
API Reranking for Automatic Code Completion: Leveraging Explicit
Intent and Implicit Cues from Code Context

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have signifi-001
cantly advanced software development, partic-002
ularly in automatic code completion, where se-003
lecting suitable API documents from vast third-004
party libraries plays a critical role. However,005
current solutions either focus on recommend-006
ing APIs based on user queries or code con-007
text, without considering both aspects simul-008
taneously. To bridge this gap, we propose a009
novel framework APIRANKER to rerank candi-010
date API documents based on both the explicit011
developer intent and implicit cues embedded012
in the incomplete code context. To automat-013
ically construct ranking data, we introduce a014
self-supervised ranking framework that auto-015
matically constructs data by assessing the rele-016
vance of API documents to code context with a017
perplexity-driven approach via comments. To018
enhance API relevance detection, we propose a019
novel reranking model that predicts relevance020
scores by capturing a hidden reasoning state021
to detect relevance. The experimental results022
show the effectiveness of our approach, provid-023
ing more accurate API recommendations and024
enhancing automatic code completion. The025
code is available1 and the dataset will be re-026
leased.027

1 Introduction028

The introduction of LLMs has led to advance-029

ments in automatic code completion (Husein et al.,030

2024), with recent models adopting the retrieve-031

then-generate paradigm (Nashid et al., 2024). This032

approach enables LLMs to dynamically retrieve up-033

to-date Application Programming Interface (API)034

information from documents, rather than relying035

solely on static training data.036

A crucial aspect of this process is selecting suit-037

able APIs from massive amounts of third-party li-038

braries. The choice of API not only determines the039

1https://anonymous.4open.science/r/
APIRanker-C442

pandas.DataFrame.
sort_values

pandas.dt.
strftime

pandas.DataFrame.
read_csv

pandas.dt.
tz_localize

pandas.DataFrame.
sort_values

datetime.
astimezone

Numpy.sort

intent

incompete
code

df['datetime'] = df['datetime'].dt.tz_localize('UTC')
df = df.sort_values(by='datetime', ascending=True, ignore_index=True)

 df['datetime'] = df['datetime'].dt.strftime('%d-%b-%Y %H:%M:%S')
 df = df.sort_index(axis=0, level=None, ascending=True, inplace=False)

The pandas.DataFrame.sort_values() method is used to sort a DataFrame based on the values
of one or more columns...
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False,
kind='quicksort',na_position='last', ignore_index=False, key=None)...

...

...

Top-k API documents

I have read a CSV file containing timestamps and events using pandas, and now I
want to ensure the 'datetime' column is correctly formatted, convert it to the
UTC timezone, and sort it from earliest to latest for further analysis.
Is there a solution?
```
import pandas as pd 
df = pd.read_csv('events.csv') 
df['datetime'] = pd.to_datetime(df['datetime']) 
```

Figure 1: Example of retrieval-augmented code com-
pletion with different retrieved top-k API documents.

functionality of the generated code but also affects 040

its efficiency, maintainability, and overall integra- 041

tion with the existing software system (Wang et al., 042

2024b). Current research predominantly focuses on 043

two approaches: 1) retrieving APIs based on user 044

queries (query-based API recommendation) (Wu 045

et al., 2023), which neglects the code context, and 046

2) completing user-written code based on the pre- 047

ceding code context (Peng et al., 2022), which fails 048

to capture the developer’s underlying intention be- 049

hind the API usage. However, automating code 050

completion with user preferable APIs requires a 051

more comprehensive model that considers both the 052

explicit intent conveyed by user queries and the 053

implicit cues embedded in the code context. 054

Consider the following practical scenario shown 055

in Fig. 1: Alice is a developer, she encounters a 056

problem during her daily work, i.e., “convert the 057

‘datatime’ column to UTC timezone and sort it from 058

earliest to latest for further analysis”. She asks the 059

LLM to complete her code. The LLM completes 060

the code using the retrieve-then-generate paradigm. 061

However, without knowing Alice’s intention or 062

1

https://anonymous.4open.science/r/APIRanker-C442
https://anonymous.4open.science/r/APIRanker-C442

