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ABSTRACT

Spiking neural network (SNN) has attracted great attention due to its great en-
ergy efficiency on neuromorphic hardware. By transferring the parameters of
pretrained artificial neural network (ANN) and utilizing the ANN quantization,
recent works of ANN-SNN conversion can produce SNNs with close-to-ANN
accuracy and low inference latency (known as the number of time-steps). Never-
theless, existing works fail at providing theoretic equivalence between Quantized-
ANN (QANN) and its converted SNN, while the SNN accuracy at small time-step
(i.e. Pareto-frontier) can be further improved. To solve the problems, this paper
proposes a novel conversion framework called SpikeZIP. The SpikeZIP utilizes the
ANN-Quantized ANN(QANN)-SNN two-step conversion to obtain SNN which
improves the Pareto frontier of accuracy versus inference time-steps. SpikeZIP
integrates two novel algorithms: 1) a paths-ensemble training algorithm that con-
siders the SNN temporal information when fine-tuning QANN; 2) a mathemati-
cally equivalent conversion algorithm between the whole QANN and SNN. In the
experiment, SpikeZIP can achieve 73.92% accuracy on ImageNet with VGG-16
within 9 time-steps and 74.21% accuracy on ImageNet with ResNet-34 within 11
time-steps which are better than SOTA works. Spiking Neural Networks, Quanti-
zation, ANN-SNN Conversion

1 INTRODUCTION

Spiking neural network (SNN) Maass (1997) is a type of biologically plausible neural network in-
spired by brains of living organisms. Unlike modern artificial neural networks (ANNs) LeCun et al.
(2015) use continuous activation value to propagate information between neurons synchronously,
SNNs utilize discrete events or “spikes” for asynchronous neuron-to-neuron communication and
processing Merolla et al. (2014); Davies et al. (2018). Such event-driven characteristic in SNN is
considered as one of the key factors to achieve remarkable energy efficiency in human brain (∼20W)
Roy et al. (2019). Given the astonishing growing pace of computing power demands of ANN models
(doubled per 2 months since 2020 Mehonic & Kenyon (2022)), evolving ANNs to energy-efficient
SNNs is in urgent demand for cost-effective inference.

Currently, methods to train SNN come in twofold: learning- and conversion-based Roy et al. (2019).
Both methods attempt to obtain SNNs with high accuracy and less time-step. Previous learning-
based works leverage variants of spike-timing-dependent plasticity Diehl & Cook (2015) or gradient
descent algorithms Wu et al. (2018; 2019); Neftci et al. (2019); Kim & Panda (2021); Zenke &
Vogels (2021) to update the synaptic weights of SNN. Unfortunately, although learning methods
train SNN at small time-step (e.g., 4 time-step), due to the inaccurate gradient approximation Neftci
et al. (2019) for the non-differential SNN neuron, e.g., integrate and fire (IF) neuron, an accuracy
gap persists between SNN and its ANN counterpart Fang et al. (2021a).

Rather than directly training an SNN, the conversion-based methods transfer the parameters of the
pre-trained ANN into its SNN counterpart that yields close-to-ANN accuracy. As the accuracy
versus time-step curve shown in fig. 1, the SOTA works (Offset Hao et al. (2023), QCFS Bu et al.
(2023), etc.) reduce the inference time-step to 16. These works replace the ReLU function with
its quantized version (Q-ReLU), and use a quantization-aware training algorithm to compress the
quantization level of activation to reduce the inference time-step. However, the low quantization
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ANN QANN SNN
(ST-BIF Neuron)

Better Pareto Fontier with SpikeZIP

Paths-Ensemble
Training Equivalent

Figure 1: SpikeZIP Highlights. Upper: accuracy v.s. latency (#time-steps) curve of SNN (ResNet-
34 on ImageNet) obtained from varying works. Bottom: conversion pipeline of SpikeZIP, which
trains a QANN with paths-ensemble training and then converts the trained QANN to its mathemati-
cally equivalent SNN.

level of activation brings large quantization errors in ANN training, which sacrifices the accuracy of
the ANN and the converted SNN. Therefore, improving the accuracy of SNN at small time-step by
reducing the quantization level encounters bottleneck. For the neurons, such Q-ReLU approximates
the conventional IF neuron and is equivalent to the sign neuron proposed in Hu et al. (2023); Wang
et al. (2022a); Li et al. (2022). However, due to the max-pooling and batch normalization operator,
non-equivalence still exists between Quantized-ANN and SNN at the model-level.

By far, two challenges remain unsolved: 1) non-existing work provides theoretic support of equiv-
alence of QANN and its converted SNN at model level; 2) SNN accuracy at small time-step (e.g.
Pareto frontier) can be further improved. As the countermeasure, we build a framework called
SpikeZIP to produce SNN with state-of-the-art performance (i.e., accuracy and latency). SpikeZIP
fine-tunes QANN utilizing a pre-trained ANN, then the QANN is converted into its mathematically
equivalent SNN. Our core technical contributions in SpikeZIP can be summarized as:

• Theoretical Equivalence of QANN-SNN is proved rigorously at the model level. Such
equivalence holds under the condition of 1) ANN uses quantized ReLU; 2) SNN uses ST-
BIF neuron model; 3) SNN-unfriendly operators are replaced (e.g., alter max pooling to
average pooling); 4) taking analogRueckauer et al. (2017) input and bias encoding.

