
Published as a workshop paper at ICLR 2025 MLMP

UPT++: LATENT POINT SET NEURAL OPERATORS FOR
MODELING SYSTEM STATE TRANSITIONS

Andreas Fürst∗,1, Florian Sestak∗,1, Artur P. Toshev∗,2, Benedikt Alkin1,4, Nikolaus A.
Adams2,3, Andreas Mayr1, Günter Klambauer1,5, Johannes Brandstetter1,4
1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University

Linz, Austria
2 Department of Engineering Physics and Computation, TUM, Germany
3 Munich Institute of Integrated Materials, Energy and Process Engineering, TUM, Germany
4 Emmi AI GmbH, Linz, Austria
5 NXAI GmbH, Linz, Austria
{fuerst,sestak}@ml.jku.at, artur.tosev@tum.de
* Equal contribution

ABSTRACT

Particle methods comprise a wide spectrum of numerical algorithms, ranging
from computational fluid dynamics governed by the Navier-Stokes equations to
molecular dynamics governed by the many-body Schrödinger equation. At its
core, these methods represent the continuum as a collection of discrete particles,
on which the respective PDE is solved. We introduce UPT++, a latent point set
neural operator for modeling the dynamics of such particle systems by mapping
a particle set back to a continuous (latent) representation, instead of operating on
the particles directly. We argue via what we call the discretization paradox that
continuous modeling is advantageous even if the reference numerical discretization
scheme comprises particles. Algorithmically, UPT++ extends Universal Physics
Transformers – a framework for efficiently scaling neural operators – by novel
importance-based encoding and decoding. Furthermore, our encoding and decoding
enable outputs that remain consistent across varying input sampling resolutions,
i.e., UPT++ is a neural operator. We discuss two types of UPT++ operators:
(i) time-evolution operator for fluid dynamics, and (ii) sampling operator for
molecular dynamics tasks. Experimentally, we demonstrate that our method reliably
models complex physics phenomena of fluid dynamics and exhibits beneficial
scaling properties, tested on simulations of up to 200k particles. Furthermore, we
showcase on molecular dynamics simulations that UPT++ can effectively explore
the metastable conformation states of unseen peptide molecules.

1 INTRODUCTION AND BACKGROUND ON NEURAL OPERATORS

PDEs such as Navier-Stokes equations (see Appendix C.1) or the Schrödinger equation (see Appendix
D.1) are essential in science and engineering. Solving PDEs numerically is however not straightfor-
ward, particularly due to the potential for numerical instabilities, which can lead to inaccurate results
or convergence issues (see Appendix A.1).

The discretization paradox. Contrasting numerical discretization schemes and recent advances in
deep learning reveal a subtle paradox. While particle-based discretization schemes are often used to
model the most complex natural phenomena, deep learning shines at learning continuous representa-
tion, e.g., neural fields (Sitzmann et al., 2020; Mildenhall et al., 2021; Xie et al., 2022), at modeling
continuous transformation, e.g., diffusion models (Ho et al., 2020) and flow matching (Lipman et al.,
2022), and at continuous modulation (Perez et al., 2018; Peebles & Xie, 2023). Naturally, the question
arises, why – if the underlying nature is continuous anyway – we don’t leverage the power of deep
learning on continuous representations?

1

Published as a workshop paper at ICLR 2025 MLMP

Points -> Continuous Continuous -> Continuous Continuous -> Points

Importance-based encoding

Application: fluid dynamics

Application: molecular dynamics

Time-evolution operator

Sampling operator

Latent space operator Importance-based decoding

...Time-evolution

operator

Time-evolution

operator

Sampling

operator

Figure 1: The UPT++ modeling paradigm. UPT++ encodes point-cloud information into a
continuous latent space representation and decodes this representation at arbitrary query points. This
framework enables new ways of simulating particle systems. For example, in our fluid dynamics
experiments, particle velocities are sampled at particle positions, whereas in our molecular sampling
experiments, densities around atoms are sampled and encoded. The respective latent space operators
model the time evolution of the fluid or allow to sample new conformations, respectively. The
resulting latent representations are point-wise decoded to occupancies and the corresponding physics
information.

Towards this end, we introduce UPT++ for efficiently scaling neural operators to larger physics
systems. UPT++ builds on Universal Physics Transformers (Alkin et al., 2024), a latent space
neural operator framework, which follows an encoder-approximator-decoder approach. UPT flexibly
encodes different grids, and/or a different number of particles into a unified latent space representation
and introduces a decoder that queries the latent representation at different locations. UPT++ extends
UPT by importance-based encoding and importance-based decoding schemes, which allows us to
convert point cloud representations of particle methods into continuous latent space representations.
Most importantly, encoding and decoding enable outputs that remain consistent across varying input
sampling resolutions, which qualifies UPT++ as a neural operator. The UPT++ operator types we
are discussing are time-evolution operators – as used for the time-evolution of the Navier-Stokes
equations, and sampling operators – applicable to molecular dynamics simulations. In our contribution
(1) we connect particle-based numerical discretization schemes and latent space modeling, (2) we
introduce novel importance-based encoding and importance-based decoding schemes to switch
between discretized physics space and continuous latent space, and, (3) we demonstrate the efficacy
and scaling properties of UPT++ on fluid simulations of up to 200k particles, and strong sampling
performance on molecular dynamics data. UPT++ allows us to suggest new modeling paradigms –
demonstrated on particle-based fluid dynamics and molecular dynamics simulations.

In Appendix A.2 we review how deep learning is in general applied to scientific problems, while in
Appendix A.3 we review the application areas of fluid dynamics and molecular dynamics specifically.

Operator learning. The operator learning paradigm (Lu et al., 2019; 2021; Li et al., 2020b;a;
Kovachki et al., 2021) targets the approximation of mappings between function spaces. Such function
spaces can e.g., comprise the solutions of partial differential equations (PDEs). Following Kovachki
et al. (2021), we assume U ,V to be Banach spaces of functions on compact domains X ⊂ Rdx or
Y ⊂ Rdy , mapping into Rdu or Rdv , respectively. Operator learning aims to approximate the ground
truth operator G : U → V via Ĝ : U → V , typically framed as a supervised learning problem, where
input-output pairs are i.i.d. sampled. However, the notable difference is that in operator learning, the
space sampled from is not finite-dimensional. More precisely, with a given data set consisting of N
function pairs (ui,vi) = (ui,G(ui)) ⊂ U × V , i = 1, ...N , we aim to learn Ĝ : U → V , so that G
can be approximated in a suitably chosen norm.

A widely adopted approach is to approximate G via three maps (Seidman et al., 2022; Alkin et al.,
2024): G ≈ Ĝ := D ◦ A ◦ E , comprising encoder E , approximator A, and decoder D. In recent
works (Wang et al., 2024; Alkin et al., 2024), the decoder D has been formulated via point-wise
queries at the output grid or mesh. In this work, we focus on two instances of the approximator A:

2

Published as a workshop paper at ICLR 2025 MLMP

• Time-evolution operators (Seidman et al., 2022; Alkin et al., 2024; Wang et al., 2024), which
approximate the deterministic time evolution of a system.

• Sampling operators, which are trained to represent the molecular conformation space (Xu
et al., 2022; Jing et al., 2022).

Neural operators for particle systems. Whereas most state-of-the-art neural operator methods are
tailored for grid-based, predominantly regular domains, neural operator formulations for particle-
or mesh-based dynamics remain limited. In such cases, graph neural networks (GNNs) (Scarselli
et al., 2008; Kipf & Welling, 2017) with graph-based latent space representations offer a promising
alternative. Often, predicted node accelerations are numerically integrated to simulate the time
evolution of multi-particle systems (Sanchez-Gonzalez et al., 2020; Mayr et al., 2023; Toshev et al.,
2023a). GNNs inherently possess a strong inductive bias for Lagrangian dynamics, which, however,
also presents a significant downside since the number of nodes, and thus the computational complexity
grows with the number of Lagrangian particles. Thus, computational complexity becomes quickly
infeasible for an increasing number of particles (Alkin et al., 2024; Musaelian et al., 2023), see
Figure 2. Furthermore, the effective degrees of freedom of a particle system are sometimes orders of
magnitude less than the degrees of freedom arising from the discretization, especially in simulations
showcasing bulk behavior. Lastly, for particle systems, a neural operator formulation is harder,
especially with respect to the discretization convergence property (Li et al., 2020a), whereas a neural
network is expected to show consistency for increasing input sampling resolutions.

4k 8k 16
k

32
k

65
k

13
1k

26
2k

52
4k

10
48

k
20

97
k

Number of particles

0.25

0.5

1

2

4

8

16

40

M
em

or
y

[G
B]

UPT++
GNS-10-128
GNS-5-64
DamBreak3D

Figure 2: Qualitative exploration of scaling limits when modeling particle systems. Starting from
4k input points, we compared training time memory requirements of popular Graph Network-based
Simulators (Sanchez-Gonzalez et al., 2020) against UPT++. We compare two GNS versions of 5 and
10 layers with hidden dimensions of 64 and 128, respectively. The tested UPT++ model has 30M
parameters and can be trained with up to 2M particles on a single A100 40GB GPU.

2 UPT++

We adopt the approach of composite neural operators G ≈ Ĝ := D ◦A◦ E , where E : U → Rnlatent×h

maps a solution state ut ∈ U to a latent space state representation zt := E(ut) ∈ Rnlatent×h, i.e., to
nlatent tokens of dimension h, A : Rnlatent×h → Rnlatent×h maps the latent state zt to a successor latent
state zt′ := A(zt) ∈ Rnlatent×h, t′ > t, and D : Rnlatent×h → U reconstructs a solution state ut

′ ∈ U
from the latent space state representation zt′ ∈ Rnlatent×h, i.e., ut′ := D(zt′) ∈ U .

When applying UPT to such settings, we need to address three main questions, leading to UPT++:
(1) How to encode complex point-cloud representations into continuous representations, and how to
decode point-wise from continuous representations? (2) How to formulate deterministic and sampling
operators in the latent space? (3) How to efficiently train UPT++?

Importance-based encoding, importance-based decoding. We introduce importance-based en-
coding scheme, which consists of four conceptual steps and a corresponding decoding scheme (see
Figure 3), for which we describe details in Appendix B.1.

3

Published as a workshop paper at ICLR 2025 MLMP

Importance-based encoding Importance-based decoding

Importance-based

sampling

Global information

aggregation

Occupancy-based

selection

Occupancy

decoding

Point-wise

decoding

Figure 3: Importance-based encoding and decoding schemes of UPT++, which allow us to encode
complex point-cloud representations into continuous representations, and reversely enable point-wise
decoding of continuous representations.

