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Abstract Keywords

Financial Al holds great promise for transforming modern finance,
with the potential to support a wide range of tasks such as market
forecasting, portfolio management, quantitative trading, and au-
tomated analysis. However, existing platforms remain limited in
task coverage, lack robust multimodal data integration, and offer
insufficient support for the training and deployment of large lan-
guage models (LLMs). In response to these limitations, we present
FinWorld, an all-in-one open-source platform that provides end-
to-end support for the entire financial Al workflow, from data
acquisition to experimentation and deployment. FinWorld distin-
guishes itself through native integration of heterogeneous finan-
cial data, unified support for diverse Al paradigms, and advanced
agent automation, enabling seamless development and deployment.
Leveraging data from 2 representative markets, 4 stock pools, and
over 800 million financial data points, we conduct comprehensive
experiments on 4 key financial Al tasks. These experiments system-
atically evaluate deep learning and reinforcement learning algo-
rithms, with particular emphasis on RL-based finetuning for LLMs
and LLM Agents. The empirical results demonstrate that FinWorld
significantly enhances reproducibility, supports transparent bench-
marking, and streamlines deployment, thereby providing a strong
foundation for future research and real-world applications. Code,
tutorials, and paper full version are available at Github and Arxiv 1.
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1 Introduction

Table 1: Comparison of FinWorld and related platforms. v:
Supported, X: Not supported, Partial: Partially supported.

Key Features FinWorld TradeMaster  Qlib  FinRL-Meta
Multi-task support v Partial Partial Partial
Multi-modal data 4 X X X

ML, DL, RL v Partial Partial Partial
LLMs 4 X X X
LLMs Agent 4 X X X
Extensibility v v Partial Partial
Auto presentation v Partial X X
Distributed Training v X X X
Benchmarking v 4 v Partial

Financial Al has revolutionized how we approach market analy-
sis, trading strategies, and investment decisions. From traditional
quantitative machine learning (ML) models [12, 21] to modern deep
learning (DL) and reinforcement learning (RL) architectures [20, 27,
28, 62], the field has witnessed remarkable progress across diverse
domains including time series forecasting [8, 14], algorithmic trad-
ing [27, 36], portfolio management [23, 71], and natural language
analysis for financial documents [25, 30]. However, this rapid ad-
vancement has created a fragmented ecosystem where researchers
and practitioners must navigate multiple specialized tools, each
optimized for specific tasks but lacking seamless integration.

Current financial Al platforms, while valuable in their respective
domains, face several critical limitations. For instance, TradeMas-
ter [40] provides RL methods for four financial trading tasks but
lacks compatibility with traditional quantitative models and finan-
cial LLMs. Qlib [60] provides robust quantitative investment tools
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but offers limited support for modern Al paradigms such as LLMs
and RL. Similarly, FinRL-Meta [26] focuses specifically on RL for
trading but suffers from a rigid framework architecture that makes
it difficult to integrate new algorithms and lacks support for DL
and LLM-based approaches. Most existing platforms are designed
for narrow task scopes: some excel at time series forecasting but
lack trading simulation, while others offer robust algorithmic trad-
ing or portfolio management yet have limited support for modern
LLMs and agent paradigms. Furthermore, the integration of het-
erogeneous financial data ranging from structured market data to
unstructured news and reports remains challenging, often requiring
complex preprocessing pipelines and custom development efforts.

In summary, current financial Al platforms still face four ma-
jor challenges: i) Limited Task Coverage: Insufficient support
for emerging paradigms such as large language models and au-
tonomous agents. ii) Heterogeneous Data Integration: Inade-
quate integration of heterogeneous data sources, including struc-
tured market data, unstructured news, and multimodal financial
information. iii) Rigid Framework Architecture: Framework ar-
chitectures that impede the seamless integration of novel algorithms
and methodologies. iv) Standardized Evaluation and Presenta-
tion: Lack of standardized evaluation protocols and presentation
frameworks for comprehensive performance assessment.

