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Abstract
We empirically study the evolution of the singular values and vectors of neural network weights
across a wide variety of practical architectures and domains, including CNNs for image classi-
fication, LSTMs for speech recognition, and Transformers for language modeling. Across these
settings, we observe that (i) large singular values grow much faster, decreasing the effective ranks
of weight matrices, (ii) this growth occurs despite weak alignment between neighboring layers’
singular vectors, a common assumption in prior theoretical work, and (iii) weight decay promotes
both rank minimization, and neighboring layer alignment. Since these architectures are far from
idealized linear neural networks, our observations extend the predictions of existing theory to more
practical settings.

(a) Schematic (b) VGG (c) UNet (d) LSTM (e) Transformer

Figure 1: Singular value evolution for a single weight matrix in the middle of each network across
different architectures. Each line tracks the evolution of a single singular value over time,
whereas darker lines indicate larger singular values. Notice the disparate dynamics, where
larger values grow at a disproportionate rate over the course of training. Schematic (a)
provides a possible explanation for this behavior.
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1. Introduction

After many years of dizzying empirical advancements, a large number of fundamental questions
about neural networks remain unresolved. For instance, despite extensive research, we still lack a
complete understanding of the implicit biases of neural networks trained via stochastic optimization.
Even basic questions like the role of weight decay [10, 18, 44], have only partial answers [1, 36, 41].

A recent line of theoretical work [3, 23, 32, 41] reveals that the evolution of singular values in
deep linear models is quite structured and results in rank minimization with depth. One standard
assumption in these works is that of “balanced initialization”, which requires that at initialization for
two consecutive matrices Wi and Wi+1 in a product matrix

∏
j Wj , we have W⊤

i+1Wi+1 = WiW
⊤
i .

When substituting the SVDs of these matrices and simplifying through orthogonality, this results
in the condition Vi+1Σ

2
i+1V

⊤
i+1 = UiΣ

2
iU

⊤
i where Ui and Vi+1 are orthogonal matrices. From

this point, one can derive that, due to the alignment, the product of the diagonals will evolve in a
closed-form fashion, which results in a rank-minimizing behavior with depth [3]. Similar results
are derived in tensor products and other structured settings [32, 40].

If such behavior were true for general neural networks, it might have wide-ranging implications
from generalization to compression. Inspired by these works, we empirically investigate the dy-
namics of singular values and singular vectors of neural network weight matrices without restrictive
assumptions made by contemporary methods like small and orthogonal initialization, small learn-
ing rates, bounded norms, or linearity. To improve generality, we examine these behaviors across
diverse architectures and tasks. Our findings reveal effective rank minimization in weight matrices,
where larger singular values grow more rapidly (Fig. 1), which occurs despite very weak alignment
of the singular vectors in consecutive layers.

Our specific contributions are:
• In Section 3, we provide an empirical overview of the training dynamics of neural network layers

through the lens of the SVD. We demonstrate effective rank minimization across various practical
neural networks in complex settings. We also see only a very weak alignment of singular vectors
in consecutive layers, which disagrees with a common theoretical assumption.

• In Section 4, we show that weight decay promotes rank minimization and alignment in consec-
utive layers, extending theoretical work on the topic. Small [8] to large [4] amounts of weight
decay are commonly used to improve generalization, so this suggests a connection between rank
and generalization.

2. Methodology

In all our experiments, we aim to study reasonably sized neural networks across a variety of tasks.
We choose models and tasks to represent current applications. In particular, we select image clas-
sification with CNNs (VGG-16 [33]) on CIFAR10 [17], image generation through diffusion with
UNets [30] on MNIST [19], speech recognition with LSTMs [14] on LibriSpeech [25], and lan-
guage modeling with Transformers [37] on Wikitext-103 [22]. We primarily take hyperparameters
from existing settings in the literature, making small modifications for simplicity. Thus, we in-
tend that any correlations between settings will be a reflection of common practice as opposed to
introduced bias on our part.

The bulk of the evidence presented comes from computing singular value decompositions (SVDs)
of weight matrices in models. As there are many matrices in the models we study, for conciseness
of presentation, we provide plots of individual layers’ matrix parameters and statistics summarizing
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 2: Normalized effective rank (Eqn. 1) evolution visualized in color for different matrices
across architectures and time. As we move down the y-axis, the depth of the parameters
in the model increases, while the x-axis tracks training time. Notice decreasing effective
rank across nearly all parameters, though the magnitude differs across layers. Block-like
patterns in the VGG case are due to different channel dimensions. Banding in the UNet,
LSTM, and Transformer are due to differences between convolutional and linear layers,
input and hidden parameters, and attention and fully connected layers, respectively.

behavior across layers. Please see Appendix C for more experiment details, including hyperparam-
eters. We will release code for all experiments.

