
Discovering a Zero
(Zero-Vector Class of Machine Learning)

Harikrishna Metta 1 R. Venkatesh Babu 1

Abstract

In Machine learning, separating data into classes
is a very fundamental problem. A mathemati-
cal framework around the classes is presented in
this work to deepen the understanding of classes.
The classes are defined as vectors in a Vector
Space, where addition corresponds to the union
of classes, and scalar multiplication resembles
set complement of classes. The Zero-Vector in
the vector space corresponds to a class referred
to as the Metta-Class. This discovery enables
numerous applications. One such application,
termed ‘clear learning’ in this work, focuses on
learning the true nature (manifold) of the data in-
stead of merely learning a boundary sufficient
for classification. Another application, called
‘unary class learning’, involves learning a single
class in isolation rather than learning by com-
paring two or more classes. Additionally, ‘set
operations on classes’ is another application high-
lighted in this work. Furthermore, Continual
Learning of classes is facilitated by smaller net-
works. The Metta-Class enables neural networks
to learn only the data manifold; therefore, it can
also be used for generation of new data. Re-
sults for the key applications are shown using the
MNIST dataset. To further strengthen the claims,
some results are also produced using the CIFAR-
10 and ImageNet-1k embeddings. The code sup-
porting these applications is publicly available at:
github.com/hm-4/Metta-Class.

1Vision and AI Lab (val.cds.iisc.ac.in), Department
of Computational and Data Sciences, Indian Institute of
Science, Bangalore, INDIA. Correspondence to: Harikr-
ishna Metta <hm.iisc.iitb@gmail.com>, R. Venkatesh Babu
<venky@iisc.ac.in>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
There are many techniques in Machine learning that allow
data classification, one such contraption is the Neural Net-
work. A general technique used in the data classification
is the following. Find a separating hyper-surface between
classes such that functional value of data points belong to
same class when substituted in the hyper-surface equations
resulting in a ‘similar’ sets of values. In Neural Networks
those set of values are called logits. The general technique,
with respect to Neural Networks, can be understood by
thinking the logit equations of a Neural Network as hyper-
surface equations, those logit values are passed though the
Sigmoid or Softmax layer. The similarity of the logits of
data points belonging to the same class is enforced by the
cross entropy loss.

An example of decision boundaries of a neural network is
shown in the far-left subfigure of Figure 1. The feature
space in that subfigure is divided into two decision regions:
the lower half is classified as Class−2, indicated by the
green region, while the upper half is classified as Class−1,
represented by the red region. However, this dichotomiza-
tion of the entire feature space into these two classes is not
accurate, as only a small portion of the space genuinely
belongs to Class−1 or Class−2. Therefore, the decision
regions depicted in the far-left subfigure of Figure 1 do not
accurately represent the true nature of the classes. A more
realistic representation of the decision regions can be seen
in the mid-subfigure of Figure 1.

If a neural network exhibits the decision regions as shown
in the mid-subfigure of Figure 1, these regions have par-
ticularly notable set properties. One such property is the
union of the regions: the union of the decision regions ac-
curately represents the true nature of the combined class’s
decision region. Another property is the complement of the
decision region: as illustrated in the far-right subfigure of
Figure 1, the complement of a decision region accurately
represents the true complement of the class. These prop-
erties are essential, as they reflect the true characteristics
of the classes. Consequently, neural networks with such
well-defined decision regions for each class are desirable.

In this work, classes are characterized in terms of the logit

1

https://github.com/hm-4/Metta-Class

Discovering a Zero

Figure 1. The far-left subfigure represents the decision regions of
a neural network, learned by separating the feature space. The
middle subfigure shows the actual regions corresponding to the
classes, while the far-right subfigure illustrates the complement
region of Class-1.

equations, and logit equations are viewed as vectors. Ad-
dition and scalar multiplication on such vectors is defined
such that a vector space is created. As a consequence, it
allows to use all vector operations on logits hence enables
set operations on classes. The relevant proofs and meanings
of the operations are provided, without going into very rig-
orous math. Sample PyTorch implementations and results
are attached supporting the theory when needed.

2. Characterization of Logits
If the probability density function (PDF) of the data, fn(x),
is known, a given data point can be assessed for membership
in the distribution by comparing its probability to a prede-
fined threshold, αfn . The threshold αfn should be chosen
as a non-negative real number, ensuring that data points
with high relative probability are recognized as belonging
to the class. As illustrated in Figure 2, data points with
probabilities (fn(x)) greater than or equal to αfn = 0.1 are
classified as belonging to Class-f , while those with lower
probabilities are classified as not belonging to the class.
The PDF function fn(x) itself is used for this classification
along with the threshold αfn .

In cases where only the unnormalized PDF f(x) is known,
it is still possible to classify data points by comparing f(x)
to the scaled threshold αfAf , where Af represents the nor-
malization constant of f(x). A diagram illustrating this
mechanism can be seen in Figure 2, where Af = 1.

The value f(x0) for a given data point x0 is referred to as
the ‘Logit.’ The function f(x) is defined as the ‘Logit Func-
tion’ or ‘Logit Equation.’ Any Logit Equation that correctly
classifies data with respect to a predefined threshold αf is
termed a ‘Valid Logit Equation (VLE)’ or ‘Valid Logit Func-
tion.’ These definitions will be used consistently throughout
this paper.

All Valid Logit Functions can be grouped into a set, as
shown in equation 1. Any function h(x) that belongs to the
set [f(x)] in equation 1 can classify data sampled from the

−6 −4 −2 0 2 4
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

αf =0.1

f (x)

2(f (x)− 0.1) + 0.1

0.5(f (x)− 0.1) + 0.1

20(f (x)− 0.1) + 0.1

Threshold Line

Figure 2. A set of functions that classify Class-f (f(x)) with the
exact same decision regions for a threshold of αf = 0.1.

unnormalized distribution f(x). Notice that functions of
the form h(x) + k, where h(x) ∈ [f(x)] and k ∈ R, with a
threshold αf + k can perform the same classification task
as h(x) and αf . Therefore, to accommodate equations of
the form h(x) + k and thresholds of the form αf + k, as
well as any other valid pair of functions and thresholds, a
separate set S is introduced in equation 1.

[f(x)] =
{
β
(
f(x)− αfAf

)
+ αf

∣∣∣ β ∈ R+
}
∪ S (1)

Here, f(x) represents the unnormalized PDF of the class,
αf ∈ R is the predefined threshold for f(x), Af represents
the normalization constant of f(x), and S denotes the set
of unknown (does not need to be an unnormalized or a
normalized PDF) Valid Logit Functions associated with that
class.

The set [f(x)] in equation 1 is an equivalence class with
respect to the classification of the data, as it satisfies the
properties of an equivalence relation. Specifically, any equa-
tion within this set classifies the data in exactly the same way
as others in the set for a predefined threshold. Consequently,
the set [f(x)] is referred to as the ‘Valid Equivalence Set’ of
f(x). This terminology will be consistently used throughout
this paper.

The following subsection explores the resulting Valid Equiv-
alence Set when two classes are combined.

2.1. Merging two Classes

Now consider another class, Class−2, whose unnormalized
PDF is g(x). Figure 3 illustrates some Valid Logit Functions
for Class−g, similar to those shown for Class−f in Figure 2.
Any function k(x) belonging to the set [g(x)], as defined in
Equation (2), is a Valid Logit Function capable of classifying
data sampled from the unnormalized distribution g(x), in
the same way as was previously done for Class−f .

[g(x)] =
{
β
(
g(x)− αgAg

)
+ αg

∣∣∣ β ∈ R+
}
∪ T (2)

2

Discovering a Zero

−6 −4 −2 0 2 4
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

αg =0.05

g(x)

2(g(x)− 0.05) + 0.05

0.5(g(x)− 0.05) + 0.05

20(g(x)− 0.05) + 0.05

Threshold Line

Figure 3. A set of functions that classify Class-g (g(x)) with the
exact same decision regions for a threshold of αg = 0.05.

−6 −4 −2 0 2 4
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

αu =0.12

u(x) = f (x)+g(x)
2

2(u(x)− 0.12) + 0.12

0.5(u(x)− 0.12) + 0.12

20(u(x)− 0.12) + 0.12

Threshold Line

Figure 4. A set of functions that classify combined Class-u
(Class−u = Class−f ∪ Class−g) with the exact same decision
regions for a threshold of αu = 0.12.

Here, g(x) represents the unnormalized PDF of Class−g,
αg ∈ R is the predefined threshold for g(x), Ag represents
the normalization constant of g(x), and T denotes the set
of unknown (does not need to be an unnormalized or a
normalized PDF) Valid Logit Functions associated with
Class−g.

