
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPIKEZIP: COMPRESSING SPIKING NEURAL NET-
WORK WITH PATHS-ENSEMBLE TRAINING FOR OPTI-
MIZED PARETO-FRONT PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural network (SNN) has attracted great attention due to its great en-
ergy efficiency on neuromorphic hardware. By transferring the parameters of
pretrained artificial neural network (ANN) and utilizing the ANN quantization,
recent works of ANN-SNN conversion can produce SNNs with close-to-ANN
accuracy and low inference latency (known as the number of time-steps). Never-
theless, existing works fail at providing theoretic equivalence between Quantized-
ANN (QANN) and its converted SNN, while the SNN accuracy at small time-step
(i.e. Pareto-frontier) can be further improved. To solve the problems, this paper
proposes a novel conversion framework called SpikeZIP. The SpikeZIP utilizes the
ANN-Quantized ANN(QANN)-SNN two-step conversion to obtain SNN which
improves the Pareto frontier of accuracy versus inference time-steps. SpikeZIP
integrates two novel algorithms: 1) a paths-ensemble training algorithm that con-
siders the SNN temporal information when fine-tuning QANN; 2) a mathemati-
cally equivalent conversion algorithm between the whole QANN and SNN. In the
experiment, SpikeZIP can achieve 73.92% accuracy on ImageNet with VGG-16
within 9 time-steps and 74.21% accuracy on ImageNet with ResNet-34 within 11
time-steps which are better than SOTA works. Spiking Neural Networks, Quanti-
zation, ANN-SNN Conversion

1 INTRODUCTION

Spiking neural network (SNN) Maass (1997) is a type of biologically plausible neural network in-
spired by brains of living organisms. Unlike modern artificial neural networks (ANNs) LeCun et al.
(2015) use continuous activation value to propagate information between neurons synchronously,
SNNs utilize discrete events or “spikes” for asynchronous neuron-to-neuron communication and
processing Merolla et al. (2014); Davies et al. (2018). Such event-driven characteristic in SNN is
considered as one of the key factors to achieve remarkable energy efficiency in human brain (∼20W)
Roy et al. (2019). Given the astonishing growing pace of computing power demands of ANN models
(doubled per 2 months since 2020 Mehonic & Kenyon (2022)), evolving ANNs to energy-efficient
SNNs is in urgent demand for cost-effective inference.

Currently, methods to train SNN come in twofold: learning- and conversion-based Roy et al. (2019).
Both methods attempt to obtain SNNs with high accuracy and less time-step. Previous learning-
based works leverage variants of spike-timing-dependent plasticity Diehl & Cook (2015) or gradient
descent algorithms Wu et al. (2018; 2019); Neftci et al. (2019); Kim & Panda (2021); Zenke &
Vogels (2021) to update the synaptic weights of SNN. Unfortunately, although learning methods
train SNN at small time-step (e.g., 4 time-step), due to the inaccurate gradient approximation Neftci
et al. (2019) for the non-differential SNN neuron, e.g., integrate and fire (IF) neuron, an accuracy
gap persists between SNN and its ANN counterpart Fang et al. (2021a).

Rather than directly training an SNN, the conversion-based methods transfer the parameters of the
pre-trained ANN into its SNN counterpart that yields close-to-ANN accuracy. As the accuracy
versus time-step curve shown in fig. 1, the SOTA works (Offset Hao et al. (2023), QCFS Bu et al.
(2023), etc.) reduce the inference time-step to 16. These works replace the ReLU function with
its quantized version (Q-ReLU), and use a quantization-aware training algorithm to compress the
quantization level of activation to reduce the inference time-step. However, the low quantization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ANN QANN SNN
(ST-BIF Neuron)

Better Pareto Fontier with SpikeZIP

Paths-Ensemble
Training Equivalent

Figure 1: SpikeZIP Highlights. Upper: accuracy v.s. latency (#time-steps) curve of SNN (ResNet-
34 on ImageNet) obtained from varying works. Bottom: conversion pipeline of SpikeZIP, which
trains a QANN with paths-ensemble training and then converts the trained QANN to its mathemati-
cally equivalent SNN.

level of activation brings large quantization errors in ANN training, which sacrifices the accuracy of
the ANN and the converted SNN. Therefore, improving the accuracy of SNN at small time-step by
reducing the quantization level encounters bottleneck. For the neurons, such Q-ReLU approximates
the conventional IF neuron and is equivalent to the sign neuron proposed in Hu et al. (2023); Wang
et al. (2022a); Li et al. (2022). However, due to the max-pooling and batch normalization operator,
non-equivalence still exists between Quantized-ANN and SNN at the model-level.

By far, two challenges remain unsolved: 1) non-existing work provides theoretic support of equiv-
alence of QANN and its converted SNN at model level; 2) SNN accuracy at small time-step (e.g.
Pareto frontier) can be further improved. As the countermeasure, we build a framework called
SpikeZIP to produce SNN with state-of-the-art performance (i.e., accuracy and latency). SpikeZIP
fine-tunes QANN utilizing a pre-trained ANN, then the QANN is converted into its mathematically
equivalent SNN. Our core technical contributions in SpikeZIP can be summarized as:

• Theoretical Equivalence of QANN-SNN is proved rigorously at the model level. Such
equivalence holds under the condition of 1) ANN uses quantized ReLU; 2) SNN uses ST-
BIF neuron model; 3) SNN-unfriendly operators are replaced (e.g., alter max pooling to
average pooling); 4) taking analogRueckauer et al. (2017) input and bias encoding.

• Pareto-front performance is achieved in SpikeZIP-produced SNN. By incorporating a
novel Paths-Ensemble Training (PET) technique during QANN training, the SNN con-
verted from the QANN can obtain higher accuracy with lower latency (e.g. less num-
ber of time-steps), which is shown in fig. 1. In the experiment, the Spike-ResNet34 in
SpikeZIP achieves 74.21% accuracy at 11 time-steps which is better than other state-of-
the-art works (74.14% at 16 time-steps by Offset Hao et al. (2023)).

