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Abstract

Graph foundation models (GFMs) have recently emerged as a promising paradigm
for achieving broad generalization across various graph data. However, existing
GFMs are often trained on datasets that were shown to poorly represent real-world
graphs, limiting their generalization performance. In contrast, tabular foundation
models (TFMs) not only excel at classical tabular prediction tasks but have also
shown strong applicability in other domains such as time series forecasting, natural
language processing, and computer vision. Motivated by this, we take an alternative
view to the standard perspective of GFMs and reformulate node classification as
a tabular problem. Each node can be represented as a row with feature, structure,
and label information as columns, enabling TFMs to directly perform zero-shot
node classification via in-context learning. In this work, we introduce TabGFM,
a graph foundation model framework that first converts a graph into a table via
feature and structural encoders, applies multiple TFMs to diversely subsampled
tables, and then aggregates their outputs through ensemble selection. Through
experiments on 28 real-world datasets, TabGFM achieves consistent improvements
over task-specific GNNs and state-of-the-art GFMs, highlighting the potential of
tabular reformulation for scalable and generalizable graph learning.

1 Introduction

Graph foundation models (GFMs) have recently emerged as a central research direction in graph
machine learning [1–3]. However, their effectiveness on node classification benchmarks has so far
been limited, with performance improvements over standard task-specific graph neural networks
(GNNs) [4–6] often being marginal [7, 8]. A growing body of work argues that this shortfall is
primarily due to the characteristics of the training data: many available pretraining graphs are small in
scale, contain outdated node features, and rely on heuristic or artificial topological structures, making
them poor representatives of real-world graphs [9–11].

In contrast, tabular foundation models (TFMs) have demonstrated broad applicability by representing
heterogeneous domains in a unified tabular format. This perspective has enabled strong generalization
in settings as diverse as computer vision [12], natural language processing [13–15]. This motivates
our central research question: Can the generalization strengths of tabular foundation models be
effectively leveraged to build a graph foundation model for node classification?

To address this question, we first observe that once the graph’s topological structure has been
exploited, either through neighbor aggregation or through least-squares solutions in GraphAny [7]
and TS-GNNs [8], the node classification problem naturally reduces to a classification task over the
set of feature vectors. At this stage, the objective is to map these vectors to labels. In traditional
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GNNs and TS-GNNs, this step is typically handled by a lightweight classifier, whereas GraphAny
relies on a more elaborate attention mechanism to obtain the final predictions. Thus, this perspective
naturally aligns node classification with tabular learning and opens the door to leveraging TFMs.
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Figure 1: An illustration of how TabGFM
transforms a graph into a tabular represen-
tation using feature and structural encoders.

Motivated by this perspective, we introduce TabGFM,
a graph foundation model framework that reinterprets
node classification as an ensemble learning problem
over tabular models. TabGFM first converts the input
graph to a table by computing node-level features using
pre-defined feature and structural encoders, as shown
in Figure 1. However, the resulting tables are often
too large and contain diverse features and label spaces
that current TFMs [16] are not designed to handle. We
employ an ensemble aggregation strategy: subsampling
multiple smaller, size-constrained tables, applying TFM
to each table to obtain individual predictions, and aggre-
gating them via ensemble selection [17]. The resulting
design unifies graph-specific insights with advances in
tabular learning, yielding a single, generalizable graph
foundation model that does not require pretraining on
graph data, yet still outperforms the state-of-the-art
GFMs and task-specific GNNs by 7%.

Contributions. Our work makes the following contri-
butions toward building generalizable GFMs:

1. We are the first to formulate node classification as a tabular classification problem, which
enables the use of tabular foundation models trained exclusively on tabular data for zero-shot
inference on arbitrarily large unseen graphs.

2. We introduce TabGFM, a graph foundation model framework that represents nodes as rows
in a table and adapts TFMs to node classification via subsampling and ensemble aggregation.

3. We evaluate our framework on 28 real-world node classification datasets, demonstrating
significant improvements over existing GFMs and task-specific GNNs, improving the
averaged accuracy from 65.78% to 73.10%.

2 Related work

Graph foundation models for node classification. Graph Neural Networks (GNNs) are the
dominant approach for graph machine learning tasks. However, these models are typically trained
separately on each dataset and lack the ability to generalize across different feature and label spaces.
Graph Foundation Models (GFMs) have emerged [1–3] to address this gap by learning transferable
representations from diverse graph data. GFMs have shown strong performance on the label inpainting
problem [8], a subtask of inductive node-based learning where the test-time graph contains partially
observed features, analogous to image inpainting. One of the first attempts in this direction is
GraphAny [7], which characterizes the natural symmetries required of a GFM: node permutation-
equivariance, label permutation-equivariance, and feature permutation-invariance. It then constructs
an ensemble by combining the closed-form solutions of multiple least-squares models that respect
these symmetries. An attention mechanism is used to weight the ensemble components, and the
resulting model has been shown to generalize to unseen graphs with arbitrary feature and label spaces.
The subsequent TS-GNN model [8] formalizes the aforementioned symmetries into a theoretically
grounded framework for GFMs. It derives linear layers that respect the same symmetry constraints,
proves the universality of the resulting architecture over multi-sets, and shows empirically that
performance improves as the number of training graphs increases. Our proposed method TabGFM,
incorporates tabular foundation models to allow for a richer set of ensemble models, leading to
significantly improved generalization capabilities and empirical performance.

