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Abstract

Extractive summaries are usually presented as
lists of sentences with no expected cohesion be-
tween them. In this paper, we propose a method
to enforce cohesion whilst controlling for re-
dundancy in summaries, in cases where the
input exhibits high redundancy. The pipeline
controls for content redundancy in the input as
it is consumed, and balances informativeness
and cohesion during sentence selection. Our
sentence selector simulates human memory to
keep track of cohesive chains while building
the summary, enforcing cohesive ties between
noun phrases. Extensive experiments, both au-
tomatic and human, revealed that it is possible
to extract highly cohesive summaries that are
as informative as summaries optimizing only
for informativeness. The extracted summaries
exhibit a smooth topic transition between sen-
tences as signaled by lexical chains, with chains
spanning adjacent or near-adjacent sentences.

1 Introduction

Automatic text summarization is the task of pro-
cessing a document(s) and producing a shorter
text, the summary, that retains the gist of the in-
formation, with many variations along the years
(Nenkova et al., 2011). Extractive summariza-
tion selects content units (usually sentences) and
presents their concatenation as the summary. It
remains challenging to control the specific con-
tent units so that the summary ends up being
non-redundant and informative, with much previ-
ous work modeling these qualities during docu-
ment understanding (Peyrard et al., 2017; Xiao and
Carenini, 2020; Gu et al., 2022). However, coher-
ence control has received less attention (Barzilay
and Lapata, 2008; Wu and Hu, 2018), partly be-
cause merely reliably evaluating whether a text is
coherent remains challenging (Goyal et al., 2022;
Steen and Markert, 2022; Zhao et al., 2023).

We introduce an extractive summarization
methodology that implements two control mech-

anisms at different stages of processing: the first
one to control redundancy during input understand-
ing, and the second one to control the trade-off
between informativeness and cohesion during sum-
mary extraction. Cohesion is the property of a text
to function as a unified whole, exhibiting thematic
links —called cohesive ties— between nearby sen-
tences (Hassan and Halliday, 1976). In contrast,
coherence refers to the discourse organization of a
text, usually signaled by discourse markers. When
building extractive summaries by concatenating
sentences, we argue that controlling for cohesion
is a better-defined task than aiming to control co-
herence, especially if no sort of post-editing (e.g.
replacing discourse markers) is applied (Zajic et al.,
2007; West et al., 2019; Mallinson et al., 2020). A
potential benefit of producing a more cohesive text
is that it is easier to read and understand for hu-
mans, especially when the knowledge domain is
highly technical, as reported by previous work in
psycholinguistics (Kintsch, 1990) and automatic
summarization (Barzilay and Elhadad, 2002).

In our pipeline, summary properties are con-
trolled in the following way. On the one hand,
summary redundancy is addressed by controlling
the redundancy levels of the input text, following
previous findings (Carbonell and Goldstein, 1998;
Xiao and Carenini, 2020). The pipeline consumes
input text in a cascaded way: first splitting the input
into contiguous passages, then consuming passages
one at a time so as to minimize their semantic simi-
larity with already selected passages.

On the other hand, informativeness and cohesion
are directly modeled during summary extraction.
Extraction is done in a sentence-by-sentence fash-
ion, quantifying summary properties independently
at each step. The objective is to select a highly
cohesive sentence that is informative enough. We
introduce a sentence selector that incrementally
builds cohesive chains of noun phrases and mod-
els chain interaction. The selector, KVD-SELECT,



keeps track of chains currently active by simulating
human memory according to the Micro-Macro the-
ory, henceforth KvD (Kintsch and van Dijk, 1978),
a psycholinguistic theory of discourse comprehen-
sion and production. Working memory —a type
of short-term memory— is modeled as a limited-
capacity buffer of lexical chains, forcing the model
to keep only the most salient chains.

We test our methodology on newswire multi-
document summarization and single-long docu-
ment summarization of scientific articles, patents,
and government reports. Across domains, exten-
sive experiments show that, first, our system is ef-
fective at incrementally building an input sequence
with lower content redundancy, which translated
to a significant reduction in summary redundancy.
Second, the proposed sentence selector managed
to maintain summaries informative while improv-
ing cohesion significantly: over 15% more noun
phrases and over 20% more sentences were con-
nected through cohesive ties w.r.t a greedy selector.
Tailored human evaluation campaigns revealed that
cohesion has a positive impact on perceived in-
formativeness, and that our extracted summaries
exhibit chains covering adjacent or near-adjacent
sentences. Closer inspection showed that topics
flow smoothly across extracted summaries with no
abrupt change or jumps.

In summary, our contributions are as follows:

* We propose a cascaded encoder capable of con-
suming arbitrary long textual input that controls
the level of content redundancy the rest of the
pipeline is exposed to.

* We propose a summary extraction method that
models informativeness and cohesion indepen-
dently and allows to control the balance between
the two when building the summary.

* Automatic and human experiments show the ef-
fectiveness of our control mechanisms and how
summary properties can be balanced according
to user needs in a straightforward way.

2 Related Work

Previous work has modeled cohesion during docu-
ment understanding by keeping track of tied named
entities (Barzilay and Lapata, 2008; Guinaudeau
and Strube, 2013), topic flow (Barzilay and El-
hadad, 2002), or by implementing discourse theo-
ries (Jeon and Strube, 2020). Most similar to our
approach, Fang (2019) introduced an implementa-
tion of the KvD theory that models cohesion and

informativeness during document understanding,
assigns a single importance score to each sentence,
and employs a greedy sentence selector. In con-
trast, we quantify summary properties separately,
and model cohesion by implementing KvD during
sentence selection. This approach provides a more
explicit way to control the contribution of each
property during summary extraction.

Similar ways to control summary properties
during summary selection have only focused on
minimizing redundancy (Carbonell and Goldstein,
1998; Fabbri et al., 2019; Xiao and Carenini, 2020),
where the extractive summary is regarded as a list
of sentences with no particular order to them, a
design choice possibly influenced by the format of
available benchmarks such as CNN/DM (Hermann
et al., 2015) and DUC. However, seminal work
highlighted the role of redundancy in text (Walker,
1993; Tauste, 1995), and how its presence is a result
of human memory limitations (Johnstone, 1994).

In this work, we provide evidence that control-
ling for cohesion constitutes a better strategy for
providing the end-user with a more comprehensi-
ble summary, formatted as a multi-sentence cohe-
sive text instead of a list of sentences. Our results
show that this setup is especially effective when the
knowledge domain is highly technical, and when a
sentence ordering cannot be inferred from the input
trivially, e.g. in multi-document summarization.