Suppose there is a need to merge the data of Class−g with
the data of Class−f . The resulting PDF of the combined
class, denoted as u(x), is illustrated in Figure 4. Assuming
an equal number of data points in Class−f and Class−g,
the equation for u(x) in terms of PDFs fn(x) and gn(x), the
normalized distributions of f(x) and g(x) respectively, is
given in Equation (3). The proof of this equation is provided
in Section A of the Appendix.

u(x) =
fn(x) + gn(x)

2
(3)

Similar to what was observed for Class−f and Class−g,
there can be multiple Valid Logit Functions corresponding
to the combined PDF u(x), as illustrated in Figure 4. The
set [u(x)], as defined in Equation (4), represents all Valid
Logit Functions associated with the PDF u(x).

[u(x)] =
{
β
(
u(x)− αuAu

)
+ αu

∣∣∣ β ∈ R+
}
∪ Z (4)

−6 −4 −2 0 2 4
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

α−f =0.15

f (x)

2(−f (x) + 0.15) + 0.15

0.5(−f (x) + 0.15) + 0.15

20(−f (x) + 0.15) + 0.15

(−f (x) + 0.15) + 0.15

Threshold Line

Figure 5. A set of functions that classify complement of Class-f
with the exact same decision regions for a threshold of α−f =
0.15.

Here, u(x) represents the PDF of the combined distribution,
αu ∈ R is a predefined threshold for PDF u(x), Au repre-
sents the normalization constant of u(x), and Z denotes the
set of unknown (does not need to be an unnormalized or a
normalized PDF) Valid Logit Functions associated with the
combined distribution u(x).

An important question arises: given the logit equations
h(x) ∈ [f(x)] and k(x) ∈ [g(x)], is it possible to construct
a new logit equation v(x) ∈ [u(x)] for the combined distri-
bution? If achievable, v(x) could be utilized for classifica-
tion of the combined distribution with PDF u(x). However,
this is not feasible, as numerous counterexamples can be
identified. A related question then follows: can the sets
[f(x)] and [g(x)] themselves be combined to derive a new
set [u(x)], as shown in Equation (5).

[f(x)] ∪ [g(x)] =[u(x)] (5)

[f(x)] + [g(x)] =

[
fn(x) + gn(x)

2

]
(6)

[f(x)] + [g(x)] =[fn(x) + gn(x)] (7)

Notice that the sets [fn(x) + gn(x)] and
[
fn(x)+gn(x)

2

]
are

exactly the same. The ‘+’ operator in the left-hand side
of Equation (6) is used as a symbol to represent union.
However, the ‘+’ operator on the right-hand side of the
same equation denotes the standard addition operator. This
choice is intentional, as the equation is later adopted as a
definition of addition in the following section.

2.2. Complement of a Class

There is an observation on the Valid Equivalence Set
[−f(x)]: it represents the complement of Class−f , as il-
lustrated in Figure 5 for the same predefined threshold αf .

3

Discovering a Zero

Mathematically, this is expressed as in Equation (8).

[f(x)]c =[−f(x)] (8)
−[f(x)] =[−f(x)] (9)

The ‘−’ operator on the left-hand side of Equation (9) is
used as a symbol to represent the complement operation.
However, the ‘−’ operator on the right-hand side of the
same equation denote standard subtraction operation. This
choice is intentional, as the equation is later adopted as a
definition in the following section.

3. The Vector Space
As seen in the previous chapter, the set of Valid Logit Equa-
tions of a class, whose PDF is f(x), is called the Equiv-
alence set and represented by the [f(x)]. Therefore the
function space is divided into set of these equivalence sets
each representing a class.

In this chapter, all the properties of a vector space (Axler,
2015) are verified for that set of equivalence sets, using the
definitions of addition 3.2.1 and scalar multiplication 3.2.2.
During this process a zero is discovered for this vector space,
this zero represents an equivalence set. As previously seen
each such equivalence set represents a data class. The data
class represented by the zero element of the vector space is
referred to as the Metta-Class (also called the Zero-Vector
Class).

3.1. Definition of set V

Let V be the set of equivalence sets. Each equivalence set
also known as Valid Logit Function set represents a data
class. If the PDF of a data-class is f(x) then the correspond-
ing equivalence set is denoted by [f(x)]. Therefore the set
V can be written as

V = { [f(x)], [g(x)], [h(x)], } (10)

Throughout this report, whenever the vector space V is
mentioned, it refers to this vector space.

3.2. Definition of Addition and Scalar multiplication

As understood in the previous chapter, the equations for
union (7) and complement (9) are taken as definitions here
with slight modifications so that they are suitable for defin-
ing a vector space. Specifically,

3.2.1. ADDITION

For all [f(x)], [g(x)] ∈ V , the sum [f(x)] + [g(x)] is
defined as

[f(x)] + [g(x)] := [f(x) + g(x)] (11)

3.2.2. SCALAR MULTIPLICATION

For all λ ∈ R and for all [f(x)] ∈ V the product λ[f(x)] is
defined as

λ [f(x)] := [λ f(x)] (12)

3.3. Verification of the Properties of vector space on set
V, along with addition and scalar multiplication

3.3.1. COMMUTATIVITY

For all [f(x)], [g(x)] ∈ V using the property of addition

[f(x)] + [g(x)] = [f(x) + g(x)] = [g(x)] + [f(x)]

Hence the commutativity property of vector space holds on
set V.

3.3.2. ASSOCIATIVITY

For all [f(x)], [g(x)], [h(x)] ∈ V , using the property of
addition(
[f(x)] + [g(x)]

)
+ [h(x)] =

(
[f(x) + g(x)]

)
+ [h(x)]

= [f(x)] +
(
[g(x) + h(x)]

)
let a, b ∈ R, then using the property of scalar multiplication

(ab)[f(x)] = a
(
b[f(x)]

)
= a

(
[bf(x)]

)
Hence the associativity property of vector space holds on
set V.

3.3.3. ADDITIVE IDENTITY (THE ZERO)

For all [f(x)] ∈ V there exists 0 such that

[f(x)] + [0] = [f(x) + 0]

= [f(x)]

Hence there exists an additive identity on set V.

3.3.4. ADDITIVE INVERSE

For every [f(x)] ∈ V there exists [−f(x)] such that

[f(x)] + [−f(x)] = [f(x) +−f(x)]

= [0]

Hence there exists additive inverse on set V.

3.3.5. MULTIPLICATIVE IDENTITY

For every [f(x)] ∈ V , 1[f(x)] = [f(x)], hence the multi-
plicative identity exists.

4

Discovering a Zero

3.3.6. DISTRIBUTIVE PROPERTIES

For all a, b ∈ R and for all [f(x)], [g(x)] ∈ V

a([f(x)] + [g(x)]) = a[f(x)] + a[g(x)]

= [af(x)] + [ag(x)]

(a+ b)[f(x)] = (a[f(x)] + b[f(x)])

= [af(x)] + [bf(x)]

Hence the distributive properties of vector space holds on
set V.

Therefore, the defined set V forms a vector space under the
specified operations of addition and scalar multiplication.
The equivalence sets are represented as vectors in this space
and are referred to as class-vectors, with each vector cor-
responding to a distinct data class. In particular, the zero
vector ([0]) in this space might also represents a data class,
referred to as the Zero-Vector Class.

To avoid ambiguity between the concept of the Zero-Vector
Class and the label “zero” used for other classes, this class
is hereafter referred to as the Metta-Class.

4. Metta-Class and its Applications
As established in the previous chapter, the set V defined in
Section 3.1, together with the addition and scalar multipli-
cation operations described in Subsections 3.2.1 and 3.2.2,
forms a vector space. Each vector in the vector space V rep-
resents a data class. The additive identity vector [0] of this
space (see Subsection 3.3.3) must therefore also represent a
data class. In the previous chapter, the class corresponding
to this additive identity vector was named the Metta-Class.

Using the equation 1, the set [0] can be written as

[0] =
{
β
(
0− α0A0

)
+ α0

∣∣∣ β ∈ R+
}

(13)

Here, α0 is a threshold for PDF of the class [0], A0 repre-
sents the normalization constant of the PDF corresponding
to set [0].

if we define normalizing constant Af of unnormalized PDF
f(x) as

Af := lim
V→[−∞,∞]d

∫
V
f(x) dx (14)

Simple substitution f(x) = 0 in Equation (14) gives A0 = 0
hence

[0] = {α0} (15)

where α0 ∈ R. Therefore, the logit equation of the Metta-
Class is a constant valued function.