To address these challenges, we propose FinWorld, an all-in-one
open-source platform for end-to-end financial Al research and de-
ployment. FinWorld provides a unified framework that seamlessly
integrates diverse Al paradigms, heterogeneous data sources, and
modern technologies to enable comprehensive financial Al develop-
ment and evaluation. Note that FinWorld is designed as a scalable
foundation for research and experimentation, rather than for live
high-frequency trading which relies on proprietary low-latency
systems. However, its modular architecture emphasizes streaming
data support, modular deployment, and decoupled design, mak-
ing it extensible to real-time research applications. As shown in
Table 1, FinWorld offers comprehensive support across all key fea-
tures compared to existing platforms. The key features of FinWorld
include:

e Multi-task Support: Unified platform supporting time series
forecasting, algorithmic trading, portfolio management, and LLM

applications, while existing platforms focus on narrow task scopes.

e Multimodal Data Integration: Native support for heteroge-
neous financial data, including structured market data, unstruc-
tured news, and multimodal information.

e Comprehensive AI Paradigms: Full support for ML, DL, RL,
LLMs, and LLM agents, enabling seamless integration of tradi-
tional and modern AI approaches.

e High Extensibility: Modular and extensible framework design
enabling rapid integration of novel algorithms, with flexibility
facilitating research prototyping and real-world applications.

e Advanced Automation: With automated presentation and re-
porting features, and support for distributed multi-GPU training
and testing, the system enables efficient exploration in multi-
environments and supports high-performance computing.
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To demonstrate the effectiveness of our proposed platform, we
conduct extensive experiments and provide comprehensive bench-
marks. Our main contributions are threefold:

e Unified Framework: We propose a unified, end-to-end frame-
work for training and evaluation of ML, DL, RL, LLMs, and LLM
agents, covering four critical financial Al task types including
time series forecasting, algorithmic trading, portfolio manage-
ment, and LLM applications.

e Modular Design: The framework features a modular architec-
ture that enables flexible construction of custom models and
tasks, including the development of personalized LLM agents.
The system supports efficient distributed training and testing
across multiple environments.

e Comprehensive Benchmark: We provide support for multi-
modal heterogeneous data with over 800 million samples, estab-
lishing a comprehensive benchmark for the financial AI commu-
nity. Extensive experiments across four task types demonstrate
the framework’s flexibility and effectiveness.

2 Related Work
2.1 ML, DL, and RL in Financial Al

Financial time series forecasting has evolved from traditional sta-
tistical methods like ARIMA [3] and GARCH [11] to modern DL
approaches. ML methods such as LightGBM [21] and XGBoost [4]
demonstrated superior performance in capturing complex finan-
cial patterns, while DL models including LSTM [19] and Trans-
former [48] architectures have revolutionized temporal modeling.
Recent advances in financial forecasting include TimesNet [55],
DLinear [66], and Timexer [29], which leverage attention mecha-
nisms for improved prediction accuracy. In algorithmic trading, RL
methods such as PPO [37] and DQN [32] have enabled adaptive
trading strategies [20, 27], with recent work exploring transformer-
based approaches [36]. Portfolio management has similarly pro-
gressed from classical mean-variance optimization [31] to data-
driven approaches using ML [18] and RL [23, 71]. Despite these ad-
vances, existing approaches often focus on individual tasks, lacking
unified frameworks for comprehensive financial Al development.

2.2 LLMs and LLM Agents in Financial AI

The integration of LLMs into financial decision-making has fol-
lowed two main paths. The traditional approach uses pre-training
and supervised fine-tuning (SFT), with models like FinBERT [2]
and FLANG [38] excelling in financial text understanding. Recent
progress includes FinGPT [25], BloombergGPT [57] with domain-
adapted tokenization, and FinQA [5] featuring numerical reason-
ing. A newer direction combines pre-training with reinforcement
learning (RL) to enhance reasoning, as shown by Fin-R1 [30] and
Fino1 [35]. Despite their strengths, LLM-based methods often lack
sequential decision-making, are computationally expensive, and
struggle with non-stationary markets.

