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This review synthesizes the paradigm shift toward foundation models for analyzing physiological
signals from wearable devices. We chart the landscape from the unique characteristics of wearable
data—including photoplethysmography (PPG), electrocardiography (ECG), and accelerometry (ACC)—to
the architectural and pre-training innovations that enable these models. We present a comprehensive
taxonomy of prominent models analyzing their contributions to tasks like health monitoring, activity
recognition, and disease prediction. The core of this review is a multi-faceted examination of the critical
challenges and opportunities in this emerging research field.

1. Introduction

The intersection of sensors and sophisticated ma-
chine learning has initiated a new phase in per-
sonal health monitoring. Wearable technology
has transcended its status as a niche for fitness
users, evolving into a mainstream platform that
produces unprecedented amounts of physiologi-
cal and behavioral data. This longitudinal data,
collected “in the wild” during everyday activities,
provides a transformative perspective for under-
standing human health, identifying diseases, and
implementing personalized interventions. Never-
theless, the characteristics of this data (e.g. its
susceptibility to artifacts, incompleteness, and
variability) pose significant challenges that con-
ventional computational techniques find difficult
to address. This section lays the groundwork for
understanding wearable biosignals, outlining the
key data modalities and the inherent challenges
that underscore the need for robust, generalizable
foundation models.

The Proliferation of Wearable Sensing The
adoption of wearable technology has grown ex-
ponentially, evolving from simple step counters
to sophisticated health monitoring systems in-
tegrated into smartwatches, rings, and patches
(Narayanswamy et al.). This proliferation has
created a data ecosystem of immense scale, with
predictions suggesting over 1.1 billion connected
wearable devices would be in use by 2022, driving
substantial cost savings in the global healthcare

industry (Vijayan et al., 2021). These devices,
worn on various parts of the body, are instrumen-
tal in a wide array of applications, including daily
health and safety monitoring, chronic disease
management, post-operative rehabilitation, ath-
letic performance optimization, and elderly care.
By enabling the continuous collection of data out-
side of controlled clinical settings, wearables pro-
vide a more holistic and ecologically valid picture
of an individual’s health status, capturing daily
fluctuations and the impact of atypical events
(Ferrara, 2024).

A Primer on Physiological Signal Modalities
The insights fromwearables are contingent on the
signals they capture. While the array of sensors
is ever-expanding, a few core modalities form the
backbone of modern wearable health monitoring.

Photoplethysmography (PPG): This non-
invasive optical technique is a cornerstone of con-
sumer wearables, using a light source (typically
an LED) and a photodetector to measure volu-
metric changes in blood circulation at the skin’s
surface (Kim and Baek, 2023). As blood pulses
through the arteries, it absorbs more light, and
the resulting fluctuations in reflected or transmit-
ted light create a waveform that provides valu-
able information about the cardiovascular system
(Castaneda et al., 2018). Wrist-worn devices com-
monly use green light due to its strong absorption
by hemoglobin and relative robustness against
motion artifacts compared to red or infrared light.
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Figure 1 | Overview of the Wearable Foundation Model Pipeline. Data is sourced from wearable
sensors and comprises multimodal physiological and motion signals including photoplethysmography
(PPG), electrocardiography (ECG), and accelerometry (ACC). Self-supervised learning (SSL) objec-
tives—such as contrastive learning and masked autoencoding, are used to pretrain a signal encoder,
producing embeddings that capture rich temporal and potentially cross-modal relationships. These
embeddings are then transferred to a variety of downstream processes, including generative tasks
(e.g., imputation, interpolation), classification tasks (e.g., disease state, sleep stage), and regression
tasks (e.g., age, BMI, signal quality index), enabling broad generalization and efficient finetuning
across applications.

From this single signal, it is possible to derive crit-
ical health metrics such as heart rate (HR), heart
rate variability (HRV), blood oxygen saturation
(SpO2), and even infer sleep quality (Li et al.,
2021; Ryals et al., 2023; Vulcan et al., 2021).

Electrocardiography (ECG): Long considered
the clinical gold standard for cardiac assessment,
ECG measures the heart’s electrical activity (Koss-
mann, 1953). While traditional clinical ECGs re-
quire multiple electrodes placed across the body,
the integration of single-lead ECG capabilities
into consumer smart devices has been a major
breakthrough (Abbaspourazad et al.). This al-
lows for on-demand recording and the potential
for detecting cardiac arrhythmias, most notably
Atrial Fibrillation (AF), a leading cause of stroke.
Although more convenient, single-lead ECGs are
less comprehensive than their clinical counter-
parts, and PPG is often positioned as an even
more accessible, cost-effective alternative for cer-
tain applications like HRV monitoring in healthy
individuals.

Inertial Measurement Units (IMUs): IMUs
are fundamental for capturing movement and
are typically composed of a tri-axial accelerome-
ter, a gyroscope, and sometimes a magnetometer
(Ahmad et al., 2013; Vijayan et al., 2021). Ac-
celerometers measure linear acceleration, gyro-
scopes measure angular velocity, and magnetome-
ters measure orientation relative to the Earth’s
magnetic field. Together, these sensors provide a
rich, multi-dimensional stream of data used for
tracking physical activity, analyzing gait patterns,
recognizing specific movements (e.g., running,
sitting), and detecting falls—a critical application
for elderly care (Narayanswamy et al.).

Other Physiological Signals: Beyond these
primary modalities, many advanced wearables
incorporate additional sensors. Electrodermal Ac-
tivity (EDA) (Caruelle et al., 2019), also known
as Galvanic Skin Response (GSR) (Sharma et al.,
2016), measures changes in skin conductance re-
lated to sweat gland activity, providing a proxy
for sympathetic nervous system arousal and emo-
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tional stress. Skin temperature sensors can track
thermal fluctuations, and barometric altimeters
can measure changes in elevation, adding context
to activity data.

The Inherent Challenges of Wearables Data
The immense potential of wearable data is tem-
pered by significant, inherent challenges that
arise from collecting sensitive physiological sig-
nals in uncontrolled, real-world environments.