2 BACKGROUND AND RELATED WORK

Neuron Model. Recent works Li et al. (2022); Hu et al. (2023); Wang et al. (2022a) propose a
variant of IF neuron, which we call bipolar integrate&fire with spike tracing (ST-BIF). Its neuron
dynamics can be described as:

Vt = Vt−1 + V in
t − Vthr ·Θ(Vt−1 + V in

t , Vthr, St−1)

St = St−1 +Θ(Vt−1 + V in
t , Vthr, St−1)

Θ(V, Vthr, S) =


1; V ≥ Vthr & S < Smax

0; other
−1; V < 0 & S > 0

(1)

where the notations used above are listed in table 1. ST-BIF neuron in eq. (1) differs from the vanilla
IF neuron from two perspectives: 1) ST-BIF neuron fires bipolar spikes (either positive or negative);

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Summary of mathematical notations used in this paper.

Notation Description

Vt potential of neuron membrane at time-step t
Vthr threshold voltage for neuron to fire a spike

V in, V out input or output voltage of neuron
Teq time-steps of neuron enters equilibrium state
Toff time-steps when input and bias are turned off

St, Smax Spike tracer at time-step t and maximum value of spike tracer
clip(x, αmin, αmax) Clip function that limits x between αmin and αmax

Θ(V, Vthr, S) Output spike decision function of ST-BIF neuron
FQ(X0|n, {W}, {s}) QANN with weights W, quantization level n, scale s
FS(V|n, {W}, {s}) SNN with Smax = n, weight W and Vthr = s

n, nmp, nsp,i Quantization levels in major-path and i-th sub-path.

Table 2: Techniques and setting of related works. ana. denotes analog input encoding, mem calib.
is short for membrane calibration, and eq. is equivalence.

OPI QCFS EMRS Radix SNM QFFS Offset Fast-SNN Ours

(i) encoding ana. ana. time radix ana. ana. ana. ana. ana.
(ii) neuron IF IF OneSpike LIF ST-BIF ST-BIF IF ST-BIF ST-BIF
(iii) mem calib. ✓ ✓ ✓ ✓ ✓ ✓
(iv) Q-ReLU ✓ ✓ ✓ ✓ ✓ ✓
(v) neuron eq. ✓ ✓ ✓ ✓ ✓ ✓
(vi) model eq. ✓ ✓ ✓

2) ST-BIF neuron guarantees the accumulated charge of output spikes equal to the output of the
Q-ReLU function until the neuron stops firing, in virtue of the spike tracer St.

ANN-SNN Conversion. ANN-SNN conversion creates an SNN whose synaptic weights between
neurons are identical to the corresponding ANN. Recent works focus on optimizing both the accu-
racy and latency of SNN (e.g. Pareto frontier in fig. 1), via leveraging the techniques (summarized
in table 2) as follows:

(i) Input encoding. Four encoding methods are used most frequently, e.g., analog coding Rueckauer
et al. (2017); Han et al. (2020); Li et al. (2022); Bu et al. (2023); Hao et al. (2023); Hu et al. (2023),
rate coding Liu et al. (2022), time coding Park et al. (2020) and radix coding Wang et al. (2022b).
(ii) Neuron model. The soft-reset IF neuron model Han et al. (2020) is the most common choice
Han & Roy (2020); Han et al. (2020); Bu et al. (2022; 2023); Hao et al. (2023), which maintains
the residual voltage after the neuron fire. To mitigate the occasional noise Li et al. (2022) between
ANN and SNN, a sign neuron is proposed, which can fire negative spikes to offset the over-fired
positive spikes Li et al. (2022); Wang et al. (2022a); Hu et al. (2023). Other neurons (e.g., iLIF Liu
et al. (2022) and OneSpike Stanojevic et al. (2023)) are designed for specific systems, which are not
common in recent works. (iii) Membrane calibration (e.g., initialize V0 = 0.5Vthr Bu et al. (2022))
has been widely adopted to reduce the ANN-SNN conversion error and latency. (iv) Q-ReLU as
ANN Activation is a emerging trend whose converted SNN is found to have lower inference latency
with decreased quantization levels Hao et al. (2023); Bu et al. (2023); Li et al. (2021; 2022); Deng &
Gu (2021); Hu et al. (2023). (v) Neuron equivalence is proved Li et al. (2022); Wang et al. (2022a);
Stanojevic et al. (2023); Hu et al. (2023) between SNN neurons (e.g., firing rate) and ANN activation
functions (ReLU or Q-ReLU). (vi) Model equivalence. With time-based input, Stanojevic et al.
(2023) claims the equivalent between ANN and SNN. For analog input, although Hu et al. (2023)
claims the equivalence between QANN activation and SNN firing rate, there still exists accuracy
degradation between QANN and SNN in experiments, which means the non-equivalence at the
model level.

As summarized in table 2, although some works prove the equivalence at the neuron level Li et al.
(2022); Wang et al. (2022a) and model level Stanojevic et al. (2023); Wang et al. (2022b), the
equivalence between the QANN and SNN with analog encoding is missing.

Quantization. Quantization is a discretization process of the continuous value, which is widely
used to compress ANN Gholami et al. (2022). The Q-ReLU function is written as:

f(x) = s · clip(round(x/s), 0, n) (2)

where the notations used above are tabulated in table 1. To alleviate the accuracy degradation when
quantizing with extremely low quantization level, LSQ Esser et al. (2020) is proposed to learn quan-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

tization scale (s in eq. (2)) during quantization-aware training Jacob et al. (2018); Gholami et al.
(2022). LSQ has been used widely in previous conversion works Bu et al. (2023); Li et al. (2022);
Hao et al. (2023); Hu et al. (2023), which is inherited by SpikeZIP as well.

3 METHODOLOGY

3.1 CONVERSION FLOW IN SPIKEZIP

SpikeZIP takes four steps in total to convert an ANN to its SNN counterpart. It firstly converts
original ANN to SNN-friendly QANN through (1) SNN-friendly morphing and (2) paths-ensemble
training. Then, SpikeZIP utilizes the (3) operator fusion and the (4) neuron replacement to QANN
to obtain a high-performance SNN.