To overcome the limitations of traditional LLMs in sequential
decision-making, researchers have introduced agentic mechanisms
such as memory, tool use, and self-reflection. Early systems like
FinMem [64] and FinRobot [74] rely on text-only LLMs enhanced
with layered memory, profiling, and chain-of-thought reasoning
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to improve single-asset trading performance. Building on this, Fi-
nAgent [70] represents the first multimodal trading agent, which
jointly processes news, structured price data, and K-line chart visu-
als via a tool-augmented dual-reflection architecture, achieving sig-
nificant improvements in profit. Recent efforts shift toward collabo-
rative multi-agent systems: FinCon [65] adopts a manager—analyst
hierarchy with verbal reinforcement, while TradingAgents [58]
models a full trading firm with specialized agents coordinating
to enhance returns and risk control. Beyond these architectural
innovations, recent work has also explored using RL to finetune
LLMs Agents [13, 34], enabling dynamic exploration and reasoning
capabilities in real-world environments.

2.3 Financial AI Platforms

The development of financial Al platforms has been driven by the
need to provide standardized environments for research and deploy-
ment. Qlib [60] provides a quantitative investment platform that
integrates traditional ML pipelines with financial data processing,
offering tools for feature engineering, model training, and portfolio
optimization TradeMaster [40] offers a comprehensive RL-based
trading framework with modular components for strategy develop-
ment, backtesting, and evaluation across multiple financial markets.
FinRL-Meta [26] focuses on reinforcement learning environments
and benchmarks, providing standardized market simulators and
evaluation metrics for RL-based trading strategies. These platforms
have significantly contributed to the advancement of financial Al
research by providing researchers and practitioners with accessi-
ble tools and standardized evaluation frameworks. However, most
existing platforms primarily focus on traditional ML, DL, and RL
methods, with limited support for LLMs and LLMs Agents, and
lack comprehensive multimodal data integration capabilities. This
motivates our proposal of FinWorld, a comprehensive framework
that covers most critical financial models and tasks.

3 Preliminaries

In this section, we formally define the core tasks considered in this
work. For completeness, we provide mathematical formulations for
time series forecasting, algorithmic trading, portfolio management,
and LLMs applications in the financial domain. It is important to
note that FinWorld is a unified platform framework that supports
multiple Al paradigms (ML, DL, RL, LLMs, and LLM Agents), rather
than a specific method itself. The definitions and formulations
presented below describe the tasks and methods that the platform
supports, helping readers understand the diverse approaches that
can be implemented within the FinWorld framework.

We first introduce the notations used throughout this paper. For
single asset scenarios, X;.7 = {x1,...,x7} € RT*P denote the his-
torical endogenous time series (e.g., open, high, low, close price),
and for multi-asset scenarios, x;.7 € RN*T*D denote the historical
price sequences for N assets. zy.1,, = {z1,.... 21, } € RTexXC denote
exogenous covariate series (e.g., technical indicators, financial fac-
tors, news-based sentiment scores, or macroeconomic variables),
where D is the dimension of the endogenous series and C is the
number of exogenous features. Other symbols will be defined as
needed in subsequent sections.
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3.1 Time Series Forecasting Task

Unlike traditional time series forecasting, which often aims to pre-
dict the future value of a single series, financial forecasting has two
key distinctions. First, directly forecasting asset prices is problem-
atic due to their non-stationary nature and sensitivity to external
shocks, so financial models typically predict returns, which are
more stable and meaningful for investment decisions. Second, fi-
nancial forecasting usually involves predicting the future returns
of multiple assets simultaneously, reflecting the real-world require-
ments of portfolio management and quantitative strategies.

DEFINITION 1 (TIME SERIES FORECASTING). Given the historical
prices of N stocks xy.7 € RN*T*P and multiple exogenous variables
Z1.1.,, the goal of time series forecasting in finance is to predict the
future S-day relative returns for all assets:

Rriires = Fo(Xur, 211, (1)

where Ry,1.745 € RV*S denotes the predicted relative returns (e.g.,
R, = )’(‘—; — 1), and Ty is a forecasting model parameterized by 6.
Note that we use R to specifically denote predicted returns of multiple
stocks, distinguishing it from the general target variable y used in
other tasks.

3.2 Algorithmic Trading Task

This task involves the design, simulation, and evaluation of system-
atic trading strategies across single asset, emphasizing real-time
decision making and risk management.

