

ory (Kintsch and van Dijk, 1978), which describes278

the cognitive processes involved in text comprehen-279

sion and production at the local (micro) and global280

(macro) level of discourse. Following Fang (2019),281

we implement processes happening at micro-level,282

which deal with the movement of content in and283

out of working memory.284

Let T be working memory and G long-term285

memory (LTM), where both are separate sets of286

cohesive chains, and each chain as a set of noun287

phrases (NPs). At selection step t, the algorithm288

extracts NPs from st and connects them to the289

chains in T and G, constraining the number of290

active chains in T afterward. Cohesive score fC291

then depends on the average similarity between292

units added to T and those added to G. We now293

elaborate on each step of the algorithm.294

Extracting Noun Phrases. Given sentence st ∈295

D′, we obtain P , the set of extracted nominal296

chunks, obtained by merging nominal nodes in297

dependency trees with their children, following the298

procedure of Fang (2019). Specifically, given that299

node u is nominal dependent of a clausal predicate, 300

u will have its child v merged if eitherv is a function 301

word, a single-token modifier, or u and v form part 302

of a multi-word expression. 303

Adding Content to Memory. Next, cohesive ties 304

between st and Ŝt−1 are enforced by adding each 305

NP in P to the chain with the highest element-wise 306

semantic similarity. Formally, the optimal chain 307

to add a ∈ P to is C∗ = argmaxC∈T {ϕ(p, C)}, 308

where ϕ is the average BERTScore (Zhang et al., 309

2019) between a and each NP in C. In order to 310

make sure that chains maintain an acceptable level 311

of semantic similarity between elements, a is added 312

to chain C only if ϕ(a,C) ≥ ν, where ν is the 313

minimum admissible similarity. This way the al- 314

gorithm can control the similarity length between 315

chain members, and avoid a single, long chain. 316

If similarity with chains in T is not strong 317

enough, we look at chains in G, in which case the 318

chosen chain is moved back to T . This step simu- 319

lates how humans recall content no longer present 320

in WM, the recall mechanism (Kintsch and van 321

Dijk, 1978). If still no chain in G meets the similar- 322

ity requirement, we proceed to create a brand new 323

chain in T with a as its sole element. By searching 324

for a good enough candidate chain first in T and 325

then in G, we encourage cohesive ties between NPs 326

in nearby sentences. 327

Updating Memory. After adding incoming NPs 328

to chains in memory, T is updated to retain only the 329

WM most recent chains, where recency of a chain is 330

defined as the id of the selection step in which this 331

chain was last retained in T . For instance, a chain 332

currently in T is more recent (higher step id) than a 333

chain in G discarded in an earlier step. This design 334

choice mimics the recency effect behaviour during 335

free recall tasks in human subjects (Glanzer, 1972), 336

a behaviour attributed to short-term memory. Fi- 337

nally, discarded chains are moved to G, concluding 338

the selection step. 339

Candidate Scoring. Next, we define cohesion 340

score fcoh which will be used to discriminate 341

amongst possible continuations to Ŝt−1. The ob- 342

jective is to encourage NPs in P to be assigned to 343

recent chains, in turn encouraging chains to cover 344

nearby sentences in the final summary. In addition, 345

we want to score down candidate sentences with 346

NPs added to chains in long-term memory. 347

Let AT = {a; a ∈ P,Ca ∈ T}, where Ca is the 348

chain a was added to. Similarly, let AG = {b; b ∈ 349
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P,Cb ∈ G}. Then, let rec(C) be the number of350

selection steps passed since the last time chain C351

was retained in T . Quantity rec(C) functions as a352

proxy for how spread chain C is, i.e. how far away353

two sentences covered by C are. Then,354

fcoh =
1

|AT |
∑
a∈AT

ϕ(a,Ca)

rec(Ca)
+

γrec

|AG|
∑
b∈AG

ϕ(b, Cb)