the current code context, a large number of rel-063

evant but unsuitable APIs may be recommended064

(e.g., datetime.astimezone, numpy.sort, etc.).065

If the target APIs are not ranked in the top-k066

retrieval results, they will not be used for code067

completion, causing the auto-completed code to068

misalign with her intended behavior. If Alice in-069

puts both her intent and the current code context,070

and the target APIs (e.g., df.dt.tz_localize,071

pandas.DataFrame.sort_values) are success-072

fully recommended, the LLM is likely to complete073

her code by smoothly integrating with the recom-074

mended APIs, effectively solving her problem.075

Based on our previous observations, there is a076

need for code completion using the correct APIs.077

However, recommending API based on both the078

developer’s intent and the incomplete code is a chal-079

lenging task: (i) Lack of methods for large-scale080

data construction, hindering learning-based ap-081

proaches. Creating training datasets for API rec-082

ommendation requires manually evaluating the rel-083

evance of API documentation to the developer’s084

requirements. This process depends on domain ex-085

pertise, which makes large-scale data collection im-086

practical. Moreover, the lack of automated methods087

exacerbates this challenge, further limiting the de-088

velopment of learning-based approaches. (ii) The089

relevance of API documents to the developer’s090

requirements is hard to learn and capture. API091

documentation exists in various formats and writ-092

ing styles, often lacking consistency in structure093

and content, making it difficult to establish direct094

mappings to developer requirements. Moreover,095

the developer’s requirements involve both intent096

and incomplete code, and the cues hidden within097

the code context are difficult to capture. This makes098

it challenging for API recommendations to satisfy099

both aspects simultaneously.100

To tackle the above challenges, we propose a101

novel framework named APIRANKER, which is102

designed to rerank candidate API documents based103

on the developer’s intent and their incomplete code.104

To address the challenges of lacking training data,105

we propose a self-supervised ranking framework106

to automatically mine ranking data. Specifically,107

we leverage a perplexity-driven relevance ranking108

approach, which uses LLM as an evaluator to auto-109

matically discover the relevance of API documents110

to developer requirements by measuring the per-111

plexity of completed code. To bridge the gap be-112

tween perplexity and true semantic relevance, we113

employ a perplexity alignment strategy via com-114

ments to reduce noise from perplexity shifts caused 115

by code formatting and syntactic variations. To bet- 116

ter learn and capture the relevance of API documen- 117

tation to the developer’s requirements, we design 118

a novel reranking model architecture consisting of 119

two main components that learn relevance by com- 120

paring the influence of different API documents 121

on code completion. In particular, we leverage a 122

hidden reasoning state extractor to capture the rel- 123

evance of the API documentation to implicit cues 124

from code context by extracting the reasoning state 125

from LLMs during inference. The model then ex- 126

plicitly predicts a relevance score using a relevance 127

detector, which learns and identifies relevance from 128

the reasoning state. 129

In summary, our paper makes the following 130

contributions: (1) Current research mainly 131

focuses on a single requirement. To the best 132

of our knowledge, no prior work has deeply 133

explored how to recommend APIs based on 134

both the developer’s intent and their incom- 135

plete code. (2) We propose a self-supervised 136

ranking framework to construct ranking data 137

⟨incomplete code, target code,API documents, 138

relevance scores⟩ automatically. (3) We design a 139

novel reranking model architecture that leverages 140

LLM’s semantic understanding to detect the 141

relevance of API documents to a developer’s 142

requirements. The experimental results show the 143

effectiveness of our model over a set of baselines, 144

showing its potential to enhance automatic code 145

completion by reranking candidate API documents. 146

We hope our study can lay the foundations for this 147

research topic. 148

2 Related Work 149

API Recommendations. API recommendation 150

methods typically rely on two main sources: nat- 151

ural language queries and contextual code infor- 152

mation. Some studies focus on query intent, such 153

as BIKER (Huang et al., 2018) and CLEAR (Wei 154

et al., 2022), while others emphasize code context, 155

like GAPI (Ling et al., 2021) and MEGA (Chen 156

et al., 2023). Deep learning models like Deep- 157

API (Gu et al., 2016) and CodeBERT (Feng 158

et al., 2020) enhance recommendations through 159

embedding-based methods, using pretrained mod- 160

els to calculate similarities between queries and 161

APIs. However, limited labeled data hampers 162

model performance (Ma et al., 2024). In contrast, 163

our approach leverages LLMs and automatically 164

2

generated data to reduce reliance on QA data, im-165

proving API recommendation performance.166

Retrieval-augmented Code Generation.167

Retrieval-augmented generation (Gao et al., 2023)168

has proven valuable in code generation (Parvez169

et al., 2021), especially as code libraries are170

frequently updated (Lu et al., 2022). For instance,171

CodeGen4Libs (Liu et al., 2023) recommends172

class-level APIs through a two-stage process of173

retrieval and fine-tuning. DocPrompting (Zhou174

et al., 2022) enables continuous updates to the175

documentation pool, ensuring that the most176

current code libraries are used for generation.177

ToolCoder (Zhang et al., 2023) integrates API178

search tools and uses automated data annotation to179

teach the model how to use tool usage information,180

thereby enhancing code generation.181

3 Methodology182

In this section, we introduce a novel framework183

APIRANKER, aimed at reranking candidate doc-184

uments based on their relevance to a given query185

(Section 3.1), thereby enhancing automatic code186

completion. To overcome the lack of training187

data, APIRANKER utilizes self-supervised ranking188

framework to generate data (Section 3.2). More-189

over, a novel model architecture (Section 3.3),190

which includes a hidden reasoning state extrac-191

tor and a relevance detector, is trained to predict192

the relevance score. After reranking training (Sec-193

tion 3.4), APIRANKER can rerank candidate docu-194

ments to improve automatic code completion.195

3.1 Task Definition196

Given a query q, which contains natural language197

(NL) intent x and the corresponding incomplete198

code snippet c, the objective is to rerank the re-199

trieved API documents D, prioritizing documents200

that are both relevant to NL intent x and beneficial201

for completing the code c. This process aims to202

improve automatic code completion by presenting203

the most pertinent API documents at the top of the204

ranking.205

3.2 Self-supervised Ranking Framework206

Given the lack of code completion data with API207

documents, training a reranking model becomes208

difficult. This is primarily due to the high cost of209

manual annotation and the challenges involved in210

verifying the correctness of generated code based211

on the API documents. To address this challenge,212

 candidate documents

Github Repository
incomplete code

target code code file

split

Dependency
Analysis

A
...

B

LLM

API Documentation
Corpus

target code
with comments

LLM

add comments

calculate perplexity

retrieve

Retriever

F F
...

A B

ranked candidate documents

dependency
files

Figure 2: Overview of the Self-supervised Ranking
Framework.

we propose a perplexity-driven relevance rank- 213

ing approach, leveraging the perplexity of LLM- 214

generated code to construct training data. Addition- 215

ally, shifts in perplexity often arise from code for- 216

matting and syntactic variations, introducing noise 217

that distorts the true semantic relevance of API 218

documents to query. To further reduce the influ- 219

ence of code-specific perplexity, we incorporate 220

an approach of perplexity alignment to enhance 221

the information conveyed in the code by adding 222

comments. 223

Perplexity-driven Relevance Ranking. Evalu- 224

ating the relevance of documentation to query is 225

a time-consuming manual process, and setting 226

up execution environments can be complex (Wei 227

et al., 2023). Therefore, these obstacles lead to 228

a scarcity of training data, which restricts the de- 229

velopment of learning-based ranking methods. To 230

address this challenge, we propose a perplexity- 231

driven relevance ranking method, which assesses 232

the relevance by measuring the perplexity of LLM- 233

generated code. 234

Specifically, as illustrated in Fig. 2, we construct 235

data based on code repositories from GitHub2, can- 236

didate documents, and an LLM as a perplexity eval- 237

uator. For a specific code file that has cross-file 238

dependencies, we randomly select a middle po- 239

sition to split it into incomplete code c and the 240

target code y, ensuring ample context for retrieval 241

and completion. We directly use the incomplete 242

code c as query q and retrieve the top n documents 243

D = {d1, d2..., dn} using the retrieval model as 244

candidate documents, which includes both API doc- 245

umentation and all the dependency (i.e., direct and 246

indirect dependency) files from the code file based 247

on dependency tool3. The inclusion of dependen- 248

cies files ensures that query q has relevant docu- 249

2https://github.com
3https://github.com/IBM/import-tracker, https:

//maven.apache.org

3

https://github.com
https://github.com/IBM/import-tracker
https://maven.apache.org
https://maven.apache.org

LLM

Tuned Frozen

Hidden Reasoning State Extractor

Relevance Detector

API document

</>

incomplete codeinstruction

...

...

(a) APIRanker

linear layer
SelfAttention

CrossAttention

FFN

xN

...

linear layer

multi-head attention

...