• Pareto-front performance is achieved in SpikeZIP-produced SNN. By incorporating a
novel Paths-Ensemble Training (PET) technique during QANN training, the SNN con-
verted from the QANN can obtain higher accuracy with lower latency (e.g. less num-
ber of time-steps), which is shown in fig. 1. In the experiment, the Spike-ResNet34 in
SpikeZIP achieves 74.21% accuracy at 11 time-steps which is better than other state-of-
the-art works (74.14% at 16 time-steps by Offset Hao et al. (2023)).

2 BACKGROUND AND RELATED WORK

Neuron Model. Recent works Li et al. (2022); Hu et al. (2023); Wang et al. (2022a) propose a
variant of IF neuron, which we call bipolar integrate&fire with spike tracing (ST-BIF). Its neuron
dynamics can be described as:

Vt = Vt−1 + V in
t − Vthr ·Θ(Vt−1 + V in

t , Vthr, St−1)

St = St−1 +Θ(Vt−1 + V in
t , Vthr, St−1)

Θ(V, Vthr, S) =


1; V ≥ Vthr & S < Smax

0; other
−1; V < 0 & S > 0

(1)

where the notations used above are listed in table 1. ST-BIF neuron in eq. (1) differs from the vanilla
IF neuron from two perspectives: 1) ST-BIF neuron fires bipolar spikes (either positive or negative);
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Table 1: Summary of mathematical notations used in this paper.

Notation Description

Vt potential of neuron membrane at time-step t
Vthr threshold voltage for neuron to fire a spike

V in, V out input or output voltage of neuron
Teq time-steps of neuron enters equilibrium state
Toff time-steps when input and bias are turned off

St, Smax Spike tracer at time-step t and maximum value of spike tracer
clip(x, αmin, αmax) Clip function that limits x between αmin and αmax

Θ(V, Vthr, S) Output spike decision function of ST-BIF neuron
FQ(X0|n, {W}, {s}) QANN with weights W, quantization level n, scale s
FS(V|n, {W}, {s}) SNN with Smax = n, weight W and Vthr = s

n, nmp, nsp,i Quantization levels in major-path and i-th sub-path.

Table 2: Techniques and setting of related works. ana. denotes analog input encoding, mem calib.
is short for membrane calibration, and eq. is equivalence.

OPI QCFS EMRS Radix SNM QFFS Offset Fast-SNN Ours

(i) encoding ana. ana. time radix ana. ana. ana. ana. ana.
(ii) neuron IF IF OneSpike LIF ST-BIF ST-BIF IF ST-BIF ST-BIF
(iii) mem calib. ✓ ✓ ✓ ✓ ✓ ✓
(iv) Q-ReLU ✓ ✓ ✓ ✓ ✓ ✓
(v) neuron eq. ✓ ✓ ✓ ✓ ✓ ✓
(vi) model eq. ✓ ✓ ✓

2) ST-BIF neuron guarantees the accumulated charge of output spikes equal to the output of the
Q-ReLU function until the neuron stops firing, in virtue of the spike tracer St.

ANN-SNN Conversion. ANN-SNN conversion creates an SNN whose synaptic weights between
neurons are identical to the corresponding ANN. Recent works focus on optimizing both the accu-
racy and latency of SNN (e.g. Pareto frontier in fig. 1), via leveraging the techniques (summarized
in table 2) as follows:

(i) Input encoding. Four encoding methods are used most frequently, e.g., analog coding Rueckauer
et al. (2017); Han et al. (2020); Li et al. (2022); Bu et al. (2023); Hao et al. (2023); Hu et al. (2023),
rate coding Liu et al. (2022), time coding Park et al. (2020) and radix coding Wang et al. (2022b).
(ii) Neuron model. The soft-reset IF neuron model Han et al. (2020) is the most common choice
Han & Roy (2020); Han et al. (2020); Bu et al. (2022; 2023); Hao et al. (2023), which maintains
the residual voltage after the neuron fire. To mitigate the occasional noise Li et al. (2022) between
ANN and SNN, a sign neuron is proposed, which can fire negative spikes to offset the over-fired
positive spikes Li et al. (2022); Wang et al. (2022a); Hu et al. (2023). Other neurons (e.g., iLIF Liu
et al. (2022) and OneSpike Stanojevic et al. (2023)) are designed for specific systems, which are not
common in recent works. (iii) Membrane calibration (e.g., initialize V0 = 0.5Vthr Bu et al. (2022))
has been widely adopted to reduce the ANN-SNN conversion error and latency. (iv) Q-ReLU as
ANN Activation is a emerging trend whose converted SNN is found to have lower inference latency
with decreased quantization levels Hao et al. (2023); Bu et al. (2023); Li et al. (2021; 2022); Deng &
Gu (2021); Hu et al. (2023). (v) Neuron equivalence is proved Li et al. (2022); Wang et al. (2022a);
Stanojevic et al. (2023); Hu et al. (2023) between SNN neurons (e.g., firing rate) and ANN activation
functions (ReLU or Q-ReLU). (vi) Model equivalence. With time-based input, Stanojevic et al.
(2023) claims the equivalent between ANN and SNN. For analog input, although Hu et al. (2023)
claims the equivalence between QANN activation and SNN firing rate, there still exists accuracy
degradation between QANN and SNN in experiments, which means the non-equivalence at the
model level.