1) SNN Friendly Morphing. Since the original ANN may include operators and topology that are
unfriendly to SNN, we modify those operators with the SNN-friendly counterparts. In detail, we al-
ter the max-pooling to the average-pooling Rueckauer et al. (2017), as it is easier for equivalent SNN
implementation. Moreover, we conduct residual connection re-routing (specified in section 3.3) for
ResNet, to optimize the latency. Finally, the ReLU function is replaced by Q-ReLU function to
convert ANN to QANN, for successive training.

2) Paths-Ensemble Training (PET) is proposed and utilized to train the morphed ANN (e.g.
QANN) from the last step. PET (specified in section 3.4) is a variant of LSQ-based quantiza-
tion aware training algorithm, which is designed to simultaneously improve the accuracy of trained
QANN that quantized with varying quantization levels on the fly.

3) Operator Fusion & 4) Neuron Replacing. In operator fusion, SpikeZIP fuses the batch nor-
malization layers of trained QANN into their front (e.g., convolution or linear) layers as in Chen
et al. (2018). In the successive neuron replacing, we update all the Q-ReLUs to ST-BIF neurons, and
adjust the configurations of ST-BIF neurons (e.g., Vt=0, Vthr, Smax and etc., as discussed in proof 3.1)
accordingly.

3.2 INPUT AND BIAS ENCODING

We design a unique analog encoding method for input and bias1, which is also the prerequisite of
QANN-SNN equivalence in section 3.5. Unliking traditional analog encoding that converts the raw
image X0 to Vin

t = X0 · ∆v,∀t and fires for each time-step, we choose the evenly-release strategy
which sets Vin

t = X0 ·∆v/n, t ∈ {1, 2, ..., Toff}. Hereby, input stops applying at Toff = n, where n
is the quantization level of QANN. Moreover, the evenly-release strategy is adopted for the bias in
convolution/linear layers as well.

3.3 RESIDUAL CONNECTION RE-ROUTING

As the residual structure of ResNet He et al. (2016) plotted in fig. 3, the spiking neuron layer (SN,
highlighted in orange) takes the addition of network blocks as its input, which makes it a “spiking
transmission bottleneck” as more time-steps are taken for this neuron layer to integrate and fire.

As the countermeasure, we perform residual connection re-routing (RCR)2 as described in fig. 3.
If the residual connection is identity, we simply re-route the residual connection and addition after
the Q-ReLU/SN (pink shadow part). If the residual connection uses convolution, in addition to the
aforementioned rerouting process for identity, we insert an extra Q-ReLU/SN after the convolution.

1Biases are introduced due to the fused batch normalization, which can be viewed as the special form of
inputs as they are constants as well.

2Prior SEW-ResNet Fang et al. (2021a) adopts “RELU before addition” (similar topology) to overcome
vanishing or exploding gradient, during the direct training of SNN. In contrast, SpikeZIP is a conversion-based
framework and RCR is used for latency reduction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Conversion

Re-
Route

Major-Path
Sub-Path

Input

Activation

× 𝐿𝐿

PET Blocks

Output2

Output3

Conv/
Linear

C
la

ss
ifi

er

ℒsp,1

Share Layer

2-level

4-level

8-level
+ Ensemble

loss

Conv
Q-ReLU

Conv

+
Q-ReLU
Vanilla

Conv
SN

Conv

SN
Vanilla

Conv
Q-ReLU

Conv

Q-ReLU

Conv
SN

Conv

SN

SZIP SEW*/SZIP

QANN (basic block) SNN (basic block)

Re-routed Connection Spiking Transmission Bottleneck

Q-ReLU

Conv
Q-ReLU

Conv

+

Q-ReLU
Vanilla

SN

Conv
SN

Conv

+

SN

Vanilla

Q-ReLU

Conv
Q-ReLU

Conv

+

Q-ReLU

SN

Conv
SN

Conv

+

SN

SZIP SEW/SZIP

QANN SNNconversion

SZIP

Swap Swap

Morphing Position Spiking Transmission Bottleneck

+
+

+

BN1
(𝜇𝜇sp,1,𝜎𝜎sp,1, 𝛾𝛾,𝛽𝛽)

BN3
(𝜇𝜇mp,𝜎𝜎mp,𝛾𝛾,𝛽𝛽)

Q-ReLU(2⋅s)

Q-ReLU(4⋅s)

Q-ReLU (s)

Sharing

Re-
Route

BN2
(𝜇𝜇sp,2,𝜎𝜎sp,2, 𝛾𝛾,𝛽𝛽) ℒsp,2

ℒmp

Output1

Figure 2: Illustration of Paths-Ensemble Training (PET). Given a QANN to be trained, PET
introduces three paths (one major-path and two sub-paths). All three paths share identical param-
eterized layers (e.g., convolution/linear, etc.), but with independent Q-ReLU, batch-norm and loss.
In one PET block, Q-ReLUs use shared quantization scale s, but scaled as {s, 2s, 4s} for Q-ReLUs
quantized with {8, 4, 2}-level respectively. For batch-norm Ioffe & Szegedy (2015), the mini-batch
mean µi and variance σi are collected for each path individually, while learned parameters γ and β
are shared. Losses of each path are calculated independently and then added as one ensemble loss
for training.