3 Problem Formulation

We tackle the task of extractive summarization as a
sentence scoring step followed by a selection step.
Figure 1 shows the pipeline of the system, in which
sentences are scored in a cascaded fashion, as fol-
lows. First, the input is segmented into blocks of
contiguous sentences and the block selector mod-
ule then selects blocks based on their relevancy
and their redundancy w.r.t. already selected blocks.
Second, a local encoder obtains block-level repre-
sentations for each sentence in the block. After
all document blocks are processed, all these en-
codings are concatenated into a single embedding
sequence and passed to the global context encoder,
which will obtain a document-aware representa-
tion of each sentence. Finally, a selection module
will extract a subset of sentences and present them
as the summary in the order they were extracted.
The pipeline is designed to be capable of consum-
ing documents of arbitrary length, offering further
control over levels of information redundancy the
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Figure 1: Our extraction pipeline: local extraction step
m adds local sentences to D'; at sentence selection step
t, KvD-Select balances informativeness of candidate s;
with cohesion of summary S.

sentence selector is exposed to. We now proceed to
elaborate on each module of the proposed pipeline.

3.1 Block Segmentation and Selection

Processing starts by segmenting the document(s) D
into fixed-length overlapping blocks, each of which
includes preceding and subsequent wordpieces,
providing surrounding context. Then, blocks are
selected iteratively until a predefined budget (total
number of wordpieces) is met. At step m, block
b, 1s selected such that

bm = argmax[ALR(b) — (1 — A\p) max Sim(b, b;)] (1)
beB\B bjeB

where B is the set of blocks already selected,
Sim(z, y) is the cosine similarity between TF-IDF
vectors of blocks z and y, and A allows to con-
trol the mix of both terms. LR(b) is the continuous
LexRank score of block b (Erkan and Radev, 2004),
calculated over the complete graph of blocks in D,

d Sim(b, v)

=g ta-d |
” veadje] 2. cadjfy SIM(2,v)

LR(b) LR(v)
where d is the damping factor and adj(b) is the set
of block nodes adjacent to b. This module balances
block relevancy (as proxied by centrality) and input

redundancy in a straightforward way by linearly
combining their scores. After an optimal block is
selected, it is sent to the local encoder module.

3.2 Local Encoder (LE)

Given block b as a sequence of wordpieces span-
ning contiguous sentences, the local encoder will
obtain representations for each sentence covered
in b. This module is trained as a local extractive
summarizer itself, under sequence labeling formu-
lation where each sentence in the block is labeled
as y¢ € {0, 1} to indicate whether sentence s; is
selected or not. Then, sentence representation h;
is defined as the average embedding over s; word-
pieces, obtained from a LongT5 encoder (Guo et al.,
2022). Finally, the probability of s; being locally
selected is defined as P(y! | s;,b;0,) = o(W*-h;),
and the module is trained using cross-entropy loss
independently from the rest of the pipeline. Dur-
ing inference, the local encoder consumes one
block, selects N sentences and adds them to D’
—containing all locally selected sentences so far—,
and their corresponding embeddings to H*.

3.3 Global Context Encoder (GCE)

Given the sequence of local sentence embeddings
HY, this module obtains the sequence of globally-
aware representations 9 as follows. Sequence H*
is passed through a self-attention layer (Vaswani
etal., 2017), i.e. g; = SelfAttn(hy, HY),Vh; € H'.
Similarly to the LE module, the probability of se-
lecting s; € D"is P(y{ | 8¢, D';04) = o(W9 - g),
where y/ € {0, 1} indicates whether s, is selected
or not for the final, global summary, and also
trained using cross-entropy loss.

3.4 Sentence Selection

Finally, candidate summary S is built by selecting
one sentence at a time from D’, taking into account
the informativeness and cohesion of each candidate
sentence w.r.t. the already selected sentences. At
selection step ¢, the optimal sentence is given by

st = argmax [Nl fi(s) + (1= Asat) fe(SY)] (2)
seD’\§t—1

where function f; estimates the informativeness
of candidate sentence s, fc estimates the cohe-
sion of candidate summary S* = [S*1; 5], and
Aset € [0,1] is a parameter that allows to con-
trol their trade-off. Following Xiao and Carenini
(2020), we take the probability of selecting s given
by the global context encoder module as a proxy



for informativeness, i.e. fi(s) = P(y? | 5, D’;0,).
In the next section, we elaborate on how fc models
and enforces cohesion during sentence selection.

4 Cohesion during Summary Extraction

Cohesion is a language mechanism that enables
a sequence of sentences to function as a unified
whole (Hassan and Halliday, 1976). It does so by
linking semantic units in a text through cohesive
ties, regardless of the grammatical or discourse
structure these units are part of. In particular, lexi-
cal cohesion links units with the same lexical form,
synonyms, or units in the same semantic field. Fur-
thermore, units tied cohesively can be grouped in
chains by their semantic similarity. Whilst the mere
presence of two or more chains does not guarantee
a cohesive effect, their interaction can be a reli-
able proxy for cohesion (Morris and Hirst, 1991;
Barzilay and Elhadad, 1997).

In this paper, we focus on modeling lexical cohe-
sive ties between noun phrases in nearby sentences
of a summary by controlling the interaction be-
tween lexical chains.

4.1 KvD Select

The proposed selector, KVvD-SELECT, calculates
cohesion score fo by simulating the processes in
working memory during text production. The pro-
cedure is based on the Micro-Macro Structure the-
ory (Kintsch and van Dijk, 1978), which describes
the cognitive processes involved in text comprehen-
sion and production at the local (micro) and global
(macro) level of discourse. Following Fang (2019),
we implement processes happening at micro-level,
which deal with the movement of content in and
out of working memory.

Let T' be working memory and G long-term
memory (LTM), where both are separate sets of
cohesive chains, and each chain as a set of noun
phrases (NPs). At selection step ¢, the algorithm
extracts NPs from s; and connects them to the
chains in 7" and G, constraining the number of
active chains in 7" afterward. Cohesive score fc
then depends on the average similarity between
units added to 7" and those added to G. We now
elaborate on each step of the algorithm.

Extracting Noun Phrases. Given sentence s; €
D’, we obtain P, the set of extracted nominal
chunks, obtained by merging nominal nodes in
dependency trees with their children, following the
procedure of Fang (2019). Specifically, given that

node u is nominal dependent of a clausal predicate,
u will have its child v merged if eitherv is a function
word, a single-token modifier, or # and v form part
of a multi-word expression.

Adding Content to Memory. Next, cohesive ties
between s, and S*~! are enforced by adding each
NP in P to the chain with the highest element-wise
semantic similarity. Formally, the optimal chain
toadd a € P tois C* = argmaxocr{¢(p,C)},
where ¢ is the average BERTScore (Zhang et al.,
2019) between a and each NP in C. In order to
make sure that chains maintain an acceptable level
of semantic similarity between elements, a is added
to chain C only if ¢(a,C) > v, where v is the
minimum admissible similarity. This way the al-
gorithm can control the similarity length between
chain members, and avoid a single, long chain.

