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Abstract: We present a diffusion-based model recipe for real-world control of2

a highly dexterous humanoid robotic hand, designed for sample-efficient learning3

and smooth fine-motor action inference. Our system features a newly designed 16-4

DoF tendon-driven hand, equipped with wide angle wrist cameras and mounted5

on a Franka Emika Panda arm. We develop a versatile teleoperation pipeline and6

data collection protocol using both glove-based and VR interfaces, enabling high-7

quality data collection across diverse tasks such as pick and place, item sorting and8

assembly insertion. Leveraging high-frequency generative control, we train end-9

to-end policies from raw sensory inputs, enabling smooth, self-correcting motions10

in complex manipulation scenarios. Real-world evaluations demonstrate up to11

93.3% out of distribution success rates, with up to a +33.3% performance boost12

due to emergent self-correcting behaviors, while also revealing scaling trends in13

policy performance. Our results advance the state-of-the-art in dexterous robotic14

manipulation through a fully integrated, practical approach to hardware, learning,15

and real-world deployment.16

Keywords: Dexterity, Manipulation, Self-Correction17

1 Introduction18

Robotic dexterity—the ability to manipulate a wide range of objects with precision, speed, and19

adaptability—remains one of the grand challenges in robotics. Although recent advances in20

learning-based control, model architectures, and robotic hardware have enabled significant progress21

in domains like locomotion and grasping, achieving general-purpose, real-world dexterous manipu-22

lation still demands a holistic integration of perception, data, hardware, and control. Human hands,23

through evolution, have become masterful tools for contact-rich manipulation. Can we equip robots24

with similarly versatile capabilities?25

In this work, we introduce mimic-one, a scalable recipe for real-world, general-purpose robotic dex-26

terity based on high-frequency generative models trained end-to-end with imitation learning. Our27

system centers around a newly developed 16 degree-of-freedom (DoF) humanoid robotic hand, ca-28

pable of fine-grained, tendon-driven control. The hand is mounted on a 7-DoF Franka Emika Panda29

arm and equipped with wide-FOV wrist cameras to provide rich, low-latency feedback from diverse30

viewpoints. The entire system is optimized for smooth inference and sample efficiency and is pow-31

ered by a diffusion-based control policy trained from raw image and proprioceptive observations.32

To collect diverse high-quality demonstrations, we design an extensible teleoperation system that33

supports both glove-based and Apple Vision Pro-based control interfaces. These enable rapid data34

acquisition across a variety of real-world tasks—including pick-and-place of deformable objects,35

precise insertions, and complex object sorting—all selected to challenge the limits of contemporary36

manipulation systems. Crucially, our methodology includes a robust data collection protocol to37

identify and mitigate failure modes through targeted self-correction data, which we show is vital for38

improving robustness and policy generalization.39
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Figure 1: mimic-one is a scalable model recipe and data collection protocol for general purpose
dexterous manipulation. Our system features a newly designed 16-DoF tendon-driven hand, a 7-DoF
Franka Emika Panda robot arm, and a VR teleoperation system for data collection. We showcase the
framework across difficult, dynamic real-world manipulation scenarios, which highlight the system’s
high frequency fine-motor skills, visual generalization, and ability to recover from failures.

We demonstrate that mimic-one policies are not only capable of completing these tasks with high40

success rates, but also natively exhibit recovery from failed grasps and adaptive corrections. Our41

ablation studies reveal key data curation and representation decisions that dramatically impact per-42

formance. Importantly, we uncover scaling trends that highlight how policy generalization and43

reliability improve downstream of data diversity and curation.44

2 Methodology45

2.1 The mimic dexterous robotic hand46

With the ultimate goal of demonstrating highly dexterous, human-like manipulation, we developed a47

novel “mimic” dexterous robotic hand (Fig. 4.c). The hand features 20 joints with 16 DoF, actuated48

by an antagonistic tendon-driven mechanism with slack compensation. The rigid articulated bodies49

are padded with a soft silicone skin at relevant contact surfaces. The system successfully demon-50

