Under review as a conference paper at ICLR 2025

SPIKEZIP: COMPRESSING SPIKING NEURAL NET-
WORK WITH PATHS-ENSEMBLE TRAINING FOR OPTI-
MIZED PARETO-FRONT PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural network (SNN) has attracted great attention due to its great en-
ergy efficiency on neuromorphic hardware. By transferring the parameters of
pretrained artificial neural network (ANN) and utilizing the ANN quantization,
recent works of ANN-SNN conversion can produce SNNs with close-to-ANN
accuracy and low inference latency (known as the number of time-steps). Never-
theless, existing works fail at providing theoretic equivalence between Quantized-
ANN (QANN) and its converted SNN, while the SNN accuracy at small time-step
(i.e. Pareto-frontier) can be further improved. To solve the problems, this paper
proposes a novel conversion framework called SpikeZIP. The SpikeZIP utilizes the
ANN-Quantized ANN(QANN)-SNN two-step conversion to obtain SNN which
improves the Pareto frontier of accuracy versus inference time-steps. SpikeZIP
integrates two novel algorithms: 1) a paths-ensemble training algorithm that con-
siders the SNN temporal information when fine-tuning QANN; 2) a mathemati-
cally equivalent conversion algorithm between the whole QANN and SNN. In the
experiment, SpikeZIP can achieve 73.92% accuracy on ImageNet with VGG-16
within 9 time-steps and 74.21% accuracy on ImageNet with ResNet-34 within 11
time-steps which are better than SOTA works. Spiking Neural Networks, Quanti-
zation, ANN-SNN Conversion

1 INTRODUCTION

Spiking neural network (SNN) Maass| (1997) is a type of biologically plausible neural network in-
spired by brains of living organisms. Unlike modern artificial neural networks (ANNs)|LeCun et al.
(2015) use continuous activation value to propagate information between neurons synchronously,
SNNs utilize discrete events or “spikes” for asynchronous neuron-to-neuron communication and
processing Merolla et al.| (2014); |Davies et al.[|(2018)). Such event-driven characteristic in SNN is
considered as one of the key factors to achieve remarkable energy efficiency in human brain (~20W)
Roy et al.|(2019). Given the astonishing growing pace of computing power demands of ANN models
(doubled per 2 months since 2020 Mehonic & Kenyon| (2022)), evolving ANNSs to energy-efficient
SNNss is in urgent demand for cost-effective inference.

Currently, methods to train SNN come in twofold: learning- and conversion-basedRoy et al.|(2019).
Both methods attempt to obtain SNNs with high accuracy and less time-step. Previous learning-
based works leverage variants of spike-timing-dependent plasticity Diehl & Cook|(2015) or gradient
descent algorithms Wu et al.| (2018} [2019); [Neftci et al.| (2019); Kim & Pandal (2021)); [Zenke &
Vogels| (2021) to update the synaptic weights of SNN. Unfortunately, although learning methods
train SNN at small time-step (e.g., 4 time-step), due to the inaccurate gradient approximation Neftci
et al.| (2019) for the non-differential SNN neuron, e.g., integrate and fire (IF) neuron, an accuracy
gap persists between SNN and its ANN counterpart |Fang et al.| (2021a).

Rather than directly training an SNN, the conversion-based methods transfer the parameters of the
pre-trained ANN into its SNN counterpart that yields close-to-ANN accuracy. As the accuracy
versus time-step curve shown in fig. [I} the SOTA works (Offset|Hao et al.|(2023), QCFS Bu et al.
(2023), etc.) reduce the inference time-step to 16. These works replace the ReLU function with
its quantized version (Q-ReLU), and use a quantization-aware training algorithm to compress the
quantization level of activation to reduce the inference time-step. However, the low quantization

Under review as a conference paper at ICLR 2025

Studies Comparison in ResNet34

o Ous - ——]
£ 60 A
>
13}
£
3 50
2 —4&— Opt. —&— SRP
—&— Flunch —&— SConverter
%1 —A— SlipReLU ACP
—A— QCFS —k— Offset(p = 8)

w
8

4 8 12 16 32 64 128
Time steps
Paths-Ensemble

Training Equivalent SNN
ANN ANN
ST-BIF Neuron

Better Pareto Fontier with SpikeZIP

Figure 1: SpikeZIP Highlights. Upper: accuracy v.s. latency (#time-steps) curve of SNN (ResNet-
34 on ImageNet) obtained from varying works. Bottom: conversion pipeline of SpikeZIP, which
trains a QANN with paths-ensemble training and then converts the trained QANN to its mathemati-
cally equivalent SNN.

level of activation brings large quantization errors in ANN training, which sacrifices the accuracy of
the ANN and the converted SNN. Therefore, improving the accuracy of SNN at small time-step by
reducing the quantization level encounters bottleneck. For the neurons, such Q-ReLU approximates
the conventional IF neuron and is equivalent to the sign neuron proposed in Hu et al.| (2023)); Wang
et al.[(2022a)); [Li et al.|(2022). However, due to the max-pooling and batch normalization operator,
non-equivalence still exists between Quantized-ANN and SNN at the model-level.

By far, two challenges remain unsolved: 1) non-existing work provides theoretic support of equiv-
alence of QANN and its converted SNN at model level; 2) SNN accuracy at small time-step (e.g.
Fareto frontier) can be further improved. As the countermeasure, we build a framework called
SpikeZIP to produce SNN with state-of-the-art performance (i.e., accuracy and latency). SpikeZIP
fine-tunes QANN utilizing a pre-trained ANN, then the QANN is converted into its mathematically
equivalent SNN. Our core technical contributions in SpikeZIP can be summarized as:

* Theoretical Equivalence of QANN-SNN is proved rigorously at the model level. Such
equivalence holds under the condition of 1) ANN uses quantized ReLU; 2) SNN uses ST-
BIF neuron model; 3) SNN-unfriendly operators are replaced (e.g., alter max pooling to
average pooling); 4) taking analogRueckauer et al.|(2017) input and bias encoding.