If similarity with chains in 7" is not strong
enough, we look at chains in G, in which case the
chosen chain is moved back to T'. This step simu-
lates how humans recall content no longer present
in WM, the recall mechanism (Kintsch and van
Dijk, 1978). If still no chain in G meets the similar-
ity requirement, we proceed to create a brand new
chain in T" with a as its sole element. By searching
for a good enough candidate chain first in 7" and
then in GG, we encourage cohesive ties between NPs
in nearby sentences.

Updating Memory. After adding incoming NPs
to chains in memory, 7" is updated to retain only the
WM most recent chains, where recency of a chain is
defined as the id of the selection step in which this
chain was last retained in 7". For instance, a chain
currently in 7" is more recent (higher step id) than a
chain in GG discarded in an earlier step. This design
choice mimics the recency effect behaviour during
free recall tasks in human subjects (Glanzer, 1972),
a behaviour attributed to short-term memory. Fi-
nally, discarded chains are moved to GG, concluding
the selection step.

Candidate Scoring. Next, we define cohesion
score feon Which will be used to discriminate
amongst possible continuations to S*~1. The ob-
jective is to encourage NPs in P to be assigned to
recent chains, in turn encouraging chains to cover
nearby sentences in the final summary. In addition,
we want to score down candidate sentences with
NPs added to chains in long-term memory.

Let Ar = {a;a € P,C, € T}, where C,, is the
chain a was added to. Similarly, let Ag = {b;b €



P,Cy € G}. Then, let rec(C') be the number of
selection steps passed since the last time chain C'
was retained in 7". Quantity rec(C') functions as a
proxy for how spread chain C'is, i.e. how far away
two sentences covered by C are. Then,

aC rec
fcoh A|Z¢ ’Y

rec(C, |Ag|

Hence, the cohesive score depends on the contribu-
tion of each cohesive tie formed. For each chunk
in A7 and Ag, its contribution depends directly
on the strength of similarity to its assigned chain
and inversely on the spread of said chain. The
contribution of chunks in Ag is scaled down by
hyper-parameter v € [0;1] as to simulate the
higher cognitive cost incurred when retrieving in-
formation from long-term memory.

5 Experimental Setup

We now describe the datasets used, training details,
baselines, and evaluation methodology.

5.1 Datasets

We consider datasets for single-document summa-
rization of long, highly redundant documents, and
multi-document summarization:

* PubMed. Scientific articles in the biomedical
domain collected from PubMed (Cohan et al.,
2018). We use text from all sections as the source
document and the abstract as reference summary.

» BigPatent.C. Patents in the Chemistry and Met-
allurgy industry (Sharma et al., 2019).

* GovReport. Long legislature reports (Huang
et al., 2021) of U.S. bills.

* MultiNews. Collections of news articles paired
with reference summaries (Fabbri et al., 2019).

5.2 Pipeline Parameters

Hyper-parameters were tuned over the validation
sets of each dataset.

Document Segmentation and Block Selection.
We use a block size of B = 2048, context size of
C = 200 pieces, A\, = 0.2, and set a budget of
16 384 input wordpieces.

Local Encoder (LE), Global Context Encoder
(GCE). The block encoder in LE is initialized
with a pretrained checkpoint of LongT5 with

¢bcb
Z rec(Cy)

transient-global attention (Guo et al., 2022),! and
an output layer of size 200.

The LE module is trained independently from
the GCE module, with LE being trained first, then
GCE trained whilst LE remains frozen. In both
cases, we used the Adam optimizer (Loshchilov
and Hutter, 2018), a constant learning rate of 1e =%,
effective batch size of 64, and 50k training steps.

For training LE, we obtain extractive oracle sen-
tences from each block and train the module over
blocks with ROUGE-1 + ROUGE-2 > 0.5. Dur-
ing inference, we extract a maximum of N = 10
local sentences per block and a maximum of 1000
sentences in total.

Summary Extractor. We set A\;; = 0.8, work-
ing memory WM= 6, recall cost Y, = 0.01, and a
minimum NP similarity of v = 0.6. Word budget is
set to 200, 100, 650, 250 for PubMed, BigPatent.C,
GovReport, MultiNews, respectively.

5.3 Comparison Systems

We compare against the standard extractive oracle,
EXT-ORACLE, obtained by greedily selecting sen-
tences maximizing ROUGE-1+ROUGE-2 against
gold summaries until the word budget is met. For
cohesion analysis, we also report metric values over
the gold summaries, labeled as GOLD.

The impact of cohesion modeling is assessed
by employing a greedy selector over GCE scores,
equivalent to set fc = 0 in Eq. 2, dubbed LT5-
CAsc. In addition, we report LongT5 performance
when consuming the input as a flat sequence and
using a greedy selector, dubbed LT5-FLAT.

Regarding alternative sentence selectors, we
compare against the following.

MMR-Select. (Xiao and Carenini, 2020) Re-
duces redundancy by selecting s; (candidate sen-
tence at selection step ¢) such that cosine similarity
w.r.t. the partially extracted summary S is mini-
mized. Informativeness and redundancy are bal-
anced in the same way as in Eq. 2.

N-gram passing (NPassing). Encourages repe-
tition ties by allowing p percent of n-grams in s;
to overlap with S. When p = 0, this method re-
duces to n-gram blocking, whereas when p = 1.0,
to greedy selection. We report bi-gram passing.

Semantic Similarity Distribution (KL-Dist).
Models the intuition that noun phrases in s; will be

1HuggingFace, google/long-t5-tglobal-base



more semantically similar to some units in S whilst
dissimilar to others (Taboada, 2004). Let QZ be the
similarity distribution obtained when comparing
every NP in s; against every NP in S. Similarly,
let ) be the distribution of similarity between NPs
in different sentences in gold summaries. Then,
fc= exp(—DKL(QHQZ—)) — 1, where Dk, is the
Kullback-Leibler divergence. Higher values of fc
indicate lower diverge, encouraging S to have a co-
sine similarity distribution similar to those seen in
gold summaries. All distributions were discretized
into 20 bins covering values from —1.0 to 1.0.

Shuffle Classifier (CCL-Select). Holistically
quantifies coherence using CCL (Steen and Mark-
ert, 2022), a scorer trained to distinguish shuffled
from unshuffled text that showed a high correla-
tion with human ratings of coherence. We use
RoBERTa (Liu et al., 2019) as underlying model
and use a window of 3 consecutive sentences.