Signal Quality and Noise: Wearable signals
are notoriously susceptible to noise and artifacts.
Motion Artifacts (MA) are the most pervasive chal-
lenge, particularly for PPG signals. Physical move-
ments, such as walking or gesturing, can cause
the sensor to shift relative to the skin, corrupt-
ing the optical signal and leading to inaccurate
measurements of heart rate and other derived
parameters (Kim and Baek, 2023). This prob-
lem is so significant that the accuracy of many
PPG-based devices degrades substantially during
periods of high-intensity physical activity (Mishra
and Nirala, 2020).

Data Incompleteness: Unlike data collected
in a lab, real-world wearable data is rarely contin-
uous. Gaps in the data are common and can arise
from numerous sources: sensor malfunctions, in-
termittent sensor deactivation to conserve power,
poor user compliance (e.g., wearing the device
too loosely), or periods when the device is re-
moved for charging (Xu et al., 2025b). Thesemiss-
ing data streams complicate longitudinal analysis
and can render traditional time-series methods
ineffective.

Heterogeneity: The wearable ecosystem is
fragmented, with a vast array of devices from
different manufacturers, each with its own pro-
prietary hardware, sensor specifications, and sam-
pling rates (de Arriba-Pérez et al., 2016). Further-
more, data varies significantly based on where the
sensor is placed on the body (e.g., wrist vs. chest),
the demographic characteristics of the user pop-
ulation (e.g., age, sex, skin tone), and the clini-
cal or environmental context (Chen et al., 2025).
This heterogeneity poses a monumental hurdle
for developing universal models; an algorithm
trained on data from one specific device and pop-

ulation may fail to generalize to another, limiting
its real-world applicability (Jha et al., 2025).

The landscape of wearable signals is thus de-
fined by a fundamental duality between signal
quality and device portability. On one hand,
clinical-grade instruments like multi-lead ECG
systems provide high-fidelity, reliable data but
are inconvenient, expensive, and confined to the
clinic (Castaneda et al., 2018). On the other hand,
consumer wearables prioritize convenience, com-
fort, and accessibility, but this comes at the cost
of lower signal fidelity and greater susceptibility
to noise and artifacts (Kim and Baek, 2023).

This reality has precipitated a significant philo-
sophical shift in how data imperfections are han-
dled. Historically, data issues like missingness and
noise were treated as errors to be “fixed" during
a preprocessing step, for example, through filter-
ing or statistical imputation (Ferrara, 2024). The
foundation model paradigm, however, reframes
this perspective. It posits that these imperfec-
tions are not just bugs to be squashed but are
themselves features to be modeled. They contain
valuable contextual information about the data
generation process. For instance, the fact that
data is consistently missing every night between
11 PM and 7 AM is a strong indicator of the user’s
sleep and charging behavior. Models that learn di-
rectly from incomplete data, such as LSM-2 with
its "Adaptive and Inherited Masking" technique
(Xu et al., 2025b), are designed to comprehend
this context. By explicitly modeling both existing
("inherited") and artificially introduced missing-
ness, these models learn underlying physiological
patterns that are robust to such gaps. This repre-
sents a move away from simple data correction
toward a more sophisticated data comprehension,
a necessary evolution for making sense of data
from the wild.

2. Adapting Foundation Models for
Physiological Signals

To address the profound challenges posed by
wearable biosignal data, the research community
has turned to foundation models, adapting ar-
chitectures that have revolutionized other fields
of AI. These models are designed to learn rich,
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generalizable representations from the complex
temporal patterns inherent in physiological time
series. This section dissects the core architectural
components and design principles that are en-
abling this transformation, with a specific focus
on their application to wearable signals.

2.1. Time Series Foundation Models (TSFMs)

Inspired by the monumental success of large pre-
trained models in Natural Language Processing
(NLP) (Grattafiori et al., 2024; OpenAI et al.,
2024; Team et al., 2025; Zhao et al., 2023), Com-
puter Vision (CV) (Awais et al., 2025), and even
health (Wornow et al., 2023), the concept of Time-
Series Foundation Models (TSFMs) has emerged
as a promising new frontier (Liang et al., 2024).
The central idea is to pre-train a single, large,
general-purpose model on vast and diverse time-
series datasets. This pre-trained model learns
a fundamental “understanding” of temporal dy-
namics, which can then be adapted, or fine-tuned,
for a wide spectrum of downstream tasks, includ-
ing forecasting, classification, anomaly detection,
and imputation. The core value proposition of
TSFMs lies in their ability to generate powerful,
task-agnostic representations directly from raw
data, thereby reducing the reliance on manual
feature engineering and effectively leveraging the
massive quantities of unlabeled data that are char-
acteristic of the wearable domain.

Across the landscape of TSFMs, the Trans-
former architecture (Vaswani et al., 2017) has un-
equivocally emerged as the dominant paradigm
(with few emerging state space models being
actively explored (Erturk et al., 2025)). Orig-
inally developed for machine translation, the
Transformer’s core innovation is the self-attention
mechanism, which allows the model to weigh the
importance of different elements in a sequence,
regardless of their position. This capability is
exceptionally well-suited for time-series analy-
sis, as it enables the model to capture complex,
long-range temporal dependencies and periodic
patterns that are often missed by traditional re-
current or convolutional models. Models such
as Lag-Llama explicitly leverage the power of
Transformer architectures to perform sophisti-
cated tasks like probabilistic time-series forecast-

ing (Thakur, 2024).

2.2. Tokenization of Time Series Data

A fundamental challenge in applying Transformer
models to time-series data is tokenization: the
process of converting a continuous, analog signal
into a sequence of discrete tokens that the model
can process. This is a non-trivial step that has
a significant impact on both model performance
and computational efficiency.

A primary architectural distinction within
TSFMs is the choice between patch-based and
non-patch approaches (Liang et al., 2024). Treat-
ing every single time point in a long sequence
(e.g., a full day of data sampled at 1 Hz contains
86,400 points) as an individual token is computa-
tionally infeasible for standard Transformers, as
the complexity of the self-attention mechanism
scales quadratically with the sequence length
(O(𝑛2)) (Vaswani et al., 2017). To circumvent
this, patching has become a popular and effec-
tive strategy. In this approach, the time series
is first divided into a sequence of smaller, fixed-
length, non-overlapping segments, or “patches."
Each patch is then treated as a single token and
is converted into a vector embedding via a linear
projection. This dramatically reduces the length
of the sequence fed into the Transformer, making
the computation tractable.