Tabular foundation models and their application. A tabular learning problem involves predicting
labels from data organized in a table, where each row corresponds to an instance and columns corre-
spond to features. Unlike structured domains such as images or text, tabular data are heterogeneous
and lack strong inductive biases, which historically limited transferability across datasets.
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The emergence of Prior-Data Fitted Networks (PFNs) [18] gave rise to a series of tabular foundation
models (TFMs), which are trained entirely on synthetic datasets sampled from structural causal
models and can solve tabular learning problems via in-context learning in a single forward pass.
Building on this paradigm, TabPFN [16, 19] pioneered the field by training a transformer on a massive
collection of synthetic datasets; showing strong one-shot performance. TabICL [20] further advanced
this paradigm by employing efficient factorized attention, allowing it to scale to larger datasets.

Beyond classical tabular benchmarks, TFMs have shown surprising generalization capabilities in
other domains, including computer vision [12], natural language processing [13–15], and time-series
forecasting [21]. These results suggest that TFMs are not limited to standard tabular tasks, but can
serve as a unifying framework for heterogeneous data. Our proposed model, TabGFM, builds on this
insight by framing node classification as a tabular learning problem, enabling TFMs to adapt to new
graphs without retraining and bridging their advances with the challenges of graph machine learning.

3 Background: Graphs, Label Inpainting and TabPFN

Graphs. We consider a simple, undirected1, unweighted graph G = (V,E,X,Y ) with N nodes.
The graph structure (V,E) is represented by an adjacency matrix A ∈ {0, 1}N×N . Each node
is equipped with a feature vector and a class label: the feature vectors are collected in the matrix
X ∈ RN×F , and the one-hot encoded labels across C classes are given by Y ∈ {0, 1}N×C . The
(random-walk) normalized adjacency matrix is defined as Â = D−1A, where D is a diagonal degree
matrix D = diag(d1, . . . , dn) with di =

∑n
j=1 Aij denoting the degree of node i. Given a matrix

M ∈ RN×D and a subset of nodes S ⊆ V , we write MS ∈ R|S|×D for the submatrix consisting of
the rows of M indexed by S. For a single node v ∈ V , the corresponding row vector is denoted by
Mv ∈ RD. Lastly, we denote [N ] = {1, 2, . . . , N}.

Label Inpainting. We study the label inpainting [7, 8] setting, a subtask of inductive node classifica-
tion. Let L ⊂ V denote the set of labeled nodes with labels YL ∈ R|L|×C , and let Q ⊆ V \L denote
the set of query nodes. The goal is to predict the missing labels YQ ∈ R|Q|×C for the query nodes,
given the existing labels. Unlike the classical semi-supervised regime, which assumes a fixed set of
training labels, label inpainting treats the labeled nodes themselves as part of the input, and the test
graphs are also partially labeled. This formulation enables generalization across varying label sets
and unseen graphs: given a partially labeled graph, the task is to “fill in” the missing labels, analogous
to inpainting in computer vision, by leveraging both node features and structural information.

TabPFN. TabPFN, and PFNs more generally, cast tabular learning as an in-context learning problem.
The training dataset (XL,YL) ∈ R|L|×(F+C) is provided to TabPFN as a context2, analogous to
few-shot examples in large language models. Additionally, a set of query rows XQ ∈ R|Q|×F is
provided for which TabPFN returns a per-node probability distribution TabPFN((XL,YL), XQ) =

ŶQ ∈ R|Q|×C . Each query row’s q ∈ Q prediction Ŷq ∈ RC is an approximation of the posterior
predictive distribution (PPD) p(Yq|Xq, (XL,YL)), which implicitly encodes strong tabular priors
from synthetic data-generating process used during training [18].

4 The TabGFM framework

In this section we present TabGFM, a framework that reinterprets node classification as an ensemble
learning problem over tabular models. Given a graph G = (V,E,X,Y ), our key idea is to reduce
graph-structured data into a tabular form that can be directly processed by powerful tabular foundation
models. TabGFM decouples the problem into three stages:

1. Node-level encoding: Each node is represented as a row in a table by concatenating its
label (if available) with multiple feature and structure encoders. This step transforms graph
information into a tabular format that can be processed by tabular models.

1All results naturally extend to directed graphs; we focus on undirected graphs for ease of presentation.
2While TabPFN is designed to operate directly on the raw labels, for notational convenience we assume

throughout that the model instead receives one-hot encoded label representations.
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2. Tabular learning: Since TFMs are limited to relatively small tables, we construct multiple
subsampled tables by selecting subsets of columns and labeled rows, and obtain separate
predictions from the TFM given each subsample.