If f(x) = 0 is treated as a constant going to zero in the limit

i.e., f(x) = limk→0 k then equation 14 becomes

A0 = lim
V→[−∞,∞]d

∫
V
lim
k→0

k dx (16)

= lim
V→[−∞,∞]d

lim
k→0

∫
V
k dx (17)

= lim
V→[−∞,∞]d

lim
k→0

Vk dx (18)

Therefore PDF corresponding to [0] can be written as:

PDF([0]) = lim
V→[−∞,∞]d

lim
k→0

k

Vk (19)

= lim
V→[−∞,∞]d

1

V (20)

Substituting Equation (18) into set (13) results in a set of
constant values. From Equations (15) and (20), the PDF
of the Metta-Class appears to follow a uniform distribution.
This observation serves as an indication rather than a rigor-
ous proof. If we consider the PDF of the Zero-Vector as a
uniform distribution, and since it also satisfies the additive
identity property, then in a peculiar sense, having data uni-
formly distributed across the entire space is equivalent to
having no data at all. For a limited volume V , PDF corre-
sponding to [0] is a uniform distribution with magnitude 1

V .
Intuitively, if a threshold αf is used for the PDF f(x), then
for f(x) + 1

V , using a threshold of αf + 1
V results in the

exact same decision regions; therefore, the uniform distribu-
tion can be seen as the additive identity of the vector space.
For the remainder of the report, the PDF of [0] is considered
as uniform distribution. For an alternative explanation, see
Section F in the Appendix.

4.1. Generating Metta-Class data in finite volume of the
feature space.

The data of any natural class generally spans a small volume
in the feature space, as shown in the top-left plot of Figure 6.
Within this small volume, data for the Metta-Class can be
generated from a uniform distribution spanning the same
volume. The generated data for the Metta-Class is illustrated
in the top-right plot of Figure 6.

4.2. Applications of Metta-Class

4.2.1. CLEAR LEARNING

A neural network called Zero-Inclusive-Network is trained
on the data shown in top-right subfigure of the figure 6,
which includes the Metta-Class data. For comparison,
another neural network called Zero-Exclusive-Network is
trained on the data excluding the Metta-Class data i.e., the
data in the top-left plot of the Figure 6. All front layers in
both networks are identical except for the last layer. In the
last layer of Zero-Inclusive-Network, an additional node is
used for the Metta-Class.

5

Discovering a Zero

Class 0
Class 1
Class 2

Class 0
Class 1
Class 2
Zero-Vector Class

Figure 6. The top-left plot shows the data of three different classes,
while the bottom-left plot depicts the decision regions learned by a
Neural Network for these classes. The top-right plot includes the
three classes along with the Metta-Class, and the bottom-right plot
illustrates the decision regions learned by a Neural Network for
these four classes.

The differences in the learning outcomes of both networks
are illustrated in the bottom plots of Figure 6. The bottom-
left plot corresponds to the Zero-Exclusive-Network, while
the bottom-right plot represents the Zero-Inclusive-Network.
It can be observed that the boundaries learned by the Zero-
Inclusive-Network are superior and clearer. By ‘clear,’ it is
meant that decision regions of the Zero-Inclusive-Network
overlaps exactly with the data. For instance, in the bottom-
left plot of Figure 6, which illustrates the learning process
of the Zero-Exclusive-Network, a significant portion of the
empty space is misclassified as Class-0, Class-1, or Class-2.

4.2.2. UNARY/UNI-CLASS CLASSIFICATION

Imagine a scenario where all the collected data belongs to a
single class. Is it still possible to train a neural network in
such a case? Moreover, can the trained network determine
whether a new data point belongs to this class or not? In
neural networks, generally, the learning is done by compar-
ing one class against another class(es). If the data belongs
to only one class, say Class−0, the learning does not make
much sense. This is where the Metta-Class is helpful. The
data for the Metta-Class is a set of samples from uniform
distribution. Now the original class−0 can be classified
against the Metta-Class data with BCE loss using a neural
network. The learning of the Neural Network trained on the
combined data can be seen in the right subfigure of Figure 7.

Class 0
Zero-Vector Class

Figure 7. The left plot shows the data of Class-0 and the Metta-
Class, while the right plot depicts the decision region of a Neural
Network trained on these two classes using BCE loss. This illus-
trates how a Neural Network can learn a single class.

Therefore learning is possible even with only one class data,
which is desirable since it is preferable to use thousands
of smaller neural networks for training rather than training
one giant neural network for a thousand classes. Results
for MNIST, CIFAR10 and ImageNet data are added in the
Results Section E.1.2 of Appendix.

4.2.3. SET OPERATIONS ON THE CLASSES

Upon closer examination, bottom-right plot of the Figure 6
exhibits resemblance to Venn Diagrams. This resemblance
is no coincidence, as the addition 3.2.1 and scalar multipli-
cation (with scalar value ‘−1’) 3.2.2 defined on the Vector
Space have the characteristics of set union and set comple-
ment respectively. As the set union (boolean addition) and
set complement (boolean not) are the fundamental opera-
tions on sets (boolean logic), any composite set operation
(composite boolean operation) can be written in terms of set
union (boolean addition) and set complement (boolean not).
The table 1 lists a few of the set operations on classes.

Consider two classes, Class-1 and Class-2, trained on two
different networks (uni-class classifiers) as described in Sub-
section 4.2.2. Let Ic1 and Ic2 denote the indicators (network
outputs) for Class-1 and Class-2, respectively. The indicator
values are 1 if the data belongs to the class they represent
and 0 otherwise. Table 1 illustrates the logical operations
on these classes. Furthermore, any boolean expression in-
volving the classes can be evaluated using these logical
operations. These logical operations can also be performed
on multiple outputs of a single network. For instance, logi-
cal operations can be applied to the classes of the classifier
corresponding to the bottom-right plot of Figure 6.

4.2.4. CONTINUAL LEARNING

In general, when the Metta-Class is not used to train neural
network, every time a new class is added to the network,
the network must be retrained or adopt some complicated
techniques. For example say network−1 classifies all fe-

6

Discovering a Zero

Table 1. Boolean operations between Class-c1 and Class-c2, where
Ic1 and Ic2 are indicators derived from classifiers trained including
the Metta-Class. Ic1 = 1 implies the data point belongs to Class-
c1, while Ic1 = 0 implies it does not. For example, the fifth
column represents the intersection operation, indicating whether a
data point belongs to both Class-c1 and Class-c2, demonstrating
that a separate classifier is not needed to identify data belonging to
both classes.

Ic1 Ic2 Ic̄2 Ic1∪c2 Ic1∩c2 Ic1−c2 Ic1⊕c2 Ic1⊙c2

0 0 1 0 0 0 0 1
0 1 0 1 0 0 1 0
1 0 1 1 0 1 1 0
1 1 0 1 1 0 0 1

lines (cats, lions, tigers, cheetahs, jaguars etc) and if there
is a need to classify pets (cats, dogs, parrots etc) a new
neural network must be trained. The information about cats
learned on the network−1 is not useful for pets classifica-
tion. This kind of split brains among neural network does
not integrate the learning. But if the Metta-Class is used in
training, the knowledge can be integrated. Which means
the information learned on old networks can be used for
newer classifications. Over the time a set of networks will
act as a repository, providing information for any kind of
classification.

The reason is that the empty space (regions with no available
data) is not classified as belonging to any class, as seen in
the bottom-right plot of Figure 6. Consequently, the class
boundaries learned do not create confusion with any new
class, whose data may spread into the empty space of the
old classifier’s classes in the future. See Section B in the
Appendix for an example.

Results on MNIST and CIFAR are presented in the Figure 8
and in Subsection E.3 of the Appendix. The classifiers
in the Figure 8 are learned separately without knowledge
of the different classes, and the figure particularly shows
accuracies when such networks are combined as a repository
working as single classifier.

4.2.5. USING CLASSIFIER FOR GENERATION OF NEW
SYNTHETIC DATA

Neural network when trained properly with the Metta-Class,
learns only the data manifold as shown in the Figure 7. It
means that the logit values of the data from the class attain
positive values only inside the manifold and negative value
anywhere outside. If one hypothesizes that logit values at-
tain peak inside the manifold, where the mode of the data
lies, and gradually decreases when going away from the
mode, then it is possible to reach the mode following the
gradient of the logit hence generating a new synthetic data-
point in the process. Images in the Figure 9 are generated
using simple gradient descent as shown in the equation 21,

Figure 8. In the top figure each individual class of
MNIST/CIFAR10 learned on separate network, and all the
individual networks are kept together to act as a single network. It
can be seen that for higher-dimensional data this method doesn’t
scale well. In the bottom figure, different set of MNIST classes
are learned on different networks, and all the networks are kept
together to act as single network.