DEFINITION 2 (ALGORITHMIC TRADING). Given historical obser-
vations x1.7 and exogenous variables z,.1,,, the algorithmic trading
problem can be addressed via two mainstream approaches:

(a) ML&DL-based Approach. The goal is to predict future price
returns or movement directions using a predictive model Fp:

Ur+1.7+5 = Fo (X115 211 )s (2

where §; is a general target variable that can represent the predicted
return, probability of upward/downward movement, risk score, or
other trading signals, distinguishing it from R which specifically
denotes multi-stock returns. The final trading actions ari1.7+s are
then determined by applying a pre-defined decision rule t0 {r+1:17+s
(e.g., buy if §; > 7, sell if §; < —7, hold otherwise).

(b) RL-based Approach. The trading task is modeled as a Markov
decision process (MDP). At each time step t, the agent observes state
s¢ (constructed from x1 : t and z1 : t), chooses action a; € A, earns
reward r;, and moves to the next state s;+1. The goal is to learn a
policy mg(a; | s¢) that maximizes expected cumulative reward:

T+S

Do

t=T+1

. 3)

max E,
0

3.3 Portfolio Management Task

This task focuses on the construction, optimization, and dynamic re-
balancing of investment portfolios, subject to real-world operational
constraints (e.g., transaction costs, position limits), and supports
various objective functions and risk measures such as return maxi-
mization, volatility minimization, and sharpe ratio optimization.
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DEFINITION 3 (PORTFOLIO MANAGEMENT). Given historical price
sequences x;7 € RNXTXD for N assets and exogenous variables
z11,, € RNXTxXC the portfolio management problem can be ap-
proached in two mainstream ways:

(a) ML&DL-based Approach. The goal is to predict future asset
returns or risk estimates using a predictive model Fy:

Yrs11es = Fo(X11, 21T, 4)
wherey; may represent the predicted return, risk score, or other signals
forthe N assets. The allocation weights Wr.1.7+s (Where Zfil wpi=1
andw,; > 0 forallt) are then determined by applying an optimization
procedure or rule to yr41.7+s (e.g., mean-variance optimization, risk
parity, or rule-based allocation).

(b) RL-based Approach. This task is formulated as a sequential
decision process, where at each time t, the agent observes a state s; (e.g.,
constructed from x1.; and z1.;), selects allocation weights w; € AN+
(where ng{l wei = 1 and wy; > 0, with wyy representing cash
position), receives a reward r; (e.g., portfolio return or risk-adjusted
reward), and transitions to the next state s;.1. The objective is to learn
a policy g(w; | s¢) that maximizes expected cumulative utility:
T+S

Z U(wy, %)

t=T+1

, (©)

max E.,
0
where U(-) represents cumulative portfolio return.

3.4 LLMs Applications

Encompassing two main categories of LLM applications in finance:
i) General language understanding tasks, including SFT and RL
training for LLMs and LLM agents on financial text analysis, fi-
nancial QA, and similar language comprehension tasks, and ii)
Sequential decision-making tasks, involving RL training for LLMs
or LLM agents through real-world environment interactions, such
as trading in live market environments.

DEFINITION 4 (LLMs ApPLICATIONS). Given financial-domain
inputs from multiple modalities, such as unstructured text (e.g., news,
reports), structured time series (e.g., open, high, low, close price), im-
ages (e.g., Kline charts), and audio or video data (e.g., financial broad-
casts), the goal is to train and deploy large language models My for
two primary application types: general language understanding and
sequential decision-making. Formally,

¥ = My(Dy, Dy, ..., D), (6)

where each Dy, represents an input modality, andy is the task-specific
output in this financial context.

Depending on the specific downstream task, LLMs can flexibly
serve as predictive models within ML&DL-based pipelines, or act
as autonomous agents capable of RL-based decision-making and
advanced tool utilization in finance.