rec(Cb)
.355

Hence, the cohesive score depends on the contribu-356

tion of each cohesive tie formed. For each chunk357

in AT and AG, its contribution depends directly358

on the strength of similarity to its assigned chain359

and inversely on the spread of said chain. The360

contribution of chunks in AG is scaled down by361

hyper-parameter γrec ∈ [0; 1] as to simulate the362

higher cognitive cost incurred when retrieving in-363

formation from long-term memory.364

5 Experimental Setup365

We now describe the datasets used, training details,366

baselines, and evaluation methodology.367

5.1 Datasets368

We consider datasets for single-document summa-369

rization of long, highly redundant documents, and370

multi-document summarization:371

• PubMed. Scientific articles in the biomedical372

domain collected from PubMed (Cohan et al.,373

2018). We use text from all sections as the source374

document and the abstract as reference summary.375

• BigPatent.C. Patents in the Chemistry and Met-376

allurgy industry (Sharma et al., 2019).377

• GovReport. Long legislature reports (Huang378

et al., 2021) of U.S. bills.379

• MultiNews. Collections of news articles paired380

with reference summaries (Fabbri et al., 2019).381

5.2 Pipeline Parameters382

Hyper-parameters were tuned over the validation383

sets of each dataset.384

Document Segmentation and Block Selection.385

We use a block size of B = 2048, context size of386

C = 200 pieces, λb = 0.2, and set a budget of387

16 384 input wordpieces.388

Local Encoder (LE), Global Context Encoder389

(GCE). The block encoder in LE is initialized390

with a pretrained checkpoint of LongT5 with391

transient-global attention (Guo et al., 2022),1 and 392

an output layer of size 200. 393

The LE module is trained independently from 394

the GCE module, with LE being trained first, then 395

GCE trained whilst LE remains frozen. In both 396

cases, we used the Adam optimizer (Loshchilov 397

and Hutter, 2018), a constant learning rate of 1e−6, 398

effective batch size of 64, and 50k training steps. 399

For training LE, we obtain extractive oracle sen- 400

tences from each block and train the module over 401

blocks with ROUGE-1 + ROUGE-2 > 0.5. Dur- 402

ing inference, we extract a maximum of N = 10 403

local sentences per block and a maximum of 1000 404

sentences in total. 405

Summary Extractor. We set λsel = 0.8, work- 406

ing memory WM= 6, recall cost γrec = 0.01, and a 407

minimum NP similarity of ν = 0.6. Word budget is 408

set to 200, 100, 650, 250 for PubMed, BigPatent.C, 409

GovReport, MultiNews, respectively. 410

5.3 Comparison Systems 411

We compare against the standard extractive oracle, 412

EXT-ORACLE, obtained by greedily selecting sen- 413

tences maximizing ROUGE-1+ROUGE-2 against 414

gold summaries until the word budget is met. For 415

cohesion analysis, we also report metric values over 416

the gold summaries, labeled as GOLD. 417

The impact of cohesion modeling is assessed 418

by employing a greedy selector over GCE scores, 419

equivalent to set fC = 0 in Eq. 2, dubbed LT5- 420

CASC. In addition, we report LongT5 performance 421

when consuming the input as a flat sequence and 422

using a greedy selector, dubbed LT5-FLAT. 423

Regarding alternative sentence selectors, we 424

compare against the following. 425

MMR-Select. (Xiao and Carenini, 2020) Re- 426

duces redundancy by selecting si (candidate sen- 427

tence at selection step i) such that cosine similarity 428

w.r.t. the partially extracted summary Ŝ is mini- 429

mized. Informativeness and redundancy are bal- 430

anced in the same way as in Eq. 2. 431

N-gram passing (NPassing). Encourages repe- 432

tition ties by allowing p percent of n-grams in si 433

to overlap with Ŝ. When p = 0, this method re- 434

duces to n-gram blocking, whereas when p = 1.0, 435

to greedy selection. We report bi-gram passing. 436

Semantic Similarity Distribution (KL-Dist). 437

Models the intuition that noun phrases in si will be 438

1HuggingFace, google/long-t5-tglobal-base
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more semantically similar to some units in Ŝ whilst439

dissimilar to others (Taboada, 2004). Let Q̂i be the440

similarity distribution obtained when comparing441

every NP in si against every NP in Ŝ. Similarly,442

let Q be the distribution of similarity between NPs443

in different sentences in gold summaries. Then,444

fC = exp
Ä
−DKL(Q||Q̂i)