Latent space approximator. In UPT++, A : Rh → Rh is a latent operator, which maps the
latent state zt to a successor latent state zt′ := A(zt) ∈ Rh (in the case of a deterministic time-
evolution operator) or which samples a successor latent state zt′ ∈ Rh from a conditional probability
distribution p(.|zt), i.e., zt′ ∼ p(.|zt) (in the case of a stochastic sampling operator). Details on the
definition and on the application of the approximator for fluid dynamics and for molecular dynamics,
respectively, can be found in Appendix B.2.

UPT++ training procedure. We make use of the decomposition D ◦ A ◦ E and split up training
into 2 stages, keeping in mind the motivation to enable latent rollouts, for which the responsibilities of
encoder E , approximatorA, and decoderD need to be decoupled. Therefore, at the first training stage,
we train E and D by sampling k input points, and – not necessarily related – k′ output points. At this
stage, we don’t apply the forward operator (therefore t′ = t), and the encoder-decoder training can be
considered as the training of an autoencoder for the compound state ut. In the second training stage,
we freeze the encoder and the decoder weights, and make use of different timesteps t and t′, t′ > t, to
only train the approximatorA given the fixed latent space input zt and target output zt′ . Additionally,
for training the latent sampling operator, we regularize the latent space via KL-divergence (Zhang
et al., 2023; Rombach et al., 2022).

3 EXPERIMENTS

3.1 LAGRANGIAN FLUID SIMULATION

We conducted experiments on two material point method (MPM) (Sulsky et al., 1995) datasets for
our 2D experiments, namely WaterDrop and WaterDrop-XL from Sanchez-Gonzalez et al. (2020),
which consist of a maximum of 1.1k and 7k particles, respectively, see Appendix C.2.1. Additionally,
we introduce a new dataset of 3D dam break simulations called DamBreak3D generated using the
Riemann SPH method (Zhang et al., 2017) and the SPHinXsys library (Zhang et al., 2021). This
dataset has between 145k-215k fluid particles and consists of 800/100/100 trajectories of length 250
steps, obtained after temporal subsampling at every 100th SPH step, more details in Appendix C.2.2.

Metrics. We evaluate the performance of the models in terms of 1) the intersection over union IoU
of occupancies and 2) the velocity mean-squared error denoted MSE. To compute these metrics, we
evaluate both occupancies and velocities on a regular grid spanning the full computational domain
with a spacing of around twice the average particle spacing. While these grid values can be directly
evaluated by querying the UPT++ decoder, we apply an SPH interpolation to compute them from the
dataset and also for the GNN baselines.

GNNs for large particle systems. To have a competitive baseline, we develop a multi-scale
version of GNS, called MS-GNS, which couples the finer (original) particles with coarser particles
consisting of randomly subsampled 12.5% of the finer particles. Our approach is inspired by MS-

4

Published as a workshop paper at ICLR 2025 MLMP

MGN (Fortunato et al., 2022) and connects the two point clouds by a k-nearest neighbors graph with
k = 4 from the fine to the coarse nodes, see Appendix C.3 for more details.

UPT++ details. In our experiments, UPT++ encodes the first two velocities of the trajectory and
the time-evolution operator acts only in the latent space. In contrast, GNS encodes the first five
velocities and then autoregressively predicts and integrates the accelerations. Based on the GNS
ablation studies in Sanchez-Gonzalez et al. (2020) and Toshev et al. (2023b), we choose to train
a model with 10 message-passing (MP) steps and a latent size of 128, denoted by GNS-10-128 in
Table 1. With MS-GNS-15, we denote an MS-GNS model with a processor consisting of: 1 MP layer
on the fine particles with a latent size 64, 1 downsampling layer, 11 MP layers on the coarse graph
with a latent size 128, 1 upsampling layer, and 1 MP layer as the first one. Further information is
provided in Appendix C.4.

Results. Our main results are summarized in Table 1, showing that UPT++ performs comparably to
GNNs in terms of both IoU and MSE, but can offer more than 50x greater speedups. Notably, we
work with the smaller GNS-5-64 model on DamBreak3D as this is the biggest GNS model we could
train with one sample per 40GB GPU, compare Figure 2 for the scaling experiments in described
in Appendix C.5. Qualitatively, the lower IoU of UPT++ on the 2D datasets is related to the lack
of mass conversation (equivalently volume conservation, as we work with incompressible fluids) in
the latent state representation, which manifests itself in having too little or too much fluid along a
trajectory. We note that volume conservation is a problem that GNNs also have, as recently discussed
in Neural SPH (Toshev et al., 2024), but in contrast to UPT++, GNNs, by construction, preserve the
mass, i.e. the number of particles. On the other hand, UPT++ learns a better representation of the
velocity field, which we suspect is easier to learn as a continuous function. Figure C3 shows one
exemplary trajectory rollout of DamBreak3D, demonstrating that UPT++ can adequately model a 3D
particle simulation with 200k particles. More result details are provided in Appendix C.6.

Table 1: IoU and MSE are averaged over all timesteps and all trajectories in the test set of each
dataset. UPT++ can model the complex dynamics while providing a significant speedup.

Dataset Method Hardware Rollout time Speedup IoU (↑) MSE (↓)
MPM 6 CPUs 50s 1x - -

WaterDrop GNS-10-128 A40 4.0s 13x 0.91 0.047
UPT++ A40 0.53s 94x 0.88 0.034
MPM 6 CPUs 170s 1x - -

WaterDrop-XL GNS-10-128 A40 44s 4x 0.83 0.16
UPT++ A40 0.65s 262x 0.85 0.12

DamBreak3D

SPH 32 CPUs 1200s 1x - -
GNS-5-64 A40 100s 12x 0.83 0.54
MS-GNS-15 A6000 150s 8x 0.91 0.18
UPT++ A40 2.7s 444x 0.96 0.10

3.2 SAMPLING MOLECULAR CONFORMATIONS

We apply UPT++ to the task of sampling molecular conformations. Molecular conformations are, e.g.,
important when studying interactions between different molecules or when deriving certain properties
for molecules. This might be especially relevant for biomedical chemistry and drug discovery.

We benchmark UPT++ on two small peptide datasets from Klein et al. (2024a), namely the alanine
dipeptide dataset (AD), containing a single molecule of 22 atoms, and, further on a small peptide
dataset (2AA) containing 400 different peptides, with varying number of atoms (20-50) and different
atom types per molecules. We stick to the suggested train/test split provided with 2AA and either
evaluate on the whole test set or on an exemplary molecule (AN) from the test set.

Metrics. We evaluate the performance of UPT++, implemented via a latent sampling operator, by
investigating associated Ramachandran plots (Ramachandran et al., 1963) for the sampled molecule
conformations. These plots show the distribution of peptide dihedral angles ϕ and ψ. We quantify the

5

Published as a workshop paper at ICLR 2025 MLMP

Table 2: Summary of results on molecular sampling. We show the reconstruction success rate without
applying the sampling operator (“enc-dec”), and with sampling (“sampling+dec”).

Dataset Guidance
scale

Reconstr. success rate (↑) JS Ramachandran (↓)
(sampling)enc-dec sampling + dec

AD 3.5 1.0 0.97 0.18
2AA: AN 1.0 1.0 0.20 0.30
2AA: AN 3.5 1.0 0.50 0.17

differences of marginalized distributions of angles between our sampled molecule conformations and
those ones from a reference simulation in analogy to Yu et al. (2024) by means of the Jensen-Shannon
divergence.

Model specific and training details. We use a guided flow-matching model with the same diffusion
transformer backbone (Peebles & Xie, 2023) as for the time-evolution operator. As outlined above,
we do not only condition on a previous molecule conformation at time t, but also on the number of
atomistic timesteps N . The idea is partly based on ITO (Schreiner et al., 2023). Further, we apply an
MD relaxation step before reconditioning (see Appendix D.2.3). Details on our importance-based
sampling for molecules and on data augmentation can be found in Appendices D.2.2 and D.2.4.

Results. Figure 4 shows Ramachandran plots and free energy projection plots for AD conforma-
tions for 13.6k UPT++ sampled conformations and 10k MD reference simulation conformations,
respectively. The Ramachandran plots indicate that modes of reference conformation angles are
faithfully restored by sampled UPT++ conformations. The free energy projections show that our
model also captures energy minima very well, and that less likely regions in conformation space
are explored. For exemplary molecules (AN) from the test set of 2AA Ramachandran plots and free
energy projection plots are shown in Figures D2 and D3 in Appendix D.5. All AN plots rely on 10k
UPT++ sampled conformations and 9.8k MD reference simulation conformations. We investigate the
influence of the flow-matching guidance parameter and observe that less guidance seems to capture
modes of conformation angles better than high guidance. This is also reflected by the Jensen–Shannon
divergences shown in Table 2. The table also the performance in extracting molecules from the latent
space (for details see Appendix D.4).

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure 4: Alanine dipeptide experiments. Left half: Ramachandran plots comparing 13.6k UPT++
and MD samples. Right half: Free energy surface for the two dihedral angles ψ and ϕ with the same
13.6k UPT++ samples but 10k MD samples. Our model captures well the energy minima and also
explores less probable regions of sample space.

4 CONCLUSION, LIMITATIONS AND FUTURE WORK

We presented UPT++, a generic framework for modeling simulations that are conventionally dis-
cretized with particles. UPT++ maps the state of the system to a fixed-sized latent space with
novel importance-based encoding and importance-based decoding techniques. The strengths of our
approach are its generic architecture, favorable scaling to larger systems, and potential for significant

6

Published as a workshop paper at ICLR 2025 MLMP

acceleration of numerical simulations. We demonstrated these strengths by training a Lagrangian
fluid dynamics surrogate on up to 200k particles, as well as on molecular conformer generation across
different peptide molecules. In Appendix E, we critically review UPT++ and propose directions for
future research.

ACKNOWLEDGMENTS

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), EPILEPSIA (FFG-
892171), AIRI FG 9-N (FWF-36284, FWF-36235), AI4GreenHeatingGrids (FFG- 899943), INTE-
GRATE (FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-CL6-
2021-CLIMATE-01-01). We thank Audi.JKU Deep Learning Center, TGW LOGISTICS GROUP
GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Google, ZF Friedrichshafen AG,
Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund AG, GLS (Univ.
Waterloo), Software Competence Center Hagenberg GmbH, Borealis AG, TÜV Austria, dSPACE,
TRUMPF and the NVIDIA Corporation.

REFERENCES

Stefan Adami, Xiangyu Hu, and Nikolaus A Adams. A generalized wall boundary condition for
smoothed particle hydrodynamics. Journal of Computational Physics, 231(21):7057–7075, 2012.

Stefan Adami, XY Hu, and Nikolaus A Adams. A transport-velocity formulation for smoothed
particle hydrodynamics. Journal of Computational Physics, 241:292–307, 2013.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
arXiv preprint arXiv:2402.12365, 2024.