3.5 Reinforcement Learning for LLMs

Group Relative Policy Optimization (GRPO) [39] is a policy op-
timization algorithm designed to efficiently train LLMs in both
language and environment-interactive settings. In the context of
financial AI, GRPO can be leveraged to endow LLMs with either
general financial knowledge and reasoning ability, and specialized
trading skills. For example, when applied to financial document
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analysis or financial question answering, GRPO enables the LLM to
align with environment feedback and develop robust understanding
of domain-specific content. In these tasks, the LLM is trained to
produce high-quality financial responses, with group-level reward
normalization providing stable learning signals for fine-tuning.

Moreover, when applied in simulated trading environments,
GRPO can be used to train LLMs through direct environment inter-
action. The LLM receives financial observations (such as price time
series, technical indicators, and news), generates actions (e.g., BUY,
HOLD, SELL), and is rewarded according to realized trading re-
turns or risk-adjusted performance. This allows the LLM to acquire
real trading capabilities, strategy adaptation, and risk management
skills beyond static data learning.

GRPO is applied to our LLM training through a two-stage RL
paradigm, where the first stage focuses on equip the model’s fi-
nancial reasoning abilities using financial reasoning datasets, and
the second stage immerses the model in real or simulated market
environments to develop practical decision-making skills. For more
details, please refer to Appendix E.2.

4 FinWorld

This section introduces FinWorld, a unified, modular platform de-
signed to overcome the limits of current financial-AI frameworks.
A clean, layered architecture lets researchers combine traditional
ML, DL, RL, LLMs, and LLMs Agents-based methods for main-
stream financial task while keeping concerns clearly separated.
Integrated dataset management, standardized model APIs, and a
scalable training back-end support both academic studies and real-
world deployment. Architectural details appear in Appendix F.

4.1 Design Principles

The design of FinWorld is underpinned by foundational principles,
delivering a robust, extensible, research-oriented platform for the
development and evaluation of financial AI models and systems:

e Layered and Object-Oriented Architecture. We employ a hi-
erarchical, layered architecture with object-oriented design prin-
ciples to ensure clear separation of concerns and facilitate both
flexibility and scalability across the platform. The seven-layer
architecture (Configuration, Dataset, Model, Training, Evalua-
tion, Task, and Presentation) represents a complete experimental
system design for financial ML/LLM workflows, rather than a
stackable model structure. Each layer serves an essential role in
standardized workflows, and removing any layer would break
the system’s integrity, making it a platform-level design rather
than a model stack.

e Modular and Decoupled Design. FinWorld adopts a fully
modular architecture. Each component is developed as a self-
contained unit with well-defined interfaces, enabling separate
optimization and streamlined integration of custom components.

o Extensibility and Paradigm Fusion. FinWorld emphasizes
extensibility at all levels, providing standardized extension points
for seamless integration of novel algorithms and datasets. This
architecture natively supports the fusion of diverse paradigms
across financial Al research.
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Figure 1: Overview of FinWorld.

4.2 Configuration Layer

The configuration layer of FinWorld is built on mmengine [7] and
provides a unified and extensible system using dictionaries. It cen-
tralizes all experimental settings, including datasets, models, train-
ing, and evaluation, in a readable and modular format. Support
for configuration inheritance and overrides ensures reproducibil-
ity, flexibility, and collaborative development. In the meantime,
FinWorld uses a registry mechanism to manage core components
such as the dataset and the environment. Each class is registered by
its type and instantiated from the configuration, allowing for flexi-
ble component management and a decoupled system architecture.

4.3 Dataset Layer

The dataset layer of FinWorld comprises multiple functional mod-
ules designed to enable standardized, extensible, and task-oriented
data management for financial Al research. This layer abstracts the
complexities of diverse data sources and modalities, offering a uni-
fied interface for data acquisition, preprocessing, and task-specific
organization. Specifically, it consists of five main modules: data
downloader module, data processor module, dataset module, dat-
aloader module, and environment module, each supporting flexible
customization and extensibility.

Downloader Module. This module consists of two main com-
ponents: i) Market Data Downloader, which standardizes access
to heterogeneous financial market data sources, such as FMP [42]
and Alpaca [41], supporting multiple time resolutions (e.g., daily,
minute-level) and data types (e.g., OHLCV, news); and ii) LLM Rea-
soning Dataset Downloader, which provides access to financial
reasoning datasets including FinQA, professional certification ma-
terials (e.g., ACCA, CFA), and other financial knowledge bases. The
unified downloader abstraction streamlines data acquisition from
various APIs and databases, ensuring consistency and scalability
across research tasks.