Major-Path

Sub-Path
Input

Activation

× 𝐿

PET Blocks

Output2

Output3

Conv/

Linear

C
la

ss
if

ie
r

ℒsp,1

Share Layer

2-level

4-level

8-level

+ Ensemble

loss

Q-ReLU

Conv

Q-ReLU

Conv

+

Q-ReLU

Vanilla

SN

Conv

SN

Conv

+

SN

Vanilla

Q-ReLU

Conv

Q-ReLU

Conv

+

Q-ReLU

SN

Conv

SN

Conv

+

SN

SZIP SEW/SZIP

QANN SNNconversion

SZIP

Swap Swap

Morphing Position Spiking Transmission Bottleneck

BN1

(𝜇sp,1, 𝜎sp,1, 𝛾, 𝛽)

BN3

(𝜇mp, 𝜎mp, 𝛾, 𝛽)

Q-ReLU(2⋅s)

Q-ReLU(4⋅s)

Q-ReLU (s)

Sharing

BN2

(𝜇sp,2, 𝜎sp,2, 𝛾, 𝛽) ℒsp,2

ℒmp

Output1

Conversion

Re-

Route

Conv

Q-ReLU

Conv

+

Q-ReLU

Vanilla

QANN (basic block) SNN (basic block)

Re-routed Connection Spiking Transmission Bottleneck

Conv

Q-ReLU

Conv

Q-ReLU

SZIP

+

Conv

SN

Conv

SN

Vanilla

+

Conv

SN

Conv

SN

SEW*/SZIP

+Re-

Route

C
o

n
v

Q
-R

eL
U

C
o

n
v

+

Q
-R

eL
U

Vanilla

C
o

n
v

Q
-R

eL
U

C
o

n
v

Q
-R

eL
U

SZIP

+

Re-Route

QANN (basic block)

C
o

n
v

S
N

C
o

n
v

S
N

Vanilla

+

C
o

n
v

S
N

C
o

n
v

S
N

SEW*/ SZIP

+

Re-Route

SNN (basic block)Conversion

Figure 3: Residual connection re-routing (RCR) used to mitigate the spiking bottleneck phe-
nomenon and reduce latency. SN denotes the spiking neuron (e.g., ST-BIF) layer. * SEW-ResNet
Fang et al. (2021a) takes a similar topology but for different design purposes.

3.4 PATHS-ENSEMBLE TRAINING

PET is inspired by our observation from Bu et al. (2023); Li et al. (2022): reducing the quanti-
zation levels of QANN lowers the latency of converted SNN by sacrificing accuracy as well. As
we expect the QANN-converted SNN can achieve higher accuracy at small time-steps (Pareto-front
performance in fig. 1), the observation motivates us to improve the accuracy of QANN quantized
with fewer quantization levels. Inspired by the slimmable network Yu et al. (2018) that trains CNNs
with different channel numbers using shared parameters, we train QANNs quantized with varying
quantization levels, using a single set of trained parameters (e.g., weights, bias and etc.).

Training Strategy. As illustrated in fig. 2, PET consists of three optimizing paths (one major-path
and two sub-paths). Each path has its independent Q-ReLU and batch normalization (batch-norm)
layer, while the remaining parametric layers (e.g. convolution, linear, etc.) are shared by the different
paths. Note that, only the major-path of QANN will be converted to SNN once training with PET
is completed, while sub-paths are used to assist the training in major-path. Three kinds of operators
are carefully designed in PET:

1) Parametric Layer: The weights in parametric layers are shared among the paths in PET, which
will be optimized by back-propagation to improve the accuracy of different paths simultaneously.

2) Q-ReLU: Assume the Q-ReLU in major-path is:

fmp(x) = s · clip(round(x/s), 0, nmp) (3)

Then, the Q-ReLU in i-th sub-path is written as:

fsp,i(x) =
nmps

nsp,i
· clip(round(

nsp,ix

nmps
), 0, nsp,i) (4)

where quantization levels are set as {nmp, nsp,1, nsp,2} = {8, 4, 2}. The quantization scale s is the
learnable parameter that is shared between different Q-ReLUs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3) Batch-norm: Since Q-ReLUs in different paths adopt varying quantization levels, the output dis-
tributions of Q-ReLUs are distinguished from each other significantly. According to our experiment,
naively using one shared batch-norm makes it difficult for the training to converge. Therefore, we
make the mini-batch mean µi and σi be independent for each path, while learned parameters γ and
β are shared. The modified batch-norm can be expressed as:

BNmp/sp,i(x) =
x− µmp/sp,i

σmp/sp,i
γ + β (5)

Ensemble Loss. The loss function can be described as:

L = Lmp + α

2∑
i=1

(nsp,i/nmp) · Lsp,i (6)

where Lmp and Lsp,i are the cross-entropy loss of major-path and sub-paths respectively. α is the
coefficient to scale the loss. To maximize the accuracy of QANN, the distillation method in LSQ
Esser et al. (2020) is utilized, where the teacher network is the full precision ANN.

3.5 EQUIVALENCE OF QANN AND SNN

The QANN-SNN equivalence is the foundation behind the conversion algorithm from QANN to
SNN in SpikeZIP. Notations are summarized in table 1. Assume the external stimulate (e.g., input
and bias) are applied to SNN from T = 0 to Toff , we define the equilibrium state of SNN as
the status where neurons of entire SNN are static (e.g., no further activities of neuron firing and
membrane update). The time-step that SNN enters the equilibrium state is noted as Teq.

Lemma 1 After entering the equilibrium state at Teq, the accumulated output spikes of one ST-BIF
neuron can be derived as a closed-form equation of quantization function:

V out = Vthr · clip(floor(
V in + Vt=0

Vthr
), 0, Smax) (7)

where V in =
∑Teq

t=0 V
in
t is the accumulated input until Teq, and Vt=0 denotes the initial membrane

potential.

lemma 1 shows the equivalence between ST-BIF neuron and Q-ReLU function. The detailed proof
of lemma 1 can be found in previous work Hu et al. (2023).

Theorem 1 Assume a QANN FQ parameterized by quantization level n, synaptic weights {Wl},
quantization scale {sl} and an SNN FS converted from the QANN, the accumulated outputs of the
SNN is equal to the QANN output:

FQ(X0 | n, {Wl}, {sl}) =
Teq∑
t=0

FS({Vin
t } | n, {Wl}, {sl}) (8)

where X0 represents the input for ANN, {Vin
t } denotes the encoded analog input (introduced in

section 3.2) for SNN.