strated lifting capacity for payloads exceeding 7 kg with 5-fingered power grasps. The hand also51

features two wide-angle RGB wrist cameras (Fig. 4.b), with the aim of providing rich, low-latency52

feedback from diverse viewpoints. An emphasis is placed on abduction and adduction for all fingers53

and the anatomically accurate opposability of the thumb. This design choice allows an intuitive user54

experience for teleoperation, narrowing the embodiment gap in between the robot and the human55

operator. Other, less relevant DoF of human biomechanics are simplified with joint coupling and56

underactuated mechanisms to reduce system complexity and weight.57

2.2 Robot setup and teleoperation58

Our robot station setup consists of a Franka Emika Panda robot arm, a mounted mimic dexterous59

hand, and one additional external “workspace” RGB camera (Fig. 4.b). Demonstration data is col-60

lected via teleoperation using one of two methods: 1. Manus gloves for hand motion capture and61

SpaceMouse control for wrist poses; or 2. Apple Vision Pro hand and wrist tracking (Fig. 4.a). The62

Franka Emika Panda robot arm runs a low-level Cartesian impedance controller from [1], following63

a high-level target pose commanded by the teleoperator. We apply a retargeting algorithm to the64

hand finger joints, as detailed in App. B.1.65
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2.3 Model recipe and data collection protocol66

Our recipe relies on several key design choices for state and action representation that significantly67

boost performance and generalization for dexterous policies. These design choices mainly involve:68

1. Using cartesian end effector poses as states and actions; 2. Using a “relative” end effector69

state and action representation; 3. Using absolute hand joint angles state and actions; 4. Using70

6D rotations. We detail the model recipe choices in further detail in App. C.1.71

At the same time, we observe that, irrespective of scale, obtaining high success rates with imita-72

tion learning policies is facilitated when following a specific data collection protocol, involving:73

1. Data collection with randomized object positions, distractors and backgrounds; 2. Data labeling74

for success/failure; 3. Data curation, filtering for high-quality trajectories; 4. Policy training; 5. It-75

erative self-correction data collection for the common policy failure modes. We further detail the76

protocol in App. C.2.77

2.4 Policy architecture78

Our goal is to train a policy π(at:t+Ha |ot−Ho:t) that maps from a sequence of observations ot−Ho:t to79

future actions at:t+Ha
for the dexterous hand plus arm. Our observations oi = (li, Ii) are composed80

of low-dimensional sensory readings li, such as proprioceptive robot joint angles and end effector81

poses, together with RGB images Ii from the cameras mounted on the workstation and the wrist. We82

predict an entire “action chunk” of length Ha, as this makes it easier to learn and generate smooth,83

high-frequency motions that are temporally consistent and exhibit lower compounding error.84

Our chosen approach for simple but effective end-to-end high-frequency generative control is to use85

a UNet Diffusion Policy architecture [2], receiving as conditioning input an observation horizon with86

three RGB images from the wrist-mounted and overhead cameras and proprioceptive state inputs87

(end-effector pose, joint angles). The low-dimensional proprioceptive state inputs are projected to88

the embedding dimension with a linear layer, while the RGB images are fed into CLIP [3] pre-89

trained ViT-B/16 [4] encoders with duplicated weights for each camera stream. The embeddings are90

concatenated and passed to the UNet Diffusion Policy backbone, which samples the action chunks91

by denoising a vector of sampled Gaussian noise (Fig. 5.c).92

3 Results93

We evaluate our model recipe on three challenging dexterous manipulation benchmarks designed94

to test generalization, precision, and self-correction capabilities (Fig. 6). These tasks intentionally95

move beyond simple pick-and-place scenarios to probe the limits of dexterous control.96