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

Figure 9. Each image is generated from a classifier trained on a
single class (e.g., the bottom-far-left image is generated from a
classifier trained solely on digit-5 MNIST data against the Metta-
Class).

initialized with random noise image (x0).

xk = xk−1 + α ∗ ∂L

∂x

∣∣∣∣
x=xk−1

(21)

where L is the logit of a particular class, as shown in the
Figure 8

4.2.6. EQUATION DISCOVERY

Coefficients of Taylor series equation of a class can be
discovered by treating Taylor series Equation (22) (23) as
Logit equation of that class, with Cross Entropy loss on

7

Discovering a Zero

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Train

Zero-Vector Class

Class 1

Coefficients:

x = x̂− x0

h(x) = m0 + xTm1 + xTm2x

x0: [-2.6516495 10.8534]
m0: 3.091282367706299
m1: [0.19868742 -1.4092536]
m2: [[-0.60970885 1.450288]
[-1.3959112 -0.43427515]]

Figure 10. Left plot illustrates Class−1 data, while the right subfig-
ure shows the coefficients of a function representing this Class−1,
learned via backpropagation.

whether the Logit value is positive or not.

h(x) = b+

d∑
j1=1

λj1xj1 +

d∑
j1=1

d∑
j2=1

λj1j2xj1xj2

+

d∑
j1=1

d∑
j2=1

d∑
j3=1

λj1j2j3xj1xj2xj3 + . . . (22)

The equivalent Tensor equation for the Equation (22) can be
written as below.

h(#»x) = m0 +m1i xi +m2ij xixj +m3ijk xixjxk +
(23)

where m0, m1i, m2ij , m3ijk, ... are unknown scalars.

These unknown scalars are learned through backpropaga-
tion, as is done in neural networks. An empirical result
illustrating this is shown in Figure 10. This can be used
for discovering equations of lower dimensional physical
phenomenons.

Metrics

To Identify which classifier is superior with respect to learn-
ing true boundary, we used the following two metrics:

Occupancy Factor =
n[0]:C1

+ n[0]:C2
+ n[0]:C3

+ ...

N[0]

(24)
where N[0] is total data points of the Metta-Class used in
training, and n[0]:Ck

is the data points of the Metta-Class
recognized as class−Ck.

Purity Factor Class − Ck =
n(pred=Ck ∧ label=Ck)

n(pred=Ck)
(25)

where n(pred=Ck ∧ label=Ck) is the total training examples
that are predicted as class−Ck and also labeled as class−Ck,
and n(pred=Ck) is the total training examples predicted as
class−Ck. Further details on these metrics are provided in
Section D of the Appendix.

The applications discussed in this section are empirically
evaluated in the Appendix. Detailed results and analysis can
be found in Section E.

5. Time Complexity
To analyze the complexity clearly, we divide the computa-
tional requirements for any c-class classifier into two distinct
parts: (1) Pre-softmax logit computation, and (2) Softmax
computation.

Let a Zero-Exclusive Network be a classifier that does not
use the Metta-Class during training. Suppose there are n
training points, and let the computation needed to compute
pre-softmax logits be O(f(n))—for instance, f(n) might
represent millions of computations. Computing the softmax
function then takes O(n · softmax(c)) computations, where
softmax(c) represents the complexity of softmax over c
classes.

Now consider modifying the Zero-Exclusive Network by
adding an extra node at the output to classify the Metta-
Class; we call this the Zero-Inclusive Network. In this sce-
nario, we incorporate the Metta-Class in training. The addi-
tion of the new node introduces extra calculations dependent
on the number of nodes in the preceding layer. Letting L
denote the number of nodes in the layer preceding this new
node, the additional computation required is O(nL2).

The computational complexities during training and infer-
ence are summarized in the Table 2.

Typically, O(f(n)) dominates O(nL2) since L corresponds
only to the final internal layer. There is a trade-off between
computational overhead and purity improvement. This trade-
off depends significantly on the intended applications lever-
aging the full potential of the Zero-Vector framework.

6. Related Work
Theorem 1 of Gutmann and Hyvärinen’s pioneering work
on Noise-Contrastive Estimation (2010) establishes that,
under its conditions, the logit of a neural network trained to
distinguish data sampled from a density pd(.) and a noise
distribution pn(.) is given by equation 26

G(u; θ) = ln pd(u)− ln pn(u) (26)

In our work, the noise distribution pn(.) is modeled as
the Metta-Class, which follows a uniform distribution, i.e.,
pn(.) = k, where k is a known constant. Substituting this
into equation 26, we obtain:

G(u; θ) = ln pd(u)− k (27)

If the expression ln pd(x)− k is used as a representation in
place of Valid Equivalence Sets (e.g., ln f(x)−k for [f(x)],

8

Discovering a Zero

Table 2. Computational complexity comparison between a classifier that incorporates the Metta-Class data during training (referred to as
a Zero-Inclusive Network) and one that does not (referred to as a Zero-Exclusive Network). Let the computation required to calculate
pre-softmax logits during training for n data points be O(f(n)) in the Zero-Exclusive Network, where f(n) may represent millions of
operations. During inference, the corresponding pre-softmax logit computation for m data points is denoted by O(g(m)).

Classifier Training Cost Inference Cost

Zero-Exclusive
Network

O(f(n)) +O(n · softmax(c)) ≈ O(f(n)) O(g(m))+O(m·softmax(c)) ≈ O(g(m))

Zero-Inclusive
Network

O(f(n+k) + (n+k)L2) + O((n+k) ·
softmax(c+1)) ≈ O(f(n+k))

O(g(m)+mL2)+O(m·softmax(c+1)) ≈
O(g(m))

ln g(x) − k for [g(x)], lnu(x) − k for [u(x)], etc.) of the
Vector Space in section (3), the same conclusion can be
reached—that is, the Metta-Class has a constant logit value.
Consequently, the data in the Metta-Class can be interpreted
as uniformly distributed.

Based on equation 27, the density can be expressed as:

pd(u) = eG(u;θ)+k (28)

and the score as:

∇ ln pd(u) = ∇G(u; θ) (29)

The score function derived from equation 29 has demon-
strated its utility in generating new data using Langevin
dynamics (Song & Ermon, 2019). This approach provides
an explanation for the successful generation of MNIST data,
as outlined in Subsection 4.2.5.

Furthermore, notable related works include advancements
in Energy-Based Models, such as (LeCun et al., 2006) and
(Grathwohl et al., 2019), which employ strategies to increase
the energy of noise samples while decreasing the energy of
true data samples.

Additional significant contributions in this domain include
(Hinton, 2002), (van den Oord et al., 2018), and (Chen
et al., 2020), which explore various methodologies for self-
supervised learning and contrastive representation learning.

7. Conclusion
This work presents a mathematical framework to represent
classes as vectors in a Vector Space, where Addition cor-
responds to the union of classes, and scalar multiplication
closely resembles the set complement of classes. Notably, it
was discovered that the Zero-Vector of the vector space is
uniformly distributed in the feature space.

This framework opens up possibilities for developing several
novel applications, many of which are not achievable with
standard neural network training techniques. Additionally,
this training methodology complements Noise Contrastive

Estimation and Energy-Based Models, highlighting its util-
ity in enriching existing paradigms.

However, this approach currently demonstrates limitations
in scalability, as observed on CIFAR10 datasets. Addressing
these challenges offers opportunities to extend this frame-
work to handle higher-dimensional data effectively, paving
the way for broader applicability and impact.

Acknowledgements
Harikrishna Metta would like to express his sincere grati-
tude to his advisor, Prof. R. Venkatesh Babu, for his contin-
uous guidance and support throughout this project. He is
also thankful to the examiners, Prof. Aditya Gopalan and
Prof. Rajiv Soundararajan, for their valuable time, construc-
tive feedback, and encouragement during the evaluation.

He deeply appreciates the support and collaboration of his
lab-mates at VAL, IISc — Priyam Dey, Rishubh Parihar,
Badrinath Singhal, Ankit Dhiman, and Abhipsa Basu — for
their valuable technical discussions and suggestions.

He would also like to give special thanks to Mohd Shadab
Ansari and Shatakshi Gupta for their consistent encourage-
ment, helpful comments, corrections, and moral support
throughout the project.

We would also like to thank the anonymous reviewers for
their constructive comments and insightful suggestions that
helped improve the quality of this work.