5.4 Evaluation

Informativeness is assessed using ROUGE F;
(Lin, 2004). Redundancy is evaluated using
sentence-wise ROUGE-L (Bommasani and Cardie,
2020), dubbed RdRL. Additionally, we define In-
verse Uniqueness (IUniq), 1 — Uniqueness, where
‘Uniqueness’ (Peyrard et al., 2017) is the ratio of
unique n-grams to the total number of n-grams.
We report the mean value between uni-, bi-, and
trigrams. Higher values denote higher redundancy.
Cohesion is evaluated with the followed metrics:
CoRL, the average ROUGE-L F; between consec-
utive sentences; and Entity Graph (EGr) (Guin-
audeau and Strube, 2013), which models a text as a
sentence graph with edges between sentences with
nouns in common, using the average edge weight
as a proxy for cohesion. Finally, coherence is as-
sessed using CCL (Steen and Markert, 2022).

5.4.1 Human Evaluation

We elicit human judgments to assess overall qual-
ity, informativeness, and cohesion in two separate
studies. We sampled 30 documents from the test
set of PUBMED and compare systems LT5-CASC,
MMR-SELECT, and KVD-SELECT.

Ranking Campaign. Subjects were shown the
abstract and the introduction of a scientific article
along with two system summaries, and then then
asked to select the best summary (or select both
in case of tie) according to three criteria: (i) over-
all quality, (i1) informativeness, and (iii) cohesion.

In this setup, cohesion is evaluated as a holistic
property of the text, as perceived by a reader.

Chaining Campaign. Subjects were shown a sin-
gle summary and were asked to annotate lexical
chains by grouping together pre-extracted NPs in
the same semantic field. We report the following
chain properties: (i) chain spread, defined as the
average number of sentences between immediate-
neighbor sentences covered by the same chain;(ii)
chain density, the number of chains covering the
same sentence; and (iii) sentence coverage, the per-
centage of sentences covered by at least one chain.

Inter-annotator agreement is calculated as the
average lexical overlap between chains, expressed
in F; score, calculated pair-wise between subjects.
For this study, we include reference summaries as
one more analysis system.

6 Results and Discussion

Next, we discuss the results of our analyses and the
outcome of the human evaluation campaigns.

6.1 Reducing Redundancy in Input Blocks

The following block selection strategies were com-
pared: (i) Original, consisting of selecting blocks
in their original order in the source document;? (ii)
Oracle Selection, which selects the block that max-
imizes ROUGE F; scores (mean of ROUGE-1 and
ROUGE-2) w.r.t. the reference summary; (iii) Max.
Redundancy, which selects the most similar block
possible (by flipping the sign in Eq. 1); and finally,
(iv) BLOCKSELECT, the proposed strategy.

The analysis, showcased in Figure 2, evaluates
input redundancy at each block selection step, as
well as informativeness and redundancy of sum-
maries extracted from the blocks available at each
step, using a greedy selector. The results indicate
that the strategy used to select input blocks has
a direct impact not only on input redundancy —as
intended- but also on summary redundancy.

Notably, BLOCKSELECT is effective at incre-
mentally building an input sequence with lower
content redundancy. Compared to the other strate-
gies, ours has a clear impact on summary redun-
dancy, enabling the pipeline to consistently extract
summaries that are significantly less redundant.
Similar trends were observed in the other datasets.’

2For multi-document datasets, we use the order provided
in the dataset release.
3See Fig. 3 in Appendix C.3 for results in other datasets.
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Figure 2: Effect of block selection strategy over input redundancy (left), summary informativeness (mid), and
summary redundancy (right), evaluated as block selection proceeds on the MULTINEWS validation dataset.

6.2 Trading-off Informativeness and Cohesion

Next, we turn to the summary extraction module.
Tables 1 and 2 present the performance of all com-
pared system in terms of informativeness and cohe-
sion, respectively. In all our experiments, statistical
significance at the 95% confidence level is esti-
mated using Mann—Whitney U tests (p < 0.05).
First, note the impact on cohesion when con-
trolling for redundancy. MMR-SELECT indeed
manages to obtain comparable informativeness lev-
els to LT5-CAscC, being most effective for BIG-
PATENT.C. However, minimizing sentence similar-
ity comes at the expense of a significant decrease
in cohesion (CoRL) and coherence (CCL). Second,
we find that NPASSING is the only one capable of
obtaining comparable or better ROUGE scores but
CoRL and EGr scores indicate that lexical pass-
ing is not enough to improve cohesion. Next, note
that KL-DIST employs a seemingly more aggres-
sive trade-off between ROUGE and CoRL in all
datasets except PUBMED. We hypothesize that
its cohesion term, fc, saturates the final candidate
score during trade-off, which prompts the selector
to pick candidates with lower informative scores.
When guiding selection with a holistic shuffle
scorer, as expected, CCL-SELECT obtains remark-
ably high CCL scores, closing the gap w.r.t. EXT-
ORACLE in most datasets and even surpassing it
for BIGPATENT.C. However, note that this selec-
tor does show a significant reduction in CoRL and
EGr scores w.r.t. LT5-CASC, indicating that CCL
is measuring also discourse organization, possibly
in the form of rhetorical role ordering —first back-
ground, then method, and so on. Hence, it can be
said that summaries in CCL-SELECT are better
organized in terms of rhetorical roles but exhibit
lower cohesion than greedily selected summaries.
Finally, KvD-SELECT manages to strike an even
more aggressive trade-off between informativeness
and cohesion. Across datasets, the selector ex-

hibits lower ROUGE scores but the best CoRL, EGr
scores (except for PUBMED), and second highest
CCL score after CCL-SELECT.

Effect of Parameter ). Next, we analyze how
summary properties vary across increasing levels
of A1. Note that when Ag = 0 selectors depend
entirely on fc, and s = 1.0 is the greedy selector.

As expected, we found that informativeness is
higher as fi is weighted up (higher \g) with all se-
lectors except MMR-SELECT. This indicates that
it is possible to increase cohesion without incur-
ring a significant loss in informativeness. Interest-
ingly, KVvD-SELECT seems robust to Ag in terms
of CoRL and RdRL. We hypothesize that KvD-
SELECT benefits from a signal indicating which
cohesive ties are informative and worth enforcing.

Impact of Cascaded Processing. When compar-
ing systems that used flat input vs cascaded input
(LT5-FLAT and LT5-CAsSC), we found that cas-
caded processing exhibits lower ROUGE scores
than flat processing in PUBMED and MULTINEWS,
and comparable performance for BIGPATENT.C
and GOVREPORT. However, LT5-CASC shows
slightly higher CoRL scores in all datasets. This
indicates that cascaded processing puts a greedy
selector in a better position to extract more cohe-
sive summaries, however at the expense of a slight
decrease in informativeness.

