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ABSTRACT

Accurate traffic forecasting is essential to enable advanced utilization of intelligent
transportation systems. However, forecasting models often struggle to capture
the complex spatio-temporal dependencies of traffic data, as they typically handle
spatial and temporal dependencies separately. To overcome this limitation, we in-
troduce the Tri-Tense Former (TTformer), a novel approach that captures spatio-
temporal relationships through three tense-specific attention modules. We cate-
gorize traffic flow into three tense dimensions: past-to-present (present-perfect),
present, and future. Each tense-specific attention module captures the dependen-
cies within its respective traffic flow. Furthermore, to address incomplete traffic
data, we improve the robustness of the model by employing contrastive learning
with negative filtering technique that operates regardless of predefined adjacency
matrices. TTformer significantly outperforms existing models by more effectively
capturing spatio-temporal dependencies and improving traffic forecasting accu-
racy.

1 INTRODUCTION

Traffic has a significant impact on daily life, influencing the economy, environment, and public
safety. Therefore, accurate traffic forecasting is critical for developing more efficient and safer
cities. However, predicting traffic flow remains a challenging problem due to the intricate spatial
and temporal dependencies within traffic data (Zhao et al., 2019). In response, machine learning
research has focused on addressing both the spatial dependency between roads and the temporal
dependency, where past traffic states influence current conditions. A common approach is to design
separate modules to address each type of dependency (Sahili & Awad, 2023). Recurrent Neural
Networks (RNNs), which excel in time series prediction, are typically used to capture temporal
characteristics. For spatial features, graph-based models, which treat road networks as graphs, have
proven more effective than Convolutional Neural Networks (CNNs). Recently, with the rise of
transformer architectures, attention-based models have gained traction as a new trend in this field.
Many researchers have thus factorized spatial and temporal attention, aligning with the broader trend
in spatio-temporal research. However, to achieve a more comprehensive understanding of spatio-
temporal dependencies, it is essential to capture these relationships in their entirety, rather than in
isolation (Grigsby et al., 2021). In light of this, we introduce a model that holistically captures
spatio-temporal relationships by leveraging attention mechanisms from a novel perspective.

As illustrated in Figure 1a, the vanilla spatio-temporal model employs two aspects of the attention
mechanism: spatial and temporal. The spatial attention mechanism captures the relationship be-
tween roads at the same timestamp, while the temporal attention mechanism identifies relationships
between timestamps for the same variable. However, in this setting, it becomes challenging to quan-
tify the impact of past traffic conditions on the current state, as it doesn’t account for how past traffic
on other roads influences the present. Therefore, a novel approach to the attention module is needed
to directly represent these complex traffic relationships.

To effectively represent the intricate dependencies in traffic conditions, separating them into purely
spatial and temporal dimensions is not ideal (Grigsby et al., 2021). Instead, we focus on capturing
the real traffic flow to simultaneously represent spatio-temporal relationships. These relationships
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can be categorized into three types of traffic flow: from past to present, the present, and from present
to future. Using the concept of tense, these flows correspond to the present-perfect, present, and
future tenses, respectively.

We propose a model called the “Tri-Tense Former (TTformer),” which incorporates three tense-
specific attention modules, each reflecting one of these tense-traffic flows, as shown in Figure 1b.
The present-perfect tense attention module quantifies the impact of past traffic conditions on the cur-
rent traffic state in a spatio-temporal context. The present tense attention module captures the impact
of spatial relationships between roads on the current traffic state. Lastly, the future tense attention
module measures the prospective temporal relationships, capturing how current traffic conditions
influence future states. To implement each tense-attention module, we organize the traffic sequence
into “spatio-temporal blocks” and assign an appropriate pair of query and key vectors in the attention
mechanism. Additionally, traffic data often contains missing values or outliers, primarily due to sen-
sor failures or inaccuracies (Liu et al., 2022). To address these imperfections, we adopt a contrastive
learning method to derive more robust representations. Our approach also includes a negative filter-
ing methodology, which proves especially useful in the absence of a predefined adjacency matrix.

The main contributions of this paper are as follows:

• We propose Tri-Tense Former (TTformer), a model that captures spatio-temporal relation-
ships with three tense attention modules: the present-perfect, the present, and the future,
reflecting real traffic flow dynamics. We implement this by structuring traffic sequences
into ‘spatio-temporal blocks’ and setting three different key-query pairs in the attention
mechanism.

• We adopt contrastive learning to address inconsistencies in traffic datasets. In the negative
filtering step of contrastive learning, we use spatial embedding instead of a predefined adja-
cency matrix, enabling the methodology to be effective even when predefined information
is unavailable.

• We conduct a series of experiments using real traffic datasets, METR-LA and PEMS-BAY.
The proposed model demonstrates superior performance compared to baseline models, in-
dicating that TTformer is capable of jointly capturing spatio-temporal relationships effec-
tively.

(a) Vanilla Spatio-temporal Attention (b) Tri-Tense Attention

Figure 1: Spatio-Temporal Attention mechanism

2 RELATED WORK

2.1 SPATIO-TEMPORAL TRANSFORMER

The attention mechanism is capable of capturing dynamic relationships, and it has no limit on the
receptive field, allowing it to handle long dependencies. Consequently, Transformer-based models
are currently being researched to identify relationships between roads using attention mechanisms
instead of adjacency matrices (Dwivedi & Bresson, 2020). The attention score Att(Lq, Lk) calcu-
lated between a query sequence Lq and a key sequence Lk represents the relationship between the
query and the key. This allows the model to dynamically learn and adapt to the relationships be-
tween roads based on the traffic context, rather than relying on predefined static adjacency matrices.
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Traffic forecasting models that implement attention mechanisms compute both spatial and tempo-
ral attention to perform prediction tasks. Numerous models such as Dsformer (Yu et al., 2023) and
Traffic transformers(Cai et al., 2020) have been developed to calculate spatial and temporal attention
separately.