...

learnable vectors
(b) Hidden Reasoning State Extractor

(c) Relevance Detector

Refer to the following documentation
to complete the code.

input token

last hidden state

reasoning state

K,V

K,V

Q

Q

Figure 3: Overview of APIRANKER. (a) is the training process of APIRANKER based on the collection of different
API documents Dr and the same incomplete code c as the query. (b) illustrates the structure of the hidden reasoning
state extractor. (c) illustrates the structure of the relevance detector.

ments. For each document d ∈ D, the perplexity250

(PPL) of the target code y is defined as:251

PPL(y|d, q) = e−
1
N

∑N
i=1 logP (yi|d,q,y<i), (1)252

where P represents the probability distribution over253

the LLM’s vocabulary, and N is the number of254

tokens in the target code y. The relevance score255

r between API document d and query q is then256

defined by the perplexity of the target code y as:257

r(d, q) =
1

PPL(y|d, q)
. (2)258

Using the relevance score r, we can compare the259

relevance of different documents with the same260

query. A higher value of r indicates a greater rele-261

vance of the document to the query.262

Perplexity Alignment via Comments. Code for-263

matting variations (e.g., line breaks, indentation)264

and code syntactic variations (e.g., bracket place-265

ment, variable declaration) can introduce noise into266

the measurement of relevance. Since these surface-267

level code variations can introduce significant shifts268

in perplexity, the perplexity of the target code does269

not necessarily reflect the true relevance of the API270

document and the query. Therefore, we incorporate271

a strategy of perplexity alignment via comments272

into our method, aiming to bridge the gap between273

perplexity and semantic relevance.274

Specifically, given an incomplete code c and the275

corresponding target code y, LLM is asked to add276

comments to each line of code y, as described by 277

the following equations: 278

ŷ = LLM(c, y), (3) 279

where ŷ is the generated code with comments. The 280

prompt of perplexity alignment via comments is 281

then constructed as:

• Instruction: Based on the following two consecutive
parts of the same code, Part A (the first half) and Part B
(the second half), both enclosed within <code> and </code>
tags, you should add comments to each line of code in Part
B as much as you can.
• Part A (the first half): c
• Part B (the second half): y