* Pareto-front performance is achieved in SpikeZIP-produced SNN. By incorporating a
novel Paths-Ensemble Training (PET) technique during QANN training, the SNN con-
verted from the QANN can obtain higher accuracy with lower latency (e.g. less num-
ber of time-steps), which is shown in fig. In the experiment, the Spike-ResNet34 in
SpikeZIP achieves 74.21% accuracy at 11 time-steps which is better than other state-of-
the-art works (74.14% at 16 time-steps by Offset Hao et al.| (2023))).

2 BACKGROUND AND RELATED WORK

Neuron Model. Recent works |L1 et al.| (2022); Hu et al.| (2023); [Wang et al.| (2022a)) propose a
variant of IF neuron, which we call bipolar integrate&fire with spike tracing (ST-BIF). Its neuron
dynamics can be described as:

Vi=Vig + V" = Vi - OV + Vi Vi, Si 1)
Sy =81 +0(Vicy + V", Viur, St—1)

I, V>V &S < S M
6(‘/7 V;hras) = 0; other
-1; V<0&S>0

where the notations used above are listed in table[T} ST-BIF neuron in eq. (T) differs from the vanilla
IF neuron from two perspectives: 1) ST-BIF neuron fires bipolar spikes (either positive or negative);

Under review as a conference paper at ICLR 2025

Table 1: Summary of mathematical notations used in this paper.

Notation Description
Vi potential of neuron membrane at time-step ¢
Vine threshold voltage for neuron to fire a spike
yrin jout input or output voltage of neuron
Teq time-steps of neuron enters equilibrium state
Tost time-steps when input and bias are turned off
Sty Smax Spike tracer at time-step ¢ and maximum value of spike tracer
clip(z, Qmin, Cmax) Clip function that limits = between ayip and umax
OV, Vinr, S) Output spike decision function of ST-BIF neuron

Fo(Xoln, {W},{s}) QANN with weights W, quantization level n, scale s
Fs(VIn,{W},{s}) SNN with S = n, weight W and Vi = s
1, Ninp, Nsp, i Quantization levels in major-path and ¢-th sub-path.

Table 2: Techniques and setting of related works. ana. denotes analog input encoding, mem calib.
is short for membrane calibration, and eq. is equivalence.

OPI QCFS EMRS Radix SNM QFFS Offset Fast-SNN Ours

(i) encoding ana. ana. time radix ana. ana. ana. ana. ana.
(ii) neuron IF IF OneSpike LIF ST-BIF ST-BIF IF ST-BIF ST-BIF
(iii) mem calib. v/ v v v v v
(iv) Q-ReLU v v v v v v
(v) neuron eq. v v v v v v
(vi) model eq. v v v

2) ST-BIF neuron guarantees the accumulated charge of output spikes equal to the output of the
Q-ReLU function until the neuron stops firing, in virtue of the spike tracer S;.

ANN-SNN Conversion. ANN-SNN conversion creates an SNN whose synaptic weights between
neurons are identical to the corresponding ANN. Recent works focus on optimizing both the accu-
racy and latency of SNN (e.g. Pareto frontier in fig.[I), via leveraging the techniques (summarized
in table[2)) as follows:

(i) Input encoding. Four encoding methods are used most frequently, e.g., analog coding Rueckauer
et al.[(2017); Han et al.| (2020); L1 et al.|(2022)); Bu et al.| (2023)); [Hao et al.|(2023)); Hu et al.| (2023)),
rate coding |Liu et al.| (2022), time coding |Park et al.[(2020)) and radix coding Wang et al.| (2022b).
(ii) Neuron model. The soft-reset IF neuron model |[Han et al.| (2020) is the most common choice
Han & Roy| (2020); Han et al.[(2020); Bu et al.| (2022; |2023)); Hao et al.| (2023)), which maintains
the residual voltage after the neuron fire. To mitigate the occasional noise |L1 et al.| (2022) between
ANN and SNN, a sign neuron is proposed, which can fire negative spikes to offset the over-fired
positive spikes|Li et al.| (2022)); Wang et al.| (2022a)); [Hu et al.[(2023). Other neurons (e.g., iLIF |Liu
et al.|(2022) and OneSpike [Stanojevic et al.[(2023)) are designed for specific systems, which are not
common in recent works. (iii) Membrane calibration (e.g., initialize V) = 0.5V, [Bu et al.| (2022))
has been widely adopted to reduce the ANN-SNN conversion error and latency. (iv) Q-ReLU as
ANN Activation is a emerging trend whose converted SNN is found to have lower inference latency
with decreased quantization levelsHao et al.|(2023)); Bu et al.[(2023)); Li et al.| (2021} 2022)); [Deng &
Gu! (2021); Hu et al.| (2023). (v) Neuron equivalence is proved |Li et al.|(2022)); Wang et al.|(2022al);
Stanojevic et al.|(2023)); Hu et al.| (2023) between SNN neurons (e.g., firing rate) and ANN activation
functions (ReLU or Q-ReLU). (vi) Model equivalence. With time-based input, |Stanojevic et al.
(2023)) claims the equivalent between ANN and SNN. For analog input, although Hu et al.| (2023)
claims the equivalence between QANN activation and SNN firing rate, there still exists accuracy
degradation between QANN and SNN in experiments, which means the non-equivalence at the
model level.

As summarized in table [2] although some works prove the equivalence at the neuron level [Li et al.
(2022); Wang et al. (2022a) and model level [Stanojevic et al.| (2023); [Wang et al.| (2022b), the
equivalence between the QANN and SNN with analog encoding is missing.