This move towards patching reveals a deeper
architectural trend: the "image-ification" of time-
series data. Instead of viewing a biosignal as
a one-dimensional sequence, these models effec-
tively treat it as a two-dimensional "image," where
one axis is time and the other represents different
sensor channels or features. This conceptual re-
framing is powerful because it allows researchers
to directly adapt the highly successful and heavily
optimized Vision Transformer (ViT) architecture
(Dosovitskiy et al., 2021), which was designed
to process images by breaking them into patches
(Zhang et al., 2025). While one might intuitively
assume that models developed for audio signals
would be a more natural fit for time-series data,
the "image-ification" approach has proven to be
a remarkably effective and efficient abstraction
(Narayanswamy et al.). It suggests that the spa-
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tial relationships between image patches, which
ViTs are designed to learn, are analogous to the
temporal relationships between segments of a
physiological signal.

Frequency-domain representations of time-
series data also transform one-dimensional se-
quences into image-like forms. For instance,
NormWear uses the Continuous Wavelet Trans-
form (CWT) to decompose the signal into its time-
frequency representation, creating a multi-scale
representation that is compatible with physiologi-
cal signals like EEG, which are characterized by di-
verse waveforms. This is coupled with a channel-
aware attention mechanism designed specifically
to handle the heterogeneity of different sensor
modalities like ECG, PPG, and IMU, which have
vastly different characteristics (Luo et al., 2024).

2.3. Handling Multimodality

Wearable data is inherently multimodal, compris-
ing simultaneous streams from various sensors.
An effective foundation model must be capable
of processing and integrating these diverse data
types, which can be either univariate (a single
data stream) or multivariate (multiple concurrent
streams) (Liang et al., 2024).

The most advanced models to this date are ex-
plicitly designed for multimodality, as fusing infor-
mation from different sensors can lead to richer
and more robust representations. The Large Sen-
sor Model (LSM) (Narayanswamy et al.), for ex-
ample, is pre-trained on a suite of signals includ-
ing HR, HRV, accelerometer, EDA, and skin tem-
perature. The architectures of these advanced
multimodal models reveal a converging design
pattern that can be described as a "hub-and-
spoke" model. In this architecture, individual sen-
sor streams (the "spokes") are first processed by
modality-specific or channel-aware encoders. For
example, SleepFM processes signals from each
modality (brain activity, ECG, EMG, respiratory
patterns) separately using convolutional layers
before feeding them into a central transformer
(Thapa et al., 2024). Similarly, NormWear pro-
cesses each sensor stream individually with a
shared-weight encoder before applying a channel-
aware attention mechanism to integrate them

(Luo et al., 2024). The outputs of these "spokes"
are then fused into a central, shared represen-
tation space (the "hub"), where cross-modal re-
lationships and dependencies are learned. This
fusion can be accomplished through various tech-
niques, such as cross-attention mechanisms, as
seen in the multimodal decoder of SensorLM
(Zhang et al., 2025), or through the use of a
special shared classification (CLS) token, as in
NormWear, which is designed to aggregate infor-
mation across all channels. This modular hub-
and-spoke design provides a highly scalable and
flexible framework. It can gracefully handle het-
erogeneous sensor inputs with varying character-
istics, such as channel missingness, and allows
for the easy integration of new sensor modalities
in the future by simply designing a new "spoke"
that feeds into the central "hub."

3. Pre-training Paradigms

The defining characteristic of a foundation model
is its ability to learn from vast quantities of data
without requiring explicit human-provided labels.
This is achieved through self-supervised learning
(SSL), a paradigm that leverages the inherent
structure of the data itself to create learning ob-
jectives. For wearable signals, SSL enables models
to develop a fundamental understanding of phys-
iological and behavioral patterns, which can then
be transferred to a wide range of health-related
tasks. This section details the key pre-training
paradigms that are powering the development of
foundation models for biosignals.

Self-supervised Learning: Self-supervised
learning is the engine behind the foundation
model. It addresses one of the greatest bottle-
necks in applying deep learning to healthcare:
the costly and time-consuming nature of acquir-
ing large, expertly annotated medical datasets
(Abbaspourazad et al.). In the wearable do-
main, unlabeled data is abundant—every second
of recorded data is a potential training sample.
SSL harnesses this abundance by creating "pre-
text" tasks where the data itself provides the su-
pervision (Abbaspourazad et al.). The goal is
not to solve a specific downstream task during
pre-training, but rather to encourage the model
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to learn versatile and generalizable representa-
tions of the data. These learned representations
should encapsulate the complex temporal depen-
dencies, periodicities, and cross-channel corre-
lations present in physiological signals, making
them a powerful starting point for subsequent
fine-tuning on specific tasks with much smaller
amounts of labeled data.

3.1. Established SSL Objectives for Wearable
Signals

Several distinct families of pretext tasks have
proven effective for pre-training on wearable sig-
nals.

Generative / Masked Signal Modeling: This
is arguably the most prevalent SSL approach for
TSFMs. Inspired by the success of Masked Au-
toencoders (MAEs) (He et al., 2022) in computer
vision and masked language modeling in NLP,
this technique involves randomly masking, or hid-
ing, portions of the input signal and training the
model to reconstruct the original, unmasked sig-
nal. To successfully reconstruct the missing data,
the model cannot simply memorize the input; it
must develop a deep, contextual understanding of
the signal’s underlying structure, such as the typi-
cal morphology of a heartbeat or the rhythmic pat-
terns of gait. This is the primary pre-training strat-
egy for the Large Sensor Model (LSM) (Narayan-
swamy et al.), which randomly masks patches
across both the time and sensor axes, and for
LIFT-PD, which uses a masked value prediction
task to learn representations of movement data
from accelerometers (Soumma et al., 2024).