When calculating attention separately for spatial and temporal dimensions, a limitation exists in
that only temporal relationships per sequence are expressed. Therefore, models that capture spatio-
temporal relationships simultaneously are being studied, allowing for a more comprehensive under-
standing of the interactions between variables across both spatial and temporal dimensions. Space-
timeformer (Grigsby et al., 2021) tries to address this issue by reorganizing tokens to express spatio-
temporal attention. The model handles N nodes and (c+h) time steps simultaneously, thus enabling
the calculation of spatio-temporal relationships in a unified manner. Spacetimeformer trains a global
self-attention network that jointly computes attention across both space and time for simultaneous
comprehension of spatio-temporal relationships. However, this approach leads to a quadratic in-
crease with (N ∗ (c + h)) in computational complexity and memory requirements. Therefore,
additional techniques are required to reduce the computational complexity by sparsifying the com-
putational matrix (Zhou et al., 2021). STAEformer (Liu et al., 2023) employs an adaptive embedding
mechanism to capture spatio-temporal relationships simultaneously. However, the adaptive embed-
ding has the disadvantage of maintaining a static representation, which may not adequately represent
the dynamic spatio-temporal relationships that may change according to the traffic state.

To capture the spatial and temporal dependency, numerous GNN-based models and the attention-
based models factorize each dependency for calculation. However, this approach results in insuf-
ficient capture of spatio-temporal dependencies. Consequently, we present a novel approach to
capture hidden dependencies by introducing three tense attention modules that can simultaneously
understand spatio-temporal relationships. When compared to Spacetimeformer, our model offers
significant scalability advantages in that it maintains a constant graph size, which is the same as
when computing spatial and temporal attention separately.

2.2 TRAFFIC DATA IMPUTATION

Addressing the incompleteness of traffic datasets is crucial for enhancing the performance of traffic
prediction models. Events such as unexpected accidents, broken sensors, or missing signals fre-
quently occur, significantly decreasing the quality of the collected data (Fang & Wang, 2020). Sim-
ple deletion of missing values is only feasible when the missing rate is low (Wothke, 2000; McKnight
et al., 2007). Therefore, various data imputation methods have been developed. Initially, neighbor-
based methods provided a solution by identifying the nearest neighbors using techniques like KNN
and updating the missing values with the average of these neighbors (Song et al., 2015) or replacing
with the last observed value (Amiri & Jensen, 2016). Recently, deep learning-based methods have
demonstrated superior performance, encompassing conventional learning techniques—both super-
vised and unsupervised learning—and more recent methods such as self-supervised learning.

RNN-based models such as GRU-D (Che et al., 2018), BRITS (Cao et al., 2018), and NAOMI
(Liu et al., 2019) are effective for handling time-series datasets. While they have proven effective
in handling missing data within time series datasets, they are not specifically designed for spatio-
temporal datasets. These models primarily focus on temporal dependencies and do not adequately
account for spatial relationships among adjacent nodes in networks. These limitations underscore
the need for novel approaches that can integrate both spatial and temporal dependencies, leveraging
the relational information inherent in spatio-temporal datasets. GRIN (Cini et al., 2022) tackles the
shortcomings of conventional time-series imputation techniques by employing a graph structure to
effectively handle spatio-temporal data and learning representations through message passing with
RNN cell. Like the BRITS model, GRIN processes multivariate time series data in both forward
and backward directions at each node, operating bidirectionally. However, GRIN is prone to the
error propagation issues typically found in autoregressive models. SPIN (Marisca et al., 2022) was
developed to mitigate the error propagation issue observed in GRIN. SPIN leverages attention-based
architectures instead of relying on recurrent neural networks to avoid the autoregressive propagation
of errors. SPIN employs inter-node spatio-temporal cross-attention to propagate information from
neighboring nodes and intra-node temporal self-attention to analyze the sequence of each node in-
dependently. STGAIN (Huang et al., 2023) represents another advanced approach, utilizing GANs
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for robust spatio-temporal imputation. It features a spatio-temporal generator and a discriminator
that incorporates a GCN as a spatial aggregator and a 1-D CNN as a temporal extractor.

While conventional learning techniques have demonstrated good performance, they require dedi-
cated training for a data imputation model. Contrastive learning offers a potential solution to this
limitation by not directly imputing the missing values but enhancing the quality of the learned rep-
resentations for the prediction. The objective of contrastive learning is to increase the similarity
between positive pairs while decreasing it for negative pairs, thereby refining the representations
to capture meaningful information. STGCL (Liu et al., 2022) highlights data scarcity as an obsta-
cle to the performance of spatio-temporal forecasting and argues that the application of contrastive
learning is beneficial. The author proposes several data augmentation methods and negative filtering
techniques. With regard to spatial negative filtering, the authors utilize the known adjacency matrix
to classify first-order neighbors as hard negatives and exclude them from contrastive loss computa-
tion. However, this approach is subject to the limitation of requiring a predefined matrix. Therefore,
we suggest an alternative method that can be applied without the need for a predefined matrix.