ä
− 1, where DKL is the445

Kullback–Leibler divergence. Higher values of fC446

indicate lower diverge, encouraging Ŝ to have a co-447

sine similarity distribution similar to those seen in448

gold summaries. All distributions were discretized449

into 20 bins covering values from −1.0 to 1.0.450

Shuffle Classifier (CCL-Select). Holistically451

quantifies coherence using CCL (Steen and Mark-452

ert, 2022), a scorer trained to distinguish shuffled453

from unshuffled text that showed a high correla-454

tion with human ratings of coherence. We use455

RoBERTa (Liu et al., 2019) as underlying model456

and use a window of 3 consecutive sentences.457

5.4 Evaluation458

Informativeness is assessed using ROUGE F1459

(Lin, 2004). Redundancy is evaluated using460

sentence-wise ROUGE-L (Bommasani and Cardie,461

2020), dubbed RdRL. Additionally, we define In-462

verse Uniqueness (IUniq), 1− Uniqueness, where463

‘Uniqueness’ (Peyrard et al., 2017) is the ratio of464

unique n-grams to the total number of n-grams.465

We report the mean value between uni-, bi-, and466

trigrams. Higher values denote higher redundancy.467

Cohesion is evaluated with the followed metrics:468

CoRL, the average ROUGE-L F1 between consec-469

utive sentences; and Entity Graph (EGr) (Guin-470

audeau and Strube, 2013), which models a text as a471

sentence graph with edges between sentences with472

nouns in common, using the average edge weight473

as a proxy for cohesion. Finally, coherence is as-474

sessed using CCL (Steen and Markert, 2022).475

5.4.1 Human Evaluation476

We elicit human judgments to assess overall qual-477

ity, informativeness, and cohesion in two separate478

studies. We sampled 30 documents from the test479

set of PUBMED and compare systems LT5-CASC,480

MMR-SELECT, and KVD-SELECT.481

Ranking Campaign. Subjects were shown the482

abstract and the introduction of a scientific article483

along with two system summaries, and then then484

asked to select the best summary (or select both485

in case of tie) according to three criteria: (i) over-486

all quality, (ii) informativeness, and (iii) cohesion.487

In this setup, cohesion is evaluated as a holistic 488

property of the text, as perceived by a reader. 489

Chaining Campaign. Subjects were shown a sin- 490

gle summary and were asked to annotate lexical 491

chains by grouping together pre-extracted NPs in 492

the same semantic field. We report the following 493

chain properties: (i) chain spread, defined as the 494

average number of sentences between immediate- 495

neighbor sentences covered by the same chain;(ii) 496

chain density, the number of chains covering the 497

same sentence; and (iii) sentence coverage, the per- 498

centage of sentences covered by at least one chain. 499

Inter-annotator agreement is calculated as the 500

average lexical overlap between chains, expressed 501

in F1 score, calculated pair-wise between subjects. 502

For this study, we include reference summaries as 503

one more analysis system. 504

6 Results and Discussion 505

Next, we discuss the results of our analyses and the 506

outcome of the human evaluation campaigns. 507

6.1 Reducing Redundancy in Input Blocks 508

The following block selection strategies were com- 509

pared: (i) Original, consisting of selecting blocks 510

in their original order in the source document;2 (ii) 511

Oracle Selection, which selects the block that max- 512

imizes ROUGE F1 scores (mean of ROUGE-1 and 513

ROUGE-2) w.r.t. the reference summary; (iii) Max. 514

Redundancy, which selects the most similar block 515

possible (by flipping the sign in Eq. 1); and finally, 516

(iv) BLOCKSELECT, the proposed strategy. 517

The analysis, showcased in Figure 2, evaluates 518

input redundancy at each block selection step, as 519

well as informativeness and redundancy of sum- 520

maries extracted from the blocks available at each 521

step, using a greedy selector. The results indicate 522

that the strategy used to select input blocks has 523

a direct impact not only on input redundancy –as 524

intended– but also on summary redundancy. 525

Notably, BLOCKSELECT is effective at incre- 526

mentally building an input sequence with lower 527

content redundancy. Compared to the other strate- 528

gies, ours has a clear impact on summary redun- 529

dancy, enabling the pipeline to consistently extract 530

summaries that are significantly less redundant. 531

Similar trends were observed in the other datasets.3 532

2For multi-document datasets, we use the order provided
in the dataset release.

3See Fig. 3 in Appendix C.3 for results in other datasets.
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Figure 2: Effect of block selection strategy over input redundancy (left), summary informativeness (mid), and
summary redundancy (right), evaluated as block selection proceeds on the MULTINEWS validation dataset.