Contrastive Learning: This family of methods
learns representations by comparing and contrast-
ing different samples. The core principle is to
train the model to pull "positive pairs" (samples
that are semantically similar) closer together in a
high-dimensional embedding space, while simul-
taneously pushing "negative pairs" (samples that
are dissimilar) far apart (Jaiswal et al., 2020).
The key challenge lies in defining what consti-
tutes a "positive pair" for unlabeled biosignal
data. A highly effective strategy that has emerged
is participant-level positive pairing. In this ap-
proach, different segments of a signal recorded

from the same individual are treated as a posi-
tive pair, while segments from different individu-
als are treated as negative pairs (Abbaspourazad
et al.). This pretext task implicitly forces the
model to learn a unique physiological "signature"
for each person, capturing the stable, idiosyn-
cratic patterns that differentiate one individual’s
biosignals from another’s. This is the strategy
used by the Apple PPG/ECG foundation mod-
els, which defines positive pairs as augmented
views of two distinct segments of data from the
same participant (Abbaspourazad et al.). More
advanced contrastive methods are also being de-
veloped, such as the novel "leave-one-out" con-
trastive learning used by SleepFM, which aligns
embeddings from each modality with those of all
other modalities (e.g. brain activity, ECG) from
the same time window (Thapa et al., 2024). To
promote discriminative and informative represen-
tations, additional regularization—such as the
Kozachenko-Leonenko differential entropy esti-
mator—can be incorporated into the loss func-
tion to encourage embeddings to be uniformly
distributed in the latent space (Abbaspourazad
et al.; Jing et al., 2021).

Predictive and Relational Tasks: A third cate-
gory of pretext tasks involves learning temporal
relationships within the signal. These tasks can
include forecasting future values based on past
values, predicting the correct temporal order of
a set of shuffled signal segments, or predicting
the time interval between two events within the
signal (Ding and Wu, 2024). Some research has
combined several of these objectives in a multi-
task SSL framework, for instance, by simultane-
ously training a model to recognize when a seg-
ment has been reversed, shuffled, and temporally
distorted (Yuan et al., 2024a,b).

These dominant SSL paradigms reflect a funda-
mental duality in the learning objectives required
for a comprehensive understanding of physiologi-
cal data. Masked Signal Modeling, with the objec-
tive of reconstruction, compels the model to learn
the universal patterns that are inherent in human
physiology. To accurately reconstruct a masked
portion of an ECG signal, the model must have
an internal representation of a generic heartbeat.
It is learning the "grammar" of physiology. In con-

6



Foundation Models for Physiological Signals: Opportunities and Challenges

trast, participant-level contrastive learning, with
the intention of distinguishing between subjects,
explicitly forces the model to learn the person-
specific signatures that make an individual’s phys-
iology unique. It learns to identify the subtle
variations in heart rate dynamics or gait patterns
that differentiate one individual from another. A
truly robust biosignal foundation model must be
effective in both strategies: understanding the
general rules of health time series (e.g., what con-
stitutes a normal heart rhythm) and accounting
for individual-specific baselines (e.g., what consti-
tutes a normal rhythm for this particular person).
This suggests that the future of pre-training will
likely involve hybrid approaches that explicitly
combine these generative and contrastive objec-
tives within a multi-task learning framework to
create richer, more personalized, and ultimately
more powerful representations. However, identi-
fying effective SSL objectives is an active area of
research and efforts are not constricted to these
pre-training tasks.

3.2. Alternative Learning Strategies

Beyond these core pretext tasks, more learning
strategies are emerging that promise to unlock
even deeper levels of understanding from wear-
able data.

Knowledge Distillation: This is a powerful
technique where a "student" model is trained to
mimic the behavior and internal representations
of a more powerful "teacher" model, which is typ-
ically larger or trained using more informative
data modalities (Caron et al., 2021; Gou et al.,
2021; Gupta et al., 2015; Hinton et al., 2015;
Tian et al., 2019). In the context of wearables,
this can be used to bridge the convenience-fidelity
gap by transferring knowledge from high-fidelity
sensors to lower-fidelity ones. A compelling ex-
ample is the development of an accelerometer-
only foundation model. While an accelerometer
(ACC) primarily measures motion, it indirectly
captures physiological information. By training
an ACC-based student model to reproduce the
representations of a pre-trained and frozen PPG-
based teacher model (which has direct access to
cardiovascular information), the student model
can learn to infer physiological states like heart

rate with much greater accuracy. This approach
has been shown to yield performance improve-
ments of 23-49% for predicting HR and HRV
from motion data alone, effectively creating a
"virtual" PPG sensor from a simple accelerometer
(Abbaspourazad et al., 2024).

In-Context Fine-Tuning: An emerging
paradigm, inspired by the prompting capabil-
ities of large language models, is in-context
fine-tuning. Here, a pre-trained model is not
permanently updated for a new task. Instead, at
inference time, it is provided with a "prompt"
consisting of several examples of related time
series from the target domain. The model
uses these in-context examples to adapt its
predictions for the target signal on the fly,
without any changes to its underlying weights.
This has shown remarkable performance gains
over traditional supervised methods and other
foundation model approaches (Das et al., 2024).

Sensor-Language Alignment: Perhaps the
most significant paradigm shift is the move to-
wards training models not just on signals, but
on pairs of signals and their corresponding natu-
ral language descriptions. Models like SensorLM
(Zhang et al., 2025) are at the forefront of this
trend. They use a hierarchical pipeline to au-
tomatically generate rich, descriptive captions
for raw sensor data (e.g., "There is an increas-
ing trend in heart rate between minutes 20 and
60. Biking is recording between minutes 15 and
65."). The model is then pre-trained using a hy-
brid objective that combines a contrastive loss
(learning to match the correct textual description
with a given signal segment) and a captioning loss
(learning to generate the text description from
the signal).