Marcin Andrychowicz, Lasse Espeholt, Di Li, Samier Merchant, Alex Merose, Fred Zyda, Shreya
Agrawal, and Nal Kalchbrenner. Deep learning for day forecasts from sparse observations. arXiv
preprint arXiv:2306.06079, 2023.

Carla Antoci, Mario Gallati, and Stefano Sibilla. Numerical simulation of fluid–structure interaction
by sph. Computers & structures, 85(11-14):879–890, 2007.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fidelity
computational fluid dynamics dataset for approximating reynolds-averaged navier–stokes solutions.
Advances in Neural Information Processing Systems, 35:23463–23478, 2022.

M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik, 389(20):
457–484, 1927. ISSN 0003-3804. doi: 10.1002/andp.19273892002.

Jeremiah U Brackbill and Hans M Ruppel. Flip: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. Journal of Computational physics, 65(2):314–343,
1986.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022a.

7

Published as a workshop paper at ICLR 2025 MLMP

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

James Carlson, Arthur Jaffe, and Andrew Wiles. The Millennium Prize Problems. Clay Mathematics
Institute and American Mathematical Society, 2006.

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti, T.E.
Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, M. Ghazimirsaeed,
G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, Z. Huang, S. Izadi, S.A.
Izmailov, K. Kasavajhala, M.C. Kaymak, A. Kovalenko, T. Kurtzman, T.S. Lee, P. Li, Z. Li, C. Lin,
J. Liu, T. Luchko, R. Luo, M. Machado, M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii,
G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pantano, A. Rahnamoun, D.R. Roe,
A. Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen, C.L. Simmerling, N.R. Skrynnikov,
J. Smith, J. Swails, R.C. Walker, J. Wang, J. Wang, X. Wu, Y. Wu, Y. Xiong, Y. Xue, D.M. York,
C. Zhao, Q. Zhu, and P.A. Kollman. Amber 2024, 2024.

Andrea Colagrossi and Landrini Maurizio. Numerical simulation of interfacial flows by smoothed
particle hydrodynamics. Journal of Computational Physics, 191, 2003.

Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assemblies. geotech-
nique, 29(1):47–65, 1979.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexandru Dumitrescu, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas
Garg, and Harri Lähdesmäki. Field-based molecule generation. arXiv preprint arXiv:2402.15864,
2024.

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A.
Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern,
Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. Openmm 7: Rapid development of
high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7):1–17,
07 2017. doi: 10.1371/journal.pcbi.1005659.

GW Ford, M Kac, and P Mazur. Statistical mechanics of assemblies of coupled oscillators. Journal
of Mathematical Physics, 6(4):504–515, 1965.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applica-
tions. Number 1 in Computational Science Series. Academic Press, San Diego, 2nd ed edition,
2002. ISBN 978-0-12-267351-1.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and application
to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–389, 1977.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

8

Published as a workshop paper at ICLR 2025 MLMP

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv
preprint arXiv:2405.19101, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In 34th
Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.

Håkon Hoel and Anders Szepessy. Classical langevin dynamics derived from quantum mechanics.
arXiv preprint arXiv:1906.09858, 2019.

XY Hu and Nikolaus A Adams. An incompressible multi-phase sph method. Journal of computational
physics, 227(1):264–278, 2007.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021b.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

Paul J. Karol. The inchi code. Journal of Chemical Education, 95(6):911–912, Jun 2018. ISSN
0021-9584. doi: 10.1021/acs.jchemed.8b00090.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin,
Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular dynamics
by learning time-coarsened dynamics. Advances in Neural Information Processing Systems, 36,
2024a.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024b.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

Jonas Köhler, Andreas Krämer, and Frank Noé. Smooth normalizing flows. Advances in Neural
Information Processing Systems, 34:2796–2809, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Boris Kozinsky, Albert Musaelian, Anders Johansson, and Simon Batzner. Scaling the leading
accuracy of deep equivariant models to biomolecular simulations of realistic size. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12, 2023.

9

Published as a workshop paper at ICLR 2025 MLMP

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexan-
der Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast: Learning
skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

Greg Landrum. Rdkit: Open-source cheminformatics software. 2016.

Lin Li, Chuan Li, and Emil Alexov. On the modeling of polar component of solvation energy using
smooth gaussian-based dielectric function. Journal of Theoretical and Computational Chemistry,
13(03):1440002, 2014.

Shaoning Li, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang. F3low:
Frame-to-frame coarse-grained molecular dynamics with se (3) guided flow matching. arXiv
preprint arXiv:2405.00751, 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023a. ISSN 2835-8856.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
arXiv preprint arXiv:2305.17560, 2023b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Mario Lino, Stathi Fotiadis, Anil A Bharath, and Chris D Cantwell. Multi-scale rotation-equivariant
graph neural networks for unsteady eulerian fluid dynamics. Physics of Fluids, 34(8), 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Leon B Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal,
vol. 82, Dec. 1977, p. 1013-1024., 82:1013–1024, 1977.

Salvatore Marrone, Matteo Antuono, A Colagrossi, G Colicchio, D Le Touzé, and G Graziani.
δ-sph model for simulating violent impact flows. Computer Methods in Applied Mechanics and
Engineering, 200(13-16):1526–1542, 2011.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 9099–9107, 2023.

10

Published as a workshop paper at ICLR 2025 MLMP

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

Laurence Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Se (3) equivariant augmented coupling flows. Advances in Neural
Information Processing Systems, 36, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Joe J Monaghan. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):1703,
2005.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3(1):1–14, 2011.

Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romaña, Yves Moreau, Joost Schymkowitz, and
Frederic Rousseau. Pyuul provides an interface between biological structures and deep learning
algorithms. Nature Communications, 13, 02 2022. doi: 10.1038/s41467-022-28327-3.

Johannes Pahlke and Ivo F. Sbalzarini. A unifying mathematical definition of particle methods. IEEE
Open Journal of the Computer Society, 4:97–108, 2023. doi: 10.1109/OJCS.2023.3254466.

William Peebles and Saining Xie. Scalable diffusion models with transformers. pp. 4195–4205,
2023.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. pp. 3942–3951. AAAI Press, 2018.

Pedro O Pinheiro, Arian Jamasb, Omar Mahmood, Vishnu Sresht, and Saeed Saremi. Structure-based
drug design by denoising voxel grids. arXiv preprint arXiv:2405.03961, 2024.

Jay W. Ponder and David A. Case. Force fields for protein simulations. Advances in protein chemistry,
66:27–85, 2003. ISSN 0065-3233. doi: 10.1016/S0065-3233(03)66002-X.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017.

G N Ramachandran, C Ramakrishnan, and V Sasisekharan. Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, pp. 95–99, 1963.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685. IEEE,
2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: multiple
time-resolution surrogates for molecular dynamics. arXiv preprint arXiv:2305.18046, 2023.

11

Published as a workshop paper at ICLR 2025 MLMP

E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28
(6):1049–1070, 1926. ISSN 0031-899X. doi: 10.1103/PhysRev.28.1049.

Jacob Seidman, Georgios Kissas, Paris Perdikaris, and George J Pappas. Nomad: Nonlinear manifold
decoders for operator learning. Advances in Neural Information Processing Systems, 35:5601–5613,
2022.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS,
2020.

Julian Suk, Christoph Brune, and Jelmer M Wolterink. Se (3) symmetry lets graph neural networks
learn arterial velocity estimation from small datasets. In International Conference on Functional
Imaging and Modeling of the Heart, pp. 445–454. Springer, 2023.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. Application of a particle-in-cell method to
solid mechanics. Computer physics communications, 87(1-2):236–252, 1995.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based deep learning. arXiv preprint arXiv:2109.05237, 2021.

Artur P Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, and Nikolaus A Adams.
Learning lagrangian fluid mechanics with e (3)-equivariant graph neural networks. arXiv preprint
arXiv:2305.15603, 2023a.

Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams. La-
grangebench: A lagrangian fluid mechanics benchmarking suite. In 37th Conference on Neural
Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks, 2023b.

Artur P Toshev, Jonas A Erbesdobler, Nikolaus A Adams, and Johannes Brandstetter. Neural sph:
Improved neural modeling of lagrangian fluid dynamics. arXiv preprint arXiv:2402.06275, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

Damien Violeau and Benedict D Rogers. Smoothed particle hydrodynamics (sph) for free-surface
flows: past, present and future. Journal of Hydraulic Research, 54(1):1–26, 2016.

Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J Pappas, and Paris
Perdikaris. Bridging operator learning and conditioned neural fields: A unifying perspective. arXiv
preprint arXiv:2405.13998, 2024.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual computing
and beyond. In Computer Graphics Forum, volume 41, pp. 641–676. Wiley Online Library, 2022.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Ziyang Yu, Wenbing Huang, and Yang Liu. Force-guided bridge matching for full-atom time-
coarsened dynamics of peptides. arXiv preprint arXiv:2408.15126, 2024.

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. ACM Transactions on Graphics,
42(4):1–16, July 2023. ISSN 1557-7368. doi: 10.1145/3592442.

12

Published as a workshop paper at ICLR 2025 MLMP

Chi Zhang, XY Hu, and Nikolaus A Adams. A weakly compressible sph method based on a
low-dissipation riemann solver. Journal of Computational Physics, 335:605–620, 2017.

Chi Zhang, Massoud Rezavand, and Xiangyu Hu. Dual-criteria time stepping for weakly compressible
smoothed particle hydrodynamics. Journal of Computational Physics, 404:109135, 2020.

Chi Zhang, Massoud Rezavand, Yujie Zhu, Yongchuan Yu, Dong Wu, Wenbin Zhang, Jianhang Wang,
and Xiangyu Hu. Sphinxsys: An open-source multi-physics and multi-resolution library based on
smoothed particle hydrodynamics. Computer Physics Communications, 267:108066, 2021.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Robert Zwanzig. Nonlinear generalized langevin equations. Journal of Statistical Physics, 9(3):
215–220, 1973.