General pick-and-place (Bread Picking): This task involves picking deformable bread loaves from97

varied surfaces (static table, moving conveyor belt) and placing them into a box. Key challenges98

include handling the deformable object gently and adapting to randomized loaf positions and diverse99

surfaces (varied table colors, conveyor). Evaluation: Assessed on unseen table/background settings100

with arbitrary loaf starting positions. Success requires the loaf to be gently placed into the target101

container, with the policy allowed to self-correct errors.102

Complex placement (Bottle Sorting): This task mimics a recycling scenario, requiring the robot to103

grasp plastic bottles (potentially slippery, empty or partially filled) sideways on a conveyor belt and104

insert them precisely into a bottle rack with variable slot occupancy. Challenges include achieving105

a stable sideways grasp and accurate placement into a constrained slot. Evaluation: Performed on106

the training conveyor belt but with unseen background settings, arbitrary bottle positions, and ran-107

domized rack occupancy. Success requires placing a bottle into an empty slot, permitting recovery108

from initial misplacements (e.g., re-orienting a poorly slotted bottle).109

Precise insertion (Battery Insertion): This task requires high precision, involving picking a battery110

from one rack, transporting it, and inserting it fully into a specific slot in a second rack, including111

a final ”punch” motion to ensure it’s connected. The main challenges lie in the precise alignment112
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needed for insertion (which depends on the battery’s pose in hand, not just the end-effector pose)113

and executing the dynamic push. Evaluation: Conducted on an unseen table/background with114

randomized rack positions. Success requires the battery to be picked, correctly inserted into the115

target slot, and fully ”punched” in.116

Quantitative evaluation. We assessed policy performance by varying the amount of training117

data (Fig. 2). Success rates improved significantly with more data across all tasks: Bread Pick118

(22.5%@20% data to 93.3%@100%), Bottle Sort (25.0%@50% to 75.0%@100%), and Battery119

Insertion (12.5%@50% to 37.5%@100%). These results, achieved with relatively modest dataset120

sizes, highlight the effectiveness of our data collection protocol.121

Crucially, incorporating self-correction trajectories markedly improved robustness (Fig. 2, dashed122

vs. solid bars). Success rates increased substantially when allowing for recovery behaviors: Bread123

Pick (+26.6%), Bottle Sort (+33.3%), and Battery Insertion (+25.0%), demonstrating the value of124

targeted failure recovery data.125
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Figure 3: Ablation study on Bread Pick-and-
Place, comparing the full mimic-one recipe (vi)
against variants removing key components: (i)
Absolute actions, (ii) Incorrect relative base
frame, (iii) Single task configuration, (iv) Unfil-
tered data, and (v) No self-correction data.

Ablation study. We validated key components126

of the mimic-one recipe via ablations on the127

Bread Pick-and-Place task (Fig. 3). Using sub-128

optimal action representations (i, ii), limiting129

data diversity (iii), omitting data filtering (iv),130

or excluding self-correction data (v) all led to131

significantly lower success rates (ranging from132

5.0% to 56.7%) compared to the full recipe (vi,133

93.3% success rate). This confirms the impor-134

tance of each element in our proposed method-135

ology, particularly the relative action represen-136

tation with the correct base frame, data diver-137

sity/curation, and inclusion of self-correction138

trajectories.139

4 Conclusion140

We presented mimic-one, a scalable recipe for141

achieving general-purpose robotic dexterity us-142

ing a novel 16-DoF humanoid hand and a143

diffusion-based generative control policy. Our144

approach leverages efficient teleoperation for145

data collection, incorporating a crucial proto-146

col for targeted self-correction data, and relies147

on specific design choices like relative Carte-148

sian action representations for effective end-to-149

end imitation learning. Experiments demon-150

strated the system’s capability on challenging151

real-world tasks, showcasing high success rates,152

smooth control, generalization, and emerging153

self-corrective behaviors. Ablations and scaling154

results validated our methodology’s key compo-155

nents. The mimic-one framework offers a prac-156

tical and reproducible path towards bridging the157

gap between generative models and the demands158

of robust, real-world dexterous manipulation.159
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Appendix160

A Related Work161

Dexterous manipulation hardware. Robotic hand design has progressed toward replicating162

human-level dexterity via either high-fidelity anthropomorphic mechanisms or simplified, task-163

driven alternatives. Foundational systems such as the humanoid hand in [5], DLR/HIT Hand II164