Quantization. Quantization is a discretization process of the continuous value, which is widely
used to compress ANN |Gholami et al.[(2022). The Q-ReLU function is written as:

f(z) = s - clip(round(z/s),0,n) (2)

where the notations used above are tabulated in table[I] To alleviate the accuracy degradation when
quantizing with extremely low quantization level, LSQ Esser et al.| (2020) is proposed to learn quan-

Under review as a conference paper at ICLR 2025

tization scale (s in eq. (2)) during quantization-aware training Jacob et al. (2018)); |Gholami et al.
(2022). LSQ has been used widely in previous conversion works Bu et al.| (2023); |L1 et al.| (2022);
Hao et al.| (2023)); Hu et al.| (2023)), which is inherited by SpikeZIP as well.

3 METHODOLOGY

3.1 CONVERSION FLOW IN SPIKEZIP

SpikeZIP takes four steps in total to convert an ANN to its SNN counterpart. It firstly converts
original ANN to SNN-friendly QANN through (1) SNN-friendly morphing and (2) paths-ensemble
training. Then, SpikeZIP utilizes the (3) operator fusion and the (4) neuron replacement to QANN
to obtain a high-performance SNN.

1) SNN Friendly Morphing. Since the original ANN may include operators and topology that are
unfriendly to SNN, we modify those operators with the SNN-friendly counterparts. In detail, we al-
ter the max-pooling to the average-pooling|Rueckauer et al.[(2017)), as it is easier for equivalent SNN
implementation. Moreover, we conduct residual connection re-routing (specified in section 3.3)) for
ResNet, to optimize the latency. Finally, the ReLU function is replaced by Q-ReLU function to
convert ANN to QANN, for successive training.

2) Paths-Ensemble Training (PET) is proposed and utilized to train the morphed ANN (e.g.
QANN) from the last step. PET (specified in section is a variant of LSQ-based quantiza-
tion aware training algorithm, which is designed to simultaneously improve the accuracy of trained
QANN that quantized with varying quantization levels on the fly.

3) Operator Fusion & 4) Neuron Replacing. In operator fusion, SpikeZIP fuses the batch nor-
malization layers of trained QANN into their front (e.g., convolution or linear) layers as in (Chen
et al. (2018)). In the successive neuron replacing, we update all the Q-ReLUs to ST-BIF neurons, and
adjust the configurations of ST-BIF neurons (e.g., V=g, Vinr» Smax and etc., as discussed in proof @
accordingly.

3.2 INPUT AND BI1AS ENCODING

We design a unique analog encoding method for input and bias{ﬂ which is also the prerequisite of
QANN-SNN equivalence in section Unliking traditional analog encoding that converts the raw
image X, to V;' = Xq - Av, V¢ and fires for each time-step, we choose the evenly-release strategy
which sets V' = Xq - Av/n,t € {1,2, ..., Tos}. Hereby, input stops applying at Toge = n, where n
is the quantization level of QANN. Moreover, the evenly-release strategy is adopted for the bias in
convolution/linear layers as well.

3.3 RESIDUAL CONNECTION RE-ROUTING

As the residual structure of ResNet|He et al.| (2016) plotted in fig. 3] the spiking neuron layer (SN,
highlighted in orange) takes the addition of network blocks as its input, which makes it a “spiking
transmission bottleneck” as more time-steps are taken for this neuron layer to integrate and fire.

As the countermeasure, we perform residual connection re-routing (RCRﬂ as described in fig.
If the residual connection is identity, we simply re-route the residual connection and addition after
the Q-ReLU/SN (pink shadow part). If the residual connection uses convolution, in addition to the
aforementioned rerouting process for identity, we insert an extra Q-ReLU/SN after the convolution.

'Biases are introduced due to the fused batch normalization, which can be viewed as the special form of
inputs as they are constants as well.

*Prior SEW-ResNet [Fang et al.| (2021a) adopts “RELU before addition” (similar topology) to overcome
vanishing or exploding gradient, during the direct training of SNN. In contrast, SpikeZIP is a conversion-based
framework and RCR is used for latency reduction.

Under review as a conference paper at ICLR 2025

XL
I <> Sharing BN1 .
: (l‘sp,lvasp,lvyug)
1 - i tputl
H Conv/ + LE outpu
. Linear -ReLU(2-5) 2 N Ensemble
MO 1 o = loss
! 8-level O Output2
Ut e up-path Al 2
|) -ReLU (s) 4 —
! [CIMajor-Path Ry !
i CJshare Layer __PET Blocks __ __Activation 1 '— Output3

=

Figure 2: Illustration of Paths-Ensemble Training (PET). Given a QANN to be trained, PET
introduces three paths (one major-path and two sub-paths). All three paths share identical param-
eterized layers (e.g., convolution/linear, etc.), but with independent Q-ReLU, batch-norm and loss.
In one PET block, Q-ReLUs use shared quantization scale s, but scaled as {s, 25, 4s} for Q-ReLUs
quantized with {8, 4, 2}-level respectively. For batch-norm [loffe & Szegedy| (2015)), the mini-batch
mean y; and variance o; are collected for each path individually, while learned parameters -y and
are shared. Losses of each path are calculated independently and then added as one ensemble loss
for training.

QANN (basic block) Conversion » SNN (basic block)

J» J: =z
% ’ —I
Re-Route

Vanilla. ——R&Ru® . o71p Vanilla —O , SEW*/ SZIP

Z
(%]

Q-RelLU
Conv
Conv
Conv
Conv

S

(\

!
! |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 !
1 1
1 1
1 1
1 1
1 1
1 1
{ i

S ——

)
i
1
!
i
Zly 4 i
i
1
|
]

Figure 3: Residual connection re-routing (RCR) used to mitigate the spiking bottleneck phe-
nomenon and reduce latency. SN denotes the spiking neuron (e.g., ST-BIF) layer. * SEW-ResNet
Fang et al.[(2021a) takes a similar topology but for different design purposes.