13

Published as a workshop paper at ICLR 2025 MLMP

CONTENTS

1 Introduction and Background on Neural Operators 1

2 UPT++ 3

3 Experiments 4

3.1 Lagrangian fluid simulation . 4

3.2 Sampling molecular conformations . 5

4 Conclusion, limitations and future work 6

A Related Work and Scientific Justification of Neural operators 15

A.1 Details on Classical PDE Solvers . 15

A.2 Deep Learning applied to Scientific Problems . 15

A.3 Deep Learning applied to Fluid Dynamics and Molecular Dynamics 15

B General Details on the UPT++ Framework 16

B.1 Importance-based encoding and decoding . 16

B.2 Details on the Latent Space Approximator for the Deterministic and Stochastic Case 16

C Lagrangian fluid simulation 18

C.1 Navier-Stokes Equations and Smoothed Particle Hydrodynamics (SPH) 18

C.2 Dataset Information . 19

C.2.1 Dataset-specific details . 19

C.2.2 Dam break 3D dataset . 19

C.3 Baselines . 20

C.4 Implementation details . 21

C.5 Scaling limits . 23

C.6 Result details . 24

D Molecular Conformation Sampling 26

D.1 Molecular Dynamics (MD) . 26

D.2 Implementation details . 27

D.2.1 Density representation . 27

D.2.2 Importance-based sampling for molecules 27

D.2.3 Refinement . 28

D.2.4 Data augmentation . 28

D.3 Neural Sampling Operator . 29

D.4 Molecular Graph Reconstruction . 30

D.5 Additional Results . 30

E Critical Review of UPT++ 32

14

Published as a workshop paper at ICLR 2025 MLMP

A RELATED WORK AND SCIENTIFIC JUSTIFICATION OF NEURAL OPERATORS

A.1 DETAILS ON CLASSICAL PDE SOLVERS

A successful class of numerical methods to solve certain types of PDEs are particle methods (Pahlke
& Sbalzarini, 2023), which represent the underlying continuum media as a collection of discrete
particles. For example, for many complex phenomena modeled by the Navier-Stokes equations,
e.g., free surface dynamics, or multi-phase flows, Lagrangian discretization schemes are prevalent.
Lagrangian methods employ finite material points, often termed particles, whose movement aligns
with the local deformation of the continuum (Gingold & Monaghan, 1977; Lucy, 1977; Cundall &
Strack, 1979; Brackbill & Ruppel, 1986). Similarly, for molecular dynamics, the Born-Oppenheimer
approximation (Born & Oppenheimer, 1927) separates the dynamics of electrons and nuclei, which
allows one to move the nuclei – when seen as point particles – according to the laws of classical
Newtonian dynamics.

A.2 DEEP LEARNING APPLIED TO SCIENTIFIC PROBLEMS

In recent years, deep learning has started to make a significant impact in the field of computational
fluid dynamics (Guo et al., 2016; Li et al., 2020a; Thuerey et al., 2021; Kochkov et al., 2021; Vinuesa
& Brunton, 2022; Gupta & Brandstetter, 2022; Lam et al., 2022; Bi et al., 2022; Brandstetter et al.,
2022b;a; Andrychowicz et al., 2023; Bodnar et al., 2024; Herde et al., 2024). Several of those works
have applied Transformers to physical systems. Galerkin Transformer (Cao, 2021) uses Galerkin-type
attention to address attention complexity, GNOT (Hao et al., 2023) employs linear attention, OFormer
(Li et al., 2023a) uses recurrent MLPs to propagate solutions over time and FactFormer (Li et al.,
2023b) uses multidimensional factorized attention. However, all these methods apply attention
directly to the input points, which is not scalable in our setting. Transolver (Wu et al., 2024) reduces
the number of tokens by learning a mapping to physics-aware tokens, a concept similar to our use of
supernodes. However, their mapping is recomputed in each Transformer layer, whereas we operate
within a fixed latent space. OFormer (Li et al., 2023a) also employs a positional embedding combined
with a perceiver to query at arbitrary points and perform decoding. However, their approach applies
this process directly to the input, followed by a push forward operation, resulting in fixed queries that
cannot be altered, thus not suitable for our problem setting. CViT (Wang et al., 2024) is the most
similar to our decoding method, but it replaces positional embeddings with learned grid features and
uses interpolation to generate the queries.

A.3 DEEP LEARNING APPLIED TO FLUID DYNAMICS AND MOLECULAR DYNAMICS

Whereas most state-of-the-art neural operator methods are tailored for grid-based, predominantly
regular domains, neural operator formulations for particle- or mesh-based dynamics remain limited.
In such cases, graph neural networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017) with graph-
based latent space representations offer a promising alternative. Often, predicted node accelerations
are numerically integrated to simulate the time evolution of multi-particle systems (Sanchez-Gonzalez
et al., 2020; Mayr et al., 2023; Toshev et al., 2023a). GNNs inherently possess a strong inductive bias
for Lagrangian dynamics, which, however, also presents a significant downside since the number of
nodes, and thus the computational complexity grows with the number of Lagrangian particles. Thus,
computational complexity becomes quickly infeasible for an increasing number of particles (Alkin
et al., 2024; Musaelian et al., 2023), see Figure 2. Furthermore, the effective degrees of freedom of
a particle system are sometimes orders of magnitude less than the degrees of freedom arising from
the discretization, especially in simulations showcasing bulk behavior. Lastly, for particle systems,
a neural operator formulation is harder, especially with respect to the discretization convergence
property (Li et al., 2020a), whereas a neural network is expected to show consistency for increasing
input sampling resolutions.

Recent advancements in deep learning have led to an increased interest in its application to molecules.
Boltzmann generators (Noé et al., 2019; Köhler et al., 2021) employ flows to draw asymptotically
unbiased samples from the Boltzmann distribution, but lack the ability to generalize across multiple
molecules. Unlike UPT++, current approaches apply sampling either in torsion (Jing et al., 2022)
or Euclidean space (Klein et al., 2024a;b; Midgley et al., 2024). Recent breakthroughs in computer

15

Published as a workshop paper at ICLR 2025 MLMP

vision using compact latent spaces have achieved high sampling quality (Rombach et al., 2022),
suggesting the potential of analogous approaches in the molecular domain.

B GENERAL DETAILS ON THE UPT++ FRAMEWORK

B.1 IMPORTANCE-BASED ENCODING AND DECODING

Importance-based encoding. Importance-based encoding starts with occupancy-based selection,
which accounts for the fact that in many simulations, disjoint sets fill the entire domain. For example,
for many fluid dynamics phenomena, the state ut is a compound state of a materialized fluid field,
and either obstacles or a second fluid, potentially in the gaseous phase. Similarly, for molecular
dynamics, molecules are represented within a box, where not the entire box is filled. Secondly, via
importance-based sampling we emphasize information within the occupied regions. For example, a
sampling strategy for particle methods could be to upsample denser regions to account for the larger
concentration of mass there. Similarly, we sample points around atoms according to density fields
consisting of 3D Gaussian density distribution centered at each atomic position. After importance-
based sampling, the encoder E first embeds the selected k points into hidden dimension h, adding
positional encoding (Vaswani et al., 2017) to the different nodes, i.e., ut

k ∈ Rk×d → Rk×h. Next,
via local aggregation we propagate neighboring information to the respective supernodes (radius
graph for connectivity to keep discretization convergence), and finally global information aggregation
pools the information into a fixed size and uniform latent space via perceiver blocks (Jaegle et al.,
2021a;b). The resulting continuous latent space contains nlatent latent tokens of dimension h, i.e.,
zt := E(ut) ∈ Rnlatent×h.

Importance-based decoding. Importance-based decoding reverses the conceptual steps of
importance-based encoding. First, via occupancy decoding (Mescheder et al., 2019), we decode an
occupancy field to identify where particles or atoms are located in space. Secondly, we point-wise
decode a field quantity and consider only the occupied points. For example, for fluid dynamics, we
consider only the flow velocity in regions where occupancy is predicted. Similarly, for molecular
dynamics, we decode whether regions are occupied , and consider our density predictions on those.
Analogous to Alkin et al. (2024), the decoder is implemented via a perceiver-like cross-attention layer
using a positional embedding of the output positions as query and the latent representation as keys
and values. Since there is no interaction between queries, the latent representation can be queried at
arbitrarily many positions without large computational overhead. To train the occupancy field and
enable positive and negative learning signals, we sample points at all locations of the domain. During
inference, we simultaneously predict the occupancy field and the corresponding field quantities
and only keep the field at occupied points. For the reconstruction of molecular graph structures,
we adopt a method similar to that of Pinheiro et al. (2024); Dumitrescu et al. (2024), utilizing an
efficient peak-finding algorithm to identify atom positions, and OpenBabel (O’Boyle et al., 2011) to
reconstruct the corresponding molecular bonds.

B.2 DETAILS ON THE LATENT SPACE APPROXIMATOR FOR THE DETERMINISTIC AND
STOCHASTIC CASE

Encode

Decode Decode Decode DecodeDecode Decode

Time-

evolution

operator

Time-

evolution

operator

Time-

evolution

operator

Time-evolution operator Sampling operator

Encode
Sampling

operator

Figure B1: Sketch of the two types of latent operators we use: PDE forward operator for modeling
the time-evolution of the Navier-Stokes equations and the sampling operator applicable to molecular
dynamics simulations.

16

Published as a workshop paper at ICLR 2025 MLMP

Deterministic time-evolution: application to fluid dynamics. We consider fluid dynamics prob-
lems where the fluid is contained within a domain Ω ⊂ X ⊂ R3 but does not fill the entire domain
X . The regions of the domain occupied by the fluid Ω change over time governed by the velocity
field of the fluid at each given time. Equivalently, we can consider that we are given two disjoint fluid
sets (e.g., air and water) filling the entire domain. Then, we consider the solution state ut to be a
compound function, consisting of a velocity field vt and an occupancy field ot, i.e., ut = (vt,ot)T .
The velocity field vt maps a certain coordinate x ∈ X to a point-wise velocity at this coordinate, i.e.,
vt : X 7→ R3. The occupancy field ot maps a certain coordinate x ∈ X to whether a fluid particle is
at this coordinate or not, i.e., ot : X 7→ {0, 1}. ut is therefore a function ut : X 7→ R3 × {0, 1}.

Time-evolution operator. The time-evolution operator, implemented as a transformer (Alkin et al.,
2024), A : zt ∈ Rnlatent×h → zt′ ∈ Rnlatent×h, propagates the compressed representation forward
in time. As nlatent is small, forward propagation in time is fast. Notably, the approximator can be
applied multiple times, propagating the signal forward in time by ∆t corresponding to each call of the
approximator. After inferring one timestep, it is not necessary to decode the latent state and encode it
again to compute the result of a further timestep. Instead, in inference mode, we can keep the latent
representation and apply the forward operator again. We call this process latent rollout. Especially
when working with many particles, the benefits of latent space rollouts, i.e., fast inference, pay off.
However, to enable latent rollouts, the responsibilities of encoder E , approximator A, and decoder D
need to be decoupled. It should be mentioned that our integration timestep ∆t is a multiple of the
simulation steps used for dataset generation (sometimes up to a factor thousand larger).

Stochastic conformation sampling: application to molecular dynamics. We assume that a
molecule is spatially located in X ⊂ R3 and the specific conformation of a certain molecule is
represented by a vector of continuous density fields, i.e., each component of ut represents one
specific density field associated with the conformation of the molecule at time t. Each density field
represents some specific characteristics of the molecular conformation, i.e., it might, for example, be
specific to a certain atom type. We construct each density field analogously to Pinheiro et al. (2024)
and Dumitrescu et al. (2024). Appendix D.2.1 gives further details on the construction of the density
fields. When we make use of d density fields to represent the overall conformation of a molecule,
then ut is a function ut : X 7→ Rd.