Processor Module. Building on the standardized data access,
this module enables users to configure essential preprocessing
steps, such as factor computation (e.g., alpha158 [60]), feature se-
lection, normalization, outlier filtering, and metadata tracking. The
module supports multimodal alignment and quality analysis (e.g.,
anomaly detection) to mitigate data biases, particularly address-
ing single-market bias through multi-market, multi-frequency, and
long-horizon data integration. LLM reasoning data processing and
other preprocessing steps can be configured according to specific
research needs. The processor abstraction facilitates reproducible
and customizable data transformations for downstream modeling,
with the modular pipeline supporting user-defined quality analysis.

Dataset Module. This module organizes processed data into
task-specific formats suitable for various financial applications.
For algorithmic trading tasks, it encapsulates data as individual
asset datasets; for portfolio management and multi-asset problems,
it constructs unified multi-asset datasets. The module seamlessly
handles multiple data modalities, including numerical time series,
structured financial data, and unstructured textual information,
enabling comprehensive modeling capabilities for both traditional
financial Al tasks and LLM-based applications.

Dataloader Module. This module provides standardized dat-
aloaders for ML, DL, or LLMs applications, such as time series
forecasting. It enables efficient batching and sampling, facilitating
seamless integration with other frameworks.

Environment Module. Designed for reinforcement learning
paradigms, this module encapsulates data as interactive environ-
ments. It supports both conventional RL agents and LLM-based
agent interactions, enabling unified experimentation and promoting
reproducibility across a variety of agent-based learning tasks.

4.4 Model Layer

The model layer of FinWorld consists of multiple specialized mod-
ules that enable unified definition, management, and invocation
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of diverse modeling paradigms within the platform. This layer ab-
stracts the construction and orchestration of traditional ML models,
deep neural network, and LLMs, providing standardized interfaces
for consistent training, inference, and integration across multi-tasks.
Specifically, it is organized into four main modules:

ML Models. This module defines classical model structures in a
unified declarative form. It includes linear and logistic regression,
decision trees, random forests, and gradient boosting ensembles
(for example, XGBoost and LightGBM). Each specification exposes
a consistent input and output schema and a task head (regression,
binary classification, or multiclass classification), with structural
attributes such as regularization.

DL Models. This module organizes neural architectures into
components, layers, and model networks. Components include
data embedding for financial time series [55], patch embedding [9],
position encodings, attention, transformer blocks, and activation
functions. Layers compose these into an embedding layer, an en-
coder, and a decoder with consistent interfaces. Model networks
such as Autoformer, VAE, and GPT-style decoders are instantiated
by wiring the layers under a common specification, independent of
training and inference.

RL Models. This module defines RL network structures with an
actor-critic abstraction. Policy and value networks are composed
from DL models components, including embedding layers and back-
bones such as MLP, LSTM/GRU, and Transformer. Specifications
cover discrete or continuous action heads and value heads, with
shared or separate encoders and optional memory. Financial con-
straints are represented as structural hooks for transaction costs,
slippage and market impact, risk limits, and trading calendars, sup-
porting trading and portfolio tasks.

LLMs Models. This module centralizes access to both propri-
etary and open-source LLMs via a unified interface. It supports
seamless switching among commercial providers (e.g., GPT-4.1,
Claude-4-Sonnet, Gemini-2.5-Pro) and efficient local models (e.g.,
Qwen2.5, Qwen3), with standardized controls for context length,
sampling, and cost/latency tracking. Built-in tools include function
calling, tool use, and retrieval-augmented generation for financial
documents. The module integrates naturally with agents and down-
stream models, enabling document understanding, information
extraction, instruction following.

4.5 Training Layer

The training layer in FinWorld offers a modular scaffold that ab-
stracts every element required to optimise all method pipelines for
financial applications. A uniform interface guarantees experiment
reproducibility, smooth scaling from single GPU notebooks to dis-
tributed clusters, and quick transfer of best practices across tasks
such as time series forecasting, trading, portfolio management, and
LLM applications.