282

The score of relevance r based on the target code 283

with comment ŷ is defined as: 284

r(d, q) =
1

PPL(ŷ|d, q)
. (4) 285

3.3 Reranking Model Architecture 286

Given that LLMs exhibit strong comprehension 287

abilities (Naveed et al., 2023), we leverage them to 288

reduce the need for learning and explicit NL intents. 289

However, they still face challenges in capturing 290

the implicit cues from code context and explicitly 291

comparing the relevance of different documents to 292

the same query. To tackle this issue, we propose a 293

novel reranking model architecture, APIRANKER, 294

which includes a hidden reasoning state extractor 295

that leverages the reasoning state to capture the 296

4

relevance of the API document to implicit cues297

from the code context. Additionally, a relevance298

detector is employed to detect the reasoning state299

and explicitly predict a relevance score between300

the API document and the query.301

Hidden Reasoning State Extractor. Most to-302

kens in a language space are generated solely for303

fluency, contributing little to the actual reasoning304

process. Inspired by the previous studies on hidden305

reasoning state (Hao et al., 2024; Ouyang et al.,306

2022), we extract the representation of the reason-307

ing state through the last hidden state of the LLM to308

capture the relevance, rather than relying on tokens309

from the language space.310

Specifically, as illustrated in Fig. 3, given a query311

q (i.e., the incomplete code c) and an API document312

d, we prompt the LLM to perform code completion313

based on d and extract the sequence of hidden states314

through the decoder layer of LLMs as:315

h = DecoderLayer(d, q). (5)316

where h = {h1, h2, ..., hm} represents the se-317

quence of hidden states, m is the number of hidden318

states. During this process, the LLM’s parameters319

are kept frozen. To align the dimensions between320

the LLM and the state extractor, we introduce a321

linear layer as:322

h′ = Ws ∗ h+ bs, (6)323

where h′ is the hidden states after aligning, W∗324

and b∗ denote the trainable parameters in this sec-325

tion. Each layer of the state extractor consists of326

self-attention, cross-attention, and a feed-forward327

network (FFN) followed by layer normalization as:328

p′ = SelfAttention(p, p, p), (7)329

p′′ = CrossAttention(p′, h′, h′), (8)330

s = LayerNorm(FFN(p′′) + p′′), (9)331

where p denotes a set of learnable vectors used to332

capture the reasoning states and s represents the333

sequence of reasoning states, which serves as input334

for the next layer of the state extractor. We initialize335

the extractor with transformer weights pre-trained336

on code data, whereas the cross-attention layers are337

randomly initialized.338

Relevance Detector. To detect relevance from339

the reasoning states, we propose a relevance detec-340

tor that aggregates information of semantic under-341

standing from the reasoning states and predicts rele-342

vance scores. Specifically, as illustrated in Fig. 3(c),343

we use a learnable vector as the query in multi-head 344

attention, with s serving as both the key and value. 345

The relevance score is then predicted by a neural 346

network, as described by the following equations: 347

g′ = LayerNorm(MHA(g, s, s)), (10) 348

g′′ = LayerNorm(g′ + FFN(g′)), (11) 349

r̂ = Wr ∗ g′′ + br, (12) 350

where g is a learnable vector, representing the rele- 351

vance of states from the last reasoning states s of 352

state extractor, MHA denotes multi-head attention, 353

and r̂ represents the predicted relevance score. 354

3.4 Training and Inference 355

Training Objective. APIRANKER is trained on 356

a dataset of comparisons between two documents 357

on the same query. As illustrated in Fig. 3, We use 358

a cross-entropy loss, where comparisons between 359

document pairs act as labels. The difference in 360

rewards represents the log odds of one document 361

being preferred over the other, with this preference 362

determined by the relevance function r (Section 363

3.2). To speed up comparison training, we con- 364

struct pairs from a set of K documents selected 365

evenly based on the difference in r values, chosen 366

from the top n candidate documents, and train on 367

all comparisons for each query as a single batch. 368

Formally, the training objective of the reranking 369

model is defined as: 370

L = − 1

(K2)
E(q,ŷ,dw,dl)∼Dr

[log σ(r̂(q, ŷ, dw)− r̂(q, ŷ, dl))],

(13) 371

where σ denotes the logistic function, r̂(q, ŷ, d) is 372

the scalar output of the reranking model for query 373

q, target code with comments ŷ and API document 374

d. dw is the preferred document out of the pair of 375

dw and dl, and Dr is the training data based on 376

score of relevance function r. 377

Inference. During the inference stage, given a set 378

of candidate documents D retrieved by the retrieval 379

model based on query q (i.e., NL intent and incom- 380

plete code), each document d ∈ D is evaluated by 381

APIRANKER, which produces a new ordering of 382

the candidate documents based on the relevance 383

between document and the query. 384

4 Experiments 385

4.1 Experimental Setup 386

Dataset. To study retrieval-augmented code 387

completion based on API documentation, we 388

5

construct a dataset APIRAC (API Retrieval-389

Augmented Completion) for this task. We collect390

110,646 API documentations from the dataset391

CodeRAG-bench (Wang et al., 2024c) as retrieval392

sources. Additionally, we gather 4,400 large-scale393

repositories from GitHub, based on the dataset pre-394

sented in the RLCoder (Wang et al., 2024a), with395

an equal number of Python and Java repositories,396

and split them into training and validation sets at a397

10:1 ratio. For a specific code file that has cross-file398

dependencies, we treat all the dependency files of399

the code file to be completed as the candidate doc-400

umentation for the code file. Finally, we construct401

⟨incomplete code, target code,API documents,402

relevance scores⟩ training data using our self-403

supervised ranking framework. For the test404

data, we select DS-1000 (Lai et al., 2023) as the405

automatic code completion dataset, which includes406

general open-domain coding completion tasks. We407

use the canonical API documentation in CodeRAG-408

bench, which provides human-annotated API409

documentation for queries in DS-1000. Overall410

statistics of the dataset are given in Table 1. Further411

details can be found in Appendix A.1.412

Baselines. We consider the following retrieval413

baselines: (1) Unixcoder: Unixcoder (Guo et al.,414

2022) is a unified cross-modal pre-trained model415

for programming language. (2) GIST-large: GIST-416

large (Solatorio, 2024) is a method that improves417

text embedding fine-tuning by selectively choosing418

negative samples. (3) Arctic-Embed 2.0: Arctic-419

Embed 2.0 (Yu et al., 2024) is an open-source text420

embedding model built for accurate and efficient421

multilingual retrieval. (4) NV-Embed-v2: NV-422

Embed-v2 (Lee et al., 2024) is a generalist em-423

bedding model that ranks No.1 on the retrieval sub-424

category of the Massive Text Embedding leader-425

board (Muennighoff et al., 2022).426

Then we consider the following reranking base-427

lines based on LLMs: (1) Unsupervised Passage428

Re-ranker (UPR): UPR (Sachan et al., 2022) is429

a pointwise approach based on query generation.430

(2) Relevance Generation (RG): RG (Liang et al.,431

2022) is a pointwise approach based on relevance432

generation. (3) Pairwise Ranking Prompting-433

Sorting (PRP-Sorting): PRP-Sorting (Qin et al.,434

2023) is a pairwise method based on the log-435

likelihood of document generation, and it opti-436

mizes time complexity through heap sort. (4) Pair-437

wise Ranking Prompting-Sliding (PRP-Sliding):438

PRP-Sliding is a variant of PRP, which is based on439

Sets Avg. Number Source Avg. Code Lines/Words
query canonical intent incomplete target

train 4,000 - Github - 38.2 41.4
val 400 - Github - 37.9 40.5
test 513 1.4 Stackflow 84 10.7 5

Table 1: Dataset Statistics.

the sliding window approach. 440

For automatic code completion, we consider the 441

following code LLM: (1) Starcoder2-7B (Lozhkov 442

et al., 2024), is trained on a vast programming 443

dataset, achieving superior performance on code- 444

related tasks. (2) CodeLlama-Instruct-7B (Roziere 445

et al., 2023), is a fine-tuned version of Code Llama, 446

optimized to follow natural language instructions 447

for code generation. Further details on the above 448

baselines can be found in Appendix A.2. 449

Implementation Details. For API recommenda- 450

tion, we rerank the top 50 documents retrieved by 451

different retrieval models. In our method, we chose 452

CodeLlama-Instruct-7B as the LLM and Unixcoder 453

as the initial weight of the hidden reasoning state 454

extractor. During decoding, code is generated us- 455

ing greedy decoding. Further details can be found 456

in Appendix A.3. 457

Evaluation Metrics To evaluate the performance 458

of API recommendation, we report the common 459

evaluation metrics (Zhang et al., 2017; Wei et al., 460

2023): (1) Recall@k, measures the proportion of 461

correct API documents in the the top-k recommen- 462

dation results. (2) NDCG@k, evaluates the ranking 463

of correct documents in the top-k recommendation 464

results. (3) MRR@k, represents the reciprocal of 465

the position where the first correct API appears in 466

the top-k recommendation results. (4) MAP, evalu- 467

ates the overall performance by taking into account 468

the ranking of correct API documents. The value 469

of k is set to 10. We use Recall@k as the primary 470

metric since retrieval-augmented generation pri- 471

marily relies on key information that appears in the 472

context. To evaluate the performance of code com- 473

pletion based on API recommendation, we adopt 474

Pass@k and Improve@k metrics to measure the 475

execution correctness of programs, the value of k 476

is set to 1, which means the number of generations. 477

Further details can be found in Appendix A.4. 478

4.2 Experimental Results 479

API recommendation Evaluation. Table 2 480

shows the experimental results of our approach and 481

reranking baselines on the candidate documents re- 482

6

Retrieval Model Size dim Reranking Method Recall@10 NDCG@10 MRR@10 MAP

Unixcoder 126M 768 - 2.44 1.35 0.98 1.15

GIST-large 335M 1024

- 15.25 6.88 3.87 4.79
RG 15.69 10.93 9.10 9.42

UPR 16.65 9.56 7.01 7.66
PRP-Sorting 7.00 2.35 0.87 2.42
PRP-Sliding 12.65 10.15 9.15 10.04
APIRANKER 25.50 14.52 10.33 10.83

Arctic-Embed 2.0 568M 1024

- 18.86 10.83 7.72 8.71
RG 19.98 13.06 10.30 10.84

UPR 20.64 12.00 8.38 9.22
PRP-Sorting 8.45 2.80 1.12 3.11
PRP-Sliding 12.51 11.52 11.20 12.73
APIRANKER 32.36 18.39 12.48 13.09

NV-Embed-v2 7.9B 4096

- 27.12 13.65 8.76 9.80
RG 22.53 14.37 11.30 12.29

UPR 25.53 14.34 10.27 11.37
PRP-Sorting 14.98 4.76 1.82 4.25
PRP-Sliding 23.59 13.33 9.46 10.93
APIRANKER 30.17 15.49 9.53 11.08

Table 2: Evaluation results on the APIRAC dataset. All results in the table are reported in percentage (%). The best
method is in boldface, and the second best method is underlined for each metric.

trieved by different retrieval models. It is obvious483

that: (1) Regarding the API recommendation for484

Recall and overall ranking performance, our ap-485

proach APIRANKER outperforms all other rerank-486

ing baselines by a large margin across different re-487

trieval models, demonstrating substantial improve-488

ments in both the coverage and ranking quality of489

relevant documents. For example, APIRANKER490

achieves a Recall rate of 32.36% on Arctic-Embed491

2.0, surpassing the next best method (i.e., UPR) by492

a significant margin of 11.72%. Similarly, in terms493

of NDCG@10, APIRANKER outperforms the next494

best method (i.e., RG) with a value of 18.39%, sur-495

passing it by a significant margin of 5.33%, which496

clearly indicates its superior ranking capability. (2)497

Our approach APIRANKER demonstrates consis-498

tent improvements across all evaluation metrics499

post-reranking, irrespective of the underlying re-500

trieval model. Even in the case of the strong re-501

trieval baseline (e.g., NV-Embed-v2), where other502

methods all show degraded performance compared503

to the original retrieval results, APIRANKER still504

demonstrates stable improvements, outperforming505

retrieval baseline across all metrics, which high-506

lights the effectiveness of our method in enhancing507

ranking quality and coverage in diverse retrieval508

scenarios. Overall, our method shows substan-509

tial and stable improvements in reranking dif-510

ferent candidate retrieved documents compared511

to other models, validating the effectiveness of512

our method for API recommendation.513

Model Complexity Parameters
Method

Train Inference principle

RG O(N) 6.7B - Pointwise Perplexity
UPR O(N) 6.7B - Pointwise Perplexity
PRP-Sorting O(logN*N) 6.7B - Pairwise Perplexity
PRP-Sliding O(K*N) 6.7B - Pairwise Perplexity
APIRANKER O(N) 6.7B+160M Pairwise Pointwise Semantics

Table 3: Comparison of the reranking method. N is the
number of documents retrieved for reranking. K is the
number of documents to be returned after reranking.