6.2 Trading-off Informativeness and Cohesion533

Next, we turn to the summary extraction module.534

Tables 1 and 2 present the performance of all com-535

pared system in terms of informativeness and cohe-536

sion, respectively. In all our experiments, statistical537

significance at the 95% confidence level is esti-538

mated using Mann–Whitney U tests (p < 0.05).539

First, note the impact on cohesion when con-540

trolling for redundancy. MMR-SELECT indeed541

manages to obtain comparable informativeness lev-542

els to LT5-CASC, being most effective for BIG-543

PATENT.C. However, minimizing sentence similar-544

ity comes at the expense of a significant decrease545

in cohesion (CoRL) and coherence (CCL). Second,546

we find that NPASSING is the only one capable of547

obtaining comparable or better ROUGE scores but548

CoRL and EGr scores indicate that lexical pass-549

ing is not enough to improve cohesion. Next, note550

that KL-DIST employs a seemingly more aggres-551

sive trade-off between ROUGE and CoRL in all552

datasets except PUBMED. We hypothesize that553

its cohesion term, fC, saturates the final candidate554

score during trade-off, which prompts the selector555

to pick candidates with lower informative scores.556

When guiding selection with a holistic shuffle557

scorer, as expected, CCL-SELECT obtains remark-558

ably high CCL scores, closing the gap w.r.t. EXT-559

ORACLE in most datasets and even surpassing it560

for BIGPATENT.C. However, note that this selec-561

tor does show a significant reduction in CoRL and562

EGr scores w.r.t. LT5-CASC, indicating that CCL563

is measuring also discourse organization, possibly564

in the form of rhetorical role ordering –first back-565

ground, then method, and so on. Hence, it can be566

said that summaries in CCL-SELECT are better567

organized in terms of rhetorical roles but exhibit568

lower cohesion than greedily selected summaries.569

Finally, KVD-SELECT manages to strike an even570

more aggressive trade-off between informativeness571

and cohesion. Across datasets, the selector ex-572

hibits lower ROUGE scores but the best CoRL, EGr 573

scores (except for PUBMED), and second highest 574

CCL score after CCL-SELECT. 575

Effect of Parameter λsel. Next, we analyze how 576

summary properties vary across increasing levels 577

of λsel. Note that when λsel = 0 selectors depend 578

entirely on fC, and λsel = 1.0 is the greedy selector. 579

As expected, we found that informativeness is 580

higher as fI is weighted up (higher λsel) with all se- 581

lectors except MMR-SELECT. This indicates that 582

it is possible to increase cohesion without incur- 583

ring a significant loss in informativeness. Interest- 584

ingly, KVD-SELECT seems robust to λsel in terms 585

of CoRL and RdRL. We hypothesize that KVD- 586

SELECT benefits from a signal indicating which 587

cohesive ties are informative and worth enforcing. 588

Impact of Cascaded Processing. When compar- 589

ing systems that used flat input vs cascaded input 590

(LT5-FLAT and LT5-CASC), we found that cas- 591

caded processing exhibits lower ROUGE scores 592

than flat processing in PUBMED and MULTINEWS, 593

and comparable performance for BIGPATENT.C 594

and GOVREPORT. However, LT5-CASC shows 595

slightly higher CoRL scores in all datasets. This 596

indicates that cascaded processing puts a greedy 597

selector in a better position to extract more cohe- 598

sive summaries, however at the expense of a slight 599

decrease in informativeness. 600

6.3 Human Evaluation 601

In both studies, statistical significance between sys- 602

tem scores was assessed using a one-way ANOVA 603

with posthoc Tukey tests with 95% confidence in- 604

terval (p < 0.01). Results are presented in Table 3. 605

Ranking. Krippendorff’s α (Krippendorff, 2011) 606

showed an inter-annotator agreement of 0.68. For 607

overall quality, subjects showed a significant pref- 608

erence for KVD-SELECT over LT5-CASC. For 609

cohesion, KVD-SELECT was perceived as more 610
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System PubMed BigPatent.C GovReport MultiNews
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

Ext-Oracle 65.10 37.99 60.76 53.85 23.20 46.90 72.66 40.90 69.36 62.66 33.73 57.93
LT5-Flat 48.15† 21.45† 44.49† 39.54 13.25 34.30 59.33 25.94 56.29 47.07 17.54† 42.96
LT5-Casc 46.16 19.74 42.49 39.57 13.25 34.26 59.73 26.21 56.50 46.80 17.21 42.66

+MMR-Select 46.14 19.63 42.47 39.59 13.29 34.30 59.79 26.30 56.56 46.76 17.13 42.59
+NPassing 46.38 19.92 42.74 39.59 13.26 34.29 59.79 26.25 56.56 46.91 17.27 42.78
+KL-Dist 46.00 19.62 42.32 39.25 13.07 33.89 59.46 25.85 56.15 46.63 16.97 42.45
+CCL-Select 45.91 19.60 42.45 39.16 12.95 33.92 59.72 26.24 56.50 46.85 17.29 42.71
+KvD-Select 44.90† 18.47† 41.27† 38.37† 12.41† 33.13† 57.88† 23.66† 54.57† 45.85† 16.13† 41.62†

Table 1: Summary informativeness in terms of ROUGE scores (R1, R2, RL). †: Scores are statistically different
from the closest system. Best systems are bolded; systems better than LT5-CASC shown in blue and worse, in red.

Systems PubMed BigPatent.C GovReport MultiNews
CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL

Gold 14.45 0.95 0.78 19.19 0.78 0.83 16.21 1.95 0.75 10.45 0.71 0.80
Ext-Oracle 14.68 0.99 0.42 15.94 0.68 0.41 16.55 1.92 0.51 10.85 0.68 0.50
LT5-Flat 16.60 1.10 0.26 19.76 0.75 0.37 16.06 2.00 0.28 12.25 0.91 0.26
LT5-Casc 17.47 1.07 0.26 20.26 0.73 0.39 16.46 2.04 0.27 12.51 0.90 0.26

+MMR-Select 16.89† 1.07 0.25† 18.82† 0.73 0.37 15.88† 2.03 0.27 11.83† 0.88 0.25†
+NPassing 16.66† 1.07 0.27 19.91 0.73 0.39 16.38 2.04 0.27 12.17 0.89 0.26
+KL-Dist 17.31 1.08 0.27 20.54 0.73 0.41 16.88† 2.05 0.27 12.82† 0.95† 0.26
+CCL-Select 17.28 1.06† 0.48† 19.41† 0.71† 0.66† 16.73 2.04 0.45† 11.94† 0.86† 0.46†
+KvD-Select 17.32 1.05† 0.28† 22.21† 0.78† 0.42 18.88† 2.15† 0.29† 14.23† 0.99† 0.29†

Table 2: Summary cohesion in terms of consecutive ROUGE-L score (CoRL) and EntityGraph (EGr), as well as
coherence (CCL). For all metrics, higher is better. See Table 1 for formatting details.

cohesive compared to LT5-CASC, and LT5-CASC611

was more cohesive than MMR-SELECT.612

Chaining. Chain overlap was calculated at 0.90.613

Differences between LT5-CASC and all other sys-614

tems, as well as MMR-SELECT–GOLD and KVD-615

SELECT–LT5-CASC were found to be significant,616

for all measurements of cohesion. Moreover, the617

number of NPs annotated per chain was 2.30, 2.33,618

2.80, and 2.55, for systems LT5-CASC, MMR-619

SELECT, KVD-SELECT, and GOLD, respectively.620

We found that KVD-SELECT summaries exhibit621

more active and denser chains and better-covered622

sentences than the baselines. Note that LT5-CASC623

obtains the lowest chain spread but also low cov-624

erage, indicating that its summaries exhibit very625

few chains that happen to be close to each other. In626

contrast, MMR-SELECT obtains the highest chain627

spread and low number of chains, indicating con-628

tent with low diversity and sparsely presented.629

7 Conclusions630

We presented an extractive summarization algo-631

rithm that controls each summary quality indepen-632

dently, in scenarios where the input is highly re-633

dundant. Redundancy is controlled as the input is634

System Ranking Chaining
Ov↓ I↓ C↓ Spr↓ Den↑ Cov↑

LT5-Casc 1.59 1.56 1.59 1.93 1.29 57.12
+MMR-Select 1.50 1.48 1.47 2.36 1.28 53.21
+KvD-Select 1.41 1.46 1.44 2.05 1.40 68.78