[6], and the DLR Hand-Arm System [7] emphasized high-DoF kinematics and multisensory inte-165

gration. Later designs like [8], [9], and [10] incorporated biomimetic actuation and compliant skin,166

targeting contact-rich interaction. Single-print fabrication of monolithic hands enhanced rapid pro-167

totyping [11]. However, these designs often lack integrated perception and scalability/reliability for168

learning. In contrast, our design balances dexterity and simplicity through a tendon-driven, 16-DoF169

architecture with wide-FOV wrist cameras, engineered specifically for scalable imitation learning.170

Imitation learning and generative control. End-to-end imitation learning approaches have re-171

cently emerged as a promising paradigm for training robot manipulation policies, enabling robots to172

learn complex skills directly from demonstration data. This surge has been driven by the adoption173

of generative modeling techniques in robotics, typically applied to large-scale datasets, predomi-174

nantly involving two-finger gripper platforms. End-to-end autoregressive Vision-Language-Action175

models (VLAs) [12, 13, 14, 15] pioneered the application of autoregressive transformers for action176

generation, demonstrating the ability to learn diverse skills with a single model, at the cost of slow177

inference and suboptimal action tokenization. To benefit from the strengths of autoregressive VLA178

models for the high-frequency, dexterous manipulation case, tokenization schemes alternative to179

naive action binning have been proposed (e.g., FAST [16]).180

Alternatively to autoregression, learning high-frequency control policies from demonstrations with181

generative model techniques can be achieved with the use of action chunking. The first of such182

approaches was the VAE-based ACT [17]. Further development in methods for fast inference at183

high control frequency leveraged Diffusion Models [18, 19] or Flow Matching [20] over an action184

chunk, such as Diffusion Policy [2] or PointFlowMatch [21]. π0 [22] illustrates that flow matching-185

based models can be successfully scaled up and combined with Vision-Language Model (VLM)186

backbones to enable diverse, language instruction-driven robot behaviors.187

Generative control for scalable (humanoid) dexterity. Several systems have been introduced to188

enable scalable data collection and policy training for robots of varying dexterity. Universal Ma-189

nipulation Interface (UMI) [23] introduced a low-cost, portable data collection and policy interface190

for two-finger gripper robots, agnostic to robotic arms and compatible with static and mobile robot191

systems [24]. Follow-up works [25] have investigated the data quantity and diversity scaling laws of192

the UMI Diffusion Policy. Other works [26] have applied the Diffusion Policy model to lower-DoF193

humanoid dexterous hands. Several works have demonstrated the benefits of pre-training on human194

video data [27, 28, 29].195

B Robot Setup196

B.1 Robot hand pose retargeting197

Agnostic to the hand capture method used for data collection, our method requires re-targeting of hu-198

man hand poses to robot hand joint angles. To do so, we employ the key-vector-based re-targeting199

method from [30, 27] (Fig. 4.d), in which the “keyvectors” vhi and vri between palms and finger-200

tips for the human and robot hand are used to compute an energy loss function E ((βh, θh) , q) =201 ∑15
i=1 ∥vhi − (ci · vri ) ∥, which minimizes the distance between human hand poses (β, θ) and robot202

hand poses q, with ci being a scale parameter.203
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Figure 4: System overview and teleoperation setup. (a) On the left, the robot station, with a mimic
robotic hand mounted on a 7-DoF Franka Emika Panda arm. On the right, a data collector using
an Apple Vision Pro for teleoperation. (b) Synchronized visual inputs from wrist-mounted fisheye
cameras (below and above the wrist) and an external overhead camera. (c) mimic hand, featuring 16
DoFs with soft skin contact surfaces and tendon actuation. (d) Visualization of keyvector represen-
tations used for retargeting human hand poses to robot joint configurations during teleoperation.