Method Analysis. As illustrated in Table 3, API- 514

Ranker demonstrates several key advantages over 515

other reranking methods: (1) Its linear complexity 516

O(N) ensures scalability, making it suitable for 517

large-scale applications. (2) It captures more com- 518

plex dependencies and achieves higher accuracy 519

with just 160M additional parameters. The pair- 520

wise training method improves its ability to com- 521

pare documents in terms of relevance, while the 522

pointwise inference ensures efficient processing. 523

(3) By leveraging semantic understanding, API- 524

Ranker excels in tasks that require a deep compre- 525

hension of the documents in comparison to models 526

that rely solely on perplexity. 527

Retrieval-augmented Completion Evaluation. 528

Using a retrieval-augmented generation approach, 529

we evaluated the performance of different rerank- 530

ing models in improving code completion perfor- 531

mance on Arctic-Embed 2.0. The experimental 532

results showed that: (1) As illustrated in Fig. 4(a), 533

APIRANKER consistently outperforms the no- 534

retrieval baseline and leads to stable improvements 535

in passing across both code LLMs, whereas other 536

7

CodeLlama-Instruct-7b StarCoder2-7b
Models

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Pa
ss

@
1

(a)
UPR
RG
APIRanker
no-retrieval

CodeLlama-Instruct-7b StarCoder2-7b
Models

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Im
pr

ov
e@

1

(b)
UPR
RG
APIRanker

Figure 4: Effect of API Recommendations on Code
Completion: Pass@1 and Improve@1 Evaluation for
CodeLlama-Instruct-7B and StarCoder2-7B. The top 10
documents were used as context, with the number of
documents incrementing from 1 to 10 in each trial. The
best result from 10 runs was reported.

Model
Recall@10

GIST-large Arctic-Embed

APIRANKER 25.50 32.36
w/o Perplexity Alignment 19.90 31.57
w/o Reasoning State Extractor 24.66 27.91
w/o Relevance Detector 0.49 0.88

Table 4: Ablation study.

reranking models (i.e., UPR, RG) cause perfor-537

mance degradation. This decline can be attributed538

to interference from some of the recommended539

documents, which disrupts the code LLM’s ability540

to generate code that was previously correct. In541

contrast, APIRANKER offers stable and reliable542

improvements in retrieval-augmented generation,543

demonstrating practical usability in real-world ap-544

plications. (2) As illustrated in Fig. 4(b), we ana-545

lyze the proportion of cases in which the code LLM546

generates the correct output with the recommended547

API documents, compared to when it initially failed548

without the recommended API documents. API-549

RANKER consistently outperforms other reranking550

models, achieving higher improvements in both551

code LLMs, highlighting its superior performance552

in scenarios where the code LLM’s capabilities fall553

short and external API knowledge is needed.554

Ablation Study. As illustrated in Table 4, we555

conduct an ablation study to assess the contribution556

of different techniques by removing key compo-557

nents (i.e., Perplexity Alignment via Comments,558

Hidden Reasoning State Extractor and Relevance559

Detector) of our approach separately. The experi-560

mental results show that: (1) No matter which com-561

ponent we drop, it hurts the overall performance562

of our model, which signals the importance and563

effectiveness of all three components. (2) The re-564

call rate shows a significant drop in reranking per-565

formance on the candidate documents retrieved by566

I want to raise a 2-dimensional numpy array, let's call it A, to the power of some
number n, but I have thus far failed to find the function or operator to do that.
I'm aware that I could cast it to the matrix type and use the fact that then (similar
to what would be the behaviour in Matlab), A**n does just what I want, (for array
the same expression means elementwise exponentiation). Casting to matrix and
back seems like a rather ugly workaround though.
Surely there must be a good way to perform that calculation while keeping the
format to array?
```
import numpy as np
A = np.arange(16).reshape(4, 4)
n = 5
```

numpy.linalg.
matrix_power

16
2

1
18

2
41bmm()

addbmm()dot()

torch.nn.functional.
batch_norm

3
19

5
24

torch.dot

4
42 ...

Retrieval result = np.power(A, n)

Reranking result = np.linalg.matrix_power(A, n)

query

Top-k
APIs

Figure 5: The example of code completion based on
API recommendation.

GIST-large and Arctic-Embed 2.0 when the Hidden 567

Reasoning State Extractor and Relevance Detector 568

are removed separately. Notably, the removal of the 569

Relevance Detector causes an enormous decrease, 570

which makes the model fail to work properly. This 571

justifies the importance and necessity of these two 572

components in our reranking model architecture. 573

Case Study. As illustrated in Fig. 5, we present 574

an example of generation using CodeLlama, based 575

on API documents retrieved (e.g., colored in red) 576

by Arctic-Embed 2.0 and reranked by our model. 577

The retrieved APIs can’t properly handle matrix 578

exponentiation for Numpy, causing the LLM to fail 579

in performing the required matrix operations. API- 580

RANKER reranks the retrieved APIs (e.g., colored 581

in blue), successfully moving the correct API (e.g., 582

colored in yellow) to the top, thus providing the 583

correct solution. This highlights that, in code com- 584

pletion tasks where higher precision and specific 585

requirements are crucial, APIRANKER offers more 586

accurate and effective API recommendations by 587

optimizing the ranking. 588

5 Conclusions. 589

This research aims to rerank retrieved API doc- 590

uments to enhance automatic code completion, 591

considering both NL intent and incomplete code. 592

To perform this task, we propose an approach 593

APIRANKER that utilizes a self-learning rank- 594

ing framework to automatically construct data for 595

ranking. Then we propose a novel reranking model 596

architecture to predict the relevance score between 597

the API documents and the query, based on the 598

LLM’s reasoning capabilities. The experimental 599

results show the effectiveness of our approach for 600

this task. We hope our study lays the foundations 601

for this research and provides valuable insights. 602

8

6 Limitations.603

Several limitations are concerned with our work.604

Firstly, due to the limited availability of code com-605

pletion test sets that support code evaluation in606

other languages, and the difficulty in constructing607

queries that simultaneously include both intent and608

incomplete code, our test is based on Python, one609

of the most popular programming languages used610

by developers. However, during the training of our611

method, we used data from two programming lan-612

guages Java and Python, and we believe that our613

approach can easily adapt to other programming614

languages. Secondly, our approach does not explic-615

itly create intent but rather leverages the language616

comprehension ability of LLMs to reduce the need617

for learning natural language intent. Exploring how618

to automatically generate high-quality intent from619

code is an interesting research topic for our future620

work.621

References622

Yujia Chen, Cuiyun Gao, Xiaoxue Ren, Yun Peng, Xin623
Xia, and Michael R Lyu. 2023. Api usage recom-624
mendation via multi-view heterogeneous graph rep-625
resentation learning. IEEE Transactions on Software626
Engineering, 49(5):3289–3304.627