Proof 3.1 Suppose {convolution, batch-norm, Q-ReLU} is the l-th block of the network, convolution
is parameterized by trained weight Wl and bias bl. With the batch-norm fused into convolution via
operator fusion Chen et al. (2018), the weight and bias are updated as Ŵl and b̂l respectively. Then,
according to eq. (2), the output of such block Xl is written as:

Xl = s · clip(round(
Ŵl · Xl−1 + b̂l

s
), 0, n) (9)

Considering the l-th block of SNN converted from l-th layer of QANN, by setting Vin = Ŵl ·Xl−1 +

b̂l, Vt=0 = 0.5Vthr, Smax = n, Vthr = s, eq. (7) and eq. (9) are equivalent. By extending the equiva-
lence between blocks to the network, the eq. (8) is proven.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Comparison with previous conversion-based methods. Column of (Q)ANN acc. lists
the validation accuracy achieved by its corresponding ANN or QANN. Column of acc./T lists the
accuracy of SNN acquired in different works and the earliest time-step when reaches the accuracy.
n/a refers to data not reported or cannot be reproduced; △ indicates the SNN enters the equilibrium
state; – denotes most of the spikes have not reached the output of SNN. Current and prior best
results are in bold and grey respectively. † Due to the Offset Hao et al. (2023) method requires ρ
time-steps to calculate offset spikes, the time-steps of Offset work spend should add ρ (ρ = 4 on
CIFAR100 and ρ = 8 on ImageNet). * denotes the results reproduced from the code.

SNN Accuracy
Method (Q)ANN

Acc. Acc./T
T=2 T=4 T=8 T=16

OPIBu et al. (2022) 76.31 74.82/32 n/a n/a 60.49 70.72
QCFSBu et al. (2023) 76.28 77.01/32 63.79 69.62 73.63 76.24

SlipReLUJiang et al. (2023) 70.03 70.65/32 58.66 62.56 66.31 69.35
Fast-SNNHu et al. (2023)* 68.16 66.74/16 58.09 65.53 66.67 66.74

OffsetHao et al. (2023)† 76.28 76.96/36 n/a 74.24/5 76.26/8 76.77/20

SpikeZIP-P 77.07 77.21/9
(0.25↑/27↓)

64.63
(0.84↑)

75.19
(0.95↑)

77.02
(0.76↑)

76.99
(0.22↑)

OPIBu et al. (2022) 70.43 67.18/32 n/a n/a 23.09 52.34
QCFSBu et al. (2023) 69.94 69.82/32 19.96 34.14 55.37 67.33

SlipReLUJiang et al. (2023) 68.40 68.76/32 23.79 37.94 57.20 66.61
OffsetHao et al. (2023)† 69.97 70.29/36 n/a 59.22/5 65.18/8 69.44/20

Fast-SNNHu et al. (2023)* 68.08 68.67/8 37.88 62.39 68.12 68.08

SpikeZIP-PR 70.10 70.31/10
(0.02↑/26↓)

44.90
(7.02↑)

63.58
(1.19↑)

68.65
(0.53↑)

70.07
(0.63↑)

(a) Comparison on CIFAR100. Upper : results with
VGG-16; Bottom : results with ResNet-20.

SNN AccuracyMethod (Q)ANN
Acc.

Acc./T
T=2 T=4 T=8 T=16

OPIBu et al. (2022) 74.85 74.69/512 n/a n/a 6.25 36.02
QCFSBu et al. (2023) 74.29 74.32/1024 n/a n/a 19.12 50.97

SlipReLUJiang et al. (2023) 71.99 72.02/128 n/a n/a n/a 51.54
QFFSLi et al. (2022) 73.08 73.10/8 n/a n/a 73.10 n/a

Fast-SNNHu et al. (2023)* 73.02 73.29/16 52.69 71.13 72.94 73.29
OffsetHao et al. (2023)† 74.19 73.82/16 n/a n/a 63.84/9 73.82/16

SpikeZIP-P 73.90
73.92/9
(0.12↑/7↓)

59.04
(6.35↑)

72.27
(1.14↑)

73.75
(0.65↑)

73.90
(0.08↑)

QCFSBu et al. (2023) 74.32 73.37/256 n/a 12.75 35.06 59.35
SlipReLUJiang et al. (2023) 75.08 74.01/128 n/a n/a n/a 43.76

OffsetHao et al. (2023)† 74.22 74.14/16 n/a n/a 69.11/9 74.14/16

SpikeZIP-PR 73.85
74.21/11
(0.07↑/5↓)

15.39
(15.39↑)

64.46
(51.71↑)

72.91
(3.81↑)

73.91
(0.25↓)

(b) Comparison on ImageNet. Upper : results with
VGG-16; Bottom : results with ResNet-34.

4 EXPERIMENT

We conduct experiments using the image classification task with VGG16 Simonyan & Zisserman
(2014) and ResNet20 He et al. (2016) on CIFAR100 Krizhevsky et al. (2009), while VGG16 and
ResNet34 on ImageNet Russakovsky et al. (2015). Experimental setups are specified in the ap-
pendix. The SpikeZIP has four variants of settings: without PET and RCR (SpikeZIP-N), with PET
(SpikeZIP-P), with RCR (SpikeZIP-R), and with both PET and RCR (SpikeZIP-PR).

4.1 COMPARISON WITH PREVIOUS RESULTS

Comparisons with conversion-based methods, including OPI Bu et al. (2022), QCFS Bu et al.
(2023), Offset Hao et al. (2023), QFFS Hu et al. (2023), SlipReLU Jiang et al. (2023), Fast-SNN
Hu et al. (2023), are tabulated in table 3. We use SpikeZIP-P3 and SpikeZIP-PR for VGG16 and
ResNet20/34 respectively. We observe SNNs generated by our SpikeZIP achieve performance of
Pareto frontiers, e.g., accuracy is higher than competing works across various time-steps. As listed
in the column of acc./T 4 in table 3, SpikeZIP significantly reduce the required time-step while not
sacrificing the accuracy. For example, compared to prior SOTA results, SpikeZIP reduce time-steps
by 7 (43.75% reduction) for VGG16 and 5 (33.3% reduction) for ResNet34, both on ImageNet.
Note that, at each time-step, since we use a single SNN generated by SpikeZIP to compete with all
previous works (several works specially optimize the accuracy at lower time-step by compromising
the upper-bound accuracy), some accuracy improvement of SpikeZIP does not seem significant.