6.3 Human Evaluation

In both studies, statistical significance between sys-
tem scores was assessed using a one-way ANOVA
with posthoc Tukey tests with 95% confidence in-
terval (p < 0.01). Results are presented in Table 3.

Ranking. Krippendorff’s o (Krippendorft, 2011)
showed an inter-annotator agreement of 0.68. For
overall quality, subjects showed a significant pref-
erence for KvD-SELECT over LT5-CAsc. For
cohesion, KVvD-SELECT was perceived as more



System PubMed BigPatent.C GovReport MultiNews

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL
Ext-Oracle 65.10 3799 60.76 5385 2320 4690 72.66 4090 6936 62.66 33.73 57.93
LT5-Flat 48.15+ 21.45% 44.49F 39.54 1325 3430 59.33 2594 5629 47.07 17.54% 42.96
LT5-Casc 46.16  19.74 4249 3957 1325 3426 59.73 2621 5650 46.80 17.21 42.66
+MMR-Select 46.14 19.63 4247 39.59 13.29 3430 59.79 2630 56.56 46.76 17.13 42.59
+NPassing 4638 1992 4274 3959 1326 3429 59.79 2625 56.56 4691 17.27 4278
+KL-Dist 46.00 19.62 4232 39.25 13.07 33.89 5946 2585 56.15 46.63 1697 4245
+CCL-Select 4591 19.60 4245 39.16 1295 3392 59.72 2624 5650 46.85 17.29 42.71
+KvD-Select  44.901 18471 41.271 38371 12411 33.13f 57.88% 23.661 54.57t 45.85% 16.131 41.62%

Table 1: Summary informativeness in terms of ROUGE scores (R1, R2, RL). ¥:

Scores are statistically different

from the closest system. Best systems are bolded; systems better than LT5-CASC shown in blue and worse, in red.

Systems PubMed BigPatent.C GovReport MultiNews
CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL
Gold 1445 095 078 19.19 078 083 1621 195 075 1045 0.71 0.80
Ext-Oracle 1468 099 042 1594 068 041 1655 192 051 1085 0.68 0.50
LT5-Flat 1660 1.10 026 1976 0.75 037 1606 2.00 028 1225 091 0.26
LT5-Casc 17.47 1.07 026 2026 073 039 1646 204 027 1251 090 0.26
+MMR-Select 16.89f 1.07 0.25F 18.82f 0.73 037 15.88f 2.03 027 11.83f 0.88 0.25%
+NPassing 16.661 1.07 027 1991 073 039 1638 2.04 027 12.17 089 0.26
+KL-Dist 1731  1.08 0.27 2054 0.73 041 16.88F 2.05 027 12.821 0.95f 0.26
+CCL-Select 17.28 1.067 0.48F 19411 0.717 0.661 16.73 2.04 0.45f 11.94f 0.861 0.46%
+KvD-Select 17.32  1.05f 0.28F 22.21F 0.78f 0.42 18.88F 2.15f 0.291 14.231 0.997 0.29%

Table 2: Summary cohesion in terms of consecutive ROUGE-L score (CoRL) and EntityGraph (EGr), as well as
coherence (CCL). For all metrics, higher is better. See Table 1 for formatting details.

cohesive compared to LT5-CASC, and LT5-CASC
was more cohesive than MMR-SELECT.

Chaining. Chain overlap was calculated at 0.90.
Differences between LT5-CASC and all other sys-
tems, as well as MMR-SELECT-GOLD and KvD-
SELECT-LT5-CAScC were found to be significant,
for all measurements of cohesion. Moreover, the
number of NPs annotated per chain was 2.30, 2.33,
2.80, and 2.55, for systems LT5-CAsC, MMR-
SELECT, KVD-SELECT, and GOLD, respectively.
We found that KvD-SELECT summaries exhibit
more active and denser chains and better-covered
sentences than the baselines. Note that LT5-CASC
obtains the lowest chain spread but also low cov-
erage, indicating that its summaries exhibit very
few chains that happen to be close to each other. In
contrast, MMR-SELECT obtains the highest chain
spread and low number of chains, indicating con-
tent with low diversity and sparsely presented.

7 Conclusions

We presented an extractive summarization algo-
rithm that controls each summary quality indepen-
dently, in scenarios where the input is highly re-
dundant. Redundancy is controlled as the input is

System Ranking Chaining

y Ovl I, CJ| |Sprl Dent Covt
LT5-Casc 1.59 156 159|193 129 57.12
+MMR-Select 1.50 1.48 1.47| 236 128 53.21
+KvD-Select 1.41 146 144 | 2.05 140 68.78
Gold - - - \ 191 136 69.65
Table 3: Ranking (left) w.r.t. (Ov)erall quality,

(Dnformativeness, and (C)ohesion; and properties of an-
notated chains (right): spread (Spr), density (Den), and
sentence coverage (Cov,%). Best systems are bolded.
(1,1): higher, lower is better.

consumed, and informativeness and cohesion are
balanced during sentence selection.

Results show that our input processing strategy
is effective at retrieving non-redundant yet relevant
passages, reducing the redundancy levels the rest
of the pipeline is exposed to. In addition, our sen-
tence selector emulates human memory to keep
track of cohesive chains while building the sum-
mary, enforcing ties between noun phrases directly.
Extensive automatic and human experiments re-
vealed that it is possible to extract highly cohesive
summaries that are as informative as summaries
optimizing only for informativeness.



8 Limitations

The proposed system presents the following limita-
tions. First, the system extracts complete sentences
and concatenates them to form the final summary.
We do not perform any kind of post-editing of dis-
course markers that might break coherence in the
summary. However, our results show that the ex-
tracted summaries are still perceived as cohesive
by humans. Nevertheless, post-editing is an inter-
esting focus for future work.

Second, we argue about the usefulness of an ex-
tractive system in a generative landscape where
large language models are predominant. Recent
large language models have shown impressive capa-
bilities at producing coherent, assertive text, some
even capable of consuming long sequences of to-
kens. However, hallucinations are a pervasive prob-
lem in these systems, especially in highly technical
domains like the ones considered in this work. In
this scenario, an extractive summary has the advan-
tage of presenting information from the source ver-
batim and hence, without any hallucination. More-
over, extracted summaries preserve the writing
style of the input as well as technical, domain-
specific terms, avoiding altogether the problems
of over-simplification and misstyling.
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A Dataset Preprocessing and Statistics

For all datasets, we homogenize the source-target
length distributions by discarding samples with ref-
erences that were too short (less than 3 sentences,
not usefull for our cohesion analysis) or too long
(more than 500 tokens in all datasets except GOV-
REPORT, for which this threshold is set to 1000).
Similarly, samples with short input documents (less
than 3 sentences or less than 30 tokens in total)
were also discarded. Sentences were re-split us-
ing spaCy* and trimmed to 100 tokens, whilst sen-
tences with less than 5 tokens were discarded. Ta-
ble 4 presents the statistics of all dataset in terms
of number of tokens.