Sampling operator. The sampling operator that is implemented via flow matching (Lipman et al.,
2022), samples zt′ from a conditional distribution p(.|zt), i.e., sampling is conditioned on the
latent state zt. The learning objective for the approximator is to construct a parameterized (θ)
distribution pθ(.|zt) ≈ p(.|zt). At inference, we draw samples from pθ(.|zt). Thereby we assume
an atomistic timestep ∆t, which is the minimum timestep for which pθ(.|zt) was trained to generate
meaningful predictions. ∆t is usually equal to or a multiple of simulation timesteps. The actual
time difference t′ − t between prediction time and condition time is usually again a multiple of
∆t. We implement rectified flow match (Liu et al., 2022) with adaptions according to Li et al.
(2024) to include the conditioning on zt using classifier-free guidance (Ho & Salimans, 2022).
Appendix D.3 gives concrete implementation details for the training and sampling procedures of
the UPT++ sampling operator. In contrast to the time-evolution operator, we extend the sampling
operator to also explicitly depend on the number of atomistic timesteps, i.e., we aim to directly learn
pθ(z

t′ |zt, N) = pθ(z
N ∆t+t|zt, N) ≈ p(zt′ |zt) to draw zt

′
after N ∆t steps instead of drawing a

chain of N consecutive samples zt+∆t ∼ p(.|zt), . . . , zt+N ∆t ∼ p(.|zt+(N−1)∆t).

17

Published as a workshop paper at ICLR 2025 MLMP

C LAGRANGIAN FLUID SIMULATION

C.1 NAVIER-STOKES EQUATIONS AND SMOOTHED PARTICLE HYDRODYNAMICS (SPH)

The Navier-Stokes equations are the cornerstone of fluid mechanics, and – despite being formulated
in the 19th century – continue to present significant challenges to mathematicians and physicists.
Most notably, the proof of existence and smoothness of solutions to the Navier-Stokes equations
in three dimensions is one of the seven “Millennium Prize Problems” set by the Clay Mathematics
Institute (Carlson et al., 2006), with a 1 million prize offered for a solution.

The incompressible Navier-Stokes equations (Temam, 2001) are defined for the velocity flow field

u : X × [0, T] → R3, X ⊂ R3, and entail momentum and mass conservation, i.e., ρ
du
dt

=

µ∇2u − ∇p + ρf , and ∇ · u = 0, respectively. Here, ρ is the density, du/dt is the material
derivative, i.e., the rate of change of u of a material element, µ∇2u is the viscosity, i.e., the diffusion
of u modulated by the viscosity parameter µ, p is the pressure, and f an external force.

In contrast to Eulerian approaches, where discretization of the continuous space is achieved through
spatially fixed finite nodes, control volumes, cells, or elements, Lagrangian methods employ finite
material points, often termed particles, whose movement aligns with the local deformation of the
continuum. One of the most prominent Lagrangian discretization schemes is smoothed particle
hydrodynamics (SPH), originally proposed by Lucy (1977) and Gingold & Monaghan (1977) for
applications in astrophysics. SPH approximates the field properties using radial kernel interpolations
over adjacent particles at the location of each particle. The strength of the SPH method is that it
does not require connectivity constraints, e.g., meshes, which is particularly useful for simulating
systems with large deformations. Since its foundation, SPH has been greatly extended and is the
preferred method to simulate problems with (a) free surfaces (Marrone et al., 2011; Violeau & Rogers,
2016), (b) complex boundaries (Adami et al., 2012), (c) multi-phase flows (Hu & Adams, 2007), and
(d) fluid-structure interactions (Antoci et al., 2007). SPH approximates the incompressible Navier-
Stokes equations (NSE) by the so-called weakly compressible NSE, where the weak compressibility
assumption typically allows for up to ∼ 1% density deviation Monaghan (2005). This ∼ 1% is
enforced for the weakly compressible SPH method while evolving density and momentum:

d

dt
(ρ) = −ρ (∇ · u) , (C.1)

d

dt
(u) = −1

ρ
∇p︸ ︷︷ ︸

pressure

+
1

Re
∇2u︸ ︷︷ ︸

viscosity

+ f︸︷︷︸
ext. force

. (C.2)

Herein, ρ is the density, u the velocity, p the pressure, f an external force, Re ∝ 1/µ the Reynolds
number. Solving these equations with standard SPH methods may still produce artifacts, most notably
when particle clumping exceeds the 1% density-fluctuation restriction (Adami et al., 2013; Toshev
et al., 2024).

The Material Point Method (MPM) is another particle-based technique that represents material
as an assembly of material points. The motion of each material point is determined by solving
Newton’s laws of motion. MPM adopts a hybrid Eulerian-Lagrangian scheme, which uses moving
material points and a fixed computational grid. MPM is particularly useful in the context of large
deformations including fracture and contact scenarios, where traditional mesh-based methods might
yield unrealistic or undesired outcomes due to mesh distortions.

18

Published as a workshop paper at ICLR 2025 MLMP

C.2 DATASET INFORMATION

C.2.1 DATASET-SPECIFIC DETAILS

In Table C1, we summarize the size of the used datasets, emphasizing that we work with a median
number of particles all the way from 500 through 4,000 to 180,000. Each dataset consists of 1000
trajectories in the training set and 100 trajectories in both the validation and test sets.

Table C1: Statistics of particle counts and trajectory length in our Lagrangian fluid dynamics datasets.

Dataset number of particles Trajectory length
min median max

WaterDrop 195 548 1,108 1000
WaterDrop-XL 1,948 4,031 7,184 1000
DamBreak3D 144,133 179,312 215,661 250

C.2.2 DAM BREAK 3D DATASET

We generated the dataset by modifying the 3D dam break test case in the SPHinXsys library (Zhang
et al., 2021)1. In particular, we modify a) the numerical integration scheme and b) the initial geometry
of the fluid.

Regarding the integrator, we modify the adaptive-step dual-criteria time stepping scheme (Zhang
et al., 2020) by fixing the step size ∆tinner = 0.0008 of the inner pressure and density relaxation
loop and also by fixing the number of iterations in this inner loop to 5. The reason for this is that we
want equidistantly spaced samples in time to not have to deal with conditioning on the timestep size
in the ML problem formulation. The chosen ∆tinner is close to the worst-case adaptively estimated
one but still does not significantly change the number of integration steps to reach the end time of 20.
Note that we omit units here as the simulation is of the non-dimensionalized NSE. With the temporal
coarsening level of 100 relative to the inner loop steps, each simulation has 20/(0.0008 · 100) = 250
steps (to be more precise, 251 steps, as we record both the very first and last states).

Regarding the parametrization of the geometry, we sample 12 random numbers determining the
shape of the top and front of the wave, and after the fluid volume is filled with particles, we add
Gaussian noise to the coordinates. The standard deviation of the noise is σ = 0.1 · ∆x with
∆x = 0.025 being the particle spacing. The computational domain begins at (0, 0, 0) and spans
L × H × W = 5.366 × 2 × 2, with the number 5.366 coming from the original dam break
experiments by Colagrossi & Maurizio (2003). The fluid always fills the bottom left part of the
domain (at x = 0, y = 0) spanning the full width, and we modulate the top and front sides by the
mentioned 12 numbers defining sinusoidal waves by their amplitude a, period p, and shift s. The top
surface of the fluid is defined by its height htop(x, z) as a function of the length and width (x and z
axes), and the x-coordinate (length) of the front lfront(z, y) is defined as a function of the width and
height.

htop(x, z) = Have + atop,x · sin (2π(ptop,x · x/Lave + stop,x))

+ atop,z · sin (2π(ptop,z · z/Wave + stop,z))

lfront(z, y) = Lave + afront,z · sin (2π(pfront,z · z/Wave + sfront,z))

+ afront,y · sin (2π(pfront,y · y/Have + sfront,y))

The values of the average length, height, and width of the fluid are Lave = 2, Have = 0.7, and
Wave = 2, respectively. The random numbers for a, p, s are sampled uniformly from a ∼ U(0, 0.15),
p ∼ U(0.25, 2), s ∼ U(0, 1). We visualize the first 10 trajectories from the train split in Figure C1.

1https://github.com/Xiangyu-Hu/SPHinXsys

19

https://github.com/Xiangyu-Hu/SPHinXsys

Published as a workshop paper at ICLR 2025 MLMP

Figure C1: Frames 1, 100, and 250 from the first 10 training trajectories of DamBreak3D. The color
is the velocity magnitude estimated by subtracting the previous positions from the current ones.

C.3 BASELINES

Our baselines on the Lagrangian fluid dynamics problems are GNS (Sanchez-Gonzalez et al.,
2020) and its multi-scale version MS-GNS. We adopt the Pytorch implementation of GNS from
github.com/wu375/simple-physics-simulator-pytorch-geometry to our codebase and reuse most build-
ing block in MS-GNS. In the following, we provide more details about MS-GNS and the training
hyperparameters.

GNNs for large particle systems. As our main baseline, we choose the established particle-based
fluid mechanics surrogate GNS introduced by Sanchez-Gonzalez et al. (2020). However, as seen
in Figure 2, such GNN-based approaches do not scale well. To the best of our knowledge, there
are three main directions for scaling GNNs to larger particle systems: A) evaluating subgraphs and
combining the solutions (Bonnet et al., 2022), B) limiting the receptive field of the neural network
and applying domain decomposition (Musaelian et al., 2023; Kozinsky et al., 2023), and C) using a
hierarchy of coarser graphs (Qi et al., 2017; Fortunato et al., 2022; Lino et al., 2022). Regarding A,
to cover a mesh with 150k nodes, AirFRANS (Bonnet et al., 2022) evaluates 100 randomly sampled
subgraphs of 32k nodes covering the whole domain and averages the outputs on the nodes that have
been evaluated multiple times. Regarding B, Allegro (Musaelian et al., 2023) proposes a novel
paradigm which, in contrast to message passing, operates on strictly local neighborhoods to allow for
straightforward domain decomposition. Although Allegro allows for simulating systems of arbitrary
size, the compute requirement scales linearly with the system size – in a scaling example, Allegro
distributes 100M atoms over 5k GPUs or roughly 20k atoms per GPU (Kozinsky et al., 2023). Thus,
both A and B approaches have a linear or worse scaling of compute with respect to system size.
As we aim to develop a framework that scales to at least 200k particles (in our experiments), the
hierarchical approach C seems most suitable.