As summarized in table 2, although some works prove the equivalence at the neuron level Li et al.
(2022); Wang et al. (2022a) and model level Stanojevic et al. (2023); Wang et al. (2022b), the
equivalence between the QANN and SNN with analog encoding is missing.

Quantization. Quantization is a discretization process of the continuous value, which is widely
used to compress ANN Gholami et al. (2022). The Q-ReLU function is written as:

f(x) = s · clip(round(x/s), 0, n) (2)

where the notations used above are tabulated in table 1. To alleviate the accuracy degradation when
quantizing with extremely low quantization level, LSQ Esser et al. (2020) is proposed to learn quan-
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tization scale (s in eq. (2)) during quantization-aware training Jacob et al. (2018); Gholami et al.
(2022). LSQ has been used widely in previous conversion works Bu et al. (2023); Li et al. (2022);
Hao et al. (2023); Hu et al. (2023), which is inherited by SpikeZIP as well.

3 METHODOLOGY

3.1 CONVERSION FLOW IN SPIKEZIP

SpikeZIP takes four steps in total to convert an ANN to its SNN counterpart. It firstly converts
original ANN to SNN-friendly QANN through (1) SNN-friendly morphing and (2) paths-ensemble
training. Then, SpikeZIP utilizes the (3) operator fusion and the (4) neuron replacement to QANN
to obtain a high-performance SNN.

1) SNN Friendly Morphing. Since the original ANN may include operators and topology that are
unfriendly to SNN, we modify those operators with the SNN-friendly counterparts. In detail, we al-
ter the max-pooling to the average-pooling Rueckauer et al. (2017), as it is easier for equivalent SNN
implementation. Moreover, we conduct residual connection re-routing (specified in section 3.3) for
ResNet, to optimize the latency. Finally, the ReLU function is replaced by Q-ReLU function to
convert ANN to QANN, for successive training.

2) Paths-Ensemble Training (PET) is proposed and utilized to train the morphed ANN (e.g.
QANN) from the last step. PET (specified in section 3.4) is a variant of LSQ-based quantiza-
tion aware training algorithm, which is designed to simultaneously improve the accuracy of trained
QANN that quantized with varying quantization levels on the fly.

3) Operator Fusion & 4) Neuron Replacing. In operator fusion, SpikeZIP fuses the batch nor-
malization layers of trained QANN into their front (e.g., convolution or linear) layers as in Chen
et al. (2018). In the successive neuron replacing, we update all the Q-ReLUs to ST-BIF neurons, and
adjust the configurations of ST-BIF neurons (e.g., Vt=0, Vthr, Smax and etc., as discussed in proof 3.1)
accordingly.

3.2 INPUT AND BIAS ENCODING

We design a unique analog encoding method for input and bias1, which is also the prerequisite of
QANN-SNN equivalence in section 3.5. Unliking traditional analog encoding that converts the raw
image X0 to Vin

t = X0 · ∆v,∀t and fires for each time-step, we choose the evenly-release strategy
which sets Vin

t = X0 ·∆v/n, t ∈ {1, 2, ..., Toff}. Hereby, input stops applying at Toff = n, where n
is the quantization level of QANN. Moreover, the evenly-release strategy is adopted for the bias in
convolution/linear layers as well.

3.3 RESIDUAL CONNECTION RE-ROUTING

As the residual structure of ResNet He et al. (2016) plotted in fig. 3, the spiking neuron layer (SN,
highlighted in orange) takes the addition of network blocks as its input, which makes it a “spiking
transmission bottleneck” as more time-steps are taken for this neuron layer to integrate and fire.

As the countermeasure, we perform residual connection re-routing (RCR)2 as described in fig. 3.
If the residual connection is identity, we simply re-route the residual connection and addition after
the Q-ReLU/SN (pink shadow part). If the residual connection uses convolution, in addition to the
aforementioned rerouting process for identity, we insert an extra Q-ReLU/SN after the convolution.

1Biases are introduced due to the fused batch normalization, which can be viewed as the special form of
inputs as they are constants as well.