3.4 PATHS-ENSEMBLE TRAINING

PET is inspired by our observation from Bu et al.| (2023); [L1 et al.| (2022)): reducing the quanti-
zation levels of QANN lowers the latency of converted SNN by sacrificing accuracy as well. As
we expect the QANN-converted SNN can achieve higher accuracy at small time-steps (Pareto-front
performance in fig. [T), the observation motivates us to improve the accuracy of QANN quantized
with fewer quantization levels. Inspired by the slimmable network|Yu et al.|(2018)) that trains CNNs
with different channel numbers using shared parameters, we train QANNs quantized with varying
quantization levels, using a single set of trained parameters (e.g., weights, bias and etc.).

Training Strategy. As illustrated in fig. 2] PET consists of three optimizing paths (one major-path
and two sub-paths). Each path has its independent Q-ReLU and batch normalization (batch-norm)
layer, while the remaining parametric layers (e.g. convolution, linear, etc.) are shared by the different
paths. Note that, only the major-path of QANN will be converted to SNN once training with PET
is completed, while sub-paths are used to assist the training in major-path. Three kinds of operators
are carefully designed in PET:

1) Parametric Layer: The weights in parametric layers are shared among the paths in PET, which
will be optimized by back-propagation to improve the accuracy of different paths simultaneously.

2) Q-ReLU: Assume the Q-ReLU in major-path is:
fmp(x) = s - clip(round(z/s), 0, ") 3)
Then, the Q-ReLU in i-th sub-path is written as:

Ngp,i T

s)707nsp,i) (4)

fsp,iz) = Donp? - clip(round(

sp,i Tmp

where quantization levels are set as {7mp, Tisp,1, Nsp,2} = {8, 4, 2}. The quantization scale s is the
learnable parameter that is shared between different Q-ReLUs.

Under review as a conference paper at ICLR 2025

3) Batch-norm: Since Q-ReLUs in different paths adopt varying quantization levels, the output dis-
tributions of Q-ReLUs are distinguished from each other significantly. According to our experiment,
naively using one shared batch-norm makes it difficult for the training to converge. Therefore, we
make the mini-batch mean p; and o; be independent for each path, while learned parameters v and
[are shared. The modified batch-norm can be expressed as:

T — /sp,t
BNmp/sp,i(m) = Fmplep v+ 8)
Omp/sp,i

Ensemble Loss. The loss function can be described as:

2
L="Lp+a Z(nsr!,i/nmp) Lepi ©)

i=1

where Ly, and Ly, ; are the cross-entropy loss of major-path and sub-paths respectively. « is the
coefficient to scale the loss. To maximize the accuracy of QANN, the distillation method in LSQ
Esser et al.| (2020) is utilized, where the teacher network is the full precision ANN.

3.5 EQUIVALENCE OF QANN AND SNN

The QANN-SNN equivalence is the foundation behind the conversion algorithm from QANN to
SNN in SpikeZIP. Notations are summarized in table[I] Assume the external stimulate (e.g., input
and bias) are applied to SNN from 7" = 0 to T,g, we define the equilibrium state of SNN as
the status where neurons of entire SNN are static (e.g., no further activities of neuron firing and
membrane update). The time-step that SNN enters the equilibrium state is noted as 1.

Lemma 1 After entering the equilibrium state at Tc, the accumulated output spikes of one ST-BIF
neuron can be derived as a closed-form equation of quantization function:

Vin + W:O

thr

‘/vout = ‘/thr . Clip(ﬂOOr()7 07 Smax) (7)

; Toq 1rin + . . o
where V" = % “0 V" is the accumulated input until T,,, and Vi— denotes the initial membrane
potential.

lemma [T| shows the equivalence between ST-BIF neuron and Q-ReLU function. The detailed proof
of lemmaﬂ]can be found in previous work Hu et al.| (2023)).

Theorem 1 Assume a QANN Fq parameterized by quantization level n, synaptic weights {W,},
quantization scale {s;} and an SNN Fg converted from the QANN, the accumulated outputs of the
SNN is equal to the QANN output:

Teq

]:Q(XO | n, {Wl}v{sl}) = Z}—S({V;ﬂ} | n, {Wl}7{sl}) (3

t=0

where Xq represents the input for ANN, {Vitn} denotes the encoded analog input (introduced in
section[3.2)) for SNN.

Proof 3.1 Suppose {convolution, batch-norm, Q-ReLU?} is the l-th block of the network, convolution
is parameterized by trained weight W and bias b;. With the batch-norm fused into convolution via

operator fusion|Chen et al.|(|2018), the weight and bias are updated as Wl and b, respectively. Then,
according to eq. @), the output of such block X, is written as:

X =s- clip(round(w), 0,n))
s

Considering the I-th block of SNN converted from l-th layer of QANN, by setting V=W, - X,_; +
by, Vico = 0.5V, Spax = 1, Vipr = 8, eq. and eq. (@) are equivalent. By extending the equiva-
lence between blocks to the network, the eq. (§)) is proven.

Under review as a conference paper at ICLR 2025

Table 3: Comparison with previous conversion-based methods. Column of (Q)ANN acc. lists
the validation accuracy achieved by its corresponding ANN or QANN. Column of acc./T lists the
accuracy of SNN acquired in different works and the earliest time-step when reaches the accuracy.
n/a refers to data not reported or cannot be reproduced; © indicates the SNN enters the equilibrium
state; — denotes most of the spikes have not reached the output of SNN. Current and prior best
results are in bold and grey respectively. T Due to the Offset[Hao et al.|(2023) method requires p

time-steps to calculate offset spikes, the time-steps of Offset work spend should add p (p = 4 on
CIFAR100 and p = 8 on ImageNet). * denotes the results reproduced from the code.