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-628
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,629
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A630
pre-trained model for programming and natural lan-631
guages. arXiv preprint arXiv:2002.08155.632

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,633
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen634
Wang. 2023. Retrieval-augmented generation for635
large language models: A survey. arXiv preprint636
arXiv:2312.10997.637

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and638
Sunghun Kim. 2016. Deep api learning. In Proceed-639
ings of the 2016 24th ACM SIGSOFT international640
symposium on foundations of software engineering,641
pages 631–642.642

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-643
dine Abdessalem, Tanguy Abel, Mohammad Kalim644
Akram, Susana Guzman, Georgios Mastrapas, Saba645
Sturua, Bo Wang, et al. 2023. Jina embeddings 2:646
8192-token general-purpose text embeddings for long647
documents. arXiv preprint arXiv:2310.19923.648

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming649
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-650
modal pre-training for code representation. arXiv651
preprint arXiv:2203.03850.652

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 653
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 654
Training large language models to reason in a contin- 655
uous latent space. arXiv preprint arXiv:2412.06769. 656

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, 657
and Xinyu Wang. 2018. Api method recommenda- 658
tion without worrying about the task-api knowledge 659
gap. In Proceedings of the 33rd ACM/IEEE Interna- 660
tional Conference on Automated Software Engineer- 661
ing, pages 293–304. 662

Rasha Ahmad Husein, Hala Aburajouh, and Cagatay 663
Catal. 2024. Large language models for code com- 664
pletion: A systematic literature review. Computer 665
Standards & Interfaces, page 103917. 666

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 667
and Sunghun Kim. 2024. A survey on large lan- 668
guage models for code generation. arXiv preprint 669
arXiv:2406.00515. 670

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 671
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel 672
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A 673
natural and reliable benchmark for data science code 674
generation. In International Conference on Machine 675
Learning, pages 18319–18345. PMLR. 676

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan 677
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and 678
Wei Ping. 2024. Nv-embed: Improved techniques for 679
training llms as generalist embedding models. arXiv 680
preprint arXiv:2405.17428. 681

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 682
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 683
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku- 684
mar, et al. 2022. Holistic evaluation of language 685
models. arXiv preprint arXiv:2211.09110. 686

Chunyang Ling, Yanzhen Zou, and Bing Xie. 2021. 687
Graph neural network based collaborative filtering 688
for api usage recommendation. In 2021 IEEE Inter- 689
national Conference on Software Analysis, Evolution 690
and Reengineering (SANER), pages 36–47. IEEE. 691

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, 692
Ying Wang, and Xin Peng. 2023. Codegen4libs: A 693
two-stage approach for library-oriented code gener- 694
ation. In 2023 38th IEEE/ACM International Con- 695
ference on Automated Software Engineering (ASE), 696
pages 434–445. IEEE. 697

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 698
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 699
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 700
et al. 2024. Starcoder 2 and the stack v2: The next 701
generation. arXiv preprint arXiv:2402.19173. 702

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung- 703
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc: 704
A retrieval-augmented code completion framework. 705
arXiv preprint arXiv:2203.07722. 706

9

Zexiong Ma, Shengnan An, Bing Xie, and Zeqi Lin.707
2024. Compositional api recommendation for library-708
oriented code generation. In Proceedings of the 32nd709
IEEE/ACM International Conference on Program710
Comprehension, pages 87–98.711

Marcellino Marcellino, Davin William Pratama,712
Steven Santoso Suntiarko, and Kristien Margi. 2021.713
Comparative of advanced sorting algorithms (quick714
sort, heap sort, merge sort, intro sort, radix sort) based715
on time and memory usage. In 2021 1st International716
Conference on Computer Science and Artificial Intel-717
ligence (ICCSAI), volume 1, pages 154–160. IEEE.718

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and719
Nils Reimers. 2022. Mteb: Massive text embedding720
benchmark. arXiv preprint arXiv:2210.07316.721

Noor Nashid, Taha Shabani, Parsa Alian, and Ali722
Mesbah. 2024. Contextual api completion for723
unseen repositories using llms. arXiv preprint724
arXiv:2405.04600.725

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad726
Saqib, Saeed Anwar, Muhammad Usman, Naveed727
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A728
comprehensive overview of large language models.729
arXiv preprint arXiv:2307.06435.730

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,731
Carroll Wainwright, Pamela Mishkin, Chong Zhang,732
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.733
2022. Training language models to follow instruc-734
tions with human feedback. Advances in neural in-735
formation processing systems, 35:27730–27744.736

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron737
VandenBerg, and Jamie Callan. 2022. Clueweb22:738
10 billion web documents with visual and semantic739
information. arXiv preprint arXiv:2211.15848.740

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat741
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.742
2021. Retrieval augmented code generation and sum-743
marization. arXiv preprint arXiv:2108.11601.744

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx-745
uan Wang, Cuiyun Gao, and Michael R Lyu. 2022.746
Revisiting, benchmarking and exploring api recom-747
mendation: How far are we? IEEE Transactions on748
Software Engineering, 49(4):1876–1897.749

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,750
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu751
Liu, Donald Metzler, et al. 2023. Large language752
models are effective text rankers with pairwise rank-753
ing prompting. arXiv preprint arXiv:2306.17563.754

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten755
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,756
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.757
Code llama: Open foundation models for code. arXiv758
preprint arXiv:2308.12950.759

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, 760
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and 761
Luke Zettlemoyer. 2022. Improving passage retrieval 762
with zero-shot question generation. arXiv preprint 763
arXiv:2204.07496. 764

Aivin V Solatorio. 2024. Gistembed: Guided in-sample 765
selection of training negatives for text embedding 766
fine-tuning. arXiv preprint arXiv:2402.16829. 767

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, 768
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024a. 769
Rlcoder: Reinforcement learning for repository-level 770
code completion. arXiv preprint arXiv:2407.19487. 771

Yong Wang, Yingtao Fang, Cuiyun Gao, and Linjun 772
Chen. 2024b. Api recommendation for novice pro- 773
grammers: Build a bridge of query-task knowledge 774
gap. IEEE Transactions on Reliability. 775

Zora Z. Wang, Akari Asai, Xinyan V. Yu, Frank F. Xu, 776
Yiqing Xie, Graham Neubig, and Daniel Fried. 2024c. 777
Coderag-bench: Can retrieval augment code genera- 778
tion? arXiv preprint arXiv:2406.14497. 779