2Prior SEW-ResNet Fang et al. (2021a) adopts “RELU before addition” (similar topology) to overcome
vanishing or exploding gradient, during the direct training of SNN. In contrast, SpikeZIP is a conversion-based
framework and RCR is used for latency reduction.
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Figure 2: Illustration of Paths-Ensemble Training (PET). Given a QANN to be trained, PET
introduces three paths (one major-path and two sub-paths). All three paths share identical param-
eterized layers (e.g., convolution/linear, etc.), but with independent Q-ReLU, batch-norm and loss.
In one PET block, Q-ReLUs use shared quantization scale s, but scaled as {s, 2s, 4s} for Q-ReLUs
quantized with {8, 4, 2}-level respectively. For batch-norm Ioffe & Szegedy (2015), the mini-batch
mean µi and variance σi are collected for each path individually, while learned parameters γ and β
are shared. Losses of each path are calculated independently and then added as one ensemble loss
for training.
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Figure 3: Residual connection re-routing (RCR) used to mitigate the spiking bottleneck phe-
nomenon and reduce latency. SN denotes the spiking neuron (e.g., ST-BIF) layer. * SEW-ResNet
Fang et al. (2021a) takes a similar topology but for different design purposes.

3.4 PATHS-ENSEMBLE TRAINING

PET is inspired by our observation from Bu et al. (2023); Li et al. (2022): reducing the quanti-
zation levels of QANN lowers the latency of converted SNN by sacrificing accuracy as well. As
we expect the QANN-converted SNN can achieve higher accuracy at small time-steps (Pareto-front
performance in fig. 1), the observation motivates us to improve the accuracy of QANN quantized
with fewer quantization levels. Inspired by the slimmable network Yu et al. (2018) that trains CNNs
with different channel numbers using shared parameters, we train QANNs quantized with varying
quantization levels, using a single set of trained parameters (e.g., weights, bias and etc.).

Training Strategy. As illustrated in fig. 2, PET consists of three optimizing paths (one major-path
and two sub-paths). Each path has its independent Q-ReLU and batch normalization (batch-norm)
layer, while the remaining parametric layers (e.g. convolution, linear, etc.) are shared by the different
paths. Note that, only the major-path of QANN will be converted to SNN once training with PET
is completed, while sub-paths are used to assist the training in major-path. Three kinds of operators
are carefully designed in PET:

1) Parametric Layer: The weights in parametric layers are shared among the paths in PET, which
will be optimized by back-propagation to improve the accuracy of different paths simultaneously.

2) Q-ReLU: Assume the Q-ReLU in major-path is:

fmp(x) = s · clip(round(x/s), 0, nmp) (3)

Then, the Q-ReLU in i-th sub-path is written as:

fsp,i(x) =
nmps

nsp,i
· clip(round(

nsp,ix

nmps
), 0, nsp,i) (4)

where quantization levels are set as {nmp, nsp,1, nsp,2} = {8, 4, 2}. The quantization scale s is the
learnable parameter that is shared between different Q-ReLUs.
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3) Batch-norm: Since Q-ReLUs in different paths adopt varying quantization levels, the output dis-
tributions of Q-ReLUs are distinguished from each other significantly. According to our experiment,
naively using one shared batch-norm makes it difficult for the training to converge. Therefore, we
make the mini-batch mean µi and σi be independent for each path, while learned parameters γ and
β are shared. The modified batch-norm can be expressed as:

BNmp/sp,i(x) =
x− µmp/sp,i

σmp/sp,i
γ + β (5)

Ensemble Loss. The loss function can be described as:

L = Lmp + α

2∑
i=1

(nsp,i/nmp) · Lsp,i (6)

where Lmp and Lsp,i are the cross-entropy loss of major-path and sub-paths respectively. α is the
coefficient to scale the loss. To maximize the accuracy of QANN, the distillation method in LSQ
Esser et al. (2020) is utilized, where the teacher network is the full precision ANN.

3.5 EQUIVALENCE OF QANN AND SNN

The QANN-SNN equivalence is the foundation behind the conversion algorithm from QANN to
SNN in SpikeZIP. Notations are summarized in table 1. Assume the external stimulate (e.g., input
and bias) are applied to SNN from T = 0 to Toff , we define the equilibrium state of SNN as
the status where neurons of entire SNN are static (e.g., no further activities of neuron firing and
membrane update). The time-step that SNN enters the equilibrium state is noted as Teq.

Lemma 1 After entering the equilibrium state at Teq, the accumulated output spikes of one ST-BIF
neuron can be derived as a closed-form equation of quantization function:

V out = Vthr · clip(floor(
V in + Vt=0

Vthr
), 0, Smax) (7)

where V in =
∑Teq

t=0 V
in
t is the accumulated input until Teq, and Vt=0 denotes the initial membrane

potential.

lemma 1 shows the equivalence between ST-BIF neuron and Q-ReLU function. The detailed proof
of lemma 1 can be found in previous work Hu et al. (2023).

Theorem 1 Assume a QANN FQ parameterized by quantization level n, synaptic weights {Wl},
quantization scale {sl} and an SNN FS converted from the QANN, the accumulated outputs of the
SNN is equal to the QANN output:

FQ(X0 | n, {Wl}, {sl}) =
Teq∑
t=0

FS({Vin
t } | n, {Wl}, {sl}) (8)

where X0 represents the input for ANN, {Vin
t } denotes the encoded analog input (introduced in

section 3.2) for SNN.