3 METHODOLOGY

Preliminary. Given a set of c timestamps of N variables, the objective is to predict the next h
timestamps. To formulate the problem, we adopt the graph concept to model traffic conditions,
where each variable represents sensors on the road with traffic attribute values. Each graph, des-
ignated as Gt = (Vt, At), represents the traffic state at the given timestamp t. Consequently, as
illustrated in Figure 2, the traffic forecasting problem can be formulated as follows: when the
context sequence of graphs G[C] = [GT−c+1, · · · , GT ] is given, the target sequence of graphs
G[H] = [GT+1, · · · , GT+h] is to be predicted. Each node in the graph, designated as vit, represents
the ith sensor on the road. For N traffic sensors, the total number of nodes in the graph is equal to
|Vt| = N . The adjacency matrix, At, is a matrix of At ∈ RN∗N that represents the relationship be-
tween N roads. In the context of traffic forecasting, a predefined static adjacency matrix, calculated
based on the distances between roads, is typically employed as auxiliary information. In contrast,
this paper presents a model that predicts traffic flow without relying on predefined relationships
between roads.

Additionally, in traffic forecasting, since traffic data includes periodicity according to timestamps
(such as time of the day and day of the week), it is common practice to use both traffic attributes x
and timestamp information y together (Zhou et al., 2021). In the graph Gt = (Vt, At), each node
represents the ith variable at timestamp t, containing timestamp information xi

t and traffic attribute
values yit. This node is represented by the vector vit = [xt, yt] ∈ Rd, where d is the dimension of
each node’s value. In this scenario, accurate traffic forecasting relies on the representation of each
node vit, ensuring that each representation effectively captures the spatio-temporal dependencies.
Spatial dependency refers to the spatial relationships between variables, while temporal dependency
refers to the relationships over time for a single variable along the time axis.

Figure 2: Traffic forecasting problem

3.1 SPATIO-TEMPORAL BLOCK

When dealing with long context and target sequences, transformer-based models face limitations
in computational complexity and memory consumption. To address this challenge, we introduce a
novel concept called the “spatio-temporal block”. This approach improves the capability of trans-
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former models to effectively handle long-range prediction tasks. Please refer to Appendix A.1 for
details.

3.2 TRI-TENSE ATTENTION MODULE

The proposed model is based on the Graph Attention Network(GAT) (Velickovic et al., 2017), which
is derived from the Graph Neural Network(GNN) (Scarselli et al., 2008). The proposed model,
Tri-Tense Former (TTformer), integrates three attention modules to capture dependencies across
both space and time, following the GAT framework. Each module assesses the varying relative
importance of each node from three different perspectives, enabling the model to effectively capture
spatio-temporal dependencies. Figure 3 illustrates the architecture of TTformer, which follows the
encoder-decoder based transformer structure. The overall flow of TTformer can be summarized
as follows: both the context and target sequences are updated within the encoder, with the target
sequence further refined in relation to the context sequence within the decoder. The contextualized
representations of the context and target sequences are then concatenated, and final predictions for
the target sequence are generated. The encoder employs two attention modules: the present-perfect
attention and the present attention module, while the decoder utilizes a single attention module,
the future attention module. Detailed descriptions for the encoder and decoder can be found in
Appendix A.3 and A.4.

Figure 3: Tri-Tense Former(TTformer)

3.3 CONTRASTIVE LEARNING

The framework of contrastive learning is illustrated in Figure 4. Contrastive learning is one of
the self-supervised learning techniques that aim to learn effective representations by comparing
and contrasting between input data and augmented input data (see Appendix A.5 for data augmen-
tation). Through contrastive learning, the representations of positive pairs tend to become more
similar, while those of negative pairs become less similar. This enables the identification of precise
representations for input data.

Moreover, the process of negative filtering can be applied further by filtering out hard negatives (see
Appendix A.6) for details). These are instances that are closely aligned with the positive pairs but
designated as negative pairs. In the cited paper (Liu et al., 2022), the authors proved that contrastive
learning is effective in overcoming challenges in traffic forecasting. Regarding the spatial negative
filtering method, they proposed utilizing a predefined adjacency matrix to filter out first-order neigh-
bors as hard negatives, thus excluding them from the computation of the contrastive loss. However,
in this study, we assume that a predefined adjacency matrix is unavailable. Instead, we propose an
alternative negative filtering method that generates a similarity matrix using spatial embeddings.

We adopt a joint learning approach, where both the prediction task and the contrastive task are
executed simultaneously. The overall loss is calculated as the sum of the prediction loss, Lpred, and
the contrastive task loss, Lcontrastive task (1). The impact of the contrastive task can be controlled by
adjusting the value of the parameter λ.
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L = Lpred + λLcontrastive task (1)

The contrastive loss suggested by GraphCL (You et al., 2020) is employed, which is a common
approach in graph contrastive learning. For the representation z and the augmented representation
z′, pairs from the same nodes (zi, z

′
i) are designated as positive pairs, while pairs with different

nodes zi, z
′
j (i ̸= j) are classified as negative pairs. For a set of M nodes, each node is assigned

M − 1 negatives. As the contrastive loss (2) decreases, the refined representations of positive pairs
become more similar, while the negative pairs’ become less similar.

Lcontrastive task =
1

M

M∑
i=1

− log
exp(sim(zi, z

′
i)/τ)∑M

j=1,j ̸=i exp(sim(zi, z′j))/τ)
(2)

Figure 4: Framework of Contrastive Learning

4 EXPERIMENTS

Datasets. In the experiments, the real traffic datasets, METR-LA and PEMS-BAY, are used as
described at Appendix B.1. The objective of the traffic forecasting task is to predict 12 timestamps
(1 hour) of the target sequence for the given 12 timestamps of the context sequence. Following the
traffic forecasting baseline models, the data was normalized using a z-score.