Impact Statement
This work aims to advance Machine Learning by introduc-
ing a more effective training method for existing models.
The proposed approach enables applications that extend be-
yond the capabilities of traditional neural network training.
While we do not anticipate specific ethical concerns, the
broader societal impact includes improved accessibility to
advanced ML techniques. We encourage responsible and
lawful use of this work, with careful consideration of the
ethical implications in downstream applications.

9

https://val.cds.iisc.ac.in/

Discovering a Zero

References
Axler, S. Linear algebra done right (eBook). Springer,

Cham, 3rd ed. edition, 2015. URL https://doi.
org/10.1007/978-3-319-11080-6.

Ceylan, C. and Gutmann, M. U. Conditional noise-
contrastive estimation of unnormalised models, 2018.
URL https://arxiv.org/abs/1806.03664.

Chandola, V., Banerjee, A., and Kumar, V. Anomaly
detection: A survey. ACM Comput. Surv., 41(3),
July 2009. ISSN 0360-0300. doi: 10.1145/1541880.
1541882. URL https://doi.org/10.1145/
1541880.1541882.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E.
A simple framework for contrastive learning of visual
representations. CoRR, abs/2002.05709, 2020. URL
https://arxiv.org/abs/2002.05709.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995. ISSN 1573-0565.
doi: 10.1007/BF00994018. URL https://doi.org/
10.1007/BF00994018.

Du, Y. and Mordatch, I. Implicit generation and modeling
with energy based models. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
378a063b8fdb1db941e34f4bde584c7d-Paper.
pdf.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey, 2019. URL https://arxiv.org/
abs/1808.05377.

Grathwohl, W., Wang, K., Jacobsen, J., Duvenaud, D.,
Norouzi, M., and Swersky, K. Your classifier is se-
cretly an energy based model and you should treat it
like one. CoRR, abs/1912.03263, 2019. URL http:
//arxiv.org/abs/1912.03263.

Grinfeld, P. Introduction to Tensor Analysis and the Cal-
culus of Moving Surfaces. Springer New York, NY,
1 edition, 2013. ISBN 978-1-4614-7866-9. doi: 10.
1007/978-1-4614-7867-6. URL https://doi.org/
10.1007/978-1-4614-7867-6. Published: 24
September 2013, 33 b/w illustrations, 4 illustrations in
colour.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In Teh, Y. W. and Titterington, M.

(eds.), Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pp. 297–
304, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.
press/v9/gutmann10a.html.

Hinton, G. The forward-forward algorithm: Some pre-
liminary investigations, 2022. URL https://arxiv.
org/abs/2212.13345.

Hinton, G. E. Training products of experts by mini-
mizing contrastive divergence. Neural Comput., 14
(8):1771–1800, August 2002. ISSN 0899-7667. doi:
10.1162/089976602760128018. URL https://doi.
org/10.1162/089976602760128018.

Johnson, J. M. and Khoshgoftaar, T. M. Survey on
deep learning with class imbalance. Journal of Big
Data, 6(1):27, 2019. ISSN 2196-1115. doi: 10.1186/
s40537-019-0192-5. URL https://doi.org/10.
1186/s40537-019-0192-5.

LeCun, Y., Chopra, S., and Hadsell, R. A tutorial on energy-
based learning. Tutorial at the International Conference
on Machine Learning (ICML), 2006.

Makke, N. and Chawla, S. Interpretable scientific discovery
with symbolic regression: A review. Artificial Intelligence
Review, 57(1):2, 2024. ISSN 1573-7462. doi: 10.1007/
s10462-023-10622-0. URL https://doi.org/10.
1007/s10462-023-10622-0.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space, 2013.
URL https://arxiv.org/abs/1301.3781.

Ren, P., Xiao, Y., Chang, X., Huang, P.-y., Li, Z., Chen,
X., and Wang, X. A comprehensive survey of neural
architecture search: Challenges and solutions. ACM
Comput. Surv., 54(4), May 2021. ISSN 0360-0300.
doi: 10.1145/3447582. URL https://doi.org/10.
1145/3447582.

Song, Y. and Ermon, S. Generative modeling by es-
timating gradients of the data distribution. CoRR,
abs/1907.05600, 2019. URL http://arxiv.org/
abs/1907.05600.

Udrescu, S.-M. and Tegmark, M. Ai feynman: a physics-
inspired method for symbolic regression, 2020. URL
https://arxiv.org/abs/1905.11481.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018. URL http://arxiv.org/
abs/1807.03748.

10

https://doi.org/10.1007/978-3-319-11080-6
https://doi.org/10.1007/978-3-319-11080-6
https://arxiv.org/abs/1806.03664
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://arxiv.org/abs/2002.05709
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1912.03263
http://arxiv.org/abs/1912.03263
https://doi.org/10.1007/978-1-4614-7867-6
https://doi.org/10.1007/978-1-4614-7867-6
https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html
https://arxiv.org/abs/2212.13345
https://arxiv.org/abs/2212.13345
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1007/s10462-023-10622-0
https://doi.org/10.1007/s10462-023-10622-0
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3447582
https://doi.org/10.1145/3447582
http://arxiv.org/abs/1907.05600
http://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1905.11481
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748

Discovering a Zero

A. PDF of resultant class when two different classes are merged.
Suppose there is a need to merge the data of Class−g with the data of Class−f . The resulting PDF of the combined class,
denoted as u(x), can be expressed in terms of the PDFs fn(x) and gn(x), which are the normalized distributions of f(x)
and g(x) respectively. The combined distribution can be determined by finding the number of data points that belong to
Class−u in an arbitrary interval ∆x, as shown in Figure 11.

−6 −4 −2 0 2 4
x

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

α

−− g(x)
−− f (x)

∆x

x0

αu =0.1

Figure 11. Figure shows data of two distributions combined to form a bigger class.

Let Nf and Ng be the total number of data points belonging to class−f and class−g respectively. Then the number of
points in the interval ∆x that belong to class−u are

Nu = fn(x0)∆x Nf + gn(x0)∆x Ng (30)

the density of number of data points at x0 of class−u, say u(x), can be written as below

u(x0)∆x (Nf +Ng) ≈ Nu = fn(x0)∆x Nf + gn(x0)∆x Ng (31)

Therefore the probability density u(x) of the class−u is

u(x) =
fn(x) Nf + gn(x) Ng

Nf +Ng
(32)

If Nf = Ng , then

u(x) =
fn(x) + gn(x)

2
(33)

B. Continual Learning
In general, when the Metta-Class is not used to train neural network, every time a new class is added to the network, the
network must be retrained. And say network−1 classifies all felines (cats, lions, tigers, cheetahs, jaguars etc) and if there is
a need to classify pets (cats, dogs, parrots etc) a new neural network must be trained. The information about cats learned on
the network−1 is not useful for pets classification. This kind of split brains among neural network does not integrate the
learning. But if the Metta-Class is used in training, the knowledge can be integrated. That means the information learned
on old networks can be used for newer classifications. Over the time a set of networks will act as a repository, providing
information for any kind of classification. An example is shown in Figures 12 and 13.

11

Discovering a Zero

Figure 12. This figure represents how classifiers typically learn when the Metta-Class is not included during training. The top-left subfigure
shows the data (a representation of MNIST data), while the top-right subfigure illustrates the boundaries learned by a neural network
trained on all the classes. The bottom-left and bottom-right subfigures depict the boundaries learned by two different neural networks
trained on MNIST and FashionMNIST data, respectively. The knowledge learned by Network−1 is not compatible or transferable to the
knowledge learned by Network−2.

Figure 13. This figure represents how classifiers learn when the Metta-Class data is included during training. The top-left subfigure shows
the data (a representation of MNIST data), while the top-right subfigure illustrates the boundaries learned by a neural network trained on
all the classes along with the Metta-Class. The bottom-left and bottom-right subfigures depict the boundaries learned by two different
neural networks trained on MNIST and FashionMNIST data, respectively, along with the Metta-Class. Unlike the boundaries learned by
Network−1 and Network−2 in Figure 12, the boundaries learned here are distinct and can be merged to produce boundaries similar to
those of a network trained on all the classes and the Metta-Class, as shown in the top-right subfigure.

12

Discovering a Zero

C. Taylor-Series Based Network
Any vector of a vector space can be written as linear a combination of a list of linearly independent vectors spanning the
vector space, these spanning and independent vectors are called the basis vectors. The following is one such list of linearly
independent vectors for the Vector Space V .

C.1. A Basis

A Basis of the vector space V is a list of class-vectors in V that are linearly independent and spans the vector space V .

CLAIM

The set of class-vectors { [x], [x2], [x3], [x4], } is independent. Since the only way zero-class-vector can be written as
linear combination of the set is by making all the coefficients λ1, λ2, λ3, zero, it can be seen in the following equation.