Proof 3.1 Suppose {convolution, batch-norm, Q-ReLU} is the l-th block of the network, convolution
is parameterized by trained weight Wl and bias bl. With the batch-norm fused into convolution via
operator fusion Chen et al. (2018), the weight and bias are updated as Ŵl and b̂l respectively. Then,
according to eq. (2), the output of such block Xl is written as:

Xl = s · clip(round(
Ŵl · Xl−1 + b̂l

s
), 0, n) (9)

Considering the l-th block of SNN converted from l-th layer of QANN, by setting Vin = Ŵl ·Xl−1 +

b̂l, Vt=0 = 0.5Vthr, Smax = n, Vthr = s, eq. (7) and eq. (9) are equivalent. By extending the equiva-
lence between blocks to the network, the eq. (8) is proven.
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Table 3: Comparison with previous conversion-based methods. Column of (Q)ANN acc. lists
the validation accuracy achieved by its corresponding ANN or QANN. Column of acc./T lists the
accuracy of SNN acquired in different works and the earliest time-step when reaches the accuracy.
n/a refers to data not reported or cannot be reproduced; △ indicates the SNN enters the equilibrium
state; – denotes most of the spikes have not reached the output of SNN. Current and prior best
results are in bold and grey respectively. † Due to the Offset Hao et al. (2023) method requires ρ
time-steps to calculate offset spikes, the time-steps of Offset work spend should add ρ (ρ = 4 on
CIFAR100 and ρ = 8 on ImageNet). * denotes the results reproduced from the code.

SNN Accuracy
Method (Q)ANN

Acc. Acc./T
T=2 T=4 T=8 T=16

OPIBu et al. (2022) 76.31 74.82/32 n/a n/a 60.49 70.72
QCFSBu et al. (2023) 76.28 77.01/32 63.79 69.62 73.63 76.24

SlipReLUJiang et al. (2023) 70.03 70.65/32 58.66 62.56 66.31 69.35
Fast-SNNHu et al. (2023)* 68.16 66.74/16 58.09 65.53 66.67 66.74

OffsetHao et al. (2023)† 76.28 76.96/36 n/a 74.24/5 76.26/8 76.77/20

SpikeZIP-P 77.07 77.21/9
(0.25↑/27↓)

64.63
(0.84↑)

75.19
(0.95↑)

77.02
(0.76↑)

76.99
(0.22↑)

OPIBu et al. (2022) 70.43 67.18/32 n/a n/a 23.09 52.34
QCFSBu et al. (2023) 69.94 69.82/32 19.96 34.14 55.37 67.33

SlipReLUJiang et al. (2023) 68.40 68.76/32 23.79 37.94 57.20 66.61
OffsetHao et al. (2023)† 69.97 70.29/36 n/a 59.22/5 65.18/8 69.44/20

Fast-SNNHu et al. (2023)* 68.08 68.67/8 37.88 62.39 68.12 68.08

SpikeZIP-PR 70.10 70.31/10
(0.02↑/26↓)

44.90
(7.02↑)

63.58
(1.19↑)

68.65
(0.53↑)

70.07
(0.63↑)

(a) Comparison on CIFAR100. Upper : results with
VGG-16; Bottom : results with ResNet-20.

SNN AccuracyMethod (Q)ANN
Acc.

Acc./T
T=2 T=4 T=8 T=16

OPIBu et al. (2022) 74.85 74.69/512 n/a n/a 6.25 36.02
QCFSBu et al. (2023) 74.29 74.32/1024 n/a n/a 19.12 50.97

SlipReLUJiang et al. (2023) 71.99 72.02/128 n/a n/a n/a 51.54
QFFSLi et al. (2022) 73.08 73.10/8 n/a n/a 73.10 n/a

Fast-SNNHu et al. (2023)* 73.02 73.29/16 52.69 71.13 72.94 73.29
OffsetHao et al. (2023)† 74.19 73.82/16 n/a n/a 63.84/9 73.82/16

SpikeZIP-P 73.90
73.92/9
(0.12↑/7↓)

59.04
(6.35↑)

72.27
(1.14↑)

73.75
(0.65↑)

73.90
(0.08↑)

QCFSBu et al. (2023) 74.32 73.37/256 n/a 12.75 35.06 59.35
SlipReLUJiang et al. (2023) 75.08 74.01/128 n/a n/a n/a 43.76

OffsetHao et al. (2023)† 74.22 74.14/16 n/a n/a 69.11/9 74.14/16

SpikeZIP-PR 73.85
74.21/11
(0.07↑/5↓)

15.39
(15.39↑)

64.46
(51.71↑)

72.91
(3.81↑)

73.91
(0.25↓)

(b) Comparison on ImageNet. Upper : results with
VGG-16; Bottom : results with ResNet-34.