Gold - - - 1.91 1.36 69.65

Table 3: Ranking (left) w.r.t. (Ov)erall quality,
(I)nformativeness, and (C)ohesion; and properties of an-
notated chains (right): spread (Spr), density (Den), and
sentence coverage (Cov,%). Best systems are bolded.
(↑,↓): higher, lower is better.

consumed, and informativeness and cohesion are 635

balanced during sentence selection. 636

Results show that our input processing strategy 637

is effective at retrieving non-redundant yet relevant 638

passages, reducing the redundancy levels the rest 639

of the pipeline is exposed to. In addition, our sen- 640

tence selector emulates human memory to keep 641

track of cohesive chains while building the sum- 642

mary, enforcing ties between noun phrases directly. 643

Extensive automatic and human experiments re- 644

vealed that it is possible to extract highly cohesive 645

summaries that are as informative as summaries 646

optimizing only for informativeness. 647
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8 Limitations648

The proposed system presents the following limita-649

tions. First, the system extracts complete sentences650

and concatenates them to form the final summary.651

We do not perform any kind of post-editing of dis-652

course markers that might break coherence in the653

summary. However, our results show that the ex-654

tracted summaries are still perceived as cohesive655

by humans. Nevertheless, post-editing is an inter-656

esting focus for future work.657

Second, we argue about the usefulness of an ex-658

tractive system in a generative landscape where659

large language models are predominant. Recent660

large language models have shown impressive capa-661

bilities at producing coherent, assertive text, some662

even capable of consuming long sequences of to-663

kens. However, hallucinations are a pervasive prob-664

lem in these systems, especially in highly technical665

domains like the ones considered in this work. In666

this scenario, an extractive summary has the advan-667

tage of presenting information from the source ver-668

batim and hence, without any hallucination. More-669

over, extracted summaries preserve the writing670

style of the input as well as technical, domain-671

specific terms, avoiding altogether the problems672

of over-simplification and misstyling.673
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A Dataset Preprocessing and Statistics 881

For all datasets, we homogenize the source-target 882

length distributions by discarding samples with ref- 883

erences that were too short (less than 3 sentences, 884

not usefull for our cohesion analysis) or too long 885

(more than 500 tokens in all datasets except GOV- 886

REPORT, for which this threshold is set to 1000). 887

Similarly, samples with short input documents (less 888

than 3 sentences or less than 30 tokens in total) 889

were also discarded. Sentences were re-split us- 890

ing spaCy4 and trimmed to 100 tokens, whilst sen- 891

tences with less than 5 tokens were discarded. Ta- 892

ble 4 presents the statistics of all dataset in terms 893

of number of tokens. 894

It is worth noting that we found a discrepancy 895

in PUBMED.Text from the ‘article’ field (in 896

theory the concatenated sections) would not al- 897

ways have the same text as the ‘sections’ field. 898

Hence, we chose data from the ‘sections’ field 899

as input document. 900

Dataset Input Length Target Len.
Avg. Max. Q90 Avg.

PubMed 3150 119875 5844 206
BigPatent.C 4534 72835 8655 119
GovReport 8840 206622 15752 580
MultiNews 2057 525348 3846 260

Table 4: Dataset statistics in terms of number of tokens
showing average, maximum, and 90% quantile (Q90).

B Optimization and Resource Details 901

Long-T5 models were trained using one NVIDA 902

A100 (80Gb of GPU memory). Table 5 provides a 903

comprehensive account of hyperparameter values 904

used for training and inference in our experiments, 905

for all datasets. The local context extractor is fine- 906

tuned from pretrained Huggingface’s checkpoint 907

google/long-t5-tglobal-base, whereas 908

the global context encoder is trained from scratch. 909

Finally, Table 5 details the hyperparameter values 910

common to all selectors, as well as selector-specific 911

parameters, optimized w.r.t. each dataset’s valida- 912

tion set. 913

C Complementary Results 914

In this appendix, we present additional results in 915

terms of metrics and datasets for analysis in §6. 916

4https://spacy.io/
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Parameter Value

Block Selection
Block length in tokens 2048
Overlapping context size in tokens 200
Damping factor (d) 0.85
Trade-off param. (λb) 0.2

Local Context Extractor
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Batch size 64
Max. gradient norm 2
Training steps 100 000
Max. input length in tokens 2048
Max. # of sentences extracted 10

Global Contetext Encoder
# Attention heads 8
# Layers 1
Output layer size 200
Dropout 0.1
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Max. input length in tokens 16 384
Max. input length in sentences 1000
Batch size 64
Max. gradient norm 1
Training steps 50 000

Sentence Selector
All selectors. Trade-off param. (λsel) 0.8
Summary budget in number of tokens

PubMed 200
BigPatent.C 100
GovReport 650
MultiNews 250

KL-Dist. # of histogram bins 40
KvD-Selector.
Working memory (WM) 6
Min. NP cos. similarity (ν) 0.6
Recall cost (γrec) 0.01

Table 5: Hyper-parameter values for all modules in our
summarization pipeline.