It is worth noting that we found a discrepancy
in PUBMED.Text from the ‘article’ field (in
theory the concatenated sections) would not al-
ways have the same text as the ‘sections’ field.
Hence, we chose data from the ‘sections’ field
as input document.

Input Length Target Len.

Dataset  ,vo " "Max. Q90  Avg.
PubMed 3150 119875 5844 206
BigPatent.C 4534 72835 8655 119
GovReport 8840 206622 15752 580
MultiNews 2057 525348 3846 260

Table 4: Dataset statistics in terms of number of tokens
showing average, maximum, and 90% quantile (Q90).

B Optimization and Resource Details

Long-T5 models were trained using one NVIDA
A100 (80Gb of GPU memory). Table 5 provides a
comprehensive account of hyperparameter values
used for training and inference in our experiments,
for all datasets. The local context extractor is fine-
tuned from pretrained Huggingface’s checkpoint
google/long-t5-tglobal-base, whereas
the global context encoder is trained from scratch.
Finally, Table 5 details the hyperparameter values
common to all selectors, as well as selector-specific
parameters, optimized w.r.t. each dataset’s valida-
tion set.

C Complementary Results

In this appendix, we present additional results in
terms of metrics and datasets for analysis in §6.

*https://spacy.io/


https://spacy.io/

Parameter Value
Block Selection
Block length in tokens 2048
Overlapping context size in tokens 200
Damping factor (d) 0.85
Trade-off param. (\p) 0.2
Local Context Extractor
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Batch size 64
Max. gradient norm 2
Training steps 100000
Max. input length in tokens 2048
Max. # of sentences extracted 10
Global Contetext Encoder
# Attention heads 8
# Layers 1
Output layer size 200
Dropout 0.1
Optimizer Adam
Learning rate 1E-06
Learning rate scheduler Const.
Max. input length in tokens 16 384
Max. input length in sentences 1000
Batch size 64
Max. gradient norm 1
Training steps 50000
Sentence Selector
All selectors. Trade-off param. (Ase1) 0.8
Summary budget in number of tokens
PubMed 200
BigPatent.C 100
GovReport 650
MultiNews 250
KL-Dist. # of histogram bins 40
KvD-Selector.
Working memory (WM) 6
Min. NP cos. similarity (v) 0.6
Recall cost (Yrec) 0.01

Table 5: Hyper-parameter values for all modules in our
summarization pipeline.

C.1 Additional Metrics

Semantic Relevance. Table 6 shows BERTScore
F; scores (Zhang et al., 2019) with importance
weighting (IDF) and RoBERTa as underlying
model (Liu et al., 2019).

Redundancy. Table 10 presents IUniq and RdRL
scores for all systems and datasets analyzed.

Cohesion. The following additional cohesion
metrics were explored in preliminary experiments:
Extended Entity Grid model (Barzilay and Lapata,
2008), DS-Focus and DS-Sent (Zhao et al., 2023),
and RC and LC (Wong and Kit, 2012). However,
the values obtained did not show enough expressiv-
ity for system-level comparisons and hence, they
were not included in the final analysis.

12

System PubMed BigPat.C GovRep. MultiN.
Ext-Oracle 88.45 85.84 88.29 88.69
LT5-Flat 85.71 83.77 86.45 86.03
LED-Flat 83.67 83.04 85.96 85.51
MemSum-Casc ~ 83.52 82.60 85.06 85.07
LLaMa-Casc 82.86 83.17 84.80 85.33
LT5-Casc 85.06 83.66 86.46 85.98
+MMR-Select 85.05 83.66 86.48 85.94
+NPassing 85.13 83.67 86.47 86.01
+KL-Dist[NP] 85.02 83.52 86.30 85.94
+CCL-Select 84.99 83.63 86.47 85.91
+KvD-Select 84.76 83.35 85.99 85.72

Table 6: Semantic relevance of system summaries in
terms of BERTScore F;.

C.2 Flat Processors and Local Encoders

In addition to LT5-FLAT, we compared against
Longformer (Beltagy et al., 2020), trained from the
pre-trained encoder module in LED.

Then, we assess the impact of architectural
choice for the Local Encoder module in our
pipeline by comparing MemSum (Gu et al., 2022),
and LLaMA with 7B parameters (Touvron et al.,
2023).

The results on informativeness, redundancy, and
cohesiveness are presented in Tables 7, 8, and 9,
respectively. The following insights can be drawn
fro these results. Using LLaMA as local encoder al-
lows our system to select —greedily— sentences that
have little lexical overlap between them, prompt-
ing low summary redundancy scores and in turn
lowering cohesion scores. Moreover, the coverage
is severely impacted as seen by the low ROUGE
scores. Using MemSum had a similar outcome,
although not as severe.

These results might indicate that finetuning a
large pretrained model like LLaMA does not neces-
sarily translate to better informativeness, perform-
ing much lower than a smaller model pretrained
on the summarization task. Perhaps unsurprisingly,
task-specific, smaller models can be competitive to
massive foundation models trained on 1000x more
data.

C.3 Reducing redundancy in block selection

Figure 3 presents the effect of block selection strate-
gies for PUBMED, BIGPATENT.C, and GOVRE-
PORT.

C.4 Effect of Trade-off Parameter )\

Figure 4 showcases how summary properties (infor-
mativeness, redundancy, and cohesion) vary across



System PubMed BigPatent.C GovReport MultiNews

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL
LED-Flat 40.20 13.87 36.85 36.65 11.07 31.94 57.59 2340 54.56 4528 1578 41.35
LT5-Flat 48.15% 21.457 44.497 39.54 13.25 3430 5933 2594 5629 47.07 17.541 42.96
MemSum-Casc 40.29 14.85 37.09 36.07 10.79 3097 5491 19.66 51.75 4447 1528 40.32
LLaMA-Casc 37.60 11.86 34.51 36.82 11.24 32.00 54.20 19.02 5090 45.02 1548 41.00
LT5-Casc 46.16 19.74 4249 39.57 13.25 3426 59.73 26.21 56.50 46.80 17.21 42.66

Table 7: Informativeness in terms of ROUGE F; scores (R1, R2, RL), for complementary Flat and Cascaded
systems. Best systems are bolded. {: System score is statistically different from closest baseline.