4 EXPERIMENT

We conduct experiments using the image classification task with VGG16 Simonyan & Zisserman
(2014) and ResNet20 He et al. (2016) on CIFAR100 Krizhevsky et al. (2009), while VGG16 and
ResNet34 on ImageNet Russakovsky et al. (2015). Experimental setups are specified in the ap-
pendix. The SpikeZIP has four variants of settings: without PET and RCR (SpikeZIP-N), with PET
(SpikeZIP-P), with RCR (SpikeZIP-R), and with both PET and RCR (SpikeZIP-PR).

4.1 COMPARISON WITH PREVIOUS RESULTS

Comparisons with conversion-based methods, including OPI Bu et al. (2022), QCFS Bu et al.
(2023), Offset Hao et al. (2023), QFFS Hu et al. (2023), SlipReLU Jiang et al. (2023), Fast-SNN
Hu et al. (2023), are tabulated in table 3. We use SpikeZIP-P3 and SpikeZIP-PR for VGG16 and
ResNet20/34 respectively. We observe SNNs generated by our SpikeZIP achieve performance of
Pareto frontiers, e.g., accuracy is higher than competing works across various time-steps. As listed
in the column of acc./T 4 in table 3, SpikeZIP significantly reduce the required time-step while not
sacrificing the accuracy. For example, compared to prior SOTA results, SpikeZIP reduce time-steps
by 7 (43.75% reduction) for VGG16 and 5 (33.3% reduction) for ResNet34, both on ImageNet.
Note that, at each time-step, since we use a single SNN generated by SpikeZIP to compete with all
previous works (several works specially optimize the accuracy at lower time-step by compromising
the upper-bound accuracy), some accuracy improvement of SpikeZIP does not seem significant.

Comparison with learning-based methods is elaborated in table 4 to show the advan-
tages of the conversion-based method in SpikeZIP. In experiments, we set quantization level
{nmp, nsp,1, nsp,2} = {3, 2, 1} for PET in table 4. When inference time-step T is 4, SpikeZIP out-
performs the MS-ResNet Hu et al. (2021) and SEW Fang et al. (2021a) (prior typical learning-based
works in CNN-based network) with 0.39% and 1.93% accuracy enhancement on ImageNet.

Moreover, fig. 4 depict that, as SEW Fang et al. (2021a) (trained by BPTT Zenke & Vogels (2021);
Wu et al. (2019)) optimizes SNN to inference at T=4 specifically, its accuracy versus time-step curve
approach the peak accuracy at T=4 then the accuracy goes downhill. In addition, we plot the training
cost of SpikeZIP-PR, SpikeZIP-R and SEW with GPU hours as the evaluation metric. Although
PET increases the training cost slightly, it takes much less (∼ 43.5× reduction) of computational
resources to achieve even better accuracy. Such training cost reduction benefits from 1) parameters

3VGG has no residual connection, thus RCR is not applicable.
4The peak accuracy of SNN is not achieved at the Teq but a time-step T < Teq, which has been observed in

many previous works Li et al. (2022); Hao et al. (2023).
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Method Type Model Param. Acc. T

HC-STDB Rathi et al. (2020) hybrid ResNet34 21.79 61.48 250
DSR Meng et al. (2022) supervised PreAct-ResNet18 21.79 67.74 50
PLIF Fang et al. (2021b) BPTT ResNet34 21.79 67.04 7

STBP-tdBN Zheng et al. (2021) BPTT ResNet34 21.79 63.72 6
TET Deng et al. (2022) BPTT ResNet34 21.79 64.79 6

SEW Fang et al. (2021a) BPTT ResNet34 21.79 67.04 4
MS-ResNetHu et al. (2021) BPTT ResNet34 21.80 69.40 4

SpikeZIP-PR† BPTT ResNet34 21.79 69.79 4

Table 4: Comparison with learning-based methods.
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Figure 5: Comparison of feature maps with conversion-based works, using VGG16 on Ima-
geNet. (Left) evolution of feature maps (e.g. accumulated spikes) w.r.t time-steps. (Right) L1-norm
between accumulated feature map of SNN and feature map of QANN, using 100 image samples
from ImageNet. SpikeZIP takes fewer time-steps and acquires an identical feature map of QANN.

of pretrained ANN are inherited for QANN fine-tuning; 2) BPTT introduces an extra time-dimension
to the input and activation tensors which consumes more GPU memory and more number of GPUs.

4.2 FEATURE MAP IN QANN AND SNN

To further demonstrate that SNN generated by SpikeZIP is functionally equivalent to QANN and
takes fewer time-steps for SNN inference, we visualize the evolution of feature maps w.r.t different
time-steps T , as depicted in fig. 5. The feature maps are obtained by accumulating the fired output
spikes of SNN neurons which corresponds to the pixels in the visualized feature map. Two previous
works compared here are QCFS Bu et al. (2023) and Fast-SNN Hu et al. (2023), where Fast-SNN
claims the equivalence between the activations in QANN and SNN. From fig. 5, we can draw the
following observations visually and quantitatively: 1) SpikeZIP takes less number of time-steps
for accumulated feature maps of SNN to evolve close to QANN; 2) Since the neuron level in-
equivalence in QCFS Bu et al. (2023) (IF neuron is not equivalent with Q-ReLU) and model level in-
equivalence in Fast-SNN Hu et al. (2023) (lacking the concept of equilibrium state), the L1 distances
of QCFS and Fast-SNN remain at a large value in fig. 5 which is supposed to be close to 0 for
absolute model level equivalence. Compared to them, only SpikeZIP shows the equivalence both
theoretically (section 3.5) and experimentally e.g., L1 distance is 0.5. Note that, calculating the
L1-norm as 0.5 is resulted from the intrinsic computing error of GPU hardware.