3. Ensemble aggregation: Predictions from the subsampled tables are combined through
ensemble selection, which uses predictions on held-out data to determine ensemble weights
that both account for model quality and model interactions. The final prediction for each
query node is obtained as a weighted combination of these outputs.

This modular design allows TabGFM to exploit the strengths of tabular foundation models while
remaining a lightweight and training-free graph foundation model.

4.1 Node-level encoding

Given G = (V,E,X,Y ), we employ I feature encoders {ϕ(i)}Ii=1 : RN×(F+N) → RN×D1

and J structure encoders {ψ(j)}Jj=1 : RN×N → RN×D2 . These produce a tabular representation
T ∈ RN×(ID1+JD2+C), where each node v ∈ V corresponds to a row defined as

Tv =
(
ϕ(1)v (X,A), . . . , ϕ(I)v (X,A), ψ(1)

v (A), . . . , ψ(J)
v (A),Yv

)
,

where ϕ(i)v (X,A) ∈ RD1 and ψ(j)
v (A) ∈ RD2 denote the outputs of the i-th feature encoder and the

j-th structure encoder for node v, respectively. The term Yv is the one-hot label encoding if v ∈ L,
and the zero-vector otherwise.

Feature encoders. We include the raw node features ϕ(0)v (X,A) = X . To incorporate local
structural information, we add neighborhood-smoothed features, which have been shown to im-
prove performance. Specifically, we use k-order neighborhood averages for k ∈ {1, · · · , 4}, i.e.,
ϕ
(k)
v (X,A) = ÂkX , where Â is the normalized adjacency matrix. Beyond such smoothed features,

we also employ LinearGNNs [7] as feature encoders.

Structure encoders. Unlike GNNs, TFMs operate on sets of rows and are thus unaware of the
underlying topology. To reintroduce this information, we employ well-established structural en-
coders designed to capture both local and global graph structure. Specifically, we include (1) Ran-
domWalkPE [22], denoted as ψ(1)

v , which encodes local structures, (2) LaplacianEigenvectorPE [23],
denoted as ψ(2)

v , the top-20 eigenvectors of the normalized Laplacian providing smooth global en-
codings, and (3) GPSE [24], denoted as ψ(3)

v , pretrained embeddings from frozen message-passing
networks that have been shown to be strong general-purpose structure encoders.
Remark 4.1. The construction of both feature and structure encodings is lightweight and training-free,
relying only on closed-form computations.

4.2 Tabular learning and ensemble aggregation

Tabular learning. The tabular representation of a graph is denoted by T = (Z,Y ), where Z ∈
RN×(ID1+JD2) stores the row features obtained by concatenating all feature and structure encodings,
and Y ∈ {0, 1}N×C contains the corresponding row one-hot label vectors. We distinguish between
labeled rows (ZL,YL) ∈ R|L|×(ID1+JD2+C), which include both row features and labels, and query
rows ZQ ∈ R|Q|×(ID1+JD2), which include only row features. The task is to inpaint the missing
labels ŶQ for the query rows, which could be achieved by directly applying TabPFN as

ŶQ = TabPFN
(
(ZL,YL), ZQ

)
. (1)

However, TabPFN is limited to relatively small tables, supporting at most 10,000 rows and 500
columns. This restriction prevents it from serving as a general-purpose GFM, since the encoded
tables in TABGFM reach up to 90,000 labeled rows and 40,000 columns.

We address this limitation by constructing B smaller subsampled tables {T (b)}Bb=1, each fitting
TabPFN’s size constraints. Each T (b) is obtained by (1) retaining all unlabeled rows, (2) uniformly
subsampling columns, and (3) class-balanced subsampling of labeled rows to preserve its distribution.
TabPFN is then applied to each T (b), producing predictions for the query rows Ŷ (b)

Q .
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Figure 2: Zero-shot accuracy for the baselines GraphAny and TS-Mean, and our TabGFM, compared
with end-to-end test accuracy of GAT.

Ensemble aggregation. We aggregate the predictions through an affine combination, where the
contribution of each predictor is determined via ensemble selection [17]. A hold-out set H ⊂ L,
is randomly sampled from the labeled nodes, with the remaining nodes A = L \H called anchor
nodes. Given TabPFN’s limitations, we cannot directly provide (XA,YA) as context to the models.
Therefore, as described above, each TabPFN model independently generates its own subsampled
table T (b)

ES as described in the previous section, where the subset of columns sampled per model stays
fixed between ensemble selection and inference. We then create held-out predictions per model:

Ŷ
(b)
H = TabPFN

(
T

(b)
ES ,Z

(b)
H ),

where Z
(b)
H denotes the column-subsampled features of the held-out rows. Ensemble selection [17]

approximates the weights ŵ(b) through greedy forward selection of the following intractable problem

(ŵ(1), . . . , ŵ(B)) = argmax
∀b∈[B], w(b)∈R∑B

b=1 w(b)=1

Acc
( B∑
b=1

w(b)Ŷ
(b)
H ,YH

)
,

where Acc is the accuracy function and YH denotes the labels of the held-out rows. The optimized
weights are then used to combine the query predictions, yielding the final ensemble prediction as

ŶQ =

B∑
b=1

ŵ(b)Ŷ
(b)
Q .