MS-GNS. To the best of our knowledge, our baseline model MS-GNS is the first multi-scale GNN
for Lagrangian fluid dynamics, and it combines ideas from Fortunato et al. (2022) and our own
importance-based encoder approach. We acknowledge that there are various multi-scale GNNs that
operate on static objects like point sets (Qi et al., 2017; Lino et al., 2022) or meshes (Fortunato et al.,
2022; Suk et al., 2023), but because these discretizations are static, one can precompute coarser
versions thereof using various different algorithms. However, in Lagrangian numerical methods, we
need to compute a coarse graph at every timestep of the autoregressive rollout evolution, making
advanced algorithms like furthest point sampling (FPS) (Qi et al., 2017) unfeasible – see tested FPS
on DamBreak3D –, taking 10x more time than the model forward evaluation. Thus, for constructing

20

https://github.com/wu375/simple-physics-simulator-pytorch-geometry

Published as a workshop paper at ICLR 2025 MLMP

the coarser graph, we resort to what we do in the sampling-based UPT++ encoding, namely randomly
picking a subset of the nodes. The only difference to the encoder is that we do not have a fixed
number of supernodes, but rather a relative ratio of subsampled nodes, which we set to 0.5dim, which
essentially means that we go to particles with 2x the radius of the finer particles, which also means
that we can just double the cutoff radius for the coarser graph. The obvious disadvantage of this
method is that some fine particles might be far away from the coarser particles, which we remedy
by constructing the mapping from finer to coarser graph using k-nearest neighbors with k = 4 – 4
basically means that a fine particle sees either its corresponding coarse particle and 3 others, or just
4 coarse particles. This way every fine node is guaranteed to get access to information from the
coarser nodes, and because we subsample the coarse nodes anew at every timestep, the information
propagation is well distributed. Other than the coarse graph generation and the fine-coarse mapping
graph, our approach is almost equivalent to MS-MGN by Fortunato et al. (2022), with the only
difference being that all latent vectors connected with the original finely resolved graph have half the
size of the latent vectors of the coarse graph; this adjustment significantly reduces the memory of
the forward pass. Overall, the message-passing steps that operate only on the fine or coarse graphs
are exactly the GNS layers, and the mapping between the resolutions happens along the same k-NN
graph.

The hyperparameter setting for MS-GNS is one of what Fortunato et al. (2022) found to work well,
namely a simple V-shaped processor scheme which we call MS-GNS-15 consisting of: 1 MP layer on
the fine scale, downsampling layer, 11 MP layers on the coarse graph, upsampling layer, and 1 more
MP layer on the fine graph. Regarding the training protocol, we train GNS and MS-GNS with the
same optimizer and learning rate scheduler as our other models. A summary of the hyperparameters
used for training the GNN baselines is given in Table C2.

Table C2: GNN hyperparameters overview.
Hyperparameter GNS-10-128/GNS-5-64 MS-GNS-15

Physical input/output features
Num. input velocities 5 5
Node input features velocity, boundary dist. velocity, boundary dist.
Edge input features displacement displacement
Node output features acceleration acceleration
Include magnitudes yes yes

GNN architecture
MP layers (if appl. fine) 10/5 2
Upsampling layers - 1
Downsampling layers - 1
MP layers coarse - 11
Latent dimension (if appl. fine) 128/64 64
Latent dimension coarse - 128
Num. MLP layers 2 2
Noise std 6.7e-4 6.7e-4

Training configuration
Num. epochs 10 10
Learning rate 1e-4 1e-4
Weight decay rate 0.05 0.05
Warmup epochs 2 2
Batch size {WaterDrop: 2, WaterDrop-XL: 10, DamBreak3D: 4}

C.4 IMPLEMENTATION DETAILS

The following outlines the implementation details for UPT++. Table C3 gives a detailed overview
of the hyperparameters used in training. If there is a change in the dimensions between different
blocks, we perform a learnable linear projection. All transformer (Vaswani et al., 2017) and perceiver
(Jaegle et al., 2021b) blocks use standard pre-norm architecture as used in ViT Dosovitskiy et al.
(2020) and are modulated by the timestep using DiT modulation (Peebles & Xie, 2023). We use layer

21

Published as a workshop paper at ICLR 2025 MLMP

normalization Ba et al. (2016) in the output of the encoder as well as in the input and output of the
forward operator to always keep the latent representation normalized.

Table C3: UPT++ hyperparameters for the application to Navier-Stokes equations.
Hyperparameter WaterDrop WaterDrop-XL DamBreak3D

General model parameters
Number of latent tokens nlatent 128 128 512
Timestep embedding dim 192 192 192
DiT conditioning dim 768 768 768

Encoder
Range of input points selected k 400 - 800 1k-3k 32k-64k
Input features 4 4 6
Node features 96 96 96
Num. supernodes nS 128 512 4096
Supernode radius rS 0.05 0.05 0.15
Max supernode neighbours 8 8 32
Relative positional embedding dim 96 96 96
Message passing MLP dims 288/96 288/96 288/96
Transformer dim / layers / heads 96/4/2 96/4/2 96/4/2
Perceiver dim / num heads 192/3 192/3 192/3

Forward operator
Transformer dim / layers / heads 192/12/3 192/12/3 192/12/3

Decoder
Transformer dim / layers / heads 192/4/3 192/4/3 192/4/3
Query MLP dims 768/768/192 768/768/192 768/768/192
Perceiver dim / num heads 192/3 192/3 192/3
Output features 4 4 6
Number of points to decode (velocity) k′ 125 500 16k
Number of points to decode (occupancy) k′o 250 1000 32k
Occupancy radius of a particle 0.01 0.01 0.05

First training stage
Num. epochs 10 10 10
Learning rate 5e-3 5e-4 5e-4
Weight decay rate 0.05 0.05 0.05
Warmup epochs 2 2 2
Batch size 1024 256 32

Second training stage
Num. epochs 10 10 10
Learning rate 5e-4 5e-4 5e-4
Weight decay rate 0.05 0.05 0.05
Warmup epochs 2 2 2
Batch size 256 256 64

All experiments use the AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) and
follow a learning rate schedule that begins with a linear warmup and transitions to cosine decay
(Loshchilov & Hutter, 2017). We perform early stopping and use the best checkpoint in terms of IoU
evaluated on the validation set of each dataset respectively.

Encoder. First we sample a subset out of all particles and project two consecutive velocities into a
higher dimension using a linear layer. Then we sample nS supernodes from the input point cloud
and perform message passing to points within a radius rS to process the local information. In
message passing, the features of the supernode and the point are concatenated along with a positional
embedding that captures their relative distance. The supernode features are then processed by a
transformer to capture global information. To further reduce the number of tokens in the latent

22

Published as a workshop paper at ICLR 2025 MLMP

space, we apply perceiver pooling with learned queries, followed by layer normalization, producing a
normalized latent representation.

Latent space operator. We apply layer normalization to the latent representation before passing
it into the transformer blocks. The output is then added to the original latent representation (after
normalization) and passed through another layer normalization step, ensuring the latent representation
remains consistently normalized throughout the process. The timestep conditioning of the transformer
blocks uses the timestep of the latent representation in the input.

Decoder. The decoder takes the latent representation and processes it with a small Transformer,
which is then fed into two perceiver blocks, one for decoding the state and one for decoding the
occupancy. The positions where we want to query the latent representation are transformed into a
positional embedding and fed through an MLP, resulting in the query used by the perceiver. The keys
and values are the outputs of the Transformer, and the result of the perceiver is projected into the
input dimension of the physical state or into a two-dimensional output for the occupancy.

Timestep modulation. To incorporate information from the timestep, we encode the current
timestep into a positional embedding. We use the transformer positional encoding Vaswani et al.
(2017); Gupta & Brandstetter (2022), and, therefore rescale all timesteps to the range [0, 200]. The
resulting timestep embedding is then used to perform DiT modulation (Peebles & Xie, 2023) for all
transformer and perceiver blocks. DiT modulation involves applying dimension-wise scaling, shifting,
and gating operations to both the attention and MLP modules of the transformer and perceiver blocks.

Training. In the first training stage, we train both the encoder and decoder without the time-
evolution operator. We do this by sampling states from a trajectory at timestep t, selecting k input
points, decoding at k′ output points, and regressing the velocity at these points using an MSE
objective. Additionally, we randomly sample k′o points within the domain to obtain the ground
truth occupancy. If a coordinate x lies outside the occupancy radius of all particles, it is labeled as
unoccupied; otherwise, it is marked as occupied by the fluid. We train using a CE loss. In the second
training stage, we freeze the encoder and encode two consecutive timesteps, t and t′, into latent space
representations zt and zt′ . The time-evolution operator uses zt as input to predict zt′ , and we train
the time-evolution operator using an MSE objective.

C.5 SCALING LIMITS

In Figure 2, we compare the memory consumption between UPT++, GNS-10-128, and GNS-5-64
during training. We construct a toy setting based on DamBreak3D, positioning points on a regular
three-dimensional grid with the same particle spacing ∆x used in DamBreak3D (see Section C.2.2 for
details). We start with a grid of 16x16x16 points and double the last dimension repeatedly, increasing
the size from 16x16x16 to 16x16x8192. This results in configurations ranging from 4k points to over
2 million points. For UPT++, we scale the number of input points selected, the number of supernodes
nS, and the number of points where we decode the velocity and the occupancy based on the number
of particles. We select 25% of the points as input points, use 2.5% as supernodes, decode the velocity
at 10% and decode the occupancy at 20%, which is similar to our setting used for DamBreak3D,
compare Section C3). We fix the number of latent tokens to nlatent = 4096. We focus on memory
consumption during the first training stage, where the encoder and decoder are trained, as the second
stage requires less memory.

The main memory consumption that can be attributed to UPT++ is the query MLP in the decoder,
which scales linearly with the number of points to decode, both for decoding the occupancy and the
velocity. We can further reduce the memory footprint by decoding a smaller fraction of the points, as
can be seen in Figure C2, where we add two scaling plots where we decode only 5% and only 1% of
the points.

23

Published as a workshop paper at ICLR 2025 MLMP

4k 8k 16
k

32
k

65
k

13
1k

26
2k

52
4k

10
48

k
20

97
k

41
94

k

Number of particles

0.25
0.5

1
2
4
8

16

40

M
em

or
y

[G
B]

UPT++
UPT++, 5% decode
UPT++, 1% decode

Figure C2: Memory usage of UPT++ variants with a reduced number of decoding points.

C.6 RESULT DETAILS

Timestep: 0 Timestep: 30 Timestep: 60 Timestep: 90 Timestep: 120 Timestep: 150

Pr
ed

ic
te

d
Pr

ed
ic

te
d

R
ef

er
en

ce
ve

lo
ci

ty
oc

cu
pa

nc
y

ve
lo

ci
ty

Figure C3: Visualization of a DamBreak3D trajectory. UPT++ successfully captures the character-
istics of the evolving fluid, both in terms of predicted occupancy field, and – conditioned on the
occupancy field – predicted velocity field. Lighter colors correspond to higher absolute velocities.

Figure C3 shows the visualization of an exemplary trajectory rollout of DamBreak3D.