C.1 Additional Metrics917

Semantic Relevance. Table 6 shows BERTScore918

F1 scores (Zhang et al., 2019) with importance919

weighting (IDF) and RoBERTa as underlying920

model (Liu et al., 2019).921

Redundancy. Table 10 presents IUniq and RdRL922

scores for all systems and datasets analyzed.923

Cohesion. The following additional cohesion924

metrics were explored in preliminary experiments:925

Extended Entity Grid model (Barzilay and Lapata,926

2008), DS-Focus and DS-Sent (Zhao et al., 2023),927

and RC and LC (Wong and Kit, 2012). However,928

the values obtained did not show enough expressiv-929

ity for system-level comparisons and hence, they930

were not included in the final analysis.931

System PubMed BigPat.C GovRep. MultiN.
Ext-Oracle 88.45 85.84 88.29 88.69

LT5-Flat 85.71 83.77 86.45 86.03
LED-Flat 83.67 83.04 85.96 85.51

MemSum-Casc 83.52 82.60 85.06 85.07
LLaMa-Casc 82.86 83.17 84.80 85.33
LT5-Casc 85.06 83.66 86.46 85.98

+MMR-Select 85.05 83.66 86.48 85.94
+NPassing 85.13 83.67 86.47 86.01
+KL-Dist[NP] 85.02 83.52 86.30 85.94
+CCL-Select 84.99 83.63 86.47 85.91
+KvD-Select 84.76 83.35 85.99 85.72

Table 6: Semantic relevance of system summaries in
terms of BERTScore F1.

C.2 Flat Processors and Local Encoders 932

In addition to LT5-FLAT, we compared against 933

Longformer (Beltagy et al., 2020), trained from the 934

pre-trained encoder module in LED. 935

Then, we assess the impact of architectural 936

choice for the Local Encoder module in our 937

pipeline by comparing MemSum (Gu et al., 2022), 938

and LLaMA with 7B parameters (Touvron et al., 939

2023). 940

The results on informativeness, redundancy, and 941

cohesiveness are presented in Tables 7, 8, and 9, 942

respectively. The following insights can be drawn 943

fro these results. Using LLaMA as local encoder al- 944

lows our system to select –greedily– sentences that 945

have little lexical overlap between them, prompt- 946

ing low summary redundancy scores and in turn 947

lowering cohesion scores. Moreover, the coverage 948

is severely impacted as seen by the low ROUGE 949

scores. Using MemSum had a similar outcome, 950

although not as severe. 951

These results might indicate that finetuning a 952

large pretrained model like LLaMA does not neces- 953

sarily translate to better informativeness, perform- 954

ing much lower than a smaller model pretrained 955

on the summarization task. Perhaps unsurprisingly, 956

task-specific, smaller models can be competitive to 957

massive foundation models trained on 1000x more 958

data. 959

C.3 Reducing redundancy in block selection 960

Figure 3 presents the effect of block selection strate- 961

gies for PUBMED, BIGPATENT.C, and GOVRE- 962

PORT. 963

C.4 Effect of Trade-off Parameter λsel 964

Figure 4 showcases how summary properties (infor- 965

mativeness, redundancy, and cohesion) vary across 966
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System PubMed BigPatent.C GovReport MultiNews
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

LED-Flat 40.20 13.87 36.85 36.65 11.07 31.94 57.59 23.40 54.56 45.28 15.78 41.35
LT5-Flat 48.15† 21.45† 44.49† 39.54 13.25 34.30 59.33 25.94 56.29 47.07 17.54† 42.96
MemSum-Casc 40.29 14.85 37.09 36.07 10.79 30.97 54.91 19.66 51.75 44.47 15.28 40.32
LLaMA-Casc 37.60 11.86 34.51 36.82 11.24 32.00 54.20 19.02 50.90 45.02 15.48 41.00
LT5-Casc 46.16 19.74 42.49 39.57 13.25 34.26 59.73 26.21 56.50 46.80 17.21 42.66

Table 7: Informativeness in terms of ROUGE F1 scores (R1, R2, RL), for complementary Flat and Cascaded
systems. Best systems are bolded. †: System score is statistically different from closest baseline.

System PubMed BigPatent.C GovReport MultiNews
RdRL IUniq RdRL IUniq RdRL IUniq RdRL IUniq

Gold 11.88 19.31 18.11 20.85 13.37 28.78 9.72 16.35

Ext-Oracle 13.91 20.36 14.70 19.51 14.20 29.14 10.08 16.98
LED-Flat 14.70 21.86 17.62 20.07 14.94 31.01 11.25 19.06
LT5-Flat 16.49 23.43 19.76 21.32 15.78 32.46 12.24 20.63
MemSum-Casc 12.58 19.39 19.41 21.23 13.77 27.47 12.29 19.28
LLaMA-Casc 11.61† 19.40 17.51† 18.96† 12.43† 26.64† 10.87† 19.46
LT5-Casc 17.08 22.94 20.15 21.46 16.34 31.68 12.26 20.59