Moshi Wei, Nima Shiri Harzevili, Alvine Boaye Belle, 780
Junjie Wang, Lin Shi, Song Wang, and Zhen Ming 781
Jiang. 2023. A survey on query-based api recommen- 782
dation. arXiv preprint arXiv:2312.10623. 783

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie 784
Wang, and Song Wang. 2022. Clear: contrastive 785
learning for api recommendation. In Proceedings 786
of the 44th International Conference on Software 787
Engineering, pages 376–387. 788

Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng, 789
Haowen Chen, Yuming Zhou, and Baowen Xu. 2023. 790
Retrieving api knowledge from tutorials and stack 791
overflow based on natural language queries. ACM 792
Transactions on Software Engineering and Method- 793
ology, 32(5):1–36. 794

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel 795
Campos. 2024. Arctic-embed 2.0: Multilingual 796
retrieval without compromise. arXiv preprint 797
arXiv:2412.04506. 798

Jingxuan Zhang, He Jiang, Zhilei Ren, and Xin Chen. 799
2017. Recommending apis for api related questions 800
in stack overflow. IEEE Access, 6:6205–6219. 801

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo 802
Li, and Zhi Jin. 2023. Toolcoder: Teach code gener- 803
ation models to use api search tools. arXiv preprint 804
arXiv:2305.04032. 805

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo 806
Wang, Zhengbao Jiang, and Graham Neubig. 2022. 807
Docprompting: Generating code by retrieving the 808
docs. arXiv preprint arXiv:2207.05987. 809

10

A Appendix810

A.1 Dataset Construction Details811

We collect 110,646 API documentations from the812

dataset CodeRAG-bench (Wang et al., 2024c) as813

retrieval sources. These documents come from two814

main sources: official Python library documenta-815

tion provided by devdocs.io4 and content obtained816

from ClueWeb22 (Overwijk et al., 2022), a large-817

scale web corpus, covering a wide range of topics,818

from basic programming techniques to advanced819

library usage. Each page in ClueWeb22 includes820

code snippets and textual explanations. To support821

efficient vector queries based on cosine similarity,822

we create vector search libraries using Milvus5,823

a high-performance vector database designed for824

scalability and providing fast, scalable similarity825

search and retrieval.826

In the training and evaluation data, for a spe-827

cific code file that has cross-file dependencies,828

we treat all the dependency files (i.e., both di-829

rect and indirect dependencies) of the code file830

as the candidate documentation for the code file.831

For the test data, we select DS-1000 (Lai et al.,832

2023) as the query (i.e., NL intent and incom-833

plete code) and code completion dataset, which834

includes general open-domain coding completion835

tasks (e.g., Matplotlib, Numpy, Pandas, Sklearn,836

Tensorflow).837

A.2 Baselines Setup detail838

Retrieval Baselines. We consider the following839

retrieval baselines, which are dense retrievers that840

encode both the query and code documentation841

into vector spaces for retrieving semantically rel-842

evant documentation based on vector similarity:843

(1) Unixcoder: Unixcoder (Guo et al., 2022) is a844

unified cross-modal pre-trained model for program-845

ming language. (2) GIST-large: GIST-large (Sola-846

torio, 2024) is a method that improves text embed-847

ding fine-tuning by selectively choosing negative848

samples. (3) Arctic-Embed 2.0: Arctic-Embed849

2.0 (Yu et al., 2024) is an open-source text embed-850

ding model built for accurate and efficient multi-851

lingual retrieval. (4) NV-Embed-v2: NV-Embed-852

v2 (Lee et al., 2024) is a generalist embedding853

model that ranks No.1 on the retrieval sub-category854

of the Massive Text Embedding (MTEB) leader-855

board (Muennighoff et al., 2022). GIST-large and856

4https://devdocs.io
5https://github.com/milvus-io/milvus

Arctic-Embed 2.0 are also ranked highly on the 857

MTEB leaderboard. 858

Since the performance of code retrieval mod- 859

els (e.g., Unixcoder, CodeBert (Feng et al., 2020), 860

jina-base-v2-code (Günther et al., 2023)) is not 861

ideal (with poor retrieval performance), we do not 862

conduct reranking experiments on it. Addition- 863

ally, CodeBert and jina-base-v2-code are unable 864

to recall any relevant API documents in the top 50, 865

we do not report retrieval results for these models. 866

Considering the context limitations of retrieval and 867

code generation, as well as the excessive length 868

of some API documentation, the retrieval model’s 869

maximum token encoding length is uniformly set 870

to 512. 871

Reranking Baselines. We consider the following 872

reranking baselines, which are based on LLMs: 873

(1) Unsupervised Passage Re-ranker (UPR): 874

UPR (Sachan et al., 2022) is a pointwise approach 875

based on query generation. The prompt template 876

for UPR is shown in Fig. 6. In this approach, the 877

relevance score of an API document d to the query 878

q is measured by the probability of generating the 879

query.

• Instruction: Please write a question based on this pas-
sage.
• Passage: d
• Question: q

Figure 6: The prompt template for UPR. d is the API
document, q is the query.

880
(2) Relevance Generation (RG): RG (Liang 881

et al., 2022) is a pointwise approach based on rele- 882

vance generation. The prompt template for RG is 883

shown in Fig. 7. In this approach, the relevance of 884

an API document d to the query q is defined as: 885

si =

{
1 + p(Yes), if output Yes
1− p(No), if output No

(14) 886

where p(Yes) and p(No) denote the probabilities 887

of LLMs generating the tokens of “Yes” or “No” 888

respectively.

• Instruction: Does the passage answer the query?
• Passage: d
• Query: q

Figure 7: The prompt template for UPR. d is the API
document, q is the query.

889
(3) Pairwise Ranking Prompting- Sorting 890

(PRP-Sorting): PRP-Sorting (Qin et al., 2023) is 891

11

https://devdocs.io
https://github.com/milvus-io/milvus

a pairwise method based on the log-likelihood of892

document generation, and it optimizes time com-893

plexity through heap sort algorithm (Marcellino894

et al., 2021). The prompt template for PRP-Sorting895

is shown in Fig. 8. In this approach, to compare896

two API documents dA and dB , the one that is897

more relevant to the query q is determined based898

on which has a higher probability of generating899

“Passage A” or “Passage B”.

• Instruction: Given a query “q”, which of the following
two passages is more relevant to the query?
• Passage A: dA
• Passage B: dB

Figure 8: The prompt template for PRP-Sorting and
PRP-Sliding. d is the API document, q is the query.