4.1 COMPARISON WITH BASELINE MODELS

Baselines. To highlight the efficacy of TTformer, we select five spatio-temporal traffic forecasting
models as baselines. The baselines are LSTM (Hochreiter & Schmidhuber, 1997), DCRNN (Li
et al., 2018), GraphWavenet (Wu et al., 2019), STGCN (Han et al., 2020), and STAEformer (Liu
et al., 2023). Figure 5 presents the prediction results of the proposed TTformer and all baseline mod-
els across two datasets, with additional details available in Table 1. The best results are highlighted
in bold, while the second-best results are underlined. Here, the performance of STAEformer* is as
reported in the paper by (Liu et al., 2023). When compared to the plain LSTM, the Spatio-Temporal
GNN models (Li et al., 2018; Wu et al., 2019; Han et al., 2020) exhibited a significant enhancement
in prediction performance. Among these GNN-based models, DCRNN showed the overall most
promising performance across both datasets. Moreover, the attention-based model, STAEformer,
demonstrated superior performance compared to GNN-based models, underscoring the importance
of capturing dynamic spatial relationships between roads for predictive accuracy. A direct compar-
ison between STAEformer and TTformer revealed that TTformer surpasses STAEformer, proving
the effectiveness of the proposed architecture in capturing spatio-temporal relationships with three
tense aspects. The label ‘TTformer(w/o CL)’ denotes the TTformer without the contrastive learn-
ing technique. Despite not employing contrastive learning, TTformer still delivers commendable
performance, indicative of the robustness of its three tense-attention modules design.
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(a) METR-LA (b) PEMS-BAY

Figure 5: Performance comparison of different approaches(RMSE)

Table 1: Comparison of different approaches for traffic forecasting

T Metric LSTM DCRNN GraphWavenet STGCN STAEformer* TTformer TTformer(w/o CL)

M
E

T
R

-L
A

15min
RMSE 5.87 5.16 5.22 5.28 5.11 5.04 5.10
MAE 2.98 2.66 2.71 2.75 2.65 2.63 2.66

MAPE 7.96 6.84 7.11 7.00 6.85 6.79 6.92

30min
RMSE 7.24 6.27 6.33 6.37 6.00 5.97 6.02
MAE 3.58 3.07 3.11 3.16 2.97 2.95 2.97

MAPE 10.17 8.36 8.70 8.39 8.13 8.07 8.18

60min
RMSE 8.89 7.49 7.44 7.51 7.02 6.95 7.02
MAE 4.42 3.55 3.56 3.64 3.34 3.31 3.33

MAPE 13.61 10.27 10.38 10.04 9.70 9.58 9.65

PE
M

S-
B

A
Y

15min
RMSE 3.01 2.76 2.77 2.84 2.78 2.72 2.77
MAE 1.40 1.31 1.31 1.36 1.31 1.30 1.317

MAPE 2.94 2.71 2.77 2.86 2.76 2.73 2.77

30min
RMSE 4.23 3.76 3.81 3.83 3.68 3.58 3.69
MAE 1.85 1.65 1.66 1.71 1.62 1.60 1.63

MAPE 4.21 3.65 3.73 3.84 3.62 3.60 3.69

60min
RMSE 5.44 4.59 4.62 4.70 4.34 4.26 4.35
MAE 2.37 1.97 1.98 2.06 1.88 1.85 1.89

MAPE 5.90 4.58 4.68 4.82 4.41 4.31 4.47

The performance results for STAEformer* are taken from the author’s paper Liu et al. (2023), while
the results for the other baseline models are obtained from experiments conducted under the settings
described in Appendix B.2.

4.2 ANALYSIS OF TTFORMER ATTENTION MODULE

4.2.1 ABLATION STUDY OF THREE TENSE-ATTENTION MODULES

The subsequent step is to examine the tense-attention modules of TTformer. An ablation study
was conducted by training the model while excluding each of the three modules. The results of the
performance comparison on the METR-LA test dataset when contrastive learning was jointly trained
are shown in Figure 6a. In Figure 6a, ‘w/o 1st’ signifies the model that excludes the first tense-
attention module, ‘w/o 2nd’ means the second, and ‘w/o 3rd’ means excluding the third module.
And the last ‘w/ random 3rd’ means for replacing the third future attention module with a random
future attention module.

The ‘TTF’ case represents the scenario where all three attention modules are applied, resulting in
the best performance. Among ‘w/o 1st’, ‘w/o 2nd’, and ‘w/o 3rd’, the best-performing model is
‘w/o 3rd’, which excludes the third module. In this instance, it can be inferred that both the first and
second modules effectively reflect the relationships for edge types A and B as described in Figure 10,
and capture the spatio-temporal relationships well. Among the three altered models, the exclusion of
the second module results in the largest performance drop. This indicates that the current attention
mechanism has the greatest influence on the predictions.

The third module is responsible for capturing future attention in the context sequence, thereby updat-
ing the target sequence using the calculated future attention. The removal of the third future attention
module resulted in a decline in performance. This suggests that the third module plays a role in up-
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dating the target sequence. Additionally, in order to confirm whether the future attention learned was
indeed effective, a further study was conducted to replace the model’s third future attention module
with a randomly generated future attention module. In the proposed TTformer model’s architecture,
the first and second modules are maintained in their original form; however, as shown in Figure 6b,
the last future attention module is replaced with the random future attention module. This allows the
target sequence to randomly refer to the input sequence with random attention scores. The random
attention scores are generated by applying the softmax function to random values, which are then
used for a weighted sum on the input sequence. The comparison results demonstrated that the Test
MAE of the random future attention module is 2.926, while the Test RMSE is 5.954. In contrast, the
Test MAE of the model with learned future attention(‘TTF’) is 2.912, and the Test RMSE is 5.911.
This confirms that the incorporation of trained future attention contributes to an enhancement in the
model’s performance.