3. Spectral Dynamics

3.1. Effective Rank Minimization

To track rank minimization, we compute the (normalized) effective rank of a matrix W [31] with
rank R as

EffRank(W ) = −
R∑
i=1

σi∑
j σj

log
σi∑
j σj

and NormEffRank(W ) =
EffRank(W )

R
, (1)

where σi are the singular values of matrix W and EffRank(W ) is the entropy of the normalized
singular value distribution. As the probability mass concentrates, the effective rank decreases. We
choose to plot NormEffRank(W ) to compare across layers and time in Figure 2, where we see that
effective rank tends to decrease as training proceeds, regardless of the parameter or network. This
echoes predictions made in simple models.

3.2. Alignment of Singular Vectors Between Layers

To quantify alignment between consecutive matrices in a neural network Wi =
∑R

j=1 σj(t)uj(t)vj(t)
⊤,

Wi+1 =
∑R

k=1 σ
′
k(t)u

′
k(t)v

′
k(t)

⊤ at training time t, we compute for all j, k ∈ [R],

A(t)jk = |⟨uj(t), v′k(t)⟩| , (2)

where the absolute value is taken to ignore sign flips in the SVD computation. We then plot the
diagonal of this matrix A(t)ii ∀ i ≤ 100 over time for a single pair of layers in Figure 3, as well as
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 3: Neighboring layer alignment of singular vectors. Top row: The diagonal of the alignment
matrix A(t)ii (Eqn. 2) vs. training time for a single pair of matrices in the middle of each
model. We see a small amount of alignment in the top ranks between layers shortly after
training begins, but this becomes more diffuse over time. Bottom row: Alignment metric
(Eqn. 3) for pairs of matrices for depth vs. training time. It is hard to make out a global
trend across models. However, the LSTM shows a weak signal around Epoch 1 when the
initial alignment occurs, and the Transformer case has a banding pattern with depth due
to alignment between the query and key matrices that have no nonlinearity in between.

a scalar measure of alignment in the top ranks:

a(t) =
1

10

10∑
i=1

A(t)ii . (3)

For exact details on how this is computed for different architectures and layers that are more com-
plex than the fully-connected case, please see Appendix C.

Figure 3 establishes that the theoretical assumption of balanced initialization [2, 32], which
assumes aligned SVDs between weight matrices, is not valid at the beginning of training. Nor does
it appear that alignment is static, like the linear case discussed by Du et al. [7]. Still, there does
seem to be a somewhat weak signal in the top ranks.

4. The Effect of Weight Decay

In light of the previously observed evolution of singular values, we investigate a proposed effect
of weight decay. Though weight decay explicitly penalizes the norm of weights, there is empirical
evidence discarding the connection between norm and generalization for neural networks [1, 29].
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 4: SV evolution for a single matrix and normalized effective rank (Eqn. 1) across matrices
over time, where the rows use differing amounts of weight decay. From top to bottom,
for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we use coef-
ficients {0, 0.1, 1, 10}. Higher weight decay coefficients promote more aggressive rank
minimization. VGG uses SGD and momentum, while the rest use AdamW [21].

Some theoretical [6, 9, 24, 29, 35, 40, 42] and empirical works [6, 9] propose a connection with
the rank of matrices in constrained settings. Still, a comprehensive connection to larger empirical
networks has not yet been demonstrated.

Notice in its simplest form that weight decay asks for arg minW L(W ) + λ∥W∥2F , where
∥W∥2F =

∑R
i=1 σ

2
i with singular values σi of weight matrix W with rank R. We saw that larger

singular values of neural networks grow faster (Fig. 1) and that the top singular vectors are much
more useful for minimizing task loss than the bottom ones (Fig. 2). Thus, with minor weight decay
regularization, a straightforward solution for the network may be to minimize the rank of a given
weight matrix while preserving the top singular values to minimize L(W ).