Comparison with learning-based methods is elaborated in table 4 to show the advan-
tages of the conversion-based method in SpikeZIP. In experiments, we set quantization level
{nmp, nsp,1, nsp,2} = {3, 2, 1} for PET in table 4. When inference time-step T is 4, SpikeZIP out-
performs the MS-ResNet Hu et al. (2021) and SEW Fang et al. (2021a) (prior typical learning-based
works in CNN-based network) with 0.39% and 1.93% accuracy enhancement on ImageNet.

Moreover, fig. 4 depict that, as SEW Fang et al. (2021a) (trained by BPTT Zenke & Vogels (2021);
Wu et al. (2019)) optimizes SNN to inference at T=4 specifically, its accuracy versus time-step curve
approach the peak accuracy at T=4 then the accuracy goes downhill. In addition, we plot the training
cost of SpikeZIP-PR, SpikeZIP-R and SEW with GPU hours as the evaluation metric. Although
PET increases the training cost slightly, it takes much less (∼ 43.5× reduction) of computational
resources to achieve even better accuracy. Such training cost reduction benefits from 1) parameters

3VGG has no residual connection, thus RCR is not applicable.
4The peak accuracy of SNN is not achieved at the Teq but a time-step T < Teq, which has been observed in

many previous works Li et al. (2022); Hao et al. (2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Type Model Param. Acc. T

HC-STDB Rathi et al. (2020) hybrid ResNet34 21.79 61.48 250
DSR Meng et al. (2022) supervised PreAct-ResNet18 21.79 67.74 50
PLIF Fang et al. (2021b) BPTT ResNet34 21.79 67.04 7

STBP-tdBN Zheng et al. (2021) BPTT ResNet34 21.79 63.72 6
TET Deng et al. (2022) BPTT ResNet34 21.79 64.79 6

SEW Fang et al. (2021a) BPTT ResNet34 21.79 67.04 4
MS-ResNetHu et al. (2021) BPTT ResNet34 21.80 69.40 4

SpikeZIP-PR† BPTT ResNet34 21.79 69.79 4

Table 4: Comparison with learning-based methods.

2 4 8 16 32
Time Steps

0
20
40
60
80

A
cc

ur
ac

y(
%

)

SEW
SpikeZIP-PR

0 50 100 150 200 250 300
GPU hours

0
20
40
60
80

A
cc

ur
ac

y(
%

)

(7.62,67.26) (332.1,67.04)

SEW
SpikeZIP-PR
SpikeZIP-R

Figure 4: Training Cost
Comparison

Sp
ik

eZ
IP

Q
C

FS
Fa

st
-S

N
N

Input T=2 T=4 T=8 T=16 T=32 QANN

Time Steps

L1
-N

or
m

Figure 5: Comparison of feature maps with conversion-based works, using VGG16 on Ima-
geNet. (Left) evolution of feature maps (e.g. accumulated spikes) w.r.t time-steps. (Right) L1-norm
between accumulated feature map of SNN and feature map of QANN, using 100 image samples
from ImageNet. SpikeZIP takes fewer time-steps and acquires an identical feature map of QANN.

of pretrained ANN are inherited for QANN fine-tuning; 2) BPTT introduces an extra time-dimension
to the input and activation tensors which consumes more GPU memory and more number of GPUs.

4.2 FEATURE MAP IN QANN AND SNN

To further demonstrate that SNN generated by SpikeZIP is functionally equivalent to QANN and
takes fewer time-steps for SNN inference, we visualize the evolution of feature maps w.r.t different
time-steps T , as depicted in fig. 5. The feature maps are obtained by accumulating the fired output
spikes of SNN neurons which corresponds to the pixels in the visualized feature map. Two previous
works compared here are QCFS Bu et al. (2023) and Fast-SNN Hu et al. (2023), where Fast-SNN
claims the equivalence between the activations in QANN and SNN. From fig. 5, we can draw the
following observations visually and quantitatively: 1) SpikeZIP takes less number of time-steps
for accumulated feature maps of SNN to evolve close to QANN; 2) Since the neuron level in-
equivalence in QCFS Bu et al. (2023) (IF neuron is not equivalent with Q-ReLU) and model level in-
equivalence in Fast-SNN Hu et al. (2023) (lacking the concept of equilibrium state), the L1 distances
of QCFS and Fast-SNN remain at a large value in fig. 5 which is supposed to be close to 0 for
absolute model level equivalence. Compared to them, only SpikeZIP shows the equivalence both
theoretically (section 3.5) and experimentally e.g., L1 distance is 0.5. Note that, calculating the
L1-norm as 0.5 is resulted from the intrinsic computing error of GPU hardware.

4.3 ABLATION STUDY

PET and RCR. To investigate the effectiveness of PET and RCR in SpikeZIP, we plot the curves
of accuracy versus time-step when PET and RCR are adopted. As depicted in fig. 6a, both PET
(-P) and RCR (-R) significantly enhance the inference accuracy of SNN at small time-step. Com-
bining them together (e.g., SpikeZIP-PR) on ResNet, a further accuracy boost is observed, which
demonstrates the compatibility between PET and RCR. Note that, there exists a small accuracy gap
between the native ANN and peak accuracy achieved by the SpikeZIP variants. This is mainly re-
sulted from the low quantization levels (e.g., nmp = 4 used for ResNet20 on CIFAR10) chosen to
train the QANN for a fair comparison with the competing works. Such an accuracy gap can be easily
eliminated by relaxing nmp to a carefully selected but relatively large value.

Quantization levels in PET. Choosing different quantization levels for QANN during PET in
SpikeZIP can lead to varying trends of accuracy versus time-step trade-off in its converted SNN. As

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 4 8 16

60

80

ResNet20 on CIFAR10

1 2 4 8 16

20

40

60

ResNet20 on CIFAR100

1 2 4 8 16 32
0

20

40

60

ResNet34 on ImageNet

SpikeZIP-N
SpikeZIP-R
SpikeZIP-P
SpikeZIP-PR
FP-ANN

1 2 4 8 1616

60

80To
p-

1
ac

cu
ra

cy
 (%

)

VGG16 on CIFAR10

1 2 4 8 16 32
Time Steps

0

20

40

60

80
VGG16 on CIFAR100

1 2 4 8 16 32
0

20

40

60

VGG16 on ImageNet

SpikeZIP-N
SpikeZIP-P
FP-ANN

(a) Ablation of PET and RCR in SpikeZIP.