Remark 4.2. While we focus on TabPFN for its zero-shot in-context prediction, our framework is
general and can accommodate alternative tabular learners (e.g., gradient-boosted trees).

5 Experiments

In this section, we would like to answer the following questions:

Q1 How do TabGFM’s zero-shot generalization capabilities compare against existing GFMs?
Q2 Is TabGFM able to improve performance as the number of subsampled tables increases?

Datasets. Following Finkelshtein et al. [8], we evaluate on 28 diverse node-classification datasets
using their official splits. These include brazil, usa, and europe [25]; chameleon, squirrel [26]; roman-
empire, amazon-ratings, minesweeper, questions, and tolokers [10]. We further employ wiki-attr
and blogcatalog [27]; cornell, wisconsin, texas, and actor [28]; and the classical benchmarks cora,
citeseer, and pubmed [29]. In addition, we consider co-cs, co-physics, computers, and photo [30];
full-DBLP and full-cora [31]; wiki-cs [32]; and last-fm-asia and deezer [33]. Finally, we include the
large-scale arxiv dataset [34]. Dataset statistics can be found in Appendix C.
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Setup. We employ TabGFM using an ensemble of 10 subsampled tables combined with 8 additional
LinearGNNs, comparing it against GraphAny [7] and TS-Mean [8], both trained on Cora, and
GAT [5] trained end-to-end. All results reflect the mean accuracy and standard deviation over 5
random seeds. Further implementation details can be found in Appendix B.

5.1 How do TabGFM’s zero-shot generalization capabilities compare against existing GFMs?

Results. TabGFM displays strong performance on all datasets, either performing comparable with
or outperforming both GraphAny and TS-Mean, leading to an average test accuracy of 73.10% in
comparison to 66.55% for GAT, 65.56% for GraphAny and 65.78% for TS-Mean, a difference of
over 7% mean accuracy. As a consequence, TabGFM is the first GFM to demonstrate substantial
improvements over end-to-end baselines (Q1). TabGFM widens the gap to end-to-end baselines,
increasing from less than 0.3% to over 7.5%.

We believe that the significant difference in performance can be attributed to the much larger scale
of training data available for training the tabular foundation models at the core of TabGFM. For
instance, TabPFN was trained on 130 million synthetic datasets, which allows it to experience a
larger data distribution. In contrast, the GFM pretrained on the largest number of datasets to date
is a variant of TS-Mean, which was trained on nine datasets. While training on additional datasets
does increase its performance [8], TS-Mean’s average accuracy of 68.57% remains substantially
below TabGFM’s mean accuracy of 74.39% on the remaining 20 datasets. Given the limited number
of publicly available graph datasets, we hypothesize that it is unlikely that GFMs trained solely on
(real-world) graph data will be able to match the performance of TabGFM.

5.2 Is TabGFM able to improve performance as the number of subsampled tables increases?

Figure 3: Zero-shot accuracy of
TabGFM across 28 datasets as a func-
tion of the number of subsampled tables.

In addition to the previously described setup, we now vary
the number of TabPFN models and associated subsam-
pled tables B from 1 to 10 to understand their impact on
TabGFM’s performance.

Results. Figure 3 shows that as expected, TabGFM’s
performance steadily increases with the number of sub-
sampled tables, though the rate of improvement gradu-
ally flattens for larger B. This suggests that additional
subsampled tables provide useful complementary infor-
mation (Q2). The diminishing gains are likely due to
increased redundancy among the tables, particularly on
smaller datasets.

6 Conclusions

We introduced TabGFM, a graph foundation model (GFM) framework that reformulates node
classification as a tabular label inpainting problem. TabGFM represents nodes as rows in a table
through a combination of feature and structural encodings, and leverages pretrained tabular foundation
models (TFMs), which are applied to subsampled tables and aggregated through ensemble selection.
This approach yields significant improvements over existing GFMs, requires no pretraining on graph
data, and still outperforms state-of-the-art GFMs and task-specific GNNs by 7%.

Looking ahead, an important direction for TabGFM is to move beyond its limitation of relying on
predefined feature and structural encoders, toward fine-tuning existing TFM over data that captures
richer graph information. Our finding suggests that true generalization may come not from a more
complex message passing mechanism, but from reframing graph problems into those modalities
where foundation models already excel. In this light, another promising avenue is to extend TabGFM
to tasks such as link prediction and graph classification, as it is currently limited to node classification,
thereby moving toward a more general-purpose GFM.
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A Additional results

A.1 The Importance of ensemble selection and LinearGNNs

Table 1: Zero-shot accuracy Mean of TabGFM with and without ensemble selection and LinearGNNs.