Figure 4 shows that adding weight decay indeed produces this exact behavior, while too much
weight decay leads to complete norm collapse in the VGG case. Even more surprisingly, in Fig-
ure 5 (in Appendix A), large weight decay promotes a tighter alignment in the top singular vectors
of consecutive layers. This behavior is quite reminiscent of balancedness [2, 3, 7], though these
networks have nonlinearities and much more complex structures. We provide additional evidence
in Appendix C, Figure 6 that the solutions with very high weight decay are still performant, even
though they are much lower rank. We further investigate the connection between rank and general-
ization in Appendix B, where we find memorizing networks have higher rank parameters.
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5. Discussion

We saw that, regardless of architecture or task, neural network weights diminish in rank over train-
ing. We also provide firmer evidence for the effect of weight decay in diminishing the rank of these
matrices and aligning intermediate layers. These observations extend existing theory on the subject,
and may provide pointers as to how to understand neural network generalization more precisely.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 5: Diagonal of alignment for a single pair over time (Eqn. 2) and alignment metric across
pairs of matrices over time (Eqn. 3) where the y-axis represents depth. From top to
bottom, for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we
use coefficients {0, 0.1, 1, 10}. We see that the alignment magnitude is much higher with
higher weight decay, and in particular, the Transformer has the strongest alignment even
when nonlinearities separate the MLP layers.
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Appendix A. Additional Plots for Weight Decay Experiments

All tasks are trained in exactly the same fashion as mentioned, but with weight decay coefficient
of 10. To additionally validate the claim that weight decay makes the parameters lower-rank, we
save intermediate checkpoints throughout training and evaluate the original model, the model that
results from approximating all parameters except the last linear layer by the top half of the SVD,
and the same model resulting from the bottom half of the SVD. We see in Figure 6 that, like one
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 6: Training loss over time, where the rows use differing amounts of weight decay. From top
to bottom, for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we
use coefficients {0, 0.1, 1, 10}. We see that it is still possible to achieve low training loss
under high weight decay, and as we increase the amount of weight decay, the gap between
pruned and unpruned parameters closes, lending support to the idea that the parameters
become lower rank.

might expect from L2 space, the top half of the SVD is a good approximation to the original model,
and with high weight decay the approximation is very tight. In addition, even with very high weight
decay the performance does not break down besides the VGG case.
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Appendix B. Spectral Dynamics with Random Labels

To investigate the connection between rank and generalization, we revisit the classic random label
memorization experiments of Zhang et al. [43] as a testing ground.

We train a 4-layer ReLU MLP to fit random or true labels on CIFAR10 [17] similar to Zhang
et al. [43]. We use SGD with momentum of 0.9 and constant learning rate of 0.001, and train for
300 epochs to see the entire trend of training. The major difference to the setting of Zhang et al.
[43] is the use of a constant learning rate, as their use of a learning rate schedule might conflate the
results.

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 7: Top row: results with true labels. Bottom row: results with random labels. We see that
the middle layers have a lower effective rank when using true labels and that alignment
in the middle layers persists throughout training, unlike in the random label case.

Surprisingly, we see in Figure 7 that even without weight decay, with true labels, inner layers
align, while with random labels, this alignment occurs and then disappears with more training. This
is particularly intriguing as there are nonlinearities that could theoretically separate the network
from the linear case, and yet quite strong alignment occurs despite that. We also see that the middle
layer of the network trained on true labels has a lower effective rank, which may make sense as the
data with true labels likely shares a common structure among classes. This further suggests that
viewing generalization through the lens of rank may be fruitful.

Appendix C. Experimental Details

We use 3 random seeds for all experiments and average all plots over those 3. This is relatively
small, but error bars tend to be very tight, and due to the high volume of runs required for this work,
we lack the resources to run much more.

To compute alignment, we consider only pairs of layers that directly feed into each other and
ignore the influence of residual connections to reduce the number of comparisons. Specifics on
individual architectures are given below.
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C.1. Image Classification with VGG

We train a VGG-16 [33] on CIFAR-10 [17] for 164 epochs, following hyperparameters and learning
rate schedule in [8], but without data augmentation. For the optimizer, we use SGD with a batch size
of 128, initial learning rate of 0.1, and momentum of 0.9. We also decay the learning rate 3 times
by a factor of 10 at epoch 82, epoch 120, and finally at epoch 160. We also use a minor amount of
weight decay with a coefficient of 0.0001.

VGG-16 uses ReLU activations and batch normalization [16] and includes both convolutional
and linear layers. For linear layers, we simply compute the SVD of the weight matrix. For convo-
lutional layers, the parameters are typically stored as a 4D tensor of shape (cout, cin, h, w) for the
output channels, input channels, height and width of the filters respectively. As the filters compute
a transformation from each position and input channel to an output channel, we compute the SVD
of the flattened tensor (cout, cin · h ·w), which maps all inputs to outputs, similar to Praggastis et al.
[27]. This is not the SVD of the entire transformation of the feature map to the next feature map but
rather the transformation from a set of adjacent positions to a particular position in the next layer.