1 2 4 8 16 32

20
40
60
80

ResNet20 on CIFAR10

1 2 4 8 16 32
0

20

40

60

ResNet20 on CIFAR100

1 2 4 8 16 32

20
40
60
80

100

To
p-

1
ac

cu
ra

cy
 (%

)

VGG16 on CIFAR10

1 2 4 8 16 32
Time Steps

0

20

40

60

80
VGG16 on CIFAR100

nmp = 2
nmp = 4
nmp = 8
nmp = 16

(b) Ablation of quantization levels nmp.
Figure 6: Curves of accuracy v.s. time-steps for (a) SpikeZIP equips with varying techniques (e.g.,
N, R, P, PR); (b) PET using different quantization levels nmp for the main-path. The black dash-line
labels the accuracy of native floating-point ANN.
Table 5: Ablation Studies of SpikeZIP using ResNet34 on ImageNet. (a) quantization scale
and (b) batch-norm are ablated with three schemes of parameters sharing: {independent, identical,
share}. Column of independent (indep.) scheme reports the accuracy of SNN major-path. (c) loss
coefficient and (d) loss label type in the loss function. Grey indicates the default settings.

T indep. identical share
2 1.364 0.352 15.39
4 52.65 32.88 64.46
8 72.01 71.43 72.91

16 72.46 71.61 73.91

QANN 72.32 71.58 73.85

(a) s in Q-ReLUs

T indep. identical share
2 9.662 43.08 15.39
4 61.62 66.00 64.46
8 72.86 66.87 72.91

16 73.94 68.79 73.91

QANN 74.06 68.88 73.85

(b) {µ, σ} in BN

T α=0.25 α=1 α=5 α=10
2 3.548 6.154 17.06 21.38
4 55.77 59.29 63.15 63.37
8 71.93 72.11 71.59 71.37

16 73.29 73.14 72.78 72.62

QANN 73.30 73.06 72.72 72.46

(c) α in loss function

T Hard Soft Hard+Soft
2 16.49 15.39 16.77
4 64.61 64.46 64.71
8 72.90 72.91 72.92
16 73.76 73.91 73.93

QANN 73.76 73.85 73.76

(d) Label for Lsp,i

shown in fig. 6b, nmp ∈ {2, 4, 8, 16} are investigated. We can conclude that, using smaller nmp can
improve the accuracy of SNN at low time-step, while sacrificing the accuracy at high time-step (e.g.,
T > Teq). When a greater nmp is adopted, it takes more time-steps for SNN to achieve a competitive
accuracy that is close to the floating-point ANN counterpart.

Parameter Sharing in PET. As we specified in section 3.4, PET tactfully performs parameter
sharing among Q-ReLUs (quantization scales s) and batch-norm (µ, σ}) layers belonging to dif-
ferent paths. We perform the ablation study with three schemes, 1) independent: all trainable pa-
rameters in Q-ReLUs and batch-norms are independent from each other; 2) identical: paths use the
identical set of parameters; 3) share: parameters are shared but using the proper scaling in eqs. (3)
and (4) and partial sharing in eq. (5).

Ablation of parameter sharing in Q-ReLU is reported in table 5a. We can find that, incorporating
the shared s with properly scaled for different paths (e.g., share scheme) achieves the best accuracy
across varying time-steps T , while the identical and independent show the worse performance due
to the invalidation of sharing rule in the conversion theory. Ablation of parameter sharing in batch-
norm is tabulated in table 5b. In contrast to the share scheme that pioneers the accuracy at all time-
steps for Q-ReLU in table 5a, applying the share scheme on batch-norm layers performs better than
the independent scheme at low time-step while outperforms the identical scheme at high time-step.

Ensemble loss in PET. In eq. (6), we design a additive loss from all paths. We first investigate the
effect of tuning loss coefficient α from 0.25 to 10, as listed in table 5c. Choosing a larger α plays a
role of encouraging SNN (major-path) to achieve higher accuracy at low time-step. On the contrary,
a smaller α makes the loss function weigh more on the loss term that optimizes the major-path and
increases the accuracy of SNN after Teq. We take α = 1 as the default setting.

Furthermore, we also examine the benefit of using a hard label (e.g., ground-truth label to calculate
cross-entropy), soft label (e.g., logits from teacher ANN to calculate KL divergence), or mixed
fashion, for the loss term of sub-paths Lsp,i. Experiments in table 5d shows purely leveraging the
soft-label for Lsp,i leads to the best accuracy of QANN (main-path), which is the default setting.

4.4 EXPERIMENTS ON OBJECT DETECTION

To show the potential of the conversion theory of SpikeZIP, we employ the SpikeZIP to YOLOv3
Redmon & Farhadi (2018) on object detection tasks. To convert the YOLOv3 to SNN, we first

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison for object detection task on PASCAL VOC 2007 and MS
COCO 2017 between SpikeZIP and other conversion-based works. SpikeZIP achieves higher
mAP and less ∆mAP than the Fast-SNN Hu et al. (2023).

Work PASCAL VOC 2017 MS COCO 2017

Architecture ANN
mAP

SNN
mAP ∆mAP Time Steps Architecture ANN

mAP
SNN
mAP ∆mAP Time Steps

Spike-YOLO Tiny YOLO 53.01 51.83 -1.18 8000 Tiny YOLO 26.24 25.66 -0.58 8000
Spike-YOLO V2 Tiny YOLO 53.01 51.74 -1.27 5000 Tiny YOLO 26.24 25.78 -0.46 5000

Fast-SNN YOLOv2(ResNet34) 76.16 76.05 -0.11 15 YOLOv2(ResNet34) 46.96 46.40 -0.56 15
SpikeZIP-N YOLOv3 77.55 77.48 -0.07 15 YOLOv3 52.10 52.20 +0.10 15

replace the LeakyReLU Xu et al. (2020) in the backbone of YOLOv3 with ReLU function and
utilize the conversion pipline of SpikeZIP shown in fig. 1 to obtain the SNN for object detection.
The comparison between the converted SNN and other conversion-based works is shown in table 6.
Our SpikeZIP achieves higher mAP than the Fast-SNN Hu et al. (2023) with the same time-step.