(a) Ablation study on METR-LA (b) Random future attention module

Figure 6: Ablation study of TTformer tense-attention module

4.2.2 QUALITATIVE ANALYSIS OF 2 TENSE-SPECIFIC ATTENTION MODULES IN ENCODER

Next, we conducted a qualitative analysis between the present-perfect attention and present attention
modules, using a case study centered around Dodger Stadium. For this analysis, we’ve selected 10
roads around the Dodger Stadium to compare the efficacy of these two tense-attention modules.

Reverting back to June 13, 2012, at 19:00 on a Wednesday evening, Dodger Stadium in Los Angeles,
California, hosted a significant baseball match between the Los Angeles Angels of Anaheim and the
Los Angeles Dodgers, drawing an attendance of 43,494. This notable event provides a context for
examining traffic dynamics in the vicinity. Notably, we observed a speed drop on road 93 around
the time of the game, as depicted in Figure 7b.

In Figure 8, we visualize two tense-attention matrices among selected 10 roads focusing on the
time-series data from 18:40 to 19:00, which is right before the game starts. Firstly, in Figure 8a, we
illustrate the present-perfect attention matrix, which captures the influence of past states on current
states. Noteworthy is the discernible impact of prime roads, such as road 144 and road 91 leading
toward Dodger Stadium. Conversely, roads 93, 6, and 23, characterized by relatively lower attention
values, represent outgoing routes from the stadium. This suggests that the past states of roads leading
toward Dodger Stadium exerted a considerable influence on present road conditions.

Contrastingly, the attention matrix from the present attention module as depicted in Figure 8b, fo-
cuses primarily on current flow states, showcasing a different phenomenon. Here, attention is con-
centrated more on the road itself and its adjacent counterparts. This observation highlights the
distinct roles of the two attention modules, aligning well with the intuitive expectations.

Through this comparative visualization, we have confirmed the divergent roles of the two tense-
attention modules. The present-perfect attention effectively captures historical influences on the
current state, while the present attention module emphasizes current dependencies. These insights
offer valuable perspectives for understanding traffic dynamics near Dodger Stadium.

Furthermore, we analyze the spatio-temporal blocks in Appendix B.3 and contrastive learning in
Appendix B.4.
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(a) Roads near the Dodger Stadium (b) Time-series on the road 91

Figure 7: Traffic Analysis on Dodger Stadium Game Day

(a) Present-Perfect attention (b) Present attention

Figure 8: Comparative analysis of the Present-Perfect Attention and Present Attention modules

The figure shows two attention matrices from each module, focusing on the time-series data from
18:40 to 19:00 on June 13, 2012, during a significant event at Dodger Stadium.

5 CONCLUSION

In contrast to conventional approaches that factorize traffic dependency into spatial and temporal as-
pects, we introduce a novel perspective of attention modules to express the three types of traffic flow
-present-perfect, present, and future- through each corresponding tense-specific attention module.
By capturing each tense relationship using a respective attention module, the proposed model, Tri-
Tense Former(TTformer), excels in traffic forecasting tasks. Furthermore, to address the unstable
characteristics of traffic datasets, which may contain high ranges of zero values, missing values, or
outliers, we integrate contrastive learning techniques with an innovative negative filtering method.

We demonstrate the efficacy of the proposed model with two real traffic datasets: METR-LA and
PEMS-BAY. In comparison with baseline models, TTformer outperforms other baseline models by
capturing hidden dependencies within the data. Moreover, comprehensive ablation studies validate
the necessity of each proposed module for capturing intricate spatio-temporal relationships. In the
context of contrastive learning, our findings align with prior research (Liu et al., 2022), highlighting
the efficacy of node masking as a data augmentation strategy. Additionally, the proposed negative
filtering method, which utilizes spatial embedding to generate similarity matrices, demonstrates
superior predictive performance compared to conventional approaches using predefined adjacency
matrices.

9
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A TRI-TENSE FORMER

A.1 SPATIO-TEMPORAL BLOCK

The spatio-temporal block is defined as the merging of a graph for a specific time interval, referred
to as the “block size” S. Figure 9 illustrates the methodology employed in the design of the spatio-
temporal block when the block size S = 3. By merging S size of graphs, each block contains all
the information pertaining to the total variables within the specified block size. Each node is now
redesigned to contain information for the time interval (t, t+ 1, ..., t+ S − 1) rather than a specific
time t. The initial block is represented as B1 = [GT−c+1, GT−c+2, ..., GT−c+S ], with the node
within B1 being VB1 = [VT−c+1, VT−c+2, ..., VT−c+S ]. The integration of the spatio-temporal
block leads to a reduction in the total graph size from N ∗ (C +H) to N∗((C+H)

S .