The development of these advanced strategies,
particularly knowledge distillation and sensor-
language alignment, reveals an implicit cate-
gorization of information content across differ-
ent data modalities. Some, like accelerometer
data, are information-sparse, primarily captur-
ing raw motion. Others, like PPG and ECG, are
information-rich, providing a direct window into
physiological state. At the highest level, natural
language provides semantic meaning and context.
The most sophisticated models are no longer just
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fusing these signals as peers. Instead, they are
using the information-rich modalities to super-
vise, explain, and ground the information-sparse
ones. The knowledge distillation work demon-
strates this clearly: PPG acts as a "teacher" to
the ACC "student" (Abbaspourazad et al., 2024).
SensorLM takes this a step further, using lan-
guage—the ultimate semantic representation—to
annotate and provide meaning to the raw numer-
ical data from the sensors (Zhang et al., 2025).
This points to a future where the central task of
wearable AI is not just signal processing, but the
creation of a "Rosetta Stone" for human health—a
system that can seamlessly translate between the
different levels of this information hierarchy, from
raw data to physiological state to semantic un-
derstanding. This would enable models to reason
about health in a way that is both deeply physio-
logically grounded and clinically meaningful.

4. Taxonomy of Foundation Models for
Wearables

The theoretical advancements in architectures
and pre-training paradigms have given rise to a
new generation of foundation models specifically
designed for wearable biosignals. These mod-
els represent the current state-of-the-art, each
contributing unique innovations and targeting
different facets of the wearable data challenge.
This section provides a structured survey of these
pioneering models, categorizing them to map
the evolving landscape and highlight distinct re-
search thrusts.

4.1. Large-Scale Multimodal Models

This category includes models that aim for broad
applicability across multiple sensor types and
downstream tasks, often leveraging massive, het-
erogeneous datasets.

LSM (Large Sensor Model) & LSM-2: The
LSM family of models (Narayanswamy et al.;
Xu et al., 2025b), developed by researchers at
Google, represents a landmark effort in this
space. Their primary contribution was to sys-
tematically demonstrate that neural scaling laws
(Kaplan et al., 2020) (a principle well-established

in NLP and vision) also apply to wearable sensor
data. Their research empirically demonstrated
that model performance on tasks like imputa-
tion and classification improves predictably as
model size, dataset size, and computational bud-
get increase. The models were pre-trained on
an unprecedented dataset of 40 million hours of
multimodal data (including heart rate, HRV, ac-
celerometer, EDA, skin temperature, and altime-
ter) from over 165,000 individuals. The original
LSMmodel utilized masked signal modeling as its
pre-training task, where the model learned to per-
form random imputation, temporal interpolation,
forecasting, and signal imputation (predict a sub-
set of partially missing sensor channels). Among
these, random imputation yielded the best empir-
ical performance.

The second generation, LSM-2 (Xu et al.,
2025b), introduced a critical innovation to ad-
dress the pervasive issue of missing data in real-
world settings. It proposed a novel self-supervised
learning strategy called Adaptive and Inherited
Masking (AIM), which learns robust representa-
tions directly from incomplete data without re-
quiring a prior imputation step. AIM uses learn-
able mask tokens to model both the variable miss-
ingness that is inherent to the raw data ("inher-
ited") and the missingness that is artificially in-
troduced during training, making it significantly
more robust for real-world deployment.

NormWear: NormWear (Luo et al., 2024) is a
foundation model designed to handle heteroge-
neous sensing configurations and generalize to
unseen health applications in a zero-shot man-
ner. Its architecture incorporates several novel
components. For tokenization, it uses the Contin-
uous Wavelet Transform (CWT) to generate time-
frequency representations of the input signals. Its
key architectural innovation is a channel-aware
attention mechanism that utilizes a shared special
classification token. This mechanism allows the
model to learn patterns both within a single sen-
sor stream (intra-sensor) and between different
sensor streams (inter-sensor), making it highly
adaptable to various combinations of inputs (e.g.,
PPG, ECG, EEG, GSR, IMU). To achieve its zero-
shot capabilities, NormWear is pre-trained to
align the embeddings of physiological signals
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with the embeddings of corresponding textual de-
scriptions, enabling it to make inferences on new
health tasks defined by text prompts alone. Its
generalizability has been demonstrated through
extensive evaluation on 18 different applications
across 11 public datasets, spanning mental health,
vital sign estimation, and disease risk evaluation.

4.2. Domain- or Application-Focused Founda-
tion Models

While generalist models aim for breadth, another
research thrust focuses on developing highly op-
timized models for specific data modalities or
clinical applications.

Domain Focused Foundation Models

Apple’s PPG & ECG Foundation Models: This
work is significant as it represents one of the
first and largest-scale efforts to build foundation
models exclusively from data collected via con-
sumer wearable devices in a real-world setting.
Using data from approximately 141,000 partic-
ipants in the Apple Heart and Movement Study
(AHMS), researchers trained separate models on
photoplethysmography (PPG) and electrocardio-
gram (ECG) signals. The pre-training strategy
was based on self-supervised contrastive learn-
ing, using participant-level positive pair selec-
tion to learn person-specific representations. The
study demonstrated that the resulting pre-trained
embeddings readily encode clinically relevant in-
formation about participants’ demographics and
health conditions, highlighting the potential to de-
velop new digital biomarkers without relying on
large, explicitly labeled datasets (Abbaspourazad
et al.).

PaPaGei PaPaGei (Pillai et al., 2025) is an
open-source foundation model tailored for photo-
plethysmography (PPG) signals, trained on over
57,000 hours of data encompassing 20 million
unlabeled segments from public datasets. It intro-
duces a morphology-aware contrastive learning
framework that leverages domain-specific knowl-
edge of PPG waveform structures, such as the
systolic peak and dicrotic notch, to learn robust
representations across diverse populations. Eval-
uated on 20 tasks spanning cardiovascular health,

sleep disorders, pregnancy monitoring, and well-
being assessment, PaPaGei outperforms existing
time-series foundation models, achieving average
improvements of 6.3% in classification and 2.9%
in regression tasks, while being more data- and
parameter-efficient. Additionally, it demonstrates
robustness across different skin tones, establish-
ing a benchmark for bias evaluation in future
models.

Pulse-PPG Pulse-PPG (Saha et al., 2025) is
the another open-source photoplethysmography
(PPG) foundation model trained exclusively on
raw, uncurated data collected over a 100-day field
study involving 120 participants. Unlike prior
models trained on curated clinical datasets, Pulse-
PPG embraces real-world variability—motion ar-
tifacts, ambient light fluctuations, and diverse
skin tones—to learn robust representations that
generalize across both clinical and wearable ap-
plications. Its architecture leverages relative con-
trastive learning with a motif-based distance func-
tion, enabling fine-grained physiological embed-
dings without reliance on handcrafted features.
Empirically, Pulse-PPG outperforms state-of-the-
art clinical models on 10 out of 11 downstream
tasks across five datasets, spanning wearable field,
wearable lab, and clinical domains.