C Model recipe and Data Collection Protocol204

C.1 Key ingredients for generative control for highly dexterous manipulation205

Our recipe relies on several key design choices for state and action representation that significantly206

boost performance and generalization for dexterous policies:207

Cartesian target end effector pose as action. Following [23], we use the Cartesian target pose208

for the end effector as the action, commanded to the low-level impedance controller. This improves209

robustness to object position changes and promotes arm-agnostic policies. Crucially, the action is210

the target pose from the teleoperator, not the currently observed pose. The policy essentially learns211

to act as a drop-in replacement for the teleoperator.212

Cartesian proprioceptive end effector pose as state. The end effector state uses the Cartesian pose213

derived from robot proprioception.214

“Relative” end effector action representation. Choosing the right reference frame for Cartesian215

end effector actions is crucial. Common options include Absolute (poses in a global frame), Delta216

(each pose relative to the immediately preceding one), and Relative (all poses in the action chunk217
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Figure 5: The mimic-one data collection protocol and policy recipe. (a) Teleoperation data collec-
tion. Variation in the setting involve randomize object positions, robot starting pose, “task config”,
and distractors. (b) Data labeling and filtering (removing failures, non-stable grasps and suboptimal
completions). (c) The diffusion policy model architecture, receiving as conditioning input an ob-
servation horizon with encoded RGB images and proprioceptive state inputs, predicting the future
action chunk. (d) Self-correction trajectory collection based on common failure modes. Robot and
workspace are positioned in a failure state, and correction episodes are collected.

relative to a single ’base pose’) [17, 23]. For dexterous manipulation requiring adaptation to vary-218

ing object positions, we find the Relative representation superior for generalization. It makes the219

planned trajectory segment largely independent of the robot’s absolute starting position. A critical220

implementation detail for correctness and stability is selecting the correct base pose: it must be the221

last observed proprioceptive end effector pose (i.e., the final state in the input observation horizon222

ot−Ho:t). Using the first commanded target pose from the current action chunk as the base frame223

would mismatch the policy’s conditioning at inference time, which only includes observed states.224

“Relative” end effector state representation. Similarly, the end effector state horizon is repre-225

sented relative to the last observed proprioceptive end effector pose.226

Absolute hand joint angles as action and state. For the dexterous hand, we use absolute joint227

angles for both state and actions. This allows the policy to learn meaningful grasp configurations228

directly, while this information would be lost if using relative angles.229

6D rotations. All end effector rotations are represented using the 6D upper-triangular rotation230

representation [31], which is well-suited for neural network learning due to preserving continuity.231

C.2 A data collection protocol to boost success rates232

Existing works often focus on either limited, in-distribution demonstrations, or attempt to achieve233

generalization and high task success rates by simply scaling up data collection to a very high degree.234

We observe that irrespective of scale, obtaining high success rates for general purpose tasks with235
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approaches purely based on Imitation Learning is strongly facilitated when following a specific236

data collection protocol, structured as follows:237

Table 1: Dataset statistics.

Task Name # Success # Filtered # Task
Eps Eps Configs

Bread Pick 1830 550 5
Bottle Sort 2420 882 8
Battery Insertion 1192 528 5

(1) Data collection: Initially, data collection is per-238

formed with teleoperation, attempting to perform the239

entire task successfully in each episode (Fig. 5.a).240

While doing this, one should adhere to the follow-241

ing: (1.1) For each different episode, randomize the242

starting pose of the robot within the workspace and243

the position of any movable task object. (1.2) Add244

distractor objects (objects not involved in the task) in the workspace in approximately 50% of the245

episodes. (1.3) We define a “Task config” as the overall setting in which an episode is collected.246

Specifically, we consider as a different task config a situation in which one of (a) table color or247

type; (b) Background; (c) Lighting conditions; has changed. Following the observations from [25],248

we apply the scaling-law optimal ratio of different task configs to the overall number of collected249

episodes, which means that we change task config approximately every 100 episodes collected.250

(2) Data labeling: Once the first data collection step is completed, the original data collector must251

manually label each collected episode as either a success or a failure, depending on whether the task252

is completed (Fig. 5.b).253

(3) Data curation: A different person conducts further filtering, eliminating trajectories involving254

non-stable grasps, erratic motions, and ambiguous task completions.255

(4) Policy training: A first policy is trained and evaluated in-distribution. Common failure modes256

are identified and documented.257

(5) Repeat — collect self-correction trajectories: based on the common failure modes. The robot258

and workspace are positioned in a failure state before starting the episode collection (Fig. 5.d). After259

a new batch of self-correction trajectories has been collected, one can begin training again.260