SNN Accuracy (Q ANN SNN Accuracy
Method (Q/)\IZEN AccT = oy Ty T Method Acc, Ace/T =3 T—q T8 716
OP|Bu et al.(2022] 7631 74.82/32 n/a n/a 60.49 70.72 OPIBu et al. 12022} 7485 74.69/512 nla nla 6.25 36.02
QCFSBu et al. (2023 7628 77.01/32 6379 69.62 7363 7624 QCEYBuetal {2023] 7429 74321024 n/a wa 1912 5097
SlipReLUJiang et al(2023] 70.03 70.65/32 5866 6256 6631 69.35 SlipReLUliang etal J2023] 7199 72.02/128 na na na 51.54
Fast-SNNHu et al l2023F 68.16 66.74/16 5809 6553 6667 6674 QFFSLietal (2023] 73.08 73.10/8 na a 73.10 na
Offse{Hao et al. (20231 7628 76.96/36 na T424/5 T6.26/8 7677120 Fast SNNHu etal [0023]F 73.02 73.20/16 5260 7L13 7294 7329
SpikeZIP-P 7707 17219 64.63 7519 7702 76.99 (ffse[Hao ot al. (2023]1 7419 73.82/16 nla na 63.849 73.82/16
0251727)) (0841) (095D 761 (0221 - 73.92/9 5904 7227 7375 7390
= SpikeZIP-P 73.90
OP[Bu et al. (2022 7043 67.18/32 na na 2309 5234 P 0.12177]) (6351 (L141) (0.651) (0.081)
CFSBU et al. (2023 69.94 69.82/32 1996 3414 5537 67.33
S]i}g?cLLJmng Clali(0023] 6840 68.76/32 2379 3794 5720 6661 QCFYBuetali2023) 7432 73.37/256 n/a 1275 3506 5935
Offse{Hao et al j20231 69.97 70.29/36 na 59225 65.18/8 69.44/20 SlipReLUliang etal 2023] 75.08 74.01/128 a na wa - 43.76
Fast-SNNICEC 003+ 6808 68.67/8 3788 62390 68.12 6808 Offse[Hao et al.(2023]F 7422 T4.14/16 a wa 69.11/9 74.14/16
SpikeZIP PR Jo10 703V10 4490 6358 68.65 70.07 SpIkeZIPPR g5 742U 1539 6446 7291 7391

(0.021/26)) (7.021) (1.191) (0.537) (0.637) (0.071/5)) (15.397) (SL711) (3.811) (0.25])
(a) Comparison on CIFAR100. Upper : results with(b) Comparison on ImageNet. Upper : results with
VGG-16; Bottom : results with ResNet-20. VGG-16; Bottom : results with ResNet-34.

4 EXPERIMENT

We conduct experiments using the image classification task with VGG16 |[Simonyan & Zisserman
(2014) and ResNet20 He et al.| (2016) on CIFAR100 [Krizhevsky et al.| (2009), while VGG16 and
ResNet34 on ImageNet Russakovsky et al.| (2015). Experimental setups are specified in the ap-
pendix. The SpikeZIP has four variants of settings: without PET and RCR (SpikeZIP-N), with PET
(SpikeZIP-P), with RCR (SpikeZIP-R), and with both PET and RCR (SpikeZIP-PR).

4.1 COMPARISON WITH PREVIOUS RESULTS

Comparisons with conversion-based methods, including OPI Bu et al.| (2022), QCFS Bu et al.
(2023)), Offset Hao et al.| (2023), QFFS |Hu et al.| (2023), SlipReLU [Jiang et al.[(2023)), Fast-SNN
Hu et al.| (2023)), are tabulated in table [3] We use SpikeZIP— and SpikeZIP-PR for VGG16 and
ResNet20/34 respectively. We observe SNNs generated by our SpikeZIP achieve performance of
Pareto frontiers, e.g., accuracy is higher than competing works across various time-steps. As listed
in the column of acc./T[!|in table 3| SpikeZIP significantly reduce the required time-step while not
sacrificing the accuracy. For example, compared to prior SOTA results, SpikeZIP reduce time-steps
by 7 (43.75% reduction) for VGG16 and 5 (33.3% reduction) for ResNet34, both on ImageNet.
Note that, at each time-step, since we use a single SNN generated by SpikeZIP to compete with all
previous works (several works specially optimize the accuracy at lower time-step by compromising
the upper-bound accuracy), some accuracy improvement of SpikeZIP does not seem significant.

Comparison with learning-based methods is elaborated in table 4| to show the advan-
tages of the conversion-based method in SpikeZIP. In experiments, we set quantization level
{Nmp; Nsp,1, Nsp,2} = {3,2,1} for PET in table When inference time-step 1" is 4, SpikeZIP out-
performs the MS-ResNet/Hu et al.[(2021) and SEW [Fang et al.|(2021a) (prior typical learning-based
works in CNN-based network) with 0.39% and 1.93% accuracy enhancement on ImageNet.

Moreover, fig. [Z_f] depict that, as SEW [Fang et al.| (2021a) (trained by BPTT Zenke & Vogels|(2021);
'Wu et al.[(2019)) optimizes SNN to inference at T'=4 specifically, its accuracy versus time-step curve
approach the peak accuracy at 7'=4 then the accuracy goes downhill. In addition, we plot the training
cost of SpikeZIP-PR, SpikeZIP-R and SEW with GPU hours as the evaluation metric. Although
PET increases the training cost slightly, it takes much less (~ 43.5x reduction) of computational
resources to achieve even better accuracy. Such training cost reduction benefits from 1) parameters

3V GG has no residual connection, thus RCR is not applicable.
*The peak accuracy of SNN is not achieved at the Tiq but a time-step 7' < Teq, Which has been observed in
many previous works |Li et al.[(2022); Hao et al.[(2023)).