Method Mean Test Accuracy (%)
TabGFM 73.26± 0.14
unweighted ensembling 71.61± 0.10
w/o LinearGNNs 71.03± 0.31
w/o TabPFN models 69.74± 0.24

Setup. We initialize TabGFM with an ensemble comprising ten TabPFN models and eight Lin-
earGNNs, and systematically ablate individual components to assess their contributions. Specifically,
we evaluate three alternative configurations: (i) replacing ensemble selection with uniform averaging,
(ii) removing all LinearGNNs, and (iii) removing all TabPFN models. For all experiments, we omit
PCA preprocessing.

Results. Table 1 reports mean test set accuracies across the 28 datasets described in Section 5. In all
cases, the ablated variants substantially underperform the full TabGFM model. While LinearGNNs
exhibit lower standalone accuracy, their architectural diversity yields error patterns that are less
correlated with those of TabPFNs, enabling ensemble selection to construct stronger ensembles.
However, the gains from such diversity are fully realized only when ensemble weights are optimized
in a principled manner; naive averaging markedly reduces performance. Finally, we observe that
even large and diverse ensembles of LinearGNNs, despite the benefits of ensemble selection, fail to
recover the strong tabular inductive biases encoded in transformer-based models such as TabPFN.

A.2 Per-dataset results for Figure 2

Table 2: Zero-shot per-dataset accuracy of TabGFM, TS-Mean and Graphany, with GraphAny and
TS-Mean trained on cora.

Dataset GAT GraphAny TS-Mean TabGFM (PCA) TabGFM (w/o PCA)

actor 32.59 ± 0.83 27.54 ± 0.20 28.09 ± 0.93 31.18 ± 0.18 31.18 ± 0.18
amazon-ratings 40.63 ± 0.66 42.80 ± 0.09 42.27 ± 1.40 44.34 ± 0.32 44.34 ± 0.32
arxiv 57.93 ± 3.44 58.85 ± 0.03 56.33 ± 2.58 66.70 ± 0.21 66.70 ± 0.21
blogcatalog 78.20 ± 7.23 71.54 ± 3.04 76.30 ± 2.92 79.77 ± 1.06 79.77 ± 1.06
brazil 35.38 ± 4.21 33.84 ± 15.65 39.23 ± 5.70 73.08 ± 4.03 73.08 ± 4.03
chameleon 58.46 ± 6.23 63.64 ± 1.48 60.83 ± 5.41 72.94 ± 1.13 72.94 ± 1.13
citeseer 63.92 ± 0.84 68.88 ± 0.10 68.66 ± 0.19 68.08 ± 0.61 68.08 ± 0.61
co-cs 82.28 ± 0.86 90.06 ± 0.80 90.92 ± 0.47 90.49 ± 0.50 90.97 ± 0.27
co-physics 85.92 ± 1.10 91.85 ± 0.34 92.61 ± 0.61 92.31 ± 0.27 92.33 ± 0.22
computers 70.94 ± 3.40 82.79 ± 1.13 81.37 ± 1.25 84.33 ± 0.33 84.33 ± 0.33
cornell 69.73 ± 2.26 63.24 ± 1.32 68.65 ± 2.42 75.14 ± 2.16 75.14 ± 2.16
deezer 55.22 ± 2.33 51.82 ± 2.49 52.31 ± 2.52 52.99 ± 1.65 52.99 ± 1.65
europe 39.00 ± 4.30 41.25 ± 7.25 35.88 ± 6.91 55.38 ± 2.30 55.38 ± 2.30
full-DBLP 67.34 ± 2.75 71.48 ± 1.44 66.42 ± 3.65 71.92 ± 1.46 71.92 ± 1.46
full-cora 59.95 ± 0.88 51.18 ± 0.78 53.58 ± 0.73 54.56 ± 0.19 58.45 ± 0.24
last-fm-asia 72.65 ± 0.48 81.14 ± 0.42 78.03 ± 1.02 85.47 ± 0.29 85.47 ± 0.29
minesweeper 84.15 ± 0.24 80.46 ± 0.11 80.68 ± 0.38 85.83 ± 0.13 85.83 ± 0.13
photo 80.78 ± 3.59 89.91 ± 0.88 90.18 ± 1.30 89.63 ± 0.48 89.63 ± 0.48
pubmed 75.12 ± 0.89 76.46 ± 0.08 74.98 ± 0.56 78.96 ± 0.43 78.96 ± 0.43
questions 97.13 ± 0.05 97.07 ± 0.03 97.02 ± 0.01 97.14 ± 0.01 97.14 ± 0.01
roman-empire 69.80 ± 4.18 63.34 ± 0.58 66.36 ± 1.02 74.12 ± 0.28 74.12 ± 0.28
squirrel 38.16 ± 1.04 49.74 ± 0.47 41.81 ± 0.80 65.71 ± 0.13 65.71 ± 0.13
texas 81.62 ± 6.45 71.35 ± 2.16 73.51 ± 4.01 81.08 ± 2.09 81.08 ± 2.09
tolokers 78.22 ± 0.37 78.20 ± 0.03 78.12 ± 0.09 82.82 ± 0.15 82.82 ± 0.15
usa 43.03 ± 2.08 43.35 ± 1.62 42.34 ± 2.12 60.50 ± 0.80 60.50 ± 0.80
wiki-attr 68.91 ± 9.50 60.27 ± 3.06 69.89 ± 1.31 70.09 ± 0.92 70.09 ± 0.92
wiki-cs 74.99 ± 0.59 74.11 ± 0.60 74.16 ± 2.07 79.07 ± 0.54 79.07 ± 0.54
wisconsin 73.33 ± 8.27 59.61 ± 5.77 61.18 ± 11.38 83.14 ± 1.33 83.14 ± 1.33