[0] =

...∑
k=1

λk [xk] (34)

if k goes to infinity it may span the vector space V as long as the feature space is one dimensional, but it is not going be to
verified here. If the feature space is not one dimensional then the data point x is a vector. The following Basis is for a more
generalized setting.

If the features space is d−dimensional, then x has a vector representation. And let xi represent the ith element of the
vector x. Then the zero-class-vector can be expressed as shown in the Equation (35) if and only if all the coefficients
λj1 , λj1j2 , λj1j2j3 ... are zero, it is not proved here but it is easy to understand looking at the equation.

[0] =

d∑
j1=1

λj1 [xj1] +

d∑
j1=1

d∑
j2=1

λj1j2 [xj1xj2] +

d∑
j1=1

d∑
j2=1

d∑
j3=1

λj1j2j3 [xj1xj2xj3] + (35)

Therefore the set IV =

{
[xj1], [xj1xj2], [xj1xj2xj3], ...

∣∣∣∣jk ∈ {1, ..., d}
}

is independent. Hence any class-vector [f(x)]

from the vector space V can be written as a linear combination of these vectors, assuming they span the Vector Space V , as
in the Equation (36).

[f(x)] =

d∑
j1=1

λj1 [xj1] +

d∑
j1=1

d∑
j2=1

λj1j2 [xj1xj2] +

d∑
j1=1

d∑
j2=1

d∑
j3=1

λj1j2j3 [xj1xj2xj3] + (36)

for some λj1 , λj1j2 , λj1j2j3 , ... ∈ R.

Using addition and scalar multiplication definitions the equation can be written in the following way.

[f(x)] =

[d∑
j1=1

λj1xj1 +

d∑
j1=1

d∑
j2=1

λj1j2xj1xj2 +

d∑
j1=1

d∑
j2=1

d∑
j3=1

λj1j2j3xj1xj2xj3 +

]
(37)

Let hl(x) ∈ [f(x)] is a logit equation. Therefore

h(x) = b+

d∑
j1=1

λj1xj1 +

d∑
j1=1

d∑
j2=1

λj1j2xj1xj2 +

d∑
j1=1

d∑
j2=1

d∑
j3=1

λj1j2j3xj1xj2xj3 + (38)

The Equation (38) is a multidimensional Taylor series equation. All this means is that the logit equation of any class is a
multidimensional Taylor series equation. Note that the verification of whether the set IV spans the Vector Space V has not
been conducted. Now, this verification is unnecessary since the Equation (38) is a Taylor series. The logit equations are
written as taylor series, and focus here is to learn at least one Valid Logit equation for every class. Furthermore, the set

IP =

{
1, xj1 , xj1xj2 , xj1xj2xj3 , ...

∣∣∣∣jk ∈ {1, ..., d}
}

is independent and spans polynomial space, proof is not required.

13

Discovering a Zero

The equivalent Tensor equation for the Equation (38) can be written as below.

h(x) = m0 +m1i xi +m2ij xixj +m3ijk xixjxk + (39)

where m0, m1i, m2ij , m3ijk, ... are unknown scalars.

These unknown scalars are learned using the back propagation as in neural networks. This learning of a tensor equation
using the back propagation is named as Taylor-Series Based Network.

D. Metrics
As seen in Figure 6, two-dimensional data can be displayed on paper to visualize how the decision boundaries are formed
when the Metta-Class data is used to train a network. This displaying of the results helps in comparing how the learning is
different when the Metta-Class data is incorporated into the training process versus when it is not.

However, for higher dimensions, visualizing the data to see the decision boundaries becomes challenging. There are
dimensionality reduction techniques, such as Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor
Embedding (t-SNE), which can reduce the dimensionality of data for visualization purposes. These techniques can effectively
display the data in two or three dimensions, making it easier to understand the distribution and clustering of the data points.

Despite their usefulness in visualizing the data, these dimensionality reduction techniques fall short when it comes to
displaying the decision boundaries of classification models. An example is given in the Figure 14. As it can be seen in
the third and fourth subfigure of Figure 14 the data points can be clustered and displayed in the lower dimensions, but the
boundaries cannot be accurately displayed in the reduced dimensions.

Figure 14. Diagram illustrating the limitations of PCA and t-SNE for visualizing decision boundaries. The top-left subfigure shows
example data, while the top-right subfigure displays the decision regions learned by a neural network. The bottom-left subfigure
demonstrates PCA applied to reduce dimensionality, highlighting that it is ineffective for visualizing decision boundaries. The bottom-
right subfigure shows t-SNE applied for clustering in lower dimensions, which, while effective for grouping data, does not provide insight
into decision regions.

Another possible way to visualize higher dimensions is by slicing higher dimensional space into two dimensional or three
dimensional spaces and visualizing boundaries in these lower dimensional spaces. A good analogy is that of a CT scan.
However, this method is not efficient because the data naturally is very sparse in higher dimensional space.

Therefore it is clear that new metrics are needed to measures the effect of the Metta-Class data on the decision boundaries.

D.1. Metric-1

In Figure 15, figure−a is the learning of two different classifiers. The decision boundaries of Classifier−R are better since
the classifier does not classify any given data as one of the three classes(RED, GREEN, BLUE). So there must be a metric
to distinguish between these two types of learning. This distinction is possible by counting volume of the predicted classes
on both Classifiers. Zero-Vector Data Points(Data sampled from the Metta-Class) can be used for this purpose. Counting
Number of Zero-Vector points that are classified as a non-Metta-Class by both classifiers and comparing them, it is possible
to distinguish right classifier from the left. Therefore, the following metric called Occupancy Factor defined below to reflect
this property.

D.1.1. DEFINITION: OCCUPANCY FACTOR

It is the ratio of the Zero-Vector points that are classified as non-Metta-Class to the total Zero-Vector points.

14

Discovering a Zero

+ +

Figure 15. Metric-1 (Occupancy Factor): Figure−a illustrates the learning process of two different classifiers. The decision boundaries of
Classifier-R are superior compared to those of Classifier-L, as it avoids classifying any data point as belonging to one of the three explicit
classes (RED, GREEN, BLUE). The Occupancy Factor serves as a metric to quantify this difference. Specifically, it measures the volume
of decision regions corresponding to the defined classes relative to the volume of the Metta-Class decision region.

Let N be the total Zero-Vector points, n1 be number of Zero-Vector points classified as RED class, n2 be the number of
Zero-Vector points that are classified as GREEN and n3 as BLUE, for the Figure 15, then

Occupancy Factor =
n1 + n2 + n3

N
(40)

15

Discovering a Zero

Occupation Factor is 1 for any classifier that is trained without the Metta-Class data incorporated into the train data since
N = n1 + n2 + n3. Similarly, Occupation Factor of Classifier−L is 1, and Occupation Factor for Classifier−R is less than
1.

Figure 16. Metric-2 (Purity Factors): Figure−a illustrates the learning process of two different classifiers. Boundaries of the Classifier−R
are superior compared with boundaries of the Classifier−L as they represent the true nature of the classes. For example, the ‘Empty-Space’
in the RED class of Classifier−L also classified as RED class. The Purity Factor serves as a metric to quantify this difference. Specifically,
it measures volume of true class with respect to volume of decision region of the class.

D.2. Metric-2

In the next Figure 16, let figure−a is the learning of two different classifiers. Boundaries of the Classifier−R are superior
compared with boundaries of the Classifier−L as they represent the true nature of the classes. For example, the ‘Empty-
Space’ in the RED class of Classifier−L also classified as RED class. The Occupancy Factor can be used to distinguish
these two classifiers. However, it is possible to have data of one class in the boundary of a different class; for instance, there
can be blue data in the Red Volume. Therefore, another metric is defined below to address this issue.

16

Discovering a Zero

D.2.1. DEFINITION: PURITY FACTORS

Purity Factor is defined for one class. It is the accuracy of the class. For class−c, it is defined as the ratio of the total
predictions of class−c that are labeled as class−c to the total predictions of class−c.

Purity Factor of class−c =
n(Pred=c ∧ Label=c)

n(Pred=c)
(41)

where

• n(Pred=c ∧ Label=c) is number of data points that are predicted as class−c and also labeled as class−c.

• n(Pred=c) is the number of data points predicted as class−c.

Using this definition the Purity Factors for the classifier−L are low compared with the classifiers−R. Therefore the Purity
Factors tell if the learned boundaries are true boundaries representing true nature of the class or not. Where as the Occupancy
Factor tells total volume of predicted Classes in the space.