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Figure 9: Spatio-temporal block

The utilization of the spatio-temporal block differs significantly from the application of dilated
causal convolution layers in WaveNet (Oord et al., 2016). In WaveNet, dilated convolution is em-
ployed to train a kernel, facilitating the extraction of temporal trends. This allows for the handling
of relatively large receptive fields with few layers and enables the parallel processing of sequences,
contrasting with recurrent neural networks. However, the spatio-temporal block operates in a dif-
ferent manner. Unlike dilated convolution in WaveNet, its function is not to extract temporal trends
through training the kernel. Instead, it simply merges nodes along the time axis. This enables the
aggregation of information across multiple time steps within a specified block size, facilitating the
modeling of spatio-temporal relationships. The spatio-temporal block offers three principal advan-
tages. Firstly, the complexity of the training is reduced as the size of the total graphs is decreased.
Secondly, it enhances the effectiveness of transformer-based models by facilitating more efficient
application of the attention mechanism. When applying an attention-based model to a large graph,
additional techniques such as sparsifying the attention matrix are required. However, the spatio-
temporal block simplifies this process by leveraging a simple inductive bias that traffic attributes
exhibit temporal dependency within a specific temporal range. This can reduce the size of the at-
tention matrix itself, eliminating the need for additional techniques for the attention mechanism.
Thirdly, the application of spatial attention within the spatio-temporal block inherently incorporates
the effect of temporal attention. This is because each block contains traffic flow within a specific
block size, allowing temporal relationships to be considered by calculating the spatial attention op-
eration within the same block. The experimental results, which vary according to the block size,
will be presented in the subsequent section.

A.2 NODE EMBEDDING

The process of embedding each node, as depicted in Figure 9, involves incorporating various types
of data: traffic attributes, temporal information, spatial information for distinguishing each variable,
and positional information indicating the sequence of the block. In the context of traffic forecasting,
the traffic attribute value can be represented by either traffic speed or traffic volume. Embedding the
traffic value involves applying a single linear layer projection. Temporal information is represented
using a lookup table consisting of two temporal variables: the timestamp of the day and the day
of the week. The final two embedding, spatial embedding and positional embedding, are set as
learnable parameters.

In a transformer-based model, maintaining awareness of the order of elements within a sequence is
essential. Unlike RNN-based models, which process sequences sequentially, transformer models in-
gest the entire sequence simultaneously. Therefore, to clarify each node viBlock s, spatial embedding
is employed to convey the position of each element (ith variable) and positional encoding assists in
recognizing positions of the block (Block s).

12
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In the case of the target sequence, the traffic attribute remains unknown and requires prediction.
Hence, during training, the traffic value of the target sequence is initialized as a zero vector (Zhou
et al., 2021).

A.3 ENCODER : PRESENT-PERFECT ATTENTION & PRESENT ATTENTION MODULE

The objective of the encoder is to capture the dynamic relationships between nodes within each
block. As traffic flow fluctuates, so do the relationships between variables. In the proposed model,
both the present-perfect attention module and the present attention module are employed to capture
these dynamic relationships. The need for two different types of attention modules arises from the
following rationale: to fully capture the relationships between nodes, it’s essential to consider not
only the current state but also the past state, as recent past states also play a significant role in shaping
the current relationships. The visualization of these influences is illustrated in Figure 10, where
nodes at past timestamps also impact current nodes. In order to understand the spatial relationship
between At+1 and Bt+1 and Ct+1, the past state At, Bt, and Ct must also be taken into account.
When viewed in the context of a single large graph, two types of edges can be identified: edge type
A represents the influence of the past on the current state, while edge type B represents the influence
of the current state on the current state. This concept can be elucidated using heterogeneous graphs,
where various types of edges are present in a single graph (Hu et al., 2020). In TTformer, each
tense-attention module effectively manages these two edge types of temporal edge relationships,
addressing the distinct influences of past and present states on the current state.

Figure 10: Traffic flow in heterogeneous graph

The first attention module, termed the ‘present-perfect attention module,’ is designed to quantify
the impact of past traffic states on the current spatial relationships between nodes. This module
utilizes ‘shifted’ spatio-temporal blocks, constructed from the given context sequence depicted in
Figure 11. These shifted blocks are created by duplicating the first timestamp, shifting the entire
sequence one timestamp ahead, and then dividing them into shifted spatio-temporal blocks. Shifting
the timestamps allows us to capture the influence of past traffic conditions on the current state.
It’s reasonable to shift by one timestamp, as the most recent traffic conditions typically exert the
greatest influence on the current traffic. To implement this first module, we map the original (spatio-
temporal) ‘blocks’ into a Query vector, while the ‘shifted blocks’ are mapped into Key and Value
vectors.

Figure 11: Spatio-temporal shifted blocks

13
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The subsequent module is the ‘present attention module’. This module is responsible for calculating
the spatial attention based on the current traffic state. To achieve this, each Query, Key, and Value
vector utilizes the same ‘blocks’, constituting a self-attention step.

Both the preceding modules are applied to both the context sequence and the target sequence. For
the target sequence, the traffic attribute, temporal information, and positional information are shared
within the same block, with only the spatial embedding differing between nodes. Despite sharing
many attributes, the application of two attention modules still yielded benefits in updating the rep-
resentations of nodes in the target sequence. This is attributed to the modules’ ability to capture
internal relationships between variables that persist regardless of the traffic state.

A.4 DECODER : FUTURE ATTENTION

The subsequent stage is the decoder, which incorporates the module called the ‘future attention mod-
ule’. This module is employed to capture the temporal relationships between the context sequence,
which represents the present, and the target sequence, which represents the future. By computing
these temporal relationships between the present and the future, the module updates the represen-
tations of the target sequence, discerning meaningful blocks from the context sequence. In this
process, the context sequence is utilized as Key and Value vectors, while the target sequence serves
as the Query vector. To generate the final output, the output from both the context sequence blocks
and the target sequence blocks are concatenated. Following the approach advocated by Informer
(Zhou et al., 2021), a generative-style decoder is employed to predict the target sequence in a single
step, thereby mitigating the potential accumulation of errors associated with auto-regressive models.
The prediction loss, Lpred, is computed as the mean absolute error(MAE) between the actual target
values, Y , and the predicted values, Ŷ (3).