System PubMed BigPatent.C GovReport MultiNews

y RARL IUniq RARL 1IUniq RdRL IUniq RdRL IUniq
Gold 11.88 19.31 18.11 20.85 13.37 28.78 9.72 16.35
Ext-Oracle 1391 2036 1470 19.51 1420 29.14 10.08 16.98
LED-Flat 1470 21.86 17.62 20.07 1494 31.01 11.25 19.06
LT5-Flat 1649 2343 19.76 21.32 1578 3246 1224 20.63
MemSum-Casc 12.58 19.39 1941 2123 13.77 2747 1229 19.28
LLaMA-Casc  11.611 19.40 17.51F 18.967 12.431 26.647 10.871 19.46
LT5-Casc 17.08 2294 20.15 2146 1634 31.68 1226 20.59

Table 8: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and inverse uniqueness (IUniq), for
complementary Flat and Cascaded systems. For all metrics, lower is better. Best systems are bolded. f: System

score is statistically different from closest baseline.

increasing levels of Ag, for all datasets analyzed.

D Human Evaluation Campaigns

In this section, we provide further details about
the two evaluation campaigns run. Both campaigns
were run on Amazon Mechanical Turk, where Turk-
ers were required to have a Human Intelligence
Task (HIT) approval rate higher than 99%, a mini-
mum of 10 000 approved HITs, be proficient in the
English language, and have worked in the health-
care or medical sector before. Annotators were
awarded $1 per HIT, translating to more than $15
per hour. These rates were calculated by measuring
the average annotation time per HIT in a pilot study.
Furthermore, we implemented the following catch
controls: (i) we asked participants to check check-
boxes confirming they had read the instructions
and examples provided, and (ii) we discard HITs
that were annotated in less than 5 minutes.” An-
notations that failed the controls were discarded in
order to maximize the quality. Figure 5 depicts the
instructions given to annotators for each campaign.

D.1 Ranking Campaign

We collected three annotations per system-pair
comparison and made sure that the same annota-
tor was not exposed to the same document twice.
As an additional catch trial, we included in each

Time threshold obtained from pilot study measurements.

annotation batch an extra instance with summaries
extracted by the extractive oracle and the random
baseline.

After discarding annotations that failed the con-
trols, we are left with 708 out of 810 instances (30
documents, 3 system pairs, 3 dimensions, and 3
annotations per pair).

D.2 Chaining Campaign

Participants were shown a single system summary
as a list of sentences where tokens that belonged to
the same noun phrase were colored the same.Then,
the task consists of selecting sets of colored text
chunks that belong to the same semantic field. Sim-
ilarly to the previous study, we collected three an-
notations per system summary and included the
gold summary of an extra system in the campaign.

We collected 908 human annotations of noun-
phrase chains for 360 summaries (30 documents,
4 system including gold summaries, and 3 annota-
tions per summary). On average, annotators iden-
tified 2.56 groups per summary and 3.49 NPs per

group.

E Example Output
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PubMed BigPatent.C GovReport MultiNews

Systems CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL CoRL EGr CCL
Gold 1445 095 0.78 19.19 0.78 0.83 1621 195 0.75 1045 0.71 0.80
Ext-Oracle 1468 099 042 1594 068 041 1655 192 051 1085 0.68 0.50
LED-Flat 1518 1.00 036 17.67 069 035 1506 191 030 1131 081 030
LT5-Flat 1660 110 026 1976 0.75 037 1606 200 028 1225 091 026

MemSum-Casc 12.87 0.75 025 20.56 0.62 034 1393 172 029 13.16 0.84 0.26
LLaMA-Casc  12.18 0.70 027 1754 0.70 039 1253 158 0.28 11.15 0.77 0.25
LT5-Casc 1747 107 026 2026 0.73 039 1646 2.04 0.27 1251 090 0.26

Table 9: Cohesion of extracted summaries in terms of consecutive ROUGE-L score (CoRL) and EntityGraph (E.Gr.),
as well as coherence (CCL), for complementary Flat and Cascaded systems. For all metrics, higher is better. Best
systems are bolded.

System PubMed BigPatent.C GovReport MultiNews
RARL IUniq RdRL IUnig RdRL 1IUniq RdRL IUniq
Gold 11.88 1931 1811 20.85 1337 28.78 9.72 16.35
Ext-Oracle 1391 2036 1470 1951 1420 29.14 10.08 16.98
LT5-Flat 1649 2343 1976 2132 15.78F 3246 1224 20.63
LT5-Casc 17.08 2294 20.15 2146 1634 31.68 1226 20.59

+MMR-Select 1699 22.85 19.171 21.09f 16.16 31.53 12.05f 20.50
+NPassing 16.39F 21.661 19.79 21.18 1624 3142 12.03F 19.92%
+KL-Dist 16.831 22.081 20.30 2144 1649 3135 12571 20.22
+CCL-Select  16.637 22.421 18.971 20.871 1631 31.65 11.93F 20.29%
+KvD-Select  16.24F 21.531 21.091 21.65 16.691 30.97F 12.97f 19.97t

Table 10: Summary redundancy in terms of sentence-wise ROUGE (RdRL) and inverse uniqueness (IUniq). For all
metrics, lower is better. See Table 1 for formatting details.
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Figure 3: Effect of block selection strategy over input redundancy (left), summary informativeness (mid), and
summary redundancy (right), evaluated as block selection proceeds on the validation set of PUBMED, BIGPATENT.C,
and GOVREPORT.
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Figure 4: Informativeness (left), redundancy (mid), and lexical cohesion (right) across different values of the
trade-off parameter \,.; on the validation set of PUBMED, BIGPATENT.C, GOVREPORT, and MULTINEWS.



Instructions

Summary Detailed Instructions Examples

Please read this page in full, there is important information at the bottom of the page.
We will reject your HIT if you fail attention checks or if you have unusually low agreement with other annotators.

Below you will find an excerpt of a scientific article and two summaries of this article. Please select the best summary
according to the following text qualities. If both summaries seem equally good, or none of them are, please select both.
We will reject your HIT if you input obviously wrong answers.

Overall Quality: A summary text is an overall good summary if it successfully conveys the gist of the content in the article,
without much repetition and in a coherent way.

Informativeness: A summary text is informative if it conveys the most relevant content in an article, such as the main
object of study, experiments performed, and results obtained.

Cohesiveness: A summary text is cohesive if it reads as a unified whole instead of a collection of unrelated sentences.

Sentences in a cohesive summary will cover similar themes or content.

We recommend that you read carefully the article and the given summaries before procedding to the evaluation section.
You can hide the article text by clicking on "Hide Article”, in case you need to.

Please confirm the following worker criteria:

We will reject your HIT if you submit without checking these two boxes.

| have read the instructions
| have read the examples

(a) Ranking Campaign

Instructions

Summary Detailed Instructions Examples

Please read this page in full, there is important information at the bottom of the page.
We will reject your HIT if you fail attention checks or if you have unusually low agreement with ather annotators.