D.2.2. CAUTION

To compare any two classifiers using the Occupancy Factor and the Purity Factors, keep the density of the Zero-Vector-points
the same for both classifiers during testing. Therefore, the numbers for Occupancy Factor and Purity Factors are valid only
if the number of Zero-Vector data points along with the range of the space in which they are generated, is presented.

D.3. Understanding the Metrics through an Example

The three class data in the Figure 17 is used to to understand the behavior of the Purity Factors and Occupancy Factor.

The data is used for training two networks, the Metta-Class data is used to train only one of the networks. The results are
presented in the following Figure 17. In subfigure 17a the boundaries learned are true boundaries representing true natures
of the data. The Occupation factor is reaching zero, indicating that the volume occupied by the Predicted Class is small.
Similarly the Purity Factors are high, indicating the empty space in the each class is low.

In contrast, in subfigure 17b, results of classifier trained without incorporating the Metta-Class data, the boundaries do not
represent the true nature of the classes. They merely are separating surfaces. Hence, the Occupation Factor is always one.
and purity factors are low due to the unwanted empty space present in the each class.

17

Discovering a Zero

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−10

−5

0

5

10

Decision Boundaries

0 20 40 60 80 100

0

20

40

60

80

100

accuracy

Train accuracy w/ zero class
Test accuracy w/o zero class

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors

class-0
class-1
class-2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor

(a) The Metta-Class is incorporated during training. The top-left subfigure illustrates the learned
true boundaries. The top-right subfigure depicts the accuracy plot over 100 epochs. The bottom-
left subfigure presents the purity factors, all of which approach one, indicating that the data within
the decision boundaries becomes increasingly pure as the training progresses. The bottom-right
subfigure shows the occupancy factor converging towards zero, implying that the decision regions
are progressively enclosing the classes more tightly.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−10

−5

0

5

10

Decision Boundaries

0 20 40 60 80 100

0

20

40

60

80

100

accuracy

Train accuracy w/ zero class
Test accuracy w/o zero class

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors

class-0
class-1
class-2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor

(b) The Metta-Class is not incorporated during training. The top-left subfigure shows the decision
regions after 100 epochs, which fail to represent the true regions. These decision regions merely
partition the space arbitrarily. Consequently, the occupancy factor remains one throughout the
training, and the purity factors are approximately 0.5, as the number of Zero-Vector data points
and class data points in each region are nearly equal.

Figure 17. Example to understand the Metrics.

18

Discovering a Zero

E. Results
E.1. MNIST

Standard MNIST data set is used for the following results.

E.1.1. ONE CLASSIFIER FOR ALL MNIST CLASSES

The MNIST data is used for training two separate classifiers: one with incorporating the Metta-Class data (Zero-Inclusive-
Network) and one without incorporating the Metta-Class (Zero-Exclusive-Network). Results are shown in Figure 18 (Purity
factors, Occupancy factors and Accuracies) of both classifiers side by side.

E.1.2. ONE CLASSIFIER FOR EACH MNIST CLASS

A Unary classifier is trained on each MNIST class data including a Metta-Class data for that class. Results are sown in
figures 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. That is each MNIST class data is separated and a Metta-Class data is appended,
the resultant data is divided into train and test data, this train data is used to train a classifier, that classifier is called unary
classifier of that particular class. At the end these individual classes are used as repository as an experiment. The repository
accuracy is calculated at the end as shown in the Figure 41.

E.2. CIFAR10

Standard CIFAR10 data set is used for the following results.

E.2.1. ONE CLASSIFIER FOR ALL CIFAR10 CLASSES

The CIFAR10 data is used for training two separate classifiers: one with incorporating the Metta-Class data (Zero-Inclusive-
Network) and one without incorporating the Metta-Class (Zero-Exclusive-Network). The results are shown in Figure 29
(Purity factors, Occupancy factors and Accuracies) of both classifiers side by side.

E.2.2. ONE CLASSIFIER FOR EACH CIFAR10 CLASS

A Unary classifier is trained on each CIFAR10 class data including a suitable Metta-Class data for that class. Results are
sown in figures 30, 31, 32, 33, 34, 35, 36, 37, 38, 39. That is each CIFAR10 class data is separated and a Metta-Class data is
appended, the resultant data is divided into train and test data, this train data is used to train a classifier, that classifier is
called unary classifier of that particular class. At the end these individual classifiers are used as repository as an experiment.
The repository accuracy is calculated at the end as shown in the Figure 42.

E.3. Rover on an MNIST Planet

The Section 4.2.4 mentions an example of a rover visiting an alien planet. Here it is implemented for the three classes as
shown in the following Figure 43.

The following graphs are the results of the training of individual networks. The experiment conducted is as follows, it has
been assumed that the rover got to know MNIST data alone on that planet, so a network is trained for MNIST data alone and
added to the repository of the MNIST. Later the Rover comes across the FashionMNIST data, a new network is trained on
for the FashionMNIST data alone without disturbing the previously add Network in the repository, and added the newly
trained network to the repository. At this point the accuracy of the repository is calculated. At last the rover reaches the
KMNIST data, a new network is trained on that KMNIST data and added the new network to the repository. Again the
repository accuracy calculated here. The following are the corresponding diagrams.

19

Discovering a Zero

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Inclusive-Net)

class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Exclusive-Net)

class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Inclusive-Net)

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Exclusive-Net)

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (Zero-Inclusive-Net)

Train accuracy
Test accuracy

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (Zero-Exclusive-Net)

Train accuracy
Test accuracy

Figure 18. The MNIST data is used for training two separate classifiers: one with incorporating the Metta-Class data (Zero-Inclusive-
Network) and one without incorporating the Metta-Class (Zero-Exclusive-Network). When trained with the Metta-Class the purity is high
as shown in the top two plots, occupancy is low as shown in the middle plots, and test accuracy is same for both networks as shown in
bottom figures. (The Metta-Class data used to calculate the train accuracy but not used in calculation of test accuracy)

20

Discovering a Zero

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-0)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-0)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Losses (class-0)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-0)

Train accuracy
Test accuracy

Figure 19. Training results of Unary Classifier of MNIST Class 0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-1)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-1)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Losses (class-1)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-1)

Train accuracy
Test accuracy

Figure 20. Training results of Unary Classifier of MNIST Class 1

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-2)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-2)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Losses (class-2)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-2)

Train accuracy
Test accuracy

Figure 21. Training results of Unary Classifier of MNIST Class 2

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-3)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-3)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Losses (class-3)

Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-3)

Train accuracy
Test accuracy

Figure 22. Training results of Unary Classifier of MNIST Class 3

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-4)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-4)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Losses (class-4)

Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-4)

Train accuracy
Test accuracy

Figure 23. Training results of Unary Classifier of MNIST Class 4

21

Discovering a Zero

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-5)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-5)

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

Losses (class-5)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-5)

Train accuracy
Test accuracy

Figure 24. Training results of Unary Classifier of MNIST Class 5

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-6)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-6)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Losses (class-6)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-6)

Train accuracy
Test accuracy

Figure 25. Training results of Unary Classifier of MNIST Class 6

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-7)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-7)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Losses (class-7)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-7)

Train accuracy
Test accuracy

Figure 26. Training results of Unary Classifier of MNIST Class 7

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-8)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-8)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Losses (class-8)

Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-8)

Train accuracy
Test accuracy

Figure 27. Training results of Unary Classifier of MNIST Class 8

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-9)
class-0

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-9)

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Losses (class-9)

Train Losses
Test Losses

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (class-9)

Train accuracy
Test accuracy

Figure 28. Training results of Unary Classifier of MNIST Class 9

22

Discovering a Zero

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Inclusive-Net)

class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Exclusive-Net)

class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Inclusive-Net)

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Exclusive-Net)

0 10 20 30 40 50
epoch

0

20

40

60

80

100

Accuracies (Zero-Inclusive-Net)
Train accuracy
Test accuracy

0 10 20 30 40 50
epoch

0

20

40

60

80

100

Accuracies (Zero-Exclusive-Net)
Train accuracy
Test accuracy

Figure 29. The CIFAR10 data is used for training two separate classifiers: one with incorporating the Metta-Class data (Zero-Inclusive-
Network) and one without incorporating the Metta-Class (Zero-Exclusive-Network). When trained with the Metta-Class the purity is high
as shown in the top two plots, occupancy is low as shown in the middle plots, and test accuracy is comparable with the network trained
without the Metta-Class. (The Metta-Class data used to calculate the train accuracy but not used in calculation of test accuracy)

23

Discovering a Zero

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-0)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-0)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012
Losses (class-0)

Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-0)

Train accuracy
Test accuracy

Figure 30. Training results of Unary Classifier of CIFAR10 Class 0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-1)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-1)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012
Losses (class-1)

Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-1)

Train accuracy
Test accuracy

Figure 31. Training results of Unary Classifier of CIFAR10 Class 1

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-2)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-2)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010

Losses (class-2)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-2)

Train accuracy
Test accuracy

Figure 32. Training results of Unary Classifier of CIFAR10 Class 2

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-3)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-3)

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

Losses (class-3)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-3)

Train accuracy
Test accuracy

Figure 33. Training results of Unary Classifier of CIFAR10 Class 3

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-4)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-4)

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

Losses (class-4)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-4)

Train accuracy
Test accuracy

Figure 34. Training results of Unary Classifier of CIFAR10 Class 4

24

Discovering a Zero

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-5)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-5)

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

Losses (class-5)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-5)

Train accuracy
Test accuracy

Figure 35. Training results of Unary Classifier of CIFAR10 Class 5

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-6)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-6)

0 2 4 6 8
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Losses (class-6)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-6)

Train accuracy
Test accuracy

Figure 36. Training results of Unary Classifier of CIFAR10 Class 6

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-7)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-7)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Losses (class-7)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-7)

Train accuracy
Test accuracy

Figure 37. Training results of Unary Classifier of CIFAR10 Class 7

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-8)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-8)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Losses (class-8)

Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-8)

Train accuracy
Test accuracy

Figure 38. Training results of Unary Classifier of CIFAR10 Class 8

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (class-9)
class-0

0 2 4 6 8
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (class-9)

0 2 4 6 8
epoch

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Losses (class-9)
Train Losses
Test Losses

0 2 4 6 8
epoch

0

20

40

60

80

100

Accuracies (class-9)

Train accuracy
Test accuracy

Figure 39. Training results of Unary Classifier of CIFAR10 Class 9

25

Discovering a Zero

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Exclusive-Net)
class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Purity Factors (Zero-Inclusive-Net)

class-0
class-1
class-2
class-3
class-4
class-5
class-6
class-7
class-8
class-9

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Exclusive-Net)

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy Factor (Zero-Inclusive-Net)

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (Zero-Exclusive-Net)
Train accuracy
Test accuracy

0 20 40 60 80 100
epoch

0

20

40

60

80

100

Accuracies (Zero-Inclusive-Net)

Train accuracy
Test accuracy

0 20 40 60 80 100
epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Losses (Zero-Exclusive-Net)
Train Losses
Test Losses

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Losses (Zero-Inclusive-Net)
Train Losses
Test Losses

Figure 40. The ImageNet-1k embeddings (extracted using a Masked Autoencoder—MAE) are used for training two separate classifiers:
one with incorporating the Metta-Class data (Zero-Inclusive-Network) and one without incorporating the Metta-Class (Zero-Exclusive-
Network). When trained with the Metta-Class the purity is high as shown in the top two plots, occupancy is low as shown in the second
row plots, and test accuracy is same for both networks as shown third row plots. (The Metta-Class data used to calculate the train accuracy
but not used in calculation of test accuracy).

26

Discovering a Zero

Figure 41. Accuracy of the Repository of MNIST Unary Classifiers: Figure shown Method used for calculating combined accuracy of all
individual classifiers, where each classifier is trained to recognize a specific MNIST class.

Figure 42. Accuracy of the Repository of CIFAR10 Unary Classifiers: Figure shown Method used for calculating combined accuracy of
all individual classifiers, where each classifier is trained to recognize a specific CIFAR10 class.

27

Discovering a Zero

MNIST

Fashion MNIST

Rover

KMNIST

Planet

Figure 43. The figure illustrates an example of how continual learning can be implemented. Imagine a rover landing on a new planet,
encountering different types of data as it explores various locations. A separate neural network can be trained for each unique type of data.
By incorporating the Metta-Class during training, knowledge from different classifiers can be shared without needing to retrain the one
big classifier for all classes each time it encounters new data of different class.

7
3
%

8
5
%

9
7
%

Figure 44. Figure shows continuous learning on MINST datasets. The far-left figure shows a classifier trained only on MNIST, incorporat-
ing the Metta-Class data during its training. In the middle, a new, separate classifier trained on FashionMNIST and the Metta-Class data is
added to the existing classifier. The far-right figure shows another new classifier trained on KMNIST and the Metta-Class data is added on
top of the existing classifiers.

28

Discovering a Zero

F. Equivalence set as set of Tuples
As mentioned in the section 2 (Characterization of Logits) of the main paper, if the probability density function (PDF) of the
data, f(x), is known, a given data point can be assessed for membership in the distribution by comparing its probability to a
predefined threshold, αf . The threshold αf should be chosen as a non-negative real number, ensuring that data points with
high relative probability are recognized as belonging to the class. Therefore tuple (f(x), αf) defines that class (class−f) of
data. To generalize it further lets take fT (x) is the threshold of the PDF f(x), and the tuple (f(x), fT (x)) defines that class
of data. Consider a black-box operator that takes a function as input and returns a threshold function suited for that PDF. In
fact, an entire set of such tuples can represent the same class. For example, (f(x) + k, fT (x) + k) defines the same class-f
for any real-valued constant k. All such tuples preserve the decision boundary and thus represent the same underlying class.

Let M be the set of monotonically non-decreasing functions. Then each tuple in the set

[f(x)] :=
{
(M ◦ f(x), M ◦ fT (x))

∣∣M ∈ M
}

(42)

also defines the same class-f . Here, M ◦ f(x) denotes M(f(x)), written this way to reduce bracket clutter.

Definition of set V

Let V be the set of sets of the kind shown in the equation 42. Therefore the set V can be written as

V = { [f(x)], [g(x)], [h(x)], } (43)

Throughout this report, whenever the vector space V is mentioned, it refers to this vector space.

Definition of Addition and Scalar multiplication

As understood in the main paper, the equations for union and complement are taken as definitions here with slight
modifications so that they are suitable for defining a vector space. Specifically,

ADDITION

For all [f(x)], [g(x)] ∈ V , the sum [f(x)] + [g(x)] is defined as

[f(x)] + [g(x)] := [f(x) + g(x)] (44)

SCALAR MULTIPLICATION

For all λ ∈ R and for all [f(x)] ∈ V the product λ[f(x)] is defined as

λ [f(x)] := [λ f(x)] (45)

All the properties of a vector space on the set V , including the definitions of addition and scalar multiplication, can be verified
similarly to what has been done in the main paper. Here, we focus specifically on the additive identity (the zero-vector). Let
[I(x)] is the identity of this vector space. Then by the definition of identity for any vector [f(x)] ∈ V

[f(x)] + [I(x)] = [f(x)] (46)
[f(x) + I(x)] = [f(x)] (47)
[(f + I)(x)] = [f(x)] (48){

(M ◦ (f + I)(x), M ◦ (f + I)T (x))
∣∣M ∈ M

}
=

{
(M ◦ f(x), M ◦ fT (x))

∣∣M ∈ M
}

(49)
(50)

If I ∈ M then above equality can be written as,{
(N ◦ f(x), N ◦ fT (x))

∣∣N ∈ M
}
=

{
(M ◦ f(x), M ◦ fT (x))

∣∣M ∈ M
}

(51)

Therefore, the additive identity (i.e., the zero-vector) of the vector space possesses the property of being a monotonically
non-decreasing function. Since every vector in V represents a class (i.e., a probability distribution over data), there must
exist a probability density function (PDF) corresponding to the zero-vector that is monotonically non-decreasing.

To understand the possible form of the zero-vector, we consider the following two extreme cases:

29

Discovering a Zero

1. When the PDF is constant.

2. When the PDF is strictly monotonically increasing.

Case 1: PDF of the Zero-Vector is Constant

A constant PDF corresponds to a uniform distribution. Hence, if the zero-vector has a constant PDF, the data associated with
the zero-vector is uniformly distributed across its support.

Case 2: PDF is Strictly Monotonically Increasing

Let A be the volume spanned by a PDF that is strictly monotonically increasing and has zero probability outside the volume
V . Since a PDF must integrate to one over its support, as A → ∞, the PDF appears approximately constant within any
finite, localized region. Therefore, samples drawn from such a PDF will appear uniformly distributed in small local areas.

From both Case 1 and Case 2, it follows that data sampled from the zero-vector appears uniform within any finite local
region. Hence, the Metta-Class (the Zero-Vector Class) effectively behaves as a uniform distribution.

NOTE:

Some technical details, such as the constraints on the set M, have been omitted to streamline the intuition. Readers are
advised not to treat this as a formal proof but rather as a conceptual hint or intuition behind viewing the Zero-Vector as a
uniform distribution.

30