4.3 ABLATION STUDY

PET and RCR. To investigate the effectiveness of PET and RCR in SpikeZIP, we plot the curves
of accuracy versus time-step when PET and RCR are adopted. As depicted in fig. 6a, both PET
(-P) and RCR (-R) significantly enhance the inference accuracy of SNN at small time-step. Com-
bining them together (e.g., SpikeZIP-PR) on ResNet, a further accuracy boost is observed, which
demonstrates the compatibility between PET and RCR. Note that, there exists a small accuracy gap
between the native ANN and peak accuracy achieved by the SpikeZIP variants. This is mainly re-
sulted from the low quantization levels (e.g., nmp = 4 used for ResNet20 on CIFAR10) chosen to
train the QANN for a fair comparison with the competing works. Such an accuracy gap can be easily
eliminated by relaxing nmp to a carefully selected but relatively large value.

Quantization levels in PET. Choosing different quantization levels for QANN during PET in
SpikeZIP can lead to varying trends of accuracy versus time-step trade-off in its converted SNN. As
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(a) Ablation of PET and RCR in SpikeZIP.
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Figure 6: Curves of accuracy v.s. time-steps for (a) SpikeZIP equips with varying techniques (e.g.,
N, R, P, PR); (b) PET using different quantization levels nmp for the main-path. The black dash-line
labels the accuracy of native floating-point ANN.
Table 5: Ablation Studies of SpikeZIP using ResNet34 on ImageNet. (a) quantization scale
and (b) batch-norm are ablated with three schemes of parameters sharing: {independent, identical,
share}. Column of independent (indep.) scheme reports the accuracy of SNN major-path. (c) loss
coefficient and (d) loss label type in the loss function. Grey indicates the default settings.

T indep. identical share
2 1.364 0.352 15.39
4 52.65 32.88 64.46
8 72.01 71.43 72.91

16 72.46 71.61 73.91

QANN 72.32 71.58 73.85

(a) s in Q-ReLUs

T indep. identical share
2 9.662 43.08 15.39
4 61.62 66.00 64.46
8 72.86 66.87 72.91

16 73.94 68.79 73.91

QANN 74.06 68.88 73.85

(b) {µ, σ} in BN

T α=0.25 α=1 α=5 α=10
2 3.548 6.154 17.06 21.38
4 55.77 59.29 63.15 63.37
8 71.93 72.11 71.59 71.37

16 73.29 73.14 72.78 72.62

QANN 73.30 73.06 72.72 72.46

(c) α in loss function

T Hard Soft Hard+Soft
2 16.49 15.39 16.77
4 64.61 64.46 64.71
8 72.90 72.91 72.92
16 73.76 73.91 73.93

QANN 73.76 73.85 73.76

(d) Label for Lsp,i

shown in fig. 6b, nmp ∈ {2, 4, 8, 16} are investigated. We can conclude that, using smaller nmp can
improve the accuracy of SNN at low time-step, while sacrificing the accuracy at high time-step (e.g.,
T > Teq). When a greater nmp is adopted, it takes more time-steps for SNN to achieve a competitive
accuracy that is close to the floating-point ANN counterpart.

Parameter Sharing in PET. As we specified in section 3.4, PET tactfully performs parameter
sharing among Q-ReLUs (quantization scales s) and batch-norm (µ, σ}) layers belonging to dif-
ferent paths. We perform the ablation study with three schemes, 1) independent: all trainable pa-
rameters in Q-ReLUs and batch-norms are independent from each other; 2) identical: paths use the
identical set of parameters; 3) share: parameters are shared but using the proper scaling in eqs. (3)
and (4) and partial sharing in eq. (5).

Ablation of parameter sharing in Q-ReLU is reported in table 5a. We can find that, incorporating
the shared s with properly scaled for different paths (e.g., share scheme) achieves the best accuracy
across varying time-steps T , while the identical and independent show the worse performance due
to the invalidation of sharing rule in the conversion theory. Ablation of parameter sharing in batch-
norm is tabulated in table 5b. In contrast to the share scheme that pioneers the accuracy at all time-
steps for Q-ReLU in table 5a, applying the share scheme on batch-norm layers performs better than
the independent scheme at low time-step while outperforms the identical scheme at high time-step.

Ensemble loss in PET. In eq. (6), we design a additive loss from all paths. We first investigate the
effect of tuning loss coefficient α from 0.25 to 10, as listed in table 5c. Choosing a larger α plays a
role of encouraging SNN (major-path) to achieve higher accuracy at low time-step. On the contrary,
a smaller α makes the loss function weigh more on the loss term that optimizes the major-path and
increases the accuracy of SNN after Teq. We take α = 1 as the default setting.