Under review as a conference paper at ICLR 2025

Method Type Model Param. Acc. T % w04+
g —A— SEW
HC-STDB [Rathi et al. (2020 hybrid ResNet34 2179 6148 250 2 Zg —4— SpikeZIP-PR ‘
DSR Meng et al.|(2022 supervised PreAct-ResNetl8 21.79 67.74 50 N i 5 A >
PLIF |Fang et al.|(2021b BPTT ResNet34 2179 67.04 T # Time Steps

STBP-tdBN Zheng et al.|(2021 BPTT ResNet34 2179 6372 6 €0
TET)|) BPTT ResNet34 2179 6479 6 £ e
SEW BPTT ResNet34 2179 67.04 4 7] — swiairx
MS-ResNe(Hu et al.| BPTT ResNet34 21.80 6940 4 0 S0 100 150 20 250 300
SpikeZIP-PR BPTT ResNet34 2179 6979 4 GPU hours

Figure 4: Training Cost

Table 4: Comparison with learning-based methods. .
Comparison

Input T= T=16

”%M@@@Ef“mufw
rEmEmEE L] 11
rAEFRARA R ikl L

Figure 5: Comparison of feature maps with conversion-based works, using VGG16 on Ima-
geNet. (Left) evolution of feature maps (e.g. accumulated spikes) w.r.t time-steps. (Right) L1-norm
between accumulated feature map of SNN and feature map of QANN, using 100 image samples
from ImageNet. SpikeZIP takes fewer time-steps and acquires an identical feature map of QANN.

Norm

SpikeZIP Fast-SNN QCFS
L1
w
4

of pretrained ANN are inherited for QANN fine-tuning; 2) BPTT introduces an extra time-dimension
to the input and activation tensors which consumes more GPU memory and more number of GPUs.

4.2 FEATURE MAP IN QANN AND SNN

To further demonstrate that SNN generated by SpikeZIP is functionally equivalent to QANN and
takes fewer time-steps for SNN inference, we visualize the evolution of feature maps w.r.t different
time-steps 7', as depicted in fig.[5] The feature maps are obtained by accumulating the fired output
spikes of SNN neurons which corresponds to the pixels in the visualized feature map. Two previous
works compared here are QCFS and Fast-SNN (2023), where Fast-SNN
claims the equivalence between the activations in QANN and SNN. From fig. [5| we can draw the
following observations visually and quantitatively: 1) SpikeZIP takes less number of time-steps
for accumulated feature maps of SNN to evolve close to QANN; 2) Since the neuron level in-
equivalence in QCFS (TF neuron is not equivalent with Q-ReLLU) and model level in-
equivalence in Fast-SNN Hu et al.|(2023) (lacking the concept of equilibrium state), the L1 distances
of QCFS and Fast-SNN remain at a large value in fig. [5] which is supposed to be close to 0 for
absolute model level equivalence. Compared to them, only SpikeZIP shows the equivalence both
theoretically (section [3.5) and experimentally e.g., L1 distance is 0.5. Note that, calculating the
LI-norm as 0.5 is resulted from the intrinsic computing error of GPU hardware.

4.3 ABLATION STUDY

PET and RCR. To investigate the effectiveness of PET and RCR in SpikeZIP, we plot the curves
of accuracy versus time-step when PET and RCR are adopted. As depicted in fig. [6a] both PET
(-P) and RCR (-R) significantly enhance the inference accuracy of SNN at small time-step. Com-
bining them together (e.g., SpikeZIP-PR) on ResNet, a further accuracy boost is observed, which
demonstrates the compatibility between PET and RCR. Note that, there exists a small accuracy gap
between the native ANN and peak accuracy achieved by the SpikeZIP variants. This is mainly re-
sulted from the low quantization levels (e.g., nmp = 4 used for ResNet20 on CIFAR10) chosen to
train the QANN for a fair comparison with the competing works. Such an accuracy gap can be easily
eliminated by relaxing nm, to a carefully selected but relatively large value.

Quantization levels in PET. Choosing different quantization levels for QANN during PET in
SpikeZIP can lead to varying trends of accuracy versus time-step trade-off in its converted SNN. As

Under review as a conference paper at ICLR 2025

ResNet20 on CIFAR10

ResNet20 on CIFAR100

ResNet34 on ImageNet

ResNet20 on CIFAR10

ResNet20 on CIFAR100

60 4 60 4 80 4
60 4
40 q

20 4

— SpikeZIP-N

SpikeZIP-R
— SpikeZIP-P
—— SpikeZIP-PR.

/

80 1

)

T T T T T T 0T T T
2 8 16 32
VGG16 on CIFAR10

40 4 40 4

20 4

] 204 /
/ 7 1=
T T T T T T T T T 0 T T T T

1 16 1 2 4 8 16 1 2 4 8
VGG16 on CIFAR100

=== FPANN

T
16 32
VGG16 on ImageNet

—— SpikeZIPN
SpikeZIP-P
===+ FP-ANN

T O‘V T T T
16 32 1 2 4 8

T T T
2 8 2 4 8 16 32
VGG16 on CIFAR10 VGG16 on CIFAR100

100
80
60
40
20 4

Top-1 accuracy (%)
Top-1 accuracy (%)

60
40 4
20 4

60
404
20

=
E
L

S
3
L

T T T T 0= T T T
16 1 2 4 8

Time Steps
(a) Ablation of PET and RCR in SpikeZIP. (b) Ablation of quantization levels 7.