SelfPAB SelfPAB (Logacjov et al., 2024) is
a self-supervised foundation model for human
activity recognition (HAR) that leverages dual-
accelerometer data. It is pre-trained on up to
100,000 hours of unlabeled data from the HUNT4
dataset, using a masked spectrogram reconstruc-
tion objective inspired by speech representation
learning techniques. The model employs a trans-
former encoder architecture to learn representa-
tions that generalize across various HAR datasets,
including HARTH, HAR70+, PAMAP2, Oppor-
tunity, and RealWorld. Empirical evaluations
demonstrate that SelfPAB outperforms super-
vised baselines and other self-supervised meth-
ods, particularly in scenarios with limited labeled
data, achieving F1-score improvements of up to
14%.

RelCon RelCon (Xu et al., 2025a) introduces a
self-supervised learning approach for accelerom-
etry data by leveraging a learnable motif-based
distance function and a relative contrastive loss
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that preserves semantic similarity across time and
subjects. Trained on over a billion time-series seg-
ments from 87,000+ wearable users, the result-
ing motion foundation model demonstrates state-
of-the-art generalizability across diverse down-
stream tasks including gait regression and hu-
man activity recognition. The key innovation
lies in modeling the degree of similarity between
signals—rather than hard labels—enabling finer-
grained structure in the learned representation
space.

Wearable Behavioral (Feature-based) Model
WBM (Wearable health Behavior Model) is a foun-
dation model trained on over 2.5 billion hours
of behavioral data from 162,000 individuals, de-
signed to handle irregularly sampled, higher-level
health signals such as activity, gait, and mobility
(Erturk et al., 2025). Unlike prior work that fo-
cuses on low-level sensor streams, WBM leverages
behavior-aligned timescales and physiological rel-
evance to yield strong performance across 57
health-related tasks, including both inter-subject
classification and intra-subject temporal predic-
tion. The learned representations outperform
or complement prior models like PPG-based em-
beddings, particularly in behavior-sensitive tasks
such as sleep and pregnancy prediction, establish-
ing behavioral modeling as an essential axis in
wearable health foundation models.

Application Focused Foundation Models

Acc for Sleep Wake Logacjov et al. (2025) intro-
duces LTA2V, a foundation model designed for
sleep-wake recognition using accelerometer data.
Trained on 821,700 hours of unlabeled data from
the HUNT4 dataset, LTA2V employs a masked
spectrogram reconstruction objective with global
positional encoding to capture long-term tempo-
ral dependencies. The model demonstrates su-
perior performance over existing self-supervised
and supervised baselines, particularly in scenarios
with limited labeled data, highlighting its poten-
tial for real-world applications in sleep monitor-
ing.

SleepFM: SleepFM is a powerful multimodal
foundation model designed specifically for the
analysis of clinical sleep data. It was trained

on a massive dataset of over 585,000 hours of
polysomnography (PSG) recordings—the clini-
cal gold standard for sleep studies—from 65,000
participants. Its architecture is channel-agnostic,
meaning it can handle the variability in sen-
sor montages commonly found in clinical sleep
labs. The model’s key pre-training innovation is
a novel leave-one-out contrastive learning (LOO-
CL) method, which learns to align the embed-
dings from different physiological modalities (e.g.,
brain activity, ECG, EMG, respiratory signals)
that are recorded simultaneously during sleep.
While it performs well on traditional sleep analy-
sis tasks like sleep staging and apnea diagnosis, its
most groundbreaking application is in long-term
health prediction. The research demonstrated
that SleepFM’s learned representations of sleep
physiology can predict the future onset of 130 dif-
ferent diseases, including dementia, Parkinson’s
disease, and heart failure, often years in advance
(Thapa et al., 2024).

PAT (Pretrained Actigraphy Transformer):
PAT is an open-source foundation model devel-
oped specifically for time-series movement data
(actigraphy) from wearable accelerometers, with
a focus on applications in mental health research
(Ruan et al., 2025). Recognizing the computa-
tional challenge of processing very long actigra-
phy sequences (typically a week of data), its ar-
chitecture adapts the Vision Transformer (ViT)
model, using patch embeddings to efficiently en-
code the data. PAT was pre-trained on actigra-
phy data from nearly 30,000 participants using
a masked autoencoder (MAE) pre-training task.
When fine-tuned, it achieves state-of-the-art per-
formance on tasks such as predicting depression,
psychotropic medication status, and sleep disor-
ders, even when the labeled fine-tuning dataset
is small. A key feature of PAT is its inherent ex-
plainability; the model’s attention weights can
be visualized to show which periods of activity
were most influential in its predictions, providing
valuable insights for clinicians and researchers.

LIFT-PD (Label-efficient In-home Freezing-
of-Gait Tracking): LIFT-PD is a highly special-
ized and efficient framework for the real-time
detection of Freezing of Gait (FoG), a debilitating
motor symptom in Parkinson’s disease, using data
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from just a single accelerometer (Soumma et al.,
2024). It is designed to be both label-efficient and
power-efficient for practical in-home monitoring.
It combines self-supervised pre-training (using a
masked value prediction task) with a novel Differ-
ential HoppingWindowing Technique (DHWT) to
effectively learn from imbalanced datasets where
FoG events are rare. To conserve battery life
on a wearable device, it incorporates an oppor-
tunistic inference module that only activates the
deep learning model when active movement is
detected.

5. Challenges

Despite the remarkable progress and immense
promise of foundation models for wearable sig-
nals, a formidable array of challenges stands be-
tween current research prototypes. These obsta-
cles are not isolated technical issues but form a
complex, interconnected web of data-centric, al-
gorithmic, ethical, and regulatory dilemmas that
must be navigated with extreme care.

5.1. Data and Privacy Dilemma

At the very foundation of these models lies the
data, and it is here that the first set of critical
challenges arise.