Lpred =
∣∣∣Ŷ T+1:(T+h) − Y T+1:(T+h)

∣∣∣ (3)

A.5 DATA AUGMENTATION

In order to ensure smooth training, it is crucial to perform data augmentation correctly. Among
the four methods proposed by STGCL (Liu et al., 2022) for data augmentation, we adopt the node
masking technique. They compared contrastive learning with different data augmentation methods
using real traffic datasets, PEMS-04 and PEMS08, and concluded that node masking was the most
effective. As illustrated in Figure 12, the node masking method involves masking a certain percent-
age of randomly selected points to zero. It was found that masking only the traffic attribute at a 1%
ratio was the most effective. Even if some data within the sequence includes zeros, the agreement is
maximized so that the sequence of the same node without zeros can have similar representations in
the latent space. This is a useful technique in traffic datasets with a high portion of zero values, as it
ensures that predictions remain robust and stable, even when there are zero values in the data.

Figure 12: Node masking in contrastive learning
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Table 2: Traffic datasets

Datasets #Nodes #Edges Time span Interval Missing Value
METR-LA 207 1,722 34,272 5 min 8.11%
PEMS-BAY 325 2,694 52,116 5min 0.003%

A.6 NEGATIVE FILTERING

The hard negatives are negative points that are difficult to distinguish from an anchor point(Robinson
et al., 2021). Therefore, by filtering out hard negatives, more precise contrastive learning can be
achieved. This paper introduces a new negative filtering method to utilize spatial embedding, which
are set of learnable parameters and updated during training. As the training progresses, the spatial
embedding is trained to represent each variable. Accordingly, the generation of a similarity matrix
through the application of a dot product between spatial embedding allows for the acquisition of
a similarity matrix. If the similarity between spatial embedding ni, nj ∈ Rnode emb dim is greater
than or equal to the filter threshold, then nodej is classified as a hard negative and excluded from
the computation of the contrastive loss (4).

The hard negatives are the negative pairs that are most closely related to the positive pairs. Therefore,
by filtering out hard negatives, more precise contrastive learning can be achieved. In this paper, we
propose a new negative filtering technique utilizing spatial embeddings, which are sets of learnable
parameters updated during training. As the training progresses, the spatial embedding is trained
to represent each variable. Accordingly, the application of a dot product between spatial embed-
dings allows for the acquisition of a similarity matrix. If the similarity between spatial embeddings
ni, nj ∈ Rnode emb dim is greater than or equal to the filter threshold, then nodej is classified as a
hard negative and excluded from the computation of the contrastive loss (4).

Filter Adj(i, j) =
{
1, if i = j ∨ sim(ni, nj) < filter threshold
0, otherwise

(4)

B EXPERIMENTS

B.1 DATASET DETAILS

METR-LA and PEMS-BAY are shown in Table 2. The METR-LA dataset comprises traffic speed
data collected from 207 loop detectors in Los Angeles city from March to June 2012. The PEMS-
BAY dataset comprises 325 sensors over a six-month period from January to May in 2017.

The characteristic of the two traffic datasets is the high range of zero values. In two datasets, METR-
LA and PEMS-BAY, a significant number of zero values are included. The datasets are split into
training, validation, and testing, with each portion comprising 70%, 10%, and 20%, respectively.
The percentages of zero values in each set are notably high, at 7.297%, 5.733%, and 9.508%, re-
spectively. Similarly, the PEMS-BAY dataset, which is divided into the same proportions as METR-
LA, exhibits zero value percentages of 4.855%, 5.647%, and 4.724%, respectively. Furthermore,
the PEMS-BAY and METR-LA datasets initially contain missing values, with the percentages of
missing values being 0.003% and 8.11%, respectively.

B.2 HYPERPARAMETERS

Setting. The main hyperparameter values of the TTformer are presented in Table 3. And the afore-
mentioned baselines were evaluated using the shared official codes.

B.3 ANALYSIS OF SPATIO-TEMPORAL BLOCK

The first step of TTformer involves constructing ‘spatio-temporal blocks’ by aggregating traffic
flows over the input sequence. As discussed earlier, the introduction of the spatio-temporal block can
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Table 3: Experiment configuration

Config Values
optimizer Adam

learning rate 0.001
learning rate schedule ReduceLROnPlateau

Dropout 0.1
episode 50

batch size 16
weight decay 0.0003

reduce computational complexity by decreasing the number of nodes and can capture more extensive
contextual information reflecting spatio-temporal relationships. However, aggregating data over
larger blocks may result in the loss of finer details by not capturing traffic patterns unique to smaller
time intervals. Furthermore, as the block size increases, the difference between a key vector from
the present-perfect attention and the present perfect decreases, making it difficult to capture different
perspectives of relationships through the two discrete attention modules. Therefore, it is crucial to
identify the optimal block size.