Figure 6: Curves of accuracy v.s. time-steps for (a) SpikeZIP equips with varying techniques (e.g.,
N, R, P, PR); (b) PET using different quantization levels ny, for the main-path. The black dash-line
labels the accuracy of native floating-point ANN.
Table 5: Ablation Studies of SpikeZIP using ResNet34 on ImageNet. (a) quantization scale
and (b) batch-norm are ablated with three schemes of parameters sharing: {independent, identical,
share}. Column of independent (indep.) scheme reports the accuracy of SNN major-path. (c) loss

coefficient and (d) loss label type in the loss function. Grey indicates the default settings.

T
16 32

Time Steps

T indep. identical share T indep. identical share T a=0.25 a=I1 a=5 a=10 T Hard Soft Hard+Soft
2 1364 0352 15.39 2 9.662 43.08 15.39 2 3548 6.154 17.06 21.38 2 16.49 1539 16.77
4 52.65 32.88 64.46 4 61.62 66.00 64.46 4 5577 59.29 63.15 6337 4 64.61 64.46 64.71
8 72.01 7143 7291 8 72.86 66.87 72.91 8 7193 7211 7159 71.37 8 7290 7291 72.92
16 72.46 71.61 73.91 16 73.94 68.79 73.91 16 7329 7314 7278 72.62 16 73.76 7391 73.93
QANN 7232 7158 73.85 QANN 74.06 68.88 7385 QANN 7330 7306 7272 7246 QANN 7376 73.85 73.76
(a) s in Q-ReLUs (b) {u, 0} in BN (¢) o in loss function (d) Label for Lgp ;s

shown in fig. nmp € {2,4,8,16} are investigated. We can conclude that, using smaller np, can
improve the accuracy of SNN at low time-step, while sacrificing the accuracy at high time-step (e.g.,
T > T.q). When a greater ny,, is adopted, it takes more time-steps for SNN to achieve a competitive
accuracy that is close to the floating-point ANN counterpart.

Parameter Sharing in PET. As we specified in section PET tactfully performs parameter
sharing among Q-ReLUs (quantization scales s) and batch-norm (i, o}) layers belonging to dif-
ferent paths. We perform the ablation study with three schemes, 1) independent: all trainable pa-
rameters in Q-ReL.Us and batch-norms are independent from each other; 2) identical: paths use the
identical set of parameters; 3) share: parameters are shared but using the proper scaling in egs. (3))
and (@) and partial sharing in eq. (3).

Ablation of parameter sharing in Q-ReLU is reported in table [5af We can find that, incorporating
the shared s with properly scaled for different paths (e.g., share scheme) achieves the best accuracy
across varying time-steps T', while the identical and independent show the worse performance due
to the invalidation of sharing rule in the conversion theory. Ablation of parameter sharing in batch-
norm is tabulated in table In contrast to the share scheme that pioneers the accuracy at all time-
steps for Q-ReLU in table% applying the share scheme on batch-norm layers performs better than
the independent scheme at low time-step while outperforms the identical scheme at high time-step.

Ensemble loss in PET. In eq. (6), we design a additive loss from all paths. We first investigate the
effect of tuning loss coefficient v from 0.25 to 10, as listed in table[5c| Choosing a larger « plays a
role of encouraging SNN (major-path) to achieve higher accuracy at low time-step. On the contrary,
a smaller o makes the loss function weigh more on the loss term that optimizes the major-path and
increases the accuracy of SNN after T,. We take o = 1 as the default setting.

Furthermore, we also examine the benefit of using a hard label (e.g., ground-truth label to calculate
cross-entropy), soft label (e.g., logits from teacher ANN to calculate KL divergence), or mixed
fashion, for the loss term of sub-paths L, ;. Experiments in table @ shows purely leveraging the
soft-label for L ; leads to the best accuracy of QANN (main-path), which is the default setting.

4.4 EXPERIMENTS ON OBJECT DETECTION

To show the potential of the conversion theory of SpikeZIP, we employ the SpikeZIP to YOLOv3
Redmon & Farhadi| (2018) on object detection tasks. To convert the YOLOv3 to SNN, we first

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison for object detection task on PASCAL VOC 2007 and MS
COCO 2017 between SpikeZIP and other conversion-based works. SpikeZIP achieves higher
mAP and less AmAP than the Fast-SNN |[Hu et al | (2023).

Work PASCAL VOC 2017 MS COCO 2017
Architecture /;I/\ig igﬁ AmAP Time Steps Architecture 1:}:;])SnI:f; AmAP Time Steps
Spike-YOLO Tiny YOLO 53.01 51.83 -1.18 8000 Tiny YOLO 2624 25.66 -0.58 8000
Spike-YOLO V2 Tiny YOLO 53.01 5174 -127 5000 Tiny YOLO 26.24 2578 -0.46 5000
Fast-SNN YOLOv2(ResNet34) 76.16 76.05 -0.11 15 YOLOv2(ResNet34) 4696 46.40 -0.56 15
SpikeZIP-N YOLOV3 7755 7748 -0.07 15 YOLOv3 5210 52.20 +0.10 15

replace the LeakyReLU Xu et al| (2020) in the backbone of YOLOv3 with ReLU function and
utilize the conversion pipline of SpikeZIP shown in fig.[I] to obtain the SNN for object detection.
The comparison between the converted SNN and other conversion-based works is shown in table[6]
Our SpikeZIP achieves higher mAP than the Fast-SNN |[Hu et al.[(2023)) with the same time-step.