900
(4) Pairwise Ranking Prompting-Sliding901

(PRP-Sliding): PRP-Sliding is a variant of PRP,902

which is based on the sliding window approach.903

The prompt template and comparison function for904

PRP-Sliding are the same as those for PRP-Sorting.905

In order to comparing the performence of906

different reranking models, we uniformly use907

CodeLlama-Instrcut-7B as the base LLMs. The908

maximum token length of an API document is set909

to 512.910

Code Completion Baselines. For automatic911

code completion, we consider the following code912

LLMs: (1) Starcoder2-7B (Lozhkov et al., 2024),913

which is trained on a vast programming dataset914

and achieves superior performance on code-related915

tasks. (2) CodeLlama-Instruct-7B (Roziere et al.,916

2023), which is a fine-tuned version of Code Llama,917

optimized to follow natural language instructions918

for code generation.919

A.3 Implementation Details920

In our approach, we chose CodeLlama-Instruct-7B921

as the perplexity evaluator in the self-supervised922

learning ranking framework and as the base LLM923

of the reranking model. Additionally, UnixCoder is924

chosen as the retriever in the self-supervised learn-925

ing ranking framework and as the initial weight926

of the hidden reasoning state extractor. All experi-927

ments were conducted on two A800 GPUs.928

In our self-supervised learning ranking frame-929

work, we set the total length of the incomplete930

code and the target code to be no more than 1024931

tokens, ensuring that the ratio of 0.4 to 0.5 of the932

total length is considered as the incomplete code.933

The prompt template for the perplexity evaluator is 934

shown in 9. 935

In the design of the reranking model, we set 936

the number of learnable vectors in the hidden rea- 937

soning state extractor to 32. We employed the 938

AdamW optimizer with a learning rate of 1e-4. 939

The learning rate schedule was managed using the 940

WarmupCosineLR scheduler, where the learning 941

rate linearly warms up for the first 75 steps and then 942

follows a cosine decay towards a minimum ratio 943

of 0.0001 over a total of 750 steps. The batch size 944

was set to 384, and the number of gradient accumu- 945

lation steps was 4. The input length was capped at 946

a maximum of 1152 tokens. We constructed pairs 947

from a set of 4 documents, selected evenly based 948

on the difference in values from the perplexity eval- 949

uator, chosen from the top 20 candidate documents 950

retrieved by the retriever. The prompt template for 951

training is shown in Fig. 9. During the inference 952

stage, we reranked the top 50 documents retrieved 953

by different retrieval models. The input length was 954

capped at a maximum of 1600 tokens. The prompt 955

template for inference was the same as for training. 956

• Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—”) to complete the code.
• APIs document: d
• query: q

Figure 9: The prompt template for APIRANKER. d is
the API document, q is the query.

For retrieval-augmented code completion, we 957

use top-k API documents as a context for auto- 958

matic code completion, keeping only the first 512 959

tokens in each document. The prompt template of 960

retrieval-augmented code completion is shown in 961

Fig. 10. During decoding, code is generated using 962

greedy decoding. The length of the output to a 963

maximum of 2048 tokens. 964

• Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—”) to complete the code. Based on the following prob-
lem description and existing code, please write the code
to achieve the desired output. Place the executable code
between <code> and </code> tags, without any other non-
executable things.
• the top-k APIs documents: d1, ..., dk
• query: q

Figure 10: The prompt template for PRP-Sorting and
PRP-Sliding. di is the i-th API document, q is the query.

12

A.4 Evaluation Metrics965

To evaluate the performance of API recommen-966

dation, we report the common evaluation met-967

rics (Zhang et al., 2017; Wei et al., 2023): (1) Re-968

call@k, measures the proportion of correct API969

documents in the the top-k recommendation results.970

It is defined as follows:971

Recall@k =
R
N
, (15)972

where N is the total number of relevant documents,973

and R is the number of relevant documents in top-974

k recommended results. (2) NDCG@k, evaluates975

the ranking of correct documents in the top-k rec-976

ommendation results. As a normalized Discounted977

Cumulative Gaine, NDCG is calculated by dividing978

by a special ideal DCG, where all relevant docu-979

ments are ranked higher than irrelevant ones. It is980

defined as:981

NDCG@k =
DCG@k

ideal DCG@k
, (16)982

DCG@k =
k∑

i=1

2rel(i) − 1

log2(i+ 1)
, (17)983

where i represents the rank. rel(i) is a binary func-984

tion to check whether the API in rank i is correct985

or not. If the API at rank i is a correct API, then986

the value rel(i) is 1; otherwise, the value is 0. (3)987

MRR@k, represents the reciprocal of the position988

where the first correct API appears in the top-k989

recommendation results. It is defined as:990

MRR@k =
1

|Q|

Q∑
j=1

1

k_Ranki
, (18)991

where |Q| is the number of queries Q, and992

k_Ranki means the rank position of the first cor-993

rect answer in the top k recommended list for the994

i-th query. (4) Mean Average Precision (MAP),995

evaluates the overall performance by taking into996

account the ranking of correct API documents. It997

is defined as:998

MAP =
1

|Q|

Q∑
j=1

∑n
i=1(P (i)× rel(i))
#correct answers

, (19)999

P (i) =
#correct answers in top i

i
, (20)1000

where p(i) is the precision at a given cut-off rank i.1001

The value of k is set to 10, and n is set to 50. We1002

use Recall@k as the primary metric since retrieval- 1003

augmented generation primarily relies on key infor- 1004

mation that appears in the context. 1005

To evaluate the performance of code completion 1006

based on API recommendation, we adopt Pass@k 1007

and Improve@k metrics to measure the execution 1008

correctness of programs: (1) Pass@k, is an evalua- 1009

tion metric that has been widely used in previous 1010

work (Jiang et al., 2024), computing the fraction 1011

of problems having at least one correct prediction 1012

within k samples. It is defined as: 1013

pass@k := Etask

[
1−

(
n−c
k

)(
n
k

)]
, (21) 1014

where n is the total number of sampled candidate 1015

code solutions, k is the number of randomly se- 1016

lected code solutions from these candidates for 1017

each programming problem, with n ≥ k, and c is 1018

the count of correct samples within the k selected. 1019

(2) Improve@k, is the proportion of cases in which 1020

the code LLM generates the correct output with 1021

the recommended API documentation, compared 1022

to when it initially failed without the recommended 1023

API documentation. It is defined as: 1024

Improve@k =

∑m
i=1 correct(i)

#failures in k samples
, (22) 1025

where m is the number of problems that initially 1026

failed to generate the code in the k samples, and 1027

correct(i) is 1 if the i-th problem passes in the k 1028

samples, and 0 if it fails. The value of k is set to 1 1029

in our experiment. Given the differences in the ca- 1030

pabilities of code LLMs, there are instances where 1031

a model, initially capable of generating correct out- 1032

puts, may fail when code completion is based on 1033

API documents. Therefore, we use Improve@k to 1034

explore the potential for improvement. 1035

13

	Introduction
	Related Work
	Methodology
	Task Definition
	Self-supervised Ranking Framework
	Reranking Model Architecture
	Training and Inference

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions.
	Limitations.
	Appendix
	Dataset Construction Details
	Baselines Setup detail
	Implementation Details
	Evaluation Metrics