Average (28 graphs) 65.55 ± 2.82 65.56 ± 1.86 65.78 ± 2.28 73.10 ± 0.15 73.26 ± 0.14

Setup. We adopt the experimental setup described in Section 5 and Appendix B for both TabGFM
and all baselines. We apply PCA preprocessing for all baselines on the three affected datasets (see
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Table 3: Zero-shot per-dataset accuracy of TS-Mean and TabGFM across 20 datasets, with T-Mean
trained on the remaining 9 datasets.

Dataset TS-Mean TabGFM (PCA) TabGFM (w/o PCA)

amazon-ratings 42.20± 0.72 44.34± 0.32 44.34± 0.32
arxiv 56.13± 1.67 66.70± 0.21 66.70± 0.21
blogcatalog 77.90± 3.80 79.77± 1.06 79.77± 1.06
brazil 40.77± 14.80 73.08± 4.03 73.08± 4.03
chameleon 56.97± 3.68 72.94± 1.13 72.94± 1.13
citeseer 68.14± 0.30 68.08± 0.61 68.08± 0.61
co-cs 91.36± 0.36 90.49± 0.50 90.97± 0.27
co-physics 92.80± 0.54 92.31± 0.27 92.33± 0.22
cornell 74.59± 4.91 75.14± 2.16 75.14± 2.16
deezer 51.88± 2.85 52.99± 1.65 52.99± 1.65
full-DBLP 66.64± 3.55 71.92± 1.46 71.92± 1.46
full-cora 53.20± 1.70 54.56± 0.19 58.45± 0.24
last-fm-asia 78.07± 0.76 85.47± 0.29 85.47± 0.29
minesweeper 80.05± 0.05 85.83± 0.13 85.83± 0.13
pubmed 77.82± 0.56 78.96± 0.43 78.96± 0.43
questions 97.03± 0.02 97.14± 0.01 97.14± 0.01
squirrel 37.35± 1.62 65.71± 0.13 65.71± 0.13
wiki-attr 73.71± 1.61 70.09± 0.92 70.09± 0.92
wiki-cs 74.31± 0.90 79.07± 0.54 79.07± 0.54
wisconsin 80.47± 6.04 83.14± 1.33 83.14± 1.33

Average (20 graphs) 68.57± 2.52 74.39± 0.28 74.61± 0.26

Appendix B). All baselines are trained on cora, unless stated otherwise. We report results for TabGFM
both with and without PCA preprocessing.

Results. Table 2 presents per-dataset accuracies alongside overall mean performance. The overall
mean accuracies are also displayed in Figure 2, which reports results for TabGFM (PCA). TabGFM
(PCA) achieves the best performance on 20 of the 28 datasets, demonstrating consistent strength
across diverse real-world tasks. Omitting PCA preprocessing slightly improves results on all affected
datasets, with the most significant gain observed on full-cora.

We also report per-dataset results of TS-Mean trained on nine datasets (cora, texas, tolokers, photo,
roman-empire, usa, actor, computers, europe) and TabGFM (with and without PCA preprocessing)
for the remaining 20 datasets in Table 3. As TabGFM does not train on graph data, per-dataset
results do not change between Table 2 and Table 3 and are provided for convenience. Although the
performance of TS-Mean improves with additional training datasets, it remains significantly below
TabGFM, outperforming it only on four out of twenty remaining datasets.

A.3 Per-dataset results for Figure 3

Setup. We follow the setup described in Section 5.2, which extends the general experiment setup
from Section 5 and Appendix B. In this experiment, we vary the number of subsampled tables and
corresponding TabPFN models B ∈ {1, . . . , 10}. All results are reported without PCA preprocessing.

Results. Per-dataset and overall mean accuracies for selected values of B ∈ {0, 1, 4, 7, 10} are
reported in Table 4, while Figure 3 visualizes the overall trend together with standard errors. Across
datasets, accuracy generally increases with larger B. The most substantial improvements occur when
moving from B = 0 (only LinearGNN components) to B = 1, where TabPFN models are first
introduced. For datasets with a large number of classes, this threshold can shift to higher B (see
Appendix B). Beyond this point, performance gains remain consistent, though less pronounced, as B
increases further.
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Table 4: Zero-shot per-dataset accuracy of TabGFM, with varying TabPFN models B.
Dataset B=0 B=1 B=4 B=7 B=10