In Figure C4 we present the IoU and the velocity error for full rollouts on the test set. At the start
of the trajectory, GNS has an advantage by numerically integrating the accelerations. However,
during the highly dynamic phase between timesteps 200 and 500, the difference becomes negligible.
Figure C5 and C6 illustrate this by presenting snapshots of a trajectory rollout for both Waterdrop
and Waterdrop-XL. Similarly, as demonstrated for DamBreak3D in Figure C3, UPT++ captures the
overall fluid dynamics in both the smaller Waterdrop and Waterdrop-XL scenarios. In the end of
each trajectory, as the fluid settles at the bottom of the box, GNS inherently preserves mass, or the
number of particles, which enables it to more accurately capture the volume. In contrast, UPT++
latent propagation lacks such constraints, making it unable to accurately capture the fluid’s volume.

24

Published as a workshop paper at ICLR 2025 MLMP

0 200 400 600 800
Timestep

0.8

0.9

1.0

Io
U

WaterDrop

0 200 400 600 800
Timestep

0.0

0.2

Ve
lo

cit
y

er
ro

r

WaterDrop
UPT++
GNS

0 200 400 600 800
Timestep

0.8

1.0

Io
U

WaterDrop-XL

0 200 400 600 800
Timestep

0.0

0.2

0.4

0.6

Ve
lo

cit
y

er
ro

r

WaterDrop-XL
UPT++
GNS

0 50 100 150 200
Timestep

0.7

0.8

0.9

1.0

Io
U

DamBreak3D

0 50 100 150 200
Timestep

0.0

0.5

1.0

Ve
lo

cit
y

er
ro

r

DamBreak3D
UPT++
GNS
MS-GNS

Figure C4: Mean and standard deviation of the IoU and the velocity error during the rollout of all
trajectories in the test set. For WaterDrop and WaterDrop-XL, the first simulation steps are better
predicted by GNS, which is expected because GNS numerically integrates accelerations, and also, the
last steps, where the fluid is resting at the bottom.During the highly dynamic part, GNS and UPT++
are on par, while UPT++ better predicts the correct velocity. For DamBreak3D, GNS is not able to
predict the rollout of the large-scale trajectory, but UPT++ and MS-GNS can handle this task.

Timestep: 10 Timestep: 110 Timestep: 210 Timestep: 310 Timestep: 410

U
PT

++
G

N
S

R
ef

er
en

ce

Figure C5: Various timesteps along the WaterDrop trajectory are evaluated on a regular grid for
comparison purposes. The presence of a point on the grid represents its occupancy, while its color
indicates the magnitude of the velocity.

Timestep: 10 Timestep: 110 Timestep: 210 Timestep: 310 Timestep: 410

U
PT

++
G

N
S

R
ef

er
en

ce

Figure C6: Same as C5, but for WaterDrop-XL.

25

Published as a workshop paper at ICLR 2025 MLMP

D MOLECULAR CONFORMATION SAMPLING

D.1 MOLECULAR DYNAMICS (MD)

The most fundamental concepts nowadays to describe the dynamics of molecules are given by the laws
of quantum mechanics. What the Navier-Stokes equations are for fluid mechanics, the Schrödinger
equation is for quantum mechanics, i.e., the fundamental building block to describe the behavior of
particles at atomic and subatomic scales. Unlike classical mechanics, which deals with deterministic
paths, the Schrödinger equation (Schrödinger, 1926) embraces the probabilistic nature of quantum
phenomena, allowing for the superposition of states and the emergence of phenomena like quantum
entanglement and tunneling.

The Schrödinger equation is a partial differential equation, that gives the evolution of the complex-

valued wave function ψ over time t: iℏ
∂ψ

∂t
= Ĥ(t)ψ. Here i is the imaginary unit with

i2 = −1, ℏ is reduced Planck constant, and, Ĥ(t) is the Hamiltonian operator at time t, which
is applied to a function ψ and maps to another function. It determines how a quantum system
evolves with time and its eigenvalues correspond to measurable energy values of the quantum
system. The solution to Schrödinger’s equation in the many-body case (particles 1, . . . , N) is
the wave function ψ(x1, . . . ,xN , t) :×N

i=1
R3 × R → C which we abbreviate as ψ({x} , t).

It’s the square modulus |ψ({x} , t)|2 = ψ∗({x} , t)ψ({x} , t) is usually interpreted as a probabil-
ity density to measure the positions x1, . . . ,xN at time t, whereby the normalization condition∫
. . .
∫
|ψ({x} , t)|2 dx1 . . . dxN = 1 holds for the wave function ψ.

Analytic solutions of ψ for specific operators ˆH(t) are hardly known and are only available for simple
systems like free particles or hydrogen atoms. In contrast to that are proteins with many thousands of
atoms. However, already for much smaller quantum systems approximations are needed. A famous
example is the Born–Oppenheimer approximation, where the wave function of the multi-body system
is decomposed into parts for heavier atom nuclei and the light-weight electrons, which usually move
much faster. In this case, one obtains a Schrödinger equation for electron movement and another
Schrödinger equation for nuclei movement. A much faster option than solving a second Schrödinger
equation for the motion of the nuclei is to use the laws from classical Newtonian dynamics. The
solution of the first Schrödinger equation defines an energy potential, which can be utilized to obtain
forces Fi on the nuclei and to update nuclei positions according to Newton’s equation of motion:
Fi = mi q̈i(t) (with mi being the mass of particle i and qi(t) describing the motion trajectory of
particle i over time t).

Additional complexity in studying molecule dynamics is introduced by environmental conditions
surrounding molecules. Maybe the most important is temperature. For bio-molecules it is often
of interest to assume that they are dissolved in water. To model temperature, a usual strategy is
to assume a system of coupled harmonic oscillators to model a heat bath, from which Langevin
dynamics can be derived (Ford et al., 1965; Zwanzig, 1973). The investigation of the relationship
between quantum-mechanical modeling of heat baths and Langevin dynamics still seems to be a
current research topic, where there there are different aspects like the coupling of the oscillators or
Markovian properties when stochastic forces are introduced. For instance, Hoel & Szepessy (2019),
studies how canonical quantum observables are approximated by molecular dynamics. This includes
the definition of density operators, which behave according to the quantum Liouville-von Neumann
equation.

The forces in molecules are usually given as the negative derivative of the (potential) energy: Fi =
−∇E. In the context of molecules, E is usually assumed to be defined by a force field, which is a
parameterized sum of intra- and intermolecular interaction terms. An example is the Amber force
field (Ponder & Case, 2003; Case et al., 2024):

E =
∑

bonds r

kb(r − r0)2 +
∑

angles θ

kθ(θ − θ0)2+ (D.1)

∑
dihedrals ϕ

Vn(1 + cos(nϕ− γ)) +
N−1∑
i=1

N∑
j=i+1

(
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ϵRij

)

26

Published as a workshop paper at ICLR 2025 MLMP

Here kb, r0, kθ, θ0, Vn, γ, Aij , Bij , ϵ, qi, qj serve as force field parameters, which are found either
empirically or which might be inspired by theory.

Newton’s equations of motions for all particles under consideration form a system of ordinary
differential equations (ODEs), to which different numeric integration schemes like Euler, Leapfrog,
or, Verlet can be applied to obtain particle position trajectories for given initial positions and initial
velocities. In case temperature is included, the resulting Langevin equations form a system of
stochastic differential equations (SDEs), and Langevin integrators can be used. It should be mentioned,
that it is often necessary to use very small integration timesteps to avoid large approximation errors.
This, however, increases the time needed to find new stable molecular configurations.

We refer to Frenkel & Smit (2002) for more details on molecular dynamics. A common application
of molecular dynamics is for sampling conformation states of biomolecules from the Boltzmann
distribution, which is also an active area of research in machine learning (Noé et al., 2019). From
ergodic theory, we know that, in most cases, molecular dynamics generates samples from the Boltz-
mann distribution when the simulation is long enough (Frenkel & Smit, 2002), which, unfortunately,
for biomolecules often means simulating for 1015 integration steps. Data-driven approaches could
accelerate this sampling process by either simulating with larger integration steps or directly sampling
from the target distribution.

D.2 IMPLEMENTATION DETAILS

We use the same implementation as outlined in Chapter C.4. The differences specific to the MD setting
are explained below. Table D1 summarizes the hyperparameters used in the molecular sampling
experiments.

D.2.1 DENSITY REPRESENTATION

We represent molecules as density fields, following an approach similar to Pinheiro et al. (2024) and
Dumitrescu et al. (2024). Each atom is represented by a 3D Gaussian-like density (Orlando et al.,
2022; Li et al., 2014)

D(d, r) = exp

(
− d2

(0.93 · r)2

)
, (D.2)

where D is the fraction of occupied volume by an atom with radius r at distance d from its center.
While different occupancy radii could be considered for various atom types, we use a uniform radius
of r = 0.5 Å for all atom types. The signal of the field for atom type a, with Ia being an index array
of all atoms within the molecule corresponding to atom type a, is defined as:

uta(x) = 1−
|Ia|∏
n=1

(
1−D

(∥∥∥x−mt
Ia[n]

∥∥∥ , ra)) , (D.3)

where mt
Ia[n]

is the center location of atom Ia[n] at time t and ra is the radius for atom type a. With
that, we obtain one density field ua per atom type a (with a ∈ {H,C, . . .}) and the joint signal for
all atom types can be summarized by a vector of density fields ut(x):

ut(x) = (utH(x), u
t
C(x), . . .). (D.4)

D.2.2 IMPORTANCE-BASED SAMPLING FOR MOLECULES

We sample points from the density field vector ut by first sampling sets of NIS points
({x1, . . . ,xNIS}), where each point xi is from a normal distribution centered around one of the
input molecule atom locations mt

k at time t (with k ∈ {1, . . . , Natoms}, where Natoms is the number
of atoms for the considered molecule):

xi ∼ N (mt
k,σ

2) (D.5)

27

Published as a workshop paper at ICLR 2025 MLMP

Table D1: UPT++ hyperparameters for the application to molecular sampling.
Hyperparameter AD 2AA

General Model Parameters
Number of latent tokens nlatent 32 64
Timestep embedding dim 192 192
DiT conditioning dim 768 768

Encoder
Range of input points selected 2.7k 6k
Input features 4 4
Node features 96 96
Num. supernodes nS 128 512
Supernode radius rS 0.05 0.05
Max supernode neighbours 8 8
Relative positional embedding dim 96 96
Message passing MLP dims 288/96 288/96
Transformer dim / layers / heads 96/4/2 96/4/2
Perceiver dim / num heads 192/3 192/3

Forward operator
Transformer dim / layers / heads 32/22/3 32/22/3

Decoder
Transformer dim / layers / heads 192/4/3 192/4/3
Query MLP dims 768/768/192 768/768/192
Perceiver dim / num heads 192/3 192/3
Output features 5 5
Number of points to decode (velocity) 125 500
Number of points to decode (occupancy) 250 1000

First stage training
Num. epochs 1.7k 73
Learning rate 1e-4 1e-4
Schedule Cosine -
Batch size 1024 1024

Second stage training
Num. epochs 4.6k 53
Learning rate 1e-4 1e-4
Batch size 2048 256

Then we compute the associated signal vectors corresponding to the sampled points xi, i.e., ut(xi).
We use σ = 0.5 Å in all experiments, and add global nodes at the initial atom positions. Additionally,
we randomly sample points in the input space and compute their signal.