4.5 ENERGY CONSUMPTION ANALYSIS

Neuron level. As the foundation unit of SpikeZIP, ST-BIF neuron differs from the classic IF neu-
ron in its bipolar output spike and extra spike tracer. We perform power analysis of neuron variants
with CMOS 65nm technology node, where the hardware evaluation is given in table [/} Both mem.
and spike tracer are multi-bit registers to buffer the membrane potential and neuron firing record
respectively. Thanks to the latency compression in SpikeZIP which compresses the SNN inference
time-steps within 11, the 4-bit spike tracer register is sufficient for ST-BIF neuron which consumes
1.22% more power than the IF counterpart.

Model level. We compare the energy consumption of the SNN version of ResNet20 converted
from QCFS Bu et al.| (2023) and SpikeZIP-PR using CIFAR100. We take the synaptic operation
(SOP) introduced in Merolla et al.| (2014) to represent the basic operation numbers to infer one
image in SNN, while the ANN counterpart uses floating-point operations (FLOP). For the energy
consumption per operation, we use 77fJ/SOP and 12.5pJ/FLOP reported from the ROLLS neuro-
morphic processor [Qiao et al.[(2015). We utilize the energy consumption estimation method used
in QCFS Bu et al.|(2023)), where the results are reported in fig. m We can observe that the energy
consumption of SNN is much lower than the ANN (1.02mJ per inference). Compared to QCEFS,
SpikeZIP also consumes less energy where the energy saving is enlarged when 7' > 8, due to the
SNN generated by SpikeZIP enters the equilibrium state.

neuron mem. tracer power ANN Energy: 1.023 mJ

model ~ (#bit) (#bit) (uW) 704 L
IF 32 na 32400 & 60 A Qcrs

STBIF 32 4 32797 5’ 501 * SpikeZIP-PR 7

ST-BIF 32 8 361.50 = 40 B

ST-BIF 32 16 428.62 g 30 L

ST-BIF 32 32 56529 504

oo
—_
N
%)
)
A,
N

2 4
Table 7: The power consump-
tion of IF neuron and ST-BIF Figure 7: accuracy and energy v.s. time-step 7" for
neuron with spike tracers of SNN using QCFS Bu et al|(2023) and SpikeZIP-
different bit-width. PR respectively.

5 CONCLUSION AND OUTLOOK

SpikeZIP constructs a framework for obtaining a high performance SNN, supported by comprehen-
sive experiments and rigorous proof in this work. We anticipate the SpikeZIP as a foot-stone for
future investigations of brain-inspired SNN, which bridges and inherits the existing research of deep
learning to the paradigm of neuromorphic computing. For compact models where PET and RCR
are applicable, SpikeZIP empowers its converted SNN to achieve the state-of-the-art performance.
For large models where retraining or fine-tuning are not feasible, the mathematical equivalence es-
tablished in SpikeZIP can also provide a promising approach of direct conversion, in combination
with the post-training quantization technique for Q-ReLU.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 11-20, 2022.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: an automated end-to-end optimizing
compiler for deep learning. In Proceedings of the 13th USENIX conference on Operating Systems
Design and Implementation, pp. 579-594, 2018.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. leee Micro, 38(1):82-99, 2018.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. International Conference on Learning Representations (ICLR), 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. International Conference on Learning Representa-
tions (ICLR), 2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056-21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661-2671,
2021b.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European Conference on Computer Vision, pp. 388—404. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558-13567, 2020.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
anns and snns by calibrating offset spikes. arXiv preprint arXiv:2302.10685, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by
converting quantized ann. arXiv preprint arXiv:2305.19868, 2023.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. CoRR, abs/2112.08954, 2021. URL |https://arxiv.org/abs/
2112.08954.

11

https://arxiv.org/abs/2112.08954
https://arxiv.org/abs/2112.08954

Under review as a conference paper at ICLR 2025

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
pmlr, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704-2713, 2018.

Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: Towards optimal mapping from activation values to firing
rates. 2023.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, pp. 1638, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

Chen Li, Lei Ma, and Steve Furber. Quantization framework for fast spiking neural networks.
Frontiers in Neuroscience, 16:918793, 2022.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316-6325. PMLR, 2021.

Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, and Li Jiang. Spikeconverter: An
efficient conversion framework zipping the gap between artificial neural networks and spiking
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp- 1692-1701, 2022.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659-1671, 1997.

Adnan Mehonic and Anthony J Kenyon. Brain-inspired computing needs a master plan. Nature,
604(7905):255-260, 2022.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12444-12453, 2022.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668-673, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51-63, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural
networks with time-to-first-spike coding. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1-6. IEEE, 2020.

Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumislawska,

and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic processor com-
prising 256 neurons and 128k synapses. Frontiers in neuroscience, 9:141, 2015.

12

Under review as a conference paper at ICLR 2025

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607-617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(1JCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ana Stanojevic, Stanistaw WozZniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Waulfram Gerstner. An exact mapping from relu networks to spiking neural networks. Neural
Networks, 168:74-88, 2023.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ann-snn conversion. In International Joint Conference on Artificial
Intelligence, 2022a.

Zhehui Wang, Xiaozhe Gu, Rick Siow Mong Goh, Joey Tianyi Zhou, and Tao Luo. Efficient spiking
neural networks with radix encoding. IEEE Transactions on Neural Networks and Learning
Systems, 2022b.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311-1318, 2019.

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu. Reluplex made more practical: Leaky
relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1-7. IEEE, 2020.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural computation, 33(4):899-925,
2021.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062-11070, 2021.

13

	Introduction
	Background and Related Work
	Methodology
	Conversion Flow in SpikeZIP
	Input and Bias Encoding
	Residual Connection Re-routing
	Paths-Ensemble Training
	Equivalence of QANN and SNN

	Experiment
	Comparison with Previous Results
	Feature Map in QANN and SNN
	Ablation Study
	Experiments on Object Detection
	Energy Consumption Analysis

	Conclusion and Outlook