In order to compute the alignment of bases between consecutive convolutional layers, V ⊤
i+1Ui,

we need to match the dimensionality between Ui and Vi+1. For convolutional layers, we are pre-
sented with a question as to how to handle the spatial dimensions h and w as naively, the input
dimension of the next layer will be a factor of h ·w larger dimension. We experimented with multi-
ple cases, including aligning at each spatial position individually or averaging over the alignment at
all spatial positions. We eventually settled on aligning the output of one layer to the center spatial
input of the next layer. For a 3x3 convolution mapping to a following 3x3 convolution, we compute
the alignment only for the position (1,1) of the next layer. This seemed reasonable to us as, on
average, the edges of the filters showed poorer alignment overall.

In the single-layer plots we visualize a convolutional layer in the middle of the model and the
alignment of two consecutive convolutional layers.

C.2. Image Generation with UNets

We train a UNet [30] diffusion model [12, 34] on MNIST [19] generation. We take model de-
sign and hyperparameters from [38]. In particular, we use a 4-layer residual UNet and train with
AdamW [21] with batch size 128 and a learning rate 0.0003 for 100 epochs. This model uses
swish [28] activations and a combination of linear and convolutional, as well as transposed convo-
lutional layers.

Computing SVDs and alignment is similar to the image classification case described above,
except in the case of the transposed convolutions where an extra transpose of dimensions is needed
as parameters are stored with the shape (cin, cout, h, w).

In single-layer plots we visualize a convolutional layer in the middle of the model and the
alignment of two consecutive convolutional layers.

C.3. Speech Recognition with LSTMs

We train a bidirectional LSTM [13] for automatic speech recognition on LibriSpeech [25]. We tune
for a simple and well-performing hyperparameter setting. We use AdamW [21] with batch size 32,
learning rate 0.0003, and weight decay 0.1 for 50 epochs. We also use a cosine annealing learning
rate schedule from 1 to 0 over the entire 50 epochs.
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The LSTM only has matrix parameters and biases, so it is straightforward to compute SVDs of
the matrices. In the case of alignment, we make a number of connections: first, down depth for the
input parameters, then connecting the previous input parameter to the current hidden parameter in
both directions, then connecting the previous hidden parameter to the current input parameter.

In the single-layer plots we visualize an input parameter in the middle of the model, and the
alignment between two input parameters with depth.

C.4. Language Modeling with Transformers

We train a Transformer [37] language model on Wikitext-103 [22]. We base hyperparameter choices
on the Pythia suite [4], specifically the 160 million parameter configuration with sinusoidal position
embeddings, 12 layers, model dimension 768, 12 attention heads per layer, and hidden dimension
768. We use AdamW [21] with batch size 256, learning rate 0.0006 and weight decay 0.1. We
use a context length 2048 and clip gradients to a maximum norm of 1. We also use a learning rate
schedule with a linear warmup and cosine decay to 10% of the learning rate, like Biderman et al.
[4].

For SVDs, for simplicity, we take the SVD of the entire (3dmodel, dmodel) parameter that com-
putes queries, keys, and values from the hidden dimension inside the attention layer without splitting
into individual heads. This is reasonable as the splitting is done after the fact internally. We also take
the SVD of the output parameters and linear layers of the MLPs, which are 2-dimensional matrices.

For alignment, we consider the alignment of WQ and WK matrices, WV and WO matrices, the
alignment between WO and W1 of the MLP block, between W1 and W2 of the MLP block, and
between W2 and the next attention layer.

In the single-layer plots, we visualize a weight matrix inside the MLP of a middle attention
layer, and the alignment between middle weight matrices.

Appendix D. Limitations

There are a few key limitations to our study. As mentioned, we lack the computational resources to
run more than 3 random seeds per experiment. However, we do find error bars to be quite tight in
general (except for the generalization epoch in the grokking experiments). In addition, as discussed,
we ignore 1D parameters in the neural networks, which may be particularly crucial (especially
normalization). In addition, due to computational constraints, we do not consider the alignment of
layers across residual connections as this quickly becomes combinatorial in-depth. Thus, there may
be other interesting interactions that we do not observe. Finally, due to computational constraints we
cannot investigate results on larger models than the 12 layer Transformer, which may have different
behavior.

Appendix E. Compute Resources

All experiments are performed on an internal cluster with on the order of 100 NVIDIA 2080ti GPUs
or newer. All experiments run on a single GPU in less than 8 hours. We estimate that end-to-end, it
might take a few days for these resources to rerun all of the experiments in this paper.
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Appendix F. Code Sources

We use PyTorch [26], NumPy [11] for all experiments and Weights & Biases [5] for experiment
tracking. We make plots with Matplotlib [15] and Seaborn [39]. We also use HuggingFace Datasets [20]
for Wikitext-103 [22].
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