Below you will find a list of sentences taken from a scientific article, each with chunks of text (not necessarily contiguous)
colored differently. The task consists on selecting groups of chunks that share information bits, following these steps.

1. Select at least two text chunks among all the colored chunks. Click on a chunk to select it or unselect it. Selected
chunks will turn yellow and unselected chunks will return to their original color.

2. Save the selecied group by clicking on "Save Group”, or clear all currently selected chunks by clicking on "Clear
Group".

3. Repeat (1) and (2) until you cannot find another group of chunks sharing information.

4. Please select at least two chunks per group, and submit at least two groups.

Please also keep in mind the following,

« Two chunks share information if
o They share content words (e.g. nouns).
o Content in one chunk is a paraphrase (same meaning but different words) of the content in the other chunk.
o One chunk mentions a proper noun phrase (e.g. the scientific name for a drug) and the other chunk mentions

its abbreviation.

« Chunks in a group do not have to share amongst them all the information they mention.

« Chunks in a group must be semantically connected through one or more concrete ideas.

« Chunks can be included in more than one group.

« Saved groups will appear in the section titled "Groups", where you can inspect them. If you need to, you can delete

groups by cliking on the trashbin icon next to it.

We will reject your HIT if you input obviously wrong answers.
Please confirm the following worker criteria:

| have read the instructions
| have read the examples

(b) Chaining Campaign

Figure 5: Instructions given to annotators in the ranking (top) and chaining campaigns (bottom).
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System Summary Chain IDs

Gold (Avg. ROUGE=-; RdRL=8.3; CoRL=6.63)

‘Why did Microsoft buy Nokia’s phone business? 1,2
‘We now know Microsoft’s answer: the computing giant released a 30-slide presentation today arguing that the move will improve Microsoft’s margins 1,2,3,5
on Windows phones, which will allow it to invest more in the platform, which will accelerate sales and market share growth, The Washington Post

reports.

But John Herrman at BuzzFeed has another explanation: "fear of dying alone." 3
Here’s what he and other pundits are saying: the presentation "manages to sound both insane and uninspiring, outlining modest goals that still sound 2,3,5
unrealistic,” Herrman argues - like capturing a whole 15% of the smartphone market.

"It’s a fitting end for the close of Microsoft’s Ballmer era, during which the company...missed out on the most important change in consumer 1,2,4
electronics in decades" while remaining profitable in unglamorous ways.

Like everyone, Microsoft is trying to ape the Apple model, MobileOpportunity observes. 1,
But it’s not so sure that’s a good idea.

"There already is an Apple," the blog points out, and other software/hardware hybrid companies, like Palm and BlackBerry, have been crushed under 1,
its heel.

Maybe Microsoft should have tried to patch up its tried-and-true strategy of licensing its OS. 1
The move risks complicating Microsoft’s crucial relationships with other PC and device manufacturers, one analyst tells ZDNet. 1,2,
But he adds that "Microsoft needed to make a bold move" or face "certain terminal decline," and that the price it paid for Nokia "seems extremely 1
reasonable."

Meanwhile, Matthew Yglesias at Slate digs up a fairly interesting memo from Nokia CEO (and, perhaps, Microsoft heir apparent) Stephen Elop, in 1,2,3,4,11
which he uses the story of a Deepwater Horizon worker leaping from the burning oil platform - a seemingly desperate, yet necessary move - to explain

the company’s shift from its own failed OS to Windows Phone.

5

Of course, Y glesias notes, that move "was basically a total failure." 3,11
MMR-Select (Avg. ROUGE=28.25; RdARL=8.31; CoRL=11.98)

Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strategy, but the joint company won’t take the same form as 1,2,10
Apple.

This crawl was run at level 1 (URLs, including their embeds, plus the URLSs of all outbound links, including their embeds). 6
Today’s sale price, which includes 1.65 billion euros in patents, is just 5.44 billion euros. 2,7
It’s been a rough decade. -
Microsoft is buying Nokia’s cell phone business and licensing its patent portfolio, according to both companies. 1,2
In 2003, Nokia’s cell phone market share exceeded 35%. 1,2
That same year, its phone business alone posted an operating profit of 5.48 billion euros. 2,7
Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smartphone market share stakes and with the limited success of the  1,2,8,10
Lumia range so far, enough to keep interest in Windows Phone alive, most analysts are seeing a certain amount of inevitability to the acquisition, even

if they are split on what its biggest implications are.

The seed for this crawl was a list of every host in the Wayback Machine. 6
The WARC files associated with this crawl are not currently available to the general public. 6
Five years ago was the year the App Store first opened. 2
Windows Phone has barely dented the now much larger smartphone market. 2
Many at the time wondered if Stephen Elop’s time at Nokia would be spent grooming the company for purchase —a foreigner in all possible ways, he 1,2,4
began his time at the company with a memo rightly but offensively declaring Nokia’s proud platform a failure and quickly pledged the company’s
commitment to the still-tiny Windows Phone.

KvD-Select (Avg. ROUGE=26.33; RARL=12.48; CoRL=14.41)

Summary: Microsoft’s acquisition of Nokia is aimed at building a devices and services strategy, but the joint company won’t take the same form as 1,2,10
Apple.

Microsoft has been working on its evolution into a devices and services company, moving away from the services business it has traditionally been, 1,2,8

for several years now with limited success.

Nokia lashed itself to Microsoft’s mast after losing out to iOS and Android in the smartphone market share stakes and with the limited success of the  1,2,8,10
Lumia range so far, enough to keep interest in Windows Phone alive, most analysts are seeing a certain amount of inevitability to the acquisition, even

if they are split on what its biggest implications are.

Owning the desktop (via Windows) and building additional services on top, like Office or Search, has been vital for Microsoft’s strategy until now, so, 1,29
as our interest shifts from the desktop to the tablet or smartphone, it’s essential to Microsoft’s broader business (even Azure) that it can retain that
connection in some form.

But he said Microsoft’s challenge remains how to unite the myriad services and brands - Windows, Nokia, Live, Surface, Xbox, Bing, and more - into 1,2,9
a cohesive experience that will command and cement customer loyalty.
It felt like a radical about-face, but no matter: Nokia and Microsoft were going to save each other. 1,9

Table 11: Reference summary, along with summaries extracted by MMR-SELECT and KVD-SELECT for a
MULTINEWS sample with informativeness (average ROUGE score), redundancy (RdRL), and cohesion (CoRL)
scores. Each sentence is annotated with lexical chains, color-coded in the text and IDs shown to the right. Text was
detokenized and truecased for ease of reading.
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