We compared the model performance while varying the block size S = [1, 2, 4, 6]. A block size of 1
is equivalent to the absence of the spatio-temporal block. The performance comparison results on the
METR-LA dataset are shown in Figure 13a, indicating that the model performed best with a block
size of 4. When the block size is set to 4, it can best capture spatio-temporal relationships without
disrupting the original data flow. In comparison to the absence of the spatio-temporal block, the Test
RMSE exhibited a reduction from 6.109 to 5.911, while the Test MAE demonstrated a decline from
2.985 to 2.912. Furthermore, the reduction in graph size achieved through the application of blocks
resulted in an average reduction in execution time of approximately 66.9% compared to the scenario
where blocks were not applied. It was demonstrated that the application of spatio-temporal blocks
to the proposed model for the purpose of capturing spatio-temporal relationships is beneficial.

This improvement was observed not only in the proposed model but also when applied to STAE-
former (Liu et al., 2023), a model that uses a vanilla transformer structure to capture attention. As
illustrated in Figure 13b, the model also exhibited the most optimal performance when the block
size was set to 4. In the case of STAEformer, the application of the block resulted in a reduction in
the RMSE on the METR-LA dataset, with the value decreasing from 6.060 to 5.997. Furthermore,
the MAE was also reduced, with the value decreasing from 2.970 to 2.937.

(a) TTformer Block Size Test (b) STAEformer Block Size Test

Figure 13: Comparison of spatio-temporal block size

B.3.1 STUDY OF THE SHIFTED SPATIO-TEMPORAL BLOCKS

To evaluate the performance based on the method of constructing shifted spatio-temporal blocks,
we compared two approaches: shifting the given context sequence by one timestamp and shifting
by one block. When shifting by one block, we provided the context sequence with a time-series of
context sequence c and block size S, constructing both regular spatio-temporal blocks and shifted
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blocks. Shifting by one block results in no overlapping parts between ‘blocks’ and ‘shifted blocks’
during the calculation of the present-perfect attention module.

Comparing ‘1 timestamp shift blocks’ and ‘1 block shift blocks’ allows us to analyze the impact
of overlapping parts on representing present-perfect relationships. When there is no overlapping,
the model must learn how the context directly influences a new set of observations without explicit
temporal continuity. Conversely, overlapping time series parts provide direct temporal continuity,
enabling the model to understand the influence of the past on the present.

The results are shown in Figure 14, where ‘w/o 1st’ denotes the case when present-perfect attention,
which calculates the attention between blocks and shifted blocks, is not performed. ‘1 block’ indi-
cates the scenario when shifted blocks are constructed by shifting one block, and ‘1 timestamp’ rep-
resents the scenario when the context sequence is shifted by one timestamp. The actual experiment
on METR-LA showed that setting the shifted block to have an overlapping part (‘1 timestamp’) im-
proved performance more compared to shifting without overlapping parts (‘1 block’), as illustrated
in Figure 14. This suggests that overlapping time series parts provide crucial temporal continuity,
enhancing the model’s capability to capture the influence of past observations on present outcomes.

Figure 14: Comparison of shifted spatio-temporal blocks

B.4 ANALYSIS OF CONTRASTIVE LEARNING

In the context of traffic data, sensors on the roads may record inaccurate speed values. Therefore, it
is essential for prediction models to be trained to respond to outliers and contrastive learning could
address this issue. To evaluate the performance of contrastive learning, we compared four versions
of the model and the Figure 16 illustrates this comparison. The term ‘w/o CL’ refers to the scenario
where contrastive learning is not applied, while ‘CL NM’ denotes the results achieved by applying
node masking with a node masking ratio of 0.01 and λ set to 0.1. ‘CL NM NF-emb’ represents the
outcomes when negative filtering using the spatial embedding proposed in this paper is applied in
addition to node masking. ‘CL NM NF-adj’ indicates the results of conducting negative filtering
using a predefined adjacency proposed in STGCL (Liu et al., 2022) after applying node masking.

In both the METR-LA and PEMS-BAY datasets, the model’s performance improved when node
masking was applied, compared to the model without contrastive learning (‘w/o CL’). This demon-
strates that the contrastive learning technique with node masking is effective in traffic data containing
a significant number of zeros. Figure 15 visualizes the prediction results for specific time periods
containing actual zeros in the METR-LA, comparing the ‘w/o CL’ and ‘CL NM’ models. It was ob-
served that the ‘CL NM’ model, which underwent node masking, exhibited less sensitivity to zero
values and achieved superior prediction performance.

Regarding negative filtering, while no significant performance improvement was observed for
METR-LA in Figure 16a, it proved beneficial for enhancing performance in the PEMS-BAY dataset
in Figure 16b. In particular, it was found that negative filtering using spatial embedding (with
nf threshold = 0.1) was more effective than distinguishing hard negatives using the predefined
adjacency matrix. This indicates that the similarity matrix generated through the spatial embed-
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ding, learned during the joint learning process, captures more significant road correlations than the
predefined road relationships based on distance.

Additionally, for the generalization test of contrastive learning, we applied the proposed contrastive
learning technique to the STAEformer (Liu et al., 2023). Figure 17 presents the comparison results
between the STAEformer with and without contrastive learning. These results demonstrate that
the contrastive learning technique enhances the prediction performance of the STAE model in both
RMSE and MAE metrics. The improved performance underscores the effectiveness of incorporating
contrastive learning into spatio-temporal models like STAEformer.

Figure 15: Evaluation of contrastive learning in traffic prediction Models

(a) Contrastive Learning on METR-LA (b) Contrastive Learning on PEMS-BAY

Figure 16: Comparison of contrastive learning techniques

(a) Contrastive Learning on METR-LA (b) Contrastive Learning on PEMS-BAY

Figure 17: Performance of contrastive learning for STAE
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