Furthermore, we also examine the benefit of using a hard label (e.g., ground-truth label to calculate
cross-entropy), soft label (e.g., logits from teacher ANN to calculate KL divergence), or mixed
fashion, for the loss term of sub-paths Lsp,i. Experiments in table 5d shows purely leveraging the
soft-label for Lsp,i leads to the best accuracy of QANN (main-path), which is the default setting.

4.4 EXPERIMENTS ON OBJECT DETECTION

To show the potential of the conversion theory of SpikeZIP, we employ the SpikeZIP to YOLOv3
Redmon & Farhadi (2018) on object detection tasks. To convert the YOLOv3 to SNN, we first
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Table 6: Performance comparison for object detection task on PASCAL VOC 2007 and MS
COCO 2017 between SpikeZIP and other conversion-based works. SpikeZIP achieves higher
mAP and less ∆mAP than the Fast-SNN Hu et al. (2023).

Work PASCAL VOC 2017 MS COCO 2017

Architecture ANN
mAP

SNN
mAP ∆mAP Time Steps Architecture ANN

mAP
SNN
mAP ∆mAP Time Steps

Spike-YOLO Tiny YOLO 53.01 51.83 -1.18 8000 Tiny YOLO 26.24 25.66 -0.58 8000
Spike-YOLO V2 Tiny YOLO 53.01 51.74 -1.27 5000 Tiny YOLO 26.24 25.78 -0.46 5000

Fast-SNN YOLOv2(ResNet34) 76.16 76.05 -0.11 15 YOLOv2(ResNet34) 46.96 46.40 -0.56 15
SpikeZIP-N YOLOv3 77.55 77.48 -0.07 15 YOLOv3 52.10 52.20 +0.10 15

replace the LeakyReLU Xu et al. (2020) in the backbone of YOLOv3 with ReLU function and
utilize the conversion pipline of SpikeZIP shown in fig. 1 to obtain the SNN for object detection.
The comparison between the converted SNN and other conversion-based works is shown in table 6.
Our SpikeZIP achieves higher mAP than the Fast-SNN Hu et al. (2023) with the same time-step.

4.5 ENERGY CONSUMPTION ANALYSIS

Neuron level. As the foundation unit of SpikeZIP, ST-BIF neuron differs from the classic IF neu-
ron in its bipolar output spike and extra spike tracer. We perform power analysis of neuron variants
with CMOS 65nm technology node, where the hardware evaluation is given in table 7. Both mem.
and spike tracer are multi-bit registers to buffer the membrane potential and neuron firing record
respectively. Thanks to the latency compression in SpikeZIP which compresses the SNN inference
time-steps within 11, the 4-bit spike tracer register is sufficient for ST-BIF neuron which consumes
1.22% more power than the IF counterpart.

Model level. We compare the energy consumption of the SNN version of ResNet20 converted
from QCFS Bu et al. (2023) and SpikeZIP-PR using CIFAR100. We take the synaptic operation
(SOP) introduced in Merolla et al. (2014) to represent the basic operation numbers to infer one
image in SNN, while the ANN counterpart uses floating-point operations (FLOP). For the energy
consumption per operation, we use 77fJ/SOP and 12.5pJ/FLOP reported from the ROLLS neuro-
morphic processor Qiao et al. (2015). We utilize the energy consumption estimation method used
in QCFS Bu et al. (2023), where the results are reported in fig. 7. We can observe that the energy
consumption of SNN is much lower than the ANN (1.02mJ per inference). Compared to QCFS,
SpikeZIP also consumes less energy where the energy saving is enlarged when T > 8, due to the
SNN generated by SpikeZIP enters the equilibrium state.

neuron
model

mem.
(#bit)

tracer
(#bit)

power
(µW)

IF 32 n/a 324.00
ST-BIF 32 4 327.97
ST-BIF 32 8 361.50
ST-BIF 32 16 428.62
ST-BIF 32 32 565.29

Table 7: The power consump-
tion of IF neuron and ST-BIF
neuron with spike tracers of
different bit-width.
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Figure 7: accuracy and energy v.s. time-step T for
SNN using QCFS Bu et al. (2023) and SpikeZIP-
PR respectively.

5 CONCLUSION AND OUTLOOK

SpikeZIP constructs a framework for obtaining a high performance SNN, supported by comprehen-
sive experiments and rigorous proof in this work. We anticipate the SpikeZIP as a foot-stone for
future investigations of brain-inspired SNN, which bridges and inherits the existing research of deep
learning to the paradigm of neuromorphic computing. For compact models where PET and RCR
are applicable, SpikeZIP empowers its converted SNN to achieve the state-of-the-art performance.
For large models where retraining or fine-tuning are not feasible, the mathematical equivalence es-
tablished in SpikeZIP can also provide a promising approach of direct conversion, in combination
with the post-training quantization technique for Q-ReLU.
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