Optimizer. A rich catalogue of first order methods, ranging
from classic stochastic gradient descent (SGD) to adaptive variants
such as Adam and AdamW, lets practitioners match optimisation
dynamics to task characteristics. A common wrapper normalises
hyperparameter signatures and supports gradient centralisation,
decoupled weight decay, and mixed precision updates, ensuring
robust convergence on noisy and non stationary market data.

Wentao Zhang, Yilei Zhao, Chugiao Zong, Xinrun Wang, and Bo An

Loss. A flexible factory produces objective functions that cover
regression losses (mean squared error and mean absolute error),
classification losses for event prediction, and reinforcement learning
surrogates for policy and value objectives. Composite losses can
be declared with a single line, enabling multi-task learning or the
joint optimisation of risk adjusted return and prediction accuracy.

Scheduler. Static strategies (e.g., step, cosine, linear) and adap-
tive schemes (e.g., warm-up then decay) are available for both learn-
ing rates and regularisation coefficients. Schedulers are time-aware,
resuming the exact trajectory when checkpoints are reloaded.

Metrics. In addition to generic accuracy and error scores, the
library ships with finance specific diagnostics such as ARR, SR,
and MDD. Each metric is logged at configurable intervals and can
trigger early stopping or hyperparameter sweeps, enabling data-
driven model selection. While the current version focuses on a
unified pipeline for data processing, model training, and evaluation
rather than a built-in hyperparameter tuning platform, interfaces
are provided for users to integrate external optimization methods
such as Optuna, grid search, and Bayesian optimization.

Trainer. Acting as the orchestrator, the trainer pipes data load-
ing, forward and backward passes, gradient clipping, metric eval-
uation, checkpointing, and experiment logging (TensorBoard or
WandB). Specialised variants provide task specific logic, for example
the forecasting trainer, trading trainer, portfolio trainer, and large
language model trainer. Clear callback hooks let researchers inject
custom steps, such as on-the-fly data augmentation or bespoke risk
constraints, without changing the core loop.

Together, these components form a coherent architecture that
accelerates experimentation, strengthens reproducibility, and low-
ers the barrier to launching state-of-the-art Al solutions in the
demanding environment of financial markets.

4.6 Evaluation Layer

The evaluation layer in FinWorld provides a comprehensive and ex-
tensible framework for assessing financial Al models and strategies.
It dynamically selects and applies appropriate evaluation protocols
and metrics based on the specific task and model type, support-
ing both established benchmarks and user-defined criteria. The
framework incorporates a diverse library of financial and predic-
tive metrics, such as ARR, MDD, SR, and MSE, which can be flexibly
combined or extended as needed. In addition to quantitative assess-
ment, the evaluation layer provides advanced visualization tools,
including candlestick (K-line) charts, cumulative return plots, draw-
down curves, and trade annotation overlays, to facilitate intuitive
interpretation and diagnosis of model performance. This flexible
and adaptive evaluation process not only streamlines model as-
sessment for diverse financial tasks, but also facilitates systematic
comparison, rapid diagnosis of strengths and weaknesses, and it-
erative improvement of financial AI methods within the platform.
Integrated into the trainer’s validation and test stages, it ensures
consistency with training-phase evaluation and supports systematic
comparison, diagnosis, and iterative improvement.

4.7 Task Layer

The task layer is responsible for the systematic definition, abstrac-
tion, and encapsulation of financial Al task types. It systematically
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supports a wide spectrum of financial Al tasks, providing unified
abstractions and modular interfaces that facilitate integration with
upstream data modules and downstream modeling components.
This layer centers on several core financial tasks, including time
series forecasting, algorithmic trading, portfolio management, and
LLMs applications, which are formally defined in Section 3.