actor 31.24± 0.25 30.84± 0.15 31.16± 0.23 31.22± 0.12 31.18± 0.18
amazon-ratings 43.61± 0.28 43.90± 0.15 44.16± 0.25 44.29± 0.33 44.34± 0.32
arxiv 58.43± 0.05 58.43± 0.05 58.43± 0.05 65.72± 0.27 66.70± 0.21
blogcatalog 79.13± 1.01 80.25± 0.99 79.31± 0.94 80.09± 1.16 79.77± 1.06
brazil 53.08± 3.73 71.54± 4.65 76.92± 4.55 73.85± 1.88 73.08± 4.03
chameleon 70.66± 1.23 72.72± 0.85 72.11± 1.05 73.20± 1.16 72.94± 1.13
citeseer 64.68± 1.03 65.38± 1.23 67.10± 0.32 67.12± 0.75 68.08± 0.61
co-cs 90.90± 0.14 90.90± 0.14 90.97± 0.19 91.04± 0.20 90.97± 0.27
co-physics 92.27± 0.27 92.14± 0.26 92.14± 0.28 92.15± 0.20 92.33± 0.22
computers 82.18± 0.17 84.03± 0.68 84.34± 0.31 83.94± 0.48 84.33± 0.33
cornell 75.14± 1.58 74.05± 1.83 75.68± 2.09 76.76± 1.38 75.14± 2.16
deezer 52.08± 1.28 51.72± 1.39 51.68± 1.40 51.67± 1.61 52.99± 1.65
europe 43.25± 2.72 55.88± 1.49 54.50± 2.53 53.50± 3.12 55.38± 2.30
full-DBLP 70.31± 1.08 72.43± 0.79 73.40± 1.09 72.17± 1.03 71.92± 1.46
full-cora 57.18± 0.25 57.18± 0.25 57.18± 0.25 58.44± 0.17 58.45± 0.24
last-fm-asia 84.68± 0.28 84.68± 0.28 85.12± 0.29 85.61± 0.31 85.47± 0.29
minesweeper 82.11± 0.17 85.17± 0.15 85.74± 0.10 85.75± 0.09 85.83± 0.13
photo 90.78± 0.38 90.51± 0.40 90.80± 0.62 90.41± 0.60 89.63± 0.48
pubmed 75.66± 0.71 77.68± 0.67 76.64± 1.73 76.52± 1.77 78.96± 0.43
questions 97.04± 0.03 97.03± 0.03 97.05± 0.03 97.10± 0.02 97.14± 0.01
roman-empire 67.59± 0.17 67.59± 0.17 73.65± 0.17 73.86± 0.23 74.12± 0.28
squirrel 56.64± 0.47 64.94± 0.35 65.46± 0.41 65.57± 0.14 65.71± 0.13
texas 82.70± 2.78 82.16± 2.36 80.00± 1.08 81.08± 2.09 81.08± 2.09
tolokers 79.03± 0.10 82.21± 0.22 82.82± 0.16 82.84± 0.15 82.82± 0.15
usa 50.45± 2.49 61.44± 0.76 59.78± 0.92 60.54± 0.86 60.50± 0.80
wiki-attr 66.18± 1.88 66.18± 1.88 69.66± 0.75 70.26± 0.98 70.09± 0.92
wiki-cs 77.62± 0.26 78.96± 0.60 79.01± 0.64 79.08± 0.53 79.07± 0.54
wisconsin 78.04± 2.66 81.57± 2.29 85.10± 0.48 81.18± 1.00 83.14± 1.33

Average 69.74± 0.24 72.20± 0.18 72.85± 0.23 73.03± 0.09 73.26± 0.14

B Implementation details

All experiments can be run using a single NVIDIA L40S GPU. Reported results are averaged across
five runs with random seeds {0, 1, 2, 3, 4}. The source code to reproduce our experiments is available
at https://github.com/ahayler/tag.

TabGFM node-level embeddings. For the GPSE embeddings [24] (see section 4.1), we use the
checkpoint trained on ChEML [35]. For RandomWalkPE [22] and LaplacianEigenvectorPE [23], we
pick k = 20. Due to computational constraints, we only compute RandomWalkPE for graphs with
fewer than or equal to 5000 nodes. TabGFM filters out the LinearGNN based on RandomWalkPE for
datasets with more than 5000 nodes.

TabPFN. For all our experiments, we use the newest version of TabPFN at the time of writing. For
each TabPFN model, we subsample 2500 random labelled rows and 400 columns. To account for
the imbalance in the number of feature-encoding columns vs. the number of structure-encoding
columns, 300 of 400 columns are sampled from feature encodings and 100 are sampled from structure
encodings.

Since TabPFN natively supports at most ten classes, we adopt the error-correcting output code
(ECOC) strategy [36] suggested by Hollmann et al. [19], which splits tasks with more than ten classes
into B subtasks of at most ten classes each. Our subsampling strategy is applied independently to
each subtask and aggregated outputs form one predictor in the ensemble selection. Given C classes,
the ECOC-strategy generally needs at least ⌈C/9⌉ subproblems to ensure coverage; we do not apply
TabPFN models on the dataset with B < ⌈C/9⌉.
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Table 5: Statistics of the 28 node classification datasets.