Data Scarcity, Quality, and Heterogeneity:
While raw, unlabeled wearable data is abundant,
the availability of large-scale, high-quality, and
expertly annotated data for specific medical con-
ditions remains a significant bottleneck (Jha et al.,
2025). Furthermore, the data that is collected in
"the wild" is often plagued by artifacts, inconsis-
tencies, and incompleteness, as discussed previ-
ously (Xu et al., 2025b). Exacerbating this is the
profound challenge of data heterogeneity. Models
must be able to generalize across a fragmented
ecosystem of different devices, sensor types, pop-
ulations, and healthcare systems (He et al., 2024).
A model trained and validated on data from one
population or device may see its performance
plummet when deployed in a different clinical
setting, a phenomenon that severely limits gen-
eralization (Lee et al., 2025b; Park et al., 2021).
Accessibility is another general concern in health,

and it creates a research niche that is exclusive
to those with access to large scale datasets (pri-
marily in the industry). Several works in health
have explored the use of synthetic data (Gonzales
et al., 2023; Lin et al., 2025) to overcome and
generate "controlled" data but this has not been
seen in the wearable domains yet.

Privacy and Security: Wearable data is among
the most personal and sensitive information that
can be collected about an individual. This cre-
ates a severe privacy and security dilemma. The
large, centralized datasets required to train foun-
dation models present an attractive target for
data breaches, and there are significant risks of
data misuse or unauthorized access by third par-
ties. Ensuring strict compliance with data pro-
tection regulations such as the Health Insurance
Portability and Accountability Act (HIPAA) in the
United States and the General Data Protection
Regulation (GDPR) in Europe is non-negotiable,
but integrating these complex legal requirements
into agile MLOps workflows is a major challenge
(Venkata, 2025). To address this, researchers
are exploring privacy-preserving machine learn-
ing techniques in Ai in Healthcare in general.
Federated learning (FL) (Nguyen et al., 2022),
for example, is a promising approach where the
model is trained decentrally on data that remains
on the user’s local device, but this introduces
its own complexities in terms of communication
overhead and model performance. Differential
privacy, which adds statistical noise to data to
protect individual identities, is another avenue,
but it often comes with a direct trade-off in model
accuracy (Dwork, 2008).

5.2. Algorithmic and Computational Dilemma

The models themselves present a second set of
challenges related to their scale, complexity, and
transparency.

Computational Cost: Training large-scale
foundation models is a computationally intensive
endeavor, requiring massive clusters of special-
ized hardware like GPUs running for weeks or
months at scale. This makes the development
of such models prohibitively expensive for many
academic research groups and smaller companies,
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potentially concentrating power in the hands of
a few large technology corporations. The high
energy consumption associated with this train-
ing also raises significant environmental concerns
(Bender et al., 2021).

On-Device Deployment: The sheer size and
computational complexity of most foundation
models make it impossible to run them directly
on resource-constrained wearable devices like
smartwatches. This necessitates a cloud-based de-
ployment model, where raw sensor data is trans-
mitted from the device to a server for process-
ing. This approach introduces latency (commonly
benchmarked in speech or audio-based models
(Shi et al., 2021)), which can be problematic for
real-time applications, and re-introduces major
privacy and security risks by moving sensitive
data off-device (Li et al., 2024). Overcoming this
hurdle requires significant research into model
optimization techniques such as quantization (re-
ducing the numerical precision of model weights)
(Zhu et al., 2024), pruning (removing redundant
connections in the network) (Cheng et al., 2024),
and knowledge distillation (training a smaller
model to mimic a larger one) (Abbaspourazad
et al., 2024). Representations generated from
these models also are prohibitive at scale and fur-
ther solutions (An et al., 2025a) may be needed
to run on-device inference for real time health
monitoring. Innovative architectures, like the op-
portunistic inference module in LIFT-PD that only
activates the model when necessary, also offer a
path toward more efficient on-device intelligence
(Soumma et al., 2024).

Interpretability and Trust (The "Black Box"
Problem): A fundamental characteristic of deep
neural networks, and foundation models in par-
ticular, is their opacity. They often function as
"black boxes," making it exceedingly difficult to
understand why a specific prediction or decision
was made (Castelvecchi, 2016; Lee et al., 2025a).
This lack of interpretability is a major barrier
to adoption in high-stakes fields like medicine,
where clinicians need to trust and be able to jus-
tify the tools they use (Jha et al., 2025). If a
model provides a risk score, but cannot explain
the physiological factors that contributed to it,
it is unlikely to be trusted by either the doctor

or the patient. Building trust requires develop-
ing robust Explainable AI (XAI) techniques (Xu
et al., 2019), such as visualizing model attention
weights (as done in the PAT model) or using non-
linear dynamic analysis to probe the model’s in-
ternal representations (as done with NormWear)
or ablating features (as done with LSM-2).

5.3. Ethical and Regulatory Considerations

Perhaps the most complex and critical challenges
are those that lie at the intersection of technology,
ethics, and regulation.

Algorithmic Bias: This is one of the most press-
ing ethical issues in AI for healthcare. Foundation
models, trained on vast real-world datasets, are
susceptible to learning and amplifying existing
societal biases present in that data (Chen et al.,
2018, 2020a,b). The most well-documented and
egregious example in the wearable space is the
PPG-skin tone bias. An extensive body of research
has confirmed that PPG sensors that rely on green
light are significantly less accurate on individuals
with darker skin tones because the higher con-
centration of melanin in the skin absorbs more of
the light, resulting in a weaker and noisier signal
(Colvonen et al., 2020; Merid and Volpe, 2023;
Overbye-Thompson et al., 2024). This is not a
minor technical issue; it is a systemic failure that
can lead to inaccurate health monitoring, false as-
surances, and the exacerbation of profound racial
health disparities (Merid and Volpe, 2023). The
sources of this bias are multi-faceted, stemming
from the grassroots physics of the sensor, the lack
of diversity in the datasets used for testing and
validation (which are often heavily skewed to-
wards lighter-skinned populations), and biased
algorithm design.