Table 8: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and inverse uniqueness (IUniq), for
complementary Flat and Cascaded systems. For all metrics, lower is better. Best systems are bolded. †: System
score is statistically different from closest baseline.

increasing levels of λsel, for all datasets analyzed.967

D Human Evaluation Campaigns968

In this section, we provide further details about969

the two evaluation campaigns run. Both campaigns970

were run on Amazon Mechanical Turk, where Turk-971

ers were required to have a Human Intelligence972

Task (HIT) approval rate higher than 99%, a mini-973

mum of 10 000 approved HITs, be proficient in the974

English language, and have worked in the health-975

care or medical sector before. Annotators were976

awarded $1 per HIT, translating to more than $15977

per hour. These rates were calculated by measuring978

the average annotation time per HIT in a pilot study.979

Furthermore, we implemented the following catch980

controls: (i) we asked participants to check check-981

boxes confirming they had read the instructions982

and examples provided, and (ii) we discard HITs983

that were annotated in less than 5 minutes.5 An-984

notations that failed the controls were discarded in985

order to maximize the quality. Figure 5 depicts the986

instructions given to annotators for each campaign.987

D.1 Ranking Campaign988

We collected three annotations per system-pair989

comparison and made sure that the same annota-990

tor was not exposed to the same document twice.991

As an additional catch trial, we included in each992

5Time threshold obtained from pilot study measurements.

annotation batch an extra instance with summaries 993

extracted by the extractive oracle and the random 994

baseline. 995

After discarding annotations that failed the con- 996

trols, we are left with 708 out of 810 instances (30 997

documents, 3 system pairs, 3 dimensions, and 3 998

annotations per pair). 999

D.2 Chaining Campaign 1000

Participants were shown a single system summary 1001

as a list of sentences where tokens that belonged to 1002

the same noun phrase were colored the same.Then, 1003

the task consists of selecting sets of colored text 1004

chunks that belong to the same semantic field. Sim- 1005

ilarly to the previous study, we collected three an- 1006

notations per system summary and included the 1007

gold summary of an extra system in the campaign. 1008

We collected 908 human annotations of noun- 1009

phrase chains for 360 summaries (30 documents, 1010

4 system including gold summaries, and 3 annota- 1011

tions per summary). On average, annotators iden- 1012

tified 2.56 groups per summary and 3.49 NPs per 1013

group. 1014

E Example Output 1015
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Systems PubMed BigPatent.C GovReport MultiNews
CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL

Gold 14.45 0.95 0.78 19.19 0.78 0.83 16.21 1.95 0.75 10.45 0.71 0.80

Ext-Oracle 14.68 0.99 0.42 15.94 0.68 0.41 16.55 1.92 0.51 10.85 0.68 0.50
LED-Flat 15.18 1.00 0.36 17.67 0.69 0.35 15.06 1.91 0.30 11.31 0.81 0.30
LT5-Flat 16.60 1.10 0.26 19.76 0.75 0.37 16.06 2.00 0.28 12.25 0.91 0.26
MemSum-Casc 12.87 0.75 0.25 20.56 0.62 0.34 13.93 1.72 0.29 13.16 0.84 0.26
LLaMA-Casc 12.18 0.70 0.27 17.54 0.70 0.39 12.53 1.58 0.28 11.15 0.77 0.25
LT5-Casc 17.47 1.07 0.26 20.26 0.73 0.39 16.46 2.04 0.27 12.51 0.90 0.26

Table 9: Cohesion of extracted summaries in terms of consecutive ROUGE-L score (CoRL) and EntityGraph (E.Gr.),
as well as coherence (CCL), for complementary Flat and Cascaded systems. For all metrics, higher is better. Best
systems are bolded.

System PubMed BigPatent.C GovReport MultiNews
RdRL IUniq RdRL IUniq RdRL IUniq RdRL IUniq

Gold 11.88 19.31 18.11 20.85 13.37 28.78 9.72 16.35
Ext-Oracle 13.91 20.36 14.70 19.51 14.20 29.14 10.08 16.98
LT5-Flat 16.49 23.43 19.76 21.32 15.78† 32.46 12.24 20.63
LT5-Casc 17.08 22.94 20.15 21.46 16.34 31.68 12.26 20.59

+MMR-Select 16.99 22.85 19.17† 21.09† 16.16 31.53 12.05† 20.50
+NPassing 16.39† 21.66† 19.79 21.18 16.24 31.42 12.03† 19.92†
+KL-Dist 16.83† 22.08† 20.30 21.44 16.49 31.35 12.57† 20.22
+CCL-Select 16.63† 22.42† 18.97† 20.87† 16.31 31.65 11.93† 20.29†
+KvD-Select 16.24† 21.53† 21.09† 21.65 16.69† 30.97† 12.97† 19.97†

Table 10: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and inverse uniqueness (IUniq). For all
metrics, lower is better. See Table 1 for formatting details.
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Figure 3: Effect of block selection strategy over input redundancy (left), summary informativeness (mid), and
summary redundancy (right), evaluated as block selection proceeds on the validation set of PUBMED, BIGPATENT.C,
and GOVREPORT.
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Figure 4: Informativeness (left), redundancy (mid), and lexical cohesion (right) across different values of the
trade-off parameter λsel on the validation set of PUBMED, BIGPATENT.C, GOVREPORT, and MULTINEWS.
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(a) Ranking Campaign

(b) Chaining Campaign

Figure 5: Instructions given to annotators in the ranking (top) and chaining campaigns (bottom).
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System Summary Chain IDs

Gold (Avg. ROUGE=-; RdRL=8.3; CoRL=6.63)
Why did Microsoft buy Nokia’s phone business? 1,2
We now know Microsoft’s answer: the computing giant released a 30-slide presentation today arguing that the move will improve Microsoft’s margins
on Windows phones, which will allow it to invest more in the platform, which will accelerate sales and market share growth, The Washington Post
reports.