D.2.3 REFINEMENT

In autoregressive sampling, errors accumulate across inference steps, causing out-of-distribution
issues. To mitigate this, we employed the energy minimization procedure described in (Yu et al.,
2024), implemented using OpenMM (Eastman et al., 2017).

D.2.4 DATA AUGMENTATION

During training we apply random rotation, uniform between [0, 2π) along the three Euler angles to
each training sample.During training we apply random rotation, uniform between [0, 2π) along the
three Euler angles to each training sample.

28

Published as a workshop paper at ICLR 2025 MLMP

D.3 NEURAL SAMPLING OPERATOR

In accordance with literature (Lipman et al., 2022; Liu et al., 2022), we assume a flow Φ to be created
via a parameterized (θ) vector field vθ:

dΦ(s, z)

ds
= vθ(s,Φ(s,z), zcond, Ncond)

Φ(0, z) = z

Here s serves as the diffusion time. We build upon the idea of classifier-free guidance (Ho & Salimans,
2022) for flow matching (Zheng et al., 2023) to incorporate previous molecule conformations as
condition a (zcond). We further build upon ITO (Schreiner et al., 2023) to predict for more than one
atomistic time step into the future and therefore also condition on a number of time steps (Ncond).
Algorithm 1 shows how vθ can be trained given a series of MD trajectories. Algorithm 2 then
shows how new samples can be generated using the trained flow matching velocity field vθ and a
given previous conformation state as well as the number of atomistic time steps. The flow matching
guidance parameter ω and the employed number of ODE steps (NODE) serve as hyperparameters.

Algorithm 1 Training UPT++ sampling operator
1: Inputs:

• nZ MD-trajectories Z =
{
ẑ0
j , . . . , ẑ

i
j , . . . , ẑ

Nj

j

}nZ

j=0
with samples ẑi

j taken at times i∆t

• max lag Nmax

• pcond probability of conditional training
2: Initialize UPT++ flow matching model vθ
3: Z ′

= Concatenate
({

ẑ0
j , . . . , ẑ

Nj−Nmax

j

}nZ

j=0

)
4: while not converged do
5: ẑi

j ∼ Choice
(
Z ′
)

6: N ∼ DiscreteUniform(1, Nmax)

7: (z̃cond, Ñcond)← (ẑi
j , N) with probability pcond else ∅

8: s̃ ∼ ContinuousUniform(0, 1)
9: z̃0 ∼ N (0, 1)

10: z̃s ← (1− s̃)z̃0 + s̃ẑi+N
j

11: Take gradient step on ∇θ

∥∥∥vθ(s̃, z̃s, z̃cond, Ñcond)−
(
ẑi+N
j − z̃0

)∥∥∥2
12: end while
13: Output:

• UPT++ flow matching model vθ

29

Published as a workshop paper at ICLR 2025 MLMP

Algorithm 2 Sampling UPT++ sampling operator
1: Inputs:

• trained UPT++ flow matching model vθ
• Condition state zcond

• Forward sampling timesteps Ncond

• Number of ODE steps NODE

• Guidance parameter ω
2: z̃0 ∼ N (0, 1)
3: h← 1

NODE

4: vθ,guided(., .)← (1− ω) vθ(., ., ∅) + ω vθ(., ., zcond, Ncond)
5: for s=1,. . . ,NODE do
6: z̃sh ← ODEStep(vθ,guided((s− 1)h, z̃(s−1)h), h)
7: end for
8: Output:

• Sample z̃1

D.4 MOLECULAR GRAPH RECONSTRUCTION

Extracting molecule graphs after decoding signals from latent space. To assess if molecule
graph extraction from the latent space happens uniquely, we evaluate the graph extraction performance
of UPT++ in two scenarios: first, as a strict autoencoder, i.e. encoding and decoding without the
sampling operator, and second, with the sampling operator applied. We consider the extraction (for
details on the final graph extraction see Appendix D.4) of a molecule as valid when encoded and
decoded versions have equal InChI (Landrum, 2016) codes, utilizing the RDKit library (Karol, 2018).
This ensures chemical identity is preserved. Table 2 shows that the molecule encoder and decoder
of UPT++ can accurately extract molecules from the latent space for Alanine dipeptide and all test
molecules from the 2AA dataset (success rate 100% when tested with 1000 samples). When applying
the sampling operator, the extraction performance decreases slightly (0.97). Results for the AN
molecule of the 2AA dataset are worse, which results from the fact that the tested molecules are
unseen during training. Further, higher guidance scales increase reconstruction success rates but yield
less diverse samples. This behavior is analogous to classifier-free guidance in other domains.

Systematic Procedure. We present a systematic procedure for reconstructing the molecular graph,
from the predicted density distribution. Figure D1 provides a visual representation of certain steps.

1. Evaluate positions on our occupancy field and remove all values below a threshold of 0.5
(used throughout our experiments). Note that reconstructing the molecule based solely on
the density channels yields similar results.

2. Peak finding: Identify local maxima in the thresholded occupancy map using a maximum
filter.

3. For each density channel, select the top Nα values, where Nα is the expected number of
atoms of element α in the molecule.

4. Reconstruct bonds 2

using OpenBabel (O’Boyle et al., 2011).
5. Validate the chemical equivalence of the encoded molecule using InChI codes (Landrum,

2016).

D.5 ADDITIONAL RESULTS

In Figures D2, D3, we visualize results corresponding to those in Table 2 analogously to Figure 4.

2https://github.com/guanjq/targetdiff/blob/main/utils/reconstruct.py

30

https://github.com/guanjq/targetdiff/blob/main/utils/reconstruct.py

Published as a workshop paper at ICLR 2025 MLMP

Figure D1: Top row: Densities across all channels in a single plot, distinct colors represent different
atomic channels. All values exceeding an occupancy threshold are assigned a uniform value. Top
left: Original molecular conformation obtained by applying the encoder/decoder only. Bottom left:
Raw density maps for each channel, predicted by our latent sampling operator. The density values
increase concentrically towards the atomic positions. Bottom right: Extracted peaks indicating
atomic positions.

2 0 2
Phi

2

0

2

Ps
i

MD

2 0 2
Phi

UPT++

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure D2: 2AA: AN (3.5). Left half: Ramachandran plots comparing 10k UPT++ and 9.8k MD
samples. Right half: Free energy surface of the same UPT++ and MD samples.

2 0 2
Phi

2

0

2

Ps
i

MD

2 0 2
Phi

UPT++

2 0 2
Phi

0.0

2.5

5.0

7.5

Fr
ee

 e
ne

rg
y/

k B
T

Free energy projections

2 0 2
Psi

MD
UPT++

Figure D3: 2AA: AN (1.0). Left half: Ramachandran plots comparing 10k UPT++ and 9.8k MD
samples. Right half: Free energy surface of the same UPT++ and MD samples.

31

Published as a workshop paper at ICLR 2025 MLMP

E CRITICAL REVIEW OF UPT++

Future Directions for Extending UPT++. Amongst others, possible extensions of UPT++ are
adoptions to more challenging engineering problems, e.g., complex geometries, solid-liquid inter-
actions, or multi-physics. The fact that the size of latent representations is constant in UPT++ and,
therefore, in principle independent of concrete molecule sizes, suggests its application to larger
peptides or other larger molecules. One weakness of a field-based approach like UPT++ is that – by
construction – UPT++ is not mass conserving. This is in contrast to GNNs, which preserve the mass,
i.e., the number of particles. Further, for molecular conformation sampling, we decided to incorporate
the conditioning conformations via a classifier-free guidance approach since directly conditioning
on previous conformations is problematic, as discussed in literature (Li et al., 2024). We leave the
exploration of other conditioning strategies to future work. Lastly, improving the decoding scheme
could significantly speed up conformer sampling.

Accuracy and Reliability of Simulations. While UPT++ offers a computationally efficient al-
ternative to traditional simulation methods, there is a risk that inaccuracies in the approximations
could lead to unintended consequences. For example, in a civil engineering context, designs for flood
protection could rely significantly on the accuracy of our simulations. We strongly emphasize that our
models should not be blindly relied upon for decision-making in safety-critical areas. Users should
always corroborate machine learning predictions with established physical models or additional
empirical data. Similarly for molecular simulations, the output of our models should be checked with
experiments or complemented with classical physical simulations before decision-making.

Transparency and Explainability. Given that UPT++ encodes the system’s state into a continuous
latent representation, it may offer less transparency and explainability compared to methods that
directly operate on the physical state. Our latent space approach can make it difficult for users to
fully understand how certain predictions or decisions are reached. Lack of interpretability could lead
to challenges in trusting and verifying the model’s outputs, particularly in critical applications. To
mitigate these concerns, we advocate for developing methods that enhance explainability and allow
users to inspect and understand the underlying decision processes of UPT++, ensuring its safe and
responsible use in real-world scenarios.

Environmental and Social Impact. Our models could have significant societal and environmental
impacts. For example, in cases like flood prediction or water resource management, inaccurate
predictions may lead to poor planning or resource allocation, disproportionately affecting vulnerable
communities. We urge that such models be used responsibly, with attention to fairness, inclusivity,
and transparency, especially in areas that affect public health, safety, and well-being.

32

	Introduction and Background on Neural Operators
	UPT++
	Experiments
	Lagrangian fluid simulation
	Sampling molecular conformations

	Conclusion, limitations and future work
	Related Work and Scientific Justification of Neural operators
	Details on Classical PDE Solvers
	Deep Learning applied to Scientific Problems
	Deep Learning applied to Fluid Dynamics and Molecular Dynamics

	General Details on the UPT++ Framework
	Importance-based encoding and decoding
	Details on the Latent Space Approximator for the Deterministic and Stochastic Case

	Lagrangian fluid simulation
	Navier-Stokes Equations and Smoothed Particle Hydrodynamics (SPH)
	Dataset Information
	Dataset-specific details
	Dam break 3D dataset

	Baselines
	Implementation details
	Scaling limits
	Result details

	Molecular Conformation Sampling
	Molecular Dynamics (MD)
	Implementation details
	Density representation
	Importance-based sampling for molecules
	Refinement
	Data augmentation

	Neural Sampling Operator
	Molecular Graph Reconstruction
	Additional Results

	Critical Review of UPT++