Evaluations & Generalizability A significant
portion of modern AI research is focused on
achieving state of the art results, which often
leads to findings that are opaque and difficult to
reproduce (Arnrich et al., 2024). This issue can
be attributed in part to inadequate experimen-
tal design, as well as to various malpractices in
evaluation, such as selective reporting of results,
lack of transparency, and the omission of critical
details in published manuscripts (Arnrich et al.,
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2024; Lee et al., 2024). Consequently, it is es-
sential to comprehend both the advantages and
limitations of these models.

A further major challenge in the wearables, and
more broadly in AI applications within healthcare,
pertains to issues of generalization (Goetz et al.,
2024). Given the inherent natural heterogeneity
in the data (for instance, variations in device and
sensor recordings, noise, etc.), there is a risk that
models may not generalize effectively due to these
constraints.

Clinical Validation and Regulatory Approval:
There is a vast and dangerous gap between a
model demonstrating high accuracy on a bench-
mark dataset and proving its clinical applicability
(Park et al., 2021). A model can be technically
proficient yet fail to improve, or even harm, pa-
tient outcomes. True clinical validation requires
rigorous external testing on diverse, represen-
tative populations, ideally through prospective
cohort studies or, for the highest standard of
evidence, randomized controlled trials (RCTs).
These studies are slow, expensive, and rarely per-
formed before a device enters the market, leaving
clinicians and patients to navigate a landscape of
tools with unproven real-world benefits.

6. Future Opportunities and Research
Directions

The rapid evolution of foundation models for
wearable signals has opened up a new frontier in
personalized health, yet the field is still in its in-
fancy. The path forward involves not only scaling
up current approaches but also fundamentally re-
thinking the methods we use and deepening our
understanding of the data itself. Future research
must bridge the gap between what is computa-
tionally possible and what is clinically meaningful,
robust, and equitable.

6.1. Advancing Methodological Frontiers

The current pre-training paradigms, while effec-
tive, represent only the first wave of innovation.
The next generation of models will require more
sophisticated and data-aware learning objectives
that move beyond the dominant generative and

contrastive frameworks.

There is a significant opportunity to design
novel SSL objectives tailored to the unique physics
and failure modes (e.g., sensor off, artifacts) of
wearable sensors (like LSM-2 (Xu et al., 2025b)).
Instead of treating noise and artifacts as data
to be masked or ignored, future models could
be trained on pretext tasks that explicitly model
these phenomena. For instance, an objective
could involve learning to differentiate between
signal corruption caused by motion versus that
caused by poor sensor contact, thereby learning
representations that are inherently robust to spe-
cific, real-world confounders. Another avenue
is to leverage the natural temporal hierarchy of
physiological events. A model could be trained
to predict not just the next patch of a signal, but
also the time until the next significant morpho-
logical feature (e.g., the next R-peak in an ECG
or systolic peak in a PPG), forcing it to learn the
underlying rhythm and dynamics of the signal at
multiple scales.

In multimodality, the “hub-and-spoke” archi-
tecture is a promising start, but the fusion process
can be much richer. The concept of an "informa-
tion hierarchy," where modalities like language
or high-fidelity clinical signals supervise lower-
fidelity ones, points toward more advanced fusion
strategies seen in this and other health domains
(An et al., 2025b; Lee and Lindsey, 2024; Zhang
et al., 2025). Success at this task would imply a
much deeper, more integrated understanding of
how behavior, motion, and physiology are linked.
This could lead to a truly unified model of human
health, capable of reasoning and making predic-
tions across the full spectrum of available data
streams.

6.2. Towards a Science of Wearable Data

For all the focus on model architecture, remark-
ably little is systematically understood about the
fundamental data requirements for building ro-
bust foundation models. Key questions regard-
ing the optimal resolution, sampling rate, dura-
tion, and diversity of training data remain largely
unanswered.

There may be a critical mismatch between the
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sampling rates needed for optimal model perfor-
mance and the rates that are practical for con-
sumer devices due to hardware constraints. For
example, while a 100Hz sampling rate might cap-
ture finer-grain details of a PPG waveform, the in-
creased power consumption could drain a smart-
watch battery far more quickly than a lower reso-
lution alternative. Systematic studies are needed
to quantify this trade-off and determine the opti-
mal sampling rate for different downstream tasks.

Furthermore, it remains unclear which features
derived from these signals are the most potent
biomarkers. While we rely on established clin-
ical metrics like Heart Rate Variability (HRV),
these were developed for sparse, clinical-grade
data. It’s plausible that foundationmodels can dis-
cover novel, more sensitive digital biomarkers by
learning directly from high-resolution raw signals.
A crucial research direction is to develop meth-
ods that can extract and validate these learned
features, translating the "black box" representa-
tions into clinically interpretable and actionable
insights. The clinical information content embed-
ded within these continuous, high-frequency sig-
nals is far from fully characterized, and a deeper
collaboration between machine learning scien-
tists and clinicians is essential to unlock their full
potential.

7. Conclusion

The application of foundation models to wear-
able sensor data represents a significant evolu-
tion in personal health monitoring. This paper
has surveyed this evolution, detailing the key ar-
chitectural innovations, such as the adoption of
Transformer-based models via "image-ification" of
time series, and the self-supervised pre-training
strategies that enable these models to learn ro-
bust physiological representations. The analysis
of current models, from large-scale systems like
LSM to domain-specific applications like SleepFM
and LIFT-PD, illustrates a clear trend towards in-
creasingly capable and specialized systems.

Despite this progress, formidable challenges
impede widespread clinical translation. Signifi-
cant obstacles include issues of data privacy, high
computational cost, the "black box" problem of

model interpretability, and the systemic risk of
algorithmic bias. A critical gap also persists be-
tweenmodel performance on benchmark datasets
and demonstrated clinical utility, highlighting the
need for more rigorous, real-world validation and
stringent ethical oversight.

Future work in this domain must prioritize ad-
dressing these multifaceted challenges. Progress
will depend on the development of more sophisti-
cated SSL objectives, the establishment of a foun-
dational science of wearable data to define opti-
mal parameters like sampling rate and resolution,
and enhanced collaboration between machine
learning researchers and clinical experts. The
overarching objective must extend beyond achiev-
ing incremental gains in model accuracy to focus
on the creation of a robust, equitable, and trust-
worthy ecosystem for continuous health intelli-
gence that can be validated in clinical practice.
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