1,2,3,5

But John Herrman at BuzzFeed has another explanation: "fear of dying alone." 3
Here’s what he and other pundits are saying: the presentation "manages to sound both insane and uninspiring, outlining modest goals that still sound
unrealistic," Herrman argues - like capturing a whole 15% of the smartphone market.

2,3,5

"It’s a fitting end for the close of Microsoft’s Ballmer era, during which the company...missed out on the most important change in consumer
electronics in decades" while remaining profitable in unglamorous ways.

1,2,4

Like everyone, Microsoft is trying to ape the Apple model, MobileOpportunity observes. 1,3
But it’s not so sure that’s a good idea. 3
"There already is an Apple," the blog points out, and other software/hardware hybrid companies, like Palm and BlackBerry, have been crushed under
its heel.

1,3

Maybe Microsoft should have tried to patch up its tried-and-true strategy of licensing its OS. 1,2
The move risks complicating Microsoft’s crucial relationships with other PC and device manufacturers, one analyst tells ZDNet. 1,2,3
But he adds that "Microsoft needed to make a bold move" or face "certain terminal decline," and that the price it paid for Nokia "seems extremely
reasonable."

1,3

Meanwhile, Matthew Yglesias at Slate digs up a fairly interesting memo from Nokia CEO (and, perhaps, Microsoft heir apparent) Stephen Elop, in
which he uses the story of a Deepwater Horizon worker leaping from the burning oil platform - a seemingly desperate, yet necessary move - to explain
the company’s shift from its own failed OS to Windows Phone.

1,2,3,4,11

Of course, Yglesias notes, that move "was basically a total failure." 3,11

MMR-Select (Avg. ROUGE=28.25; RdRL=8.31; CoRL=11.98)
Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strategy, but the joint company won’t take the same form as
Apple.

1,2,10

This crawl was run at level 1 (URLs, including their embeds, plus the URLs of all outbound links, including their embeds). 6
Today’s sale price, which includes 1.65 billion euros in patents, is just 5.44 billion euros. 2,7
It’s been a rough decade. -
Microsoft is buying Nokia’s cell phone business and licensing its patent portfolio, according to both companies. 1,2
In 2003, Nokia’s cell phone market share exceeded 35%. 1,2
That same year, its phone business alone posted an operating profit of 5.48 billion euros. 2,7
Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smartphone market share stakes and with the limited success of the
Lumia range so far, enough to keep interest in Windows Phone alive, most analysts are seeing a certain amount of inevitability to the acquisition, even
if they are split on what its biggest implications are.

1,2,8,10

The seed for this crawl was a list of every host in the Wayback Machine. 6
The WARC files associated with this crawl are not currently available to the general public. 6
Five years ago was the year the App Store first opened. 2
Windows Phone has barely dented the now much larger smartphone market. 2
Many at the time wondered if Stephen Elop’s time at Nokia would be spent grooming the company for purchase —a foreigner in all possible ways, he
began his time at the company with a memo rightly but offensively declaring Nokia’s proud platform a failure and quickly pledged the company’s
commitment to the still-tiny Windows Phone.

1,2,4

KvD-Select (Avg. ROUGE=26.33; RdRL=12.48; CoRL=14.41)
Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strategy, but the joint company won’t take the same form as
Apple.

1,2,10

Microsoft has been working on its evolution into a devices and services company, moving away from the services business it has traditionally been,
for several years now with limited success.

1,2,8

Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smartphone market share stakes and with the limited success of the
Lumia range so far, enough to keep interest in Windows Phone alive, most analysts are seeing a certain amount of inevitability to the acquisition, even
if they are split on what its biggest implications are.

1,2,8,10

Owning the desktop (via Windows) and building additional services on top, like Office or Search, has been vital for Microsoft’s strategy until now, so,
as our interest shifts from the desktop to the tablet or smartphone, it’s essential to Microsoft’s broader business (even Azure) that it can retain that
connection in some form.

1,2,9

But he said Microsoft’s challenge remains how to unite the myriad services and brands - Windows, Nokia, Live, Surface, Xbox, Bing, and more - into
a cohesive experience that will command and cement customer loyalty.

1,2,9

It felt like a radical about-face, but no matter: Nokia and Microsoft were going to save each other. 1,9

Table 11: Reference summary, along with summaries extracted by MMR-SELECT and KVD-SELECT for a
MULTINEWS sample with informativeness (average ROUGE score), redundancy (RdRL), and cohesion (CoRL)
scores. Each sentence is annotated with lexical chains, color-coded in the text and IDs shown to the right. Text was
detokenized and truecased for ease of reading.
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