Dataset #Nodes #Edges #Feats #Classes Train/Val/Test (%)

actor 7,600 30,019 932 5 48.0/32.0/20.0
amazon-ratings 24,492 186,100 300 5 50.0/25.0/25.0
arxiv 169,343 1,166,243 128 40 53.7/17.6/28.7
blogcatalog 5,196 343,486 8,189 6 2.3/48.8/48.8
brazil 131 1,074 131 4 61.1/19.1/19.8
chameleon 2,277 36,101 2,325 5 48.0/32.0/20.0
citeseer 3,327 9,104 3,703 6 3.6/15.0/30.1
co-cs 18,333 163,788 6,805 15 1.6/49.2/49.2
co-physics 34,493 495,924 8,415 5 0.3/49.9/49.9
computers 13,752 491,722 767 10 1.5/49.3/49.3
cora 2,708 10,556 1,433 7 5.2/18.5/36.9
cornell 183 554 1,703 5 47.5/32.2/20.2
deezer 28,281 185,504 128 2 0.1/49.9/49.9
europe 399 5,995 399 4 20.1/39.8/40.1
full-DBLP 17,716 105,734 1,639 4 0.5/49.8/49.8
full-cora 19,793 126,842 8,710 70 7.1/46.5/46.5
last-fm-asia 7,624 55,612 128 18 4.7/47.6/47.6
minesweeper 10,000 78,804 7 2 50.0/25.0/25.0
photo 7,650 238,162 745 8 2.1/49.0/49.0
pubmed 19,717 88,648 500 3 0.3/ 2.5/ 5.1
questions 48,921 307,080 301 2 50.0/25.0/25.0
roman-empire 22,662 65,854 300 18 50.0/25.0/25.0
squirrel 5,201 217,073 2,089 5 48.0/32.0/20.0
texas 183 558 1,703 5 47.5/31.7/20.2
tolokers 11,758 1,038,000 10 2 50.0/25.0/25.0
usa 1,190 13,599 1,190 4 6.7/46.6/46.6
wiki 2,405 17,981 4,973 17 14.1/42.9/43.0
wiki-cs 11,701 431,206 300 10 5.0/15.1/49.9
wisconsin 251 900 1,703 5 47.8/31.9/20.3

LinearGNNs. The eight additional LinearGNNs in are each based on one of the eight node-level
encodings presented in Section 4.1. We normalize the outputs l = (lc)c∈C of the LinearGNNs before
ensembling using the following proportional scaling, which maps the smallest logit to 0

l′c = lc −min
i

li + ϵ ∀c ∈ [C],

p =
l′∑
i l

′
i

.

This ensures that ensemble models with low weights cannot overrule other ensemble members by
predicting unbounded logits with high amplitude.

Ensemble selection. Our implementation of ensemble selection [17] samples models with replace-
ment, breaks ties (during the greedy selection) randomly and implements early stopping, i.e. it picks
the first model configuration in the history that achieved the best possible (accuracy) score on the
held-out predictions. We used k-fold cross-validation to generate held-out predictions for all labeled
nodes L. For TabPFN-based models, we use two folds and five folds for LinearGNNs.

C Dataset statistics

Dataset statistics for all 28 datasets used in Section 5 are presented in Table 5.
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D Impact statement

This paper presents work aimed at advancing the field of graph machine learning through the
development of a graph foundation model for node classification. Potential applications of such
models include social network analysis, recommendation systems, fraud detection, and knowledge
graph completion. These applications can have significant societal impacts, ranging from improved
information retrieval and decision support to risks such as bias amplification, privacy concerns, or
the reinforcement of misinformation. However, we do not identify any specific, immediate concerns
requiring special attention in the context of this work.
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Submission of papers to NeurIPS 2025

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel graph foundation model based on tabular foundation
models and validate our claim empirically. In addition to the results in the main paper, we
present detailed results in the appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We acknowledge several limitations in this work, including the restriction of
TabGFM to the node classification setting and its dependence on predefined feature and
structural encoders to capture relevant graph information.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all information necessary to reproduce the results presented in
the paper, including details on the model architecture, datasets, hardware setup, and other
relevant materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all code required to reproduce our experiments in a GitHub
repository, together with detailed documentation of the experimental setup in both the main
paper and the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide an overview of the experimental setup sufficient to appreciate the
results in the main paper and further experimental details in the appendix. The appropriate
sections of the appendix are clearly referred to in the main paper for easy reference.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Any Figure or Table that includes standard errors contains appropriate labeling.
The factor of variability (random seeds) is mentioned in the experiments section and further
explained in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report sufficient hardware statistics to replicate all our experiments in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres to the NeurIPS Code of Ethics, including anonymity and
data-use considerations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Yes. The paper discusses both positive and negative societal impacts in the
appendix. However, we do not identify any specific, immediate concerns requiring special
attention in the context of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe that our work requires additional safeguards. The used
model checkpoints and datasets are already publicly accessible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets are cited with versions and terms, and licenses are
respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs in its method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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