4.5 ENERGY CONSUMPTION ANALYSIS

Neuron level. As the foundation unit of SpikeZIP, ST-BIF neuron differs from the classic IF neu-
ron in its bipolar output spike and extra spike tracer. We perform power analysis of neuron variants
with CMOS 65nm technology node, where the hardware evaluation is given in table 7. Both mem.
and spike tracer are multi-bit registers to buffer the membrane potential and neuron firing record
respectively. Thanks to the latency compression in SpikeZIP which compresses the SNN inference
time-steps within 11, the 4-bit spike tracer register is sufficient for ST-BIF neuron which consumes
1.22% more power than the IF counterpart.

Model level. We compare the energy consumption of the SNN version of ResNet20 converted
from QCFS Bu et al. (2023) and SpikeZIP-PR using CIFAR100. We take the synaptic operation
(SOP) introduced in Merolla et al. (2014) to represent the basic operation numbers to infer one
image in SNN, while the ANN counterpart uses floating-point operations (FLOP). For the energy
consumption per operation, we use 77fJ/SOP and 12.5pJ/FLOP reported from the ROLLS neuro-
morphic processor Qiao et al. (2015). We utilize the energy consumption estimation method used
in QCFS Bu et al. (2023), where the results are reported in fig. 7. We can observe that the energy
consumption of SNN is much lower than the ANN (1.02mJ per inference). Compared to QCFS,
SpikeZIP also consumes less energy where the energy saving is enlarged when T > 8, due to the
SNN generated by SpikeZIP enters the equilibrium state.

neuron
model

mem.
(#bit)

tracer
(#bit)

power
(µW)

IF 32 n/a 324.00
ST-BIF 32 4 327.97
ST-BIF 32 8 361.50
ST-BIF 32 16 428.62
ST-BIF 32 32 565.29

Table 7: The power consump-
tion of IF neuron and ST-BIF
neuron with spike tracers of
different bit-width.

2 4 8 16 32 64
20
30
40
50
60
70

A
cc

ur
ac

y(
%

)

0

2

4

6

8

En
er

gy
(m

J
e

2)

ANN Energy: 1.023 mJ

QCFS
SpikeZIP-PR

Figure 7: accuracy and energy v.s. time-step T for
SNN using QCFS Bu et al. (2023) and SpikeZIP-
PR respectively.

5 CONCLUSION AND OUTLOOK

SpikeZIP constructs a framework for obtaining a high performance SNN, supported by comprehen-
sive experiments and rigorous proof in this work. We anticipate the SpikeZIP as a foot-stone for
future investigations of brain-inspired SNN, which bridges and inherits the existing research of deep
learning to the paradigm of neuromorphic computing. For compact models where PET and RCR
are applicable, SpikeZIP empowers its converted SNN to achieve the state-of-the-art performance.
For large models where retraining or fine-tuning are not feasible, the mathematical equivalence es-
tablished in SpikeZIP can also provide a promising approach of direct conversion, in combination
with the post-training quantization technique for Q-ReLU.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 11–20, 2022.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: an automated end-to-end optimizing
compiler for deep learning. In Proceedings of the 13th USENIX conference on Operating Systems
Design and Implementation, pp. 579–594, 2018.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. International Conference on Learning Representations (ICLR), 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. International Conference on Learning Representa-
tions (ICLR), 2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European Conference on Computer Vision, pp. 388–404. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558–13567, 2020.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
anns and snns by calibrating offset spikes. arXiv preprint arXiv:2302.10685, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by
converting quantized ann. arXiv preprint arXiv:2305.19868, 2023.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. CoRR, abs/2112.08954, 2021. URL https://arxiv.org/abs/
2112.08954.

11

https://arxiv.org/abs/2112.08954
https://arxiv.org/abs/2112.08954

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: Towards optimal mapping from activation values to firing
rates. 2023.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, pp. 1638, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Chen Li, Lei Ma, and Steve Furber. Quantization framework for fast spiking neural networks.
Frontiers in Neuroscience, 16:918793, 2022.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325. PMLR, 2021.

Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, and Li Jiang. Spikeconverter: An
efficient conversion framework zipping the gap between artificial neural networks and spiking
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 1692–1701, 2022.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Adnan Mehonic and Anthony J Kenyon. Brain-inspired computing needs a master plan. Nature,
604(7905):255–260, 2022.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12444–12453, 2022.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural
networks with time-to-first-spike coding. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, 2020.

Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumislawska,
and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic processor com-
prising 256 neurons and 128k synapses. Frontiers in neuroscience, 9:141, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
Wulfram Gerstner. An exact mapping from relu networks to spiking neural networks. Neural
Networks, 168:74–88, 2023.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ann-snn conversion. In International Joint Conference on Artificial
Intelligence, 2022a.

Zhehui Wang, Xiaozhe Gu, Rick Siow Mong Goh, Joey Tianyi Zhou, and Tao Luo. Efficient spiking
neural networks with radix encoding. IEEE Transactions on Neural Networks and Learning
Systems, 2022b.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311–1318, 2019.

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu. Reluplex made more practical: Leaky
relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1–7. IEEE, 2020.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural computation, 33(4):899–925,
2021.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

13

	Introduction
	Background and Related Work
	Methodology
	Conversion Flow in SpikeZIP
	Input and Bias Encoding
	Residual Connection Re-routing
	Paths-Ensemble Training
	Equivalence of QANN and SNN

	Experiment
	Comparison with Previous Results
	Feature Map in QANN and SNN
	Ablation Study
	Experiments on Object Detection
	Energy Consumption Analysis

	Conclusion and Outlook