Overall, we collect episodes over 3 main task families. We select tasks based on the desire to test for:261

1. Overall capability for pick and place in diverse, real-world settings. 2. Completion of dexterous262

tasks that are not easily achievable with two-finger gripper solutions. 3. Precision in tasks such as263

assembly and insertion. 4. Illustration of self-correction behaviors.264

D Training Details265

Observation horizon. Each training sample consists of an observation horizon Ho = 2 and an266

action chunk of Ha = 48 time steps, corresponding to 3.2 s of future prediction at a control rate of267

15 Hz.268

Model architecture. The image encoders are CLIP [3] ViT-B/16 [4] encoders, kept unfrozen at269

training time. The action denoising UNet uses the architecture from Diffusion Policy [2], with an270

embedding dimension of 128, kernel size = 5, number of groups = 8, and a training-time number of271

inference step of 16. The UNet is conditioned with a concatenated embedding from the observation272

horizon. The visual embeddings from RGB camera observations are taken from the CLS token of273

the ViT encoder. As for the low-dimensional observation, they are not projected, but are directly274

concatenated with the visual embeddings, before being used for conditioning the UNet.275

Observation and Action Representations The representation of the robot arm’s end effector Carte-276

sian poses, for both observed states and predicted actions, incorporates specific strategies to enhance277

learning and generalization. Let Pk = (Tk, Rk) denote a Cartesian pose at time step k, where278

Tk ∈ R3 is the translation and Rk ∈ SO(3) is the rotation matrix. The current time step is t.279

• “Relative” End Effector Pose Representation. A key aspect of our methodology is the280

use of a “Relative” representation for end effector poses. This means that sequences of281

poses are expressed relative to a common reference frame, specifically the most recent282
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observed proprioceptive pose of the end effector. Let P obs
t = (T obs

t , Robs
t ) be the latest283

observed proprioceptive end effector pose at the current time t. This P obs
t serves as the284

“base pose”.285

– State Representation: The input observation horizon for the end effector poses, de-
noted as Oee = {P obs

t−Ho
, . . . , P obs

t−1, P
obs
t }, consists of Ho + 1 observed poses. Each

pose P obs
k in this sequence (for k ∈ [t − Ho, t]) is transformed into a relative pose,

P state rel
k , with respect to the base pose P obs

t :

P state rel
k = (T state rel

k , Rstate rel
k )

where
T state rel
k = (Robs

t )T (T obs
k − T obs

t )

Rstate rel
k = (Robs

t )TRobs
k

The sequence {P state rel
t−Ho

, . . . , P state rel
t } (where P state rel

t is the identity pose (0, I))286

forms the state input to the policy concerning the end effector.287

– Action Representation: The policy predicts an “action chunk,” which is a sequence
of Ha future target end effector poses. These are also represented relative to the same
base pose P obs

t . The policy outputs:

Apred = {P act rel
t , P act rel

t+1 , . . . , P act rel
t+Ha−1}

Each P act rel
j = (T act rel

j , Ract rel
j ) for j ∈ [t, t+Ha − 1] is a pose relative to P obs

t .
To obtain the absolute target pose P target

j = (T target
j , Rtarget

j ) that is commanded to
the low-level robot controller, this relative pose is combined with the base pose P obs

t :

T target
j = T obs

t +Robs
t T act rel

j

Rtarget
j = Robs

t Ract rel
j

• 6D Rotation Representation All 3D rotations R ∈ SO(3) for the end effector poses,
whether in the observed states or the predicted actions (i.e., Rstate rel

k and Ract rel
j ), are

represented using a continuous 6D format as proposed by [31]. If a rotation matrix R is
given by its column vectors:

R = [r1, r2, r3], where ri ∈ R3

The 6D representation, R6D ∈ R6, is formed by concatenating the first two column vec-
tors:

R6D =

[
r1
r2

]
This representation avoids discontinuities and gimbal lock issues associated with other rota-288

tion parametrizations like Euler angles or quaternions when used directly in neural network289

outputs.290

Data augmentation. We apply random cropping with a 0.95 ratio to the RGB images, together with291

a color jitter random filter. No augmentations are applied to proprioceptive inputs or actions.292

Normalization. All proprioceptive inputs and actions are normalized to fit within limits of +1 and293

-1, using statistics computed over the training set. RGB images are normalized according to the294

ImageNet normalization used for the ViT encoder.295

Training. Policies are trained with the standard denoising diffusion loss (mean squared error be-296

tween denoised and ground truth action chunk), using the AdamW optimizer with a learning rate of297

3× 10−4, weight decay of 1× 10−6, a cosine decay schedule and a warmup of 2000 steps. Training298

runs for 120 epochs over the task dataset, which has been observed to be enough for all individual299

test tasks.300

Inference. During inference, the policy runs in real-time at 15Hz, predicting new action chunks with301

a 16-step DDIM sampler. We use a dynamic action scheduler, playing back actions when they are302

ready, according to their scheduled timestamp. We re-compute the action chunk before its complete303

execution, after the execution of the 10th action of 48.304
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Figure 6: Representative rollout sequences across three benchmark tasks. The mimic-one policy
demonstrates smooth, self-correcting behaviors over bread pick-and-place, battery insertion and
bottle sorting. We thoroughly illustrate self-correcting behavior for the bottle sorting task: the hand
re-orients the bottle post-grasp to achieve successful insertion.

E Task Success Criteria305

We define success criteria for each task as follows:306

• Bread Pick-and-Place: The bread loaf must be fully inside the target container and not307

crushed or dropped during placement.308

• Bottle Sorting: The bottle must be inserted into a free slot in the rack and remain upright.309

Corrections after misplacement are permitted.310

• Battery Insertion: The battery must be inserted into the designated slot and visually con-311

firmed to be flush with the rack (fully punched in).312

F Failure Mode Taxonomy313

To facilitate targeted self-correction collection, we categorize failure modes as follows:314

1. Unstable grasp: Object is grasped but not securely held; results in drop or slippage during315

placement.316

2. No grasp: Missed grasp attempts due to poor object localization or approach trajectory.317

3. Misalignment: Object is correctly picked but misaligned for target insertion or placement.318

These failure modes can happen either during data collection itself, or during policy inference.319

During data collection, the protocol is to stop the recording of the current episode, and start a new320

recording involving performing a correction of the current error. If happening during inference, a321
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descriptive annotation of the error is made and used to create custom “reset scenes” during the next322

round of data collection, recording custom recovery demonstrations.323

G Limitations324

While mimic-one demonstrates significant progress in real-world dexterous manipulation, several325

limitations should be acknowledged:326

• Dependence on imitation learning: The core approach relies on imitation learning, which327

inherently limits the policy’s capabilities to the quality, diversity, and optimality of the328

human demonstrations. Performance is fundamentally upper-bounded by the teleoperator’s329

skill and the fidelity of the teleoperation system.330

• Data collection scalability and cost: Generating the required demonstration data, includ-331

ing the crucial self-correction trajectories, necessitates access to the specific robot hardware332

(mimic hand, Franka arm, cameras) and human operator time for teleoperation and data cu-333

ration.334

• Single-task focus in evaluation: Although the proposed recipe is suitable for multi-task335

learning, the current empirical validation focuses on training and evaluating policies for336

individual task families. Training separate policies may also be less data-efficient than337

multi-task learning frameworks that promote representation sharing.338

• Hardware specificity: The presented policies are trained specifically for the 16-DoF339

mimic hand and its sensor configuration (wrist cameras, proprioception). Transferring these340

policies directly to different robotic hands, would likely require retraining or domain adap-341

tation. The system currently lacks tactile sensing, which could further enhance robustness342

and enable more contact-rich manipulation tasks.343
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