Each task is specified by configurable input/output schemas
and standardized evaluation protocols, supporting both established
benchmarks and user-customized scenarios. The unified task archi-
tecture enables rapid prototyping, cross-task generalization, and
reproducible research across financial Al applications. Additionally,
the layer provides a flexible framework for deploying LLM-based
agents in asynchronous, single-agent, or multi-agent configura-
tions, allowing users to compose and customize financial agents
for diverse research and application needs. The framework’s exten-
sibility is demonstrated through support for extensible task types
such as Factor Models and Market Representation Models, as well
as integration with AgentOrchestra, enabling users to build agents
beyond finance, thereby showcasing the platform’s strong extensi-
bility across domains.

4.8 Presentation Layer

The presentation layer in FinWorld is designed for automated dis-
semination and documentation of experimental results. Central to
this layer is a dedicated presentation agent that orchestrates the
aggregation of evaluation outputs, automatic generation of tech-
nical reports, and the creation of interactive web pages for result
interpretation and dissemination. The platform provides open vi-
sualization interfaces using Plotly and Wandb, enabling users to
customize metrics, tables, and charts for their specific experiments.
Users can extend or replace visualization templates to suit custom
research needs. The open-source release includes example configu-
ration files and scripts demonstrating how to load data, define tasks,
configure models, and execute training workflows, enabling users
to start training and testing with a single command. Standardized
APIs, example scripts, and templates enable easy customization and
rapid adoption. Experimental findings, along with key visualiza-
tions and benchmark summaries, are systematically compiled into
structured documents and published to collaborative platforms such
as GitHub, ensuring transparent sharing and long-term accessibil-
ity. Furthermore, seamless integration with experiment tracking
tools like Wandb enables real-time visualization and comparison of
metrics throughout the research lifecycle. This automated, multi-
channel presentation workflow enhances reproducibility, supports
peer review, and amplifies the visibility and impact of financial Al
research conducted within the platform.

5 Empirical Evaluation
5.1 Dataset

We utilize two representative markets, the US and China, covering
four major stock pools: DJ30, SP500, SSE50, and HS300. The dataset
spans from 1995-05-01 to 2025-05-01, comprising daily and minute-
level price as well as news, totaling over 800 million data points.
This extensive dataset supports tasks such as time series forecasting,
algorithmic trading, and portfolio management. Additionally, we
collect a comprehensive LLM Reasoning dataset in both Chinese
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and English, covering diverse financial scenarios for training LLMs
and agents, with over 80,000 samples across multiple reasoning
benchmarks. The LLM evaluation encompasses multi-language,
multi-scenario, and multi-task applicability: datasets cover both
Chinese and English languages with numerical (tabular) and tex-
tual modalities, spanning diverse financial scenarios such as QA,
domain-specific corpora, professional exams (e.g., ACCA, CFA),
business knowledge, tabular data, market analysis, multi-turn dia-
logue, and quantitative trading. Each scenario is carefully designed
to reflect realistic financial reasoning and decision-making chal-
lenges, ensuring comprehensive validation across multi-language,
multi-task, and multi-scenario financial applications. All experi-
ments are conducted on 2 NVIDIA H100 GPUs. Unless otherwise
specified, all reported results are averaged over three runs with
different random seeds, and the best results in each column are
underlined. Detailed information can be found in Appendix A.

6 Experimental Setup

To ensure fair comparison and reproducibility across all experi-
ments, we adopt a unified experimental configuration. For trading
tasks (including DL, RL, and LLM Agents), we define trading actions
as follows: the BUY action corresponds to taking a full long posi-
tion, and the SELL action corresponds to taking a full short position.
Both trading and portfolio management tasks start with an initial
capital of 100,000, employ a transaction fee rate of 1 x 10™%, and op-
erate without leverage. This standardized setup enables consistent
evaluation across different methods and facilitates fair comparison
of their performance.

6.1 Time Series Forecasting

Dataset Setup. We use daily OHLCV and Alpha158 features for
DJ30, SP500, SSE50, and HS300 from 2015-05-01 to 2025-05-01, with
per-stock normalization and data split at 2023-05-01 for training
and validation. Detailed information can be found in Appendix D.1.
Metrics. We evaluate forecasting performance using four met-
rics: MAE, MSE, RankIC, and RankICIR. MAE and MSE focus
on absolute prediction accuracy, while RankIC and RankICIR are
particularly relevant for evaluating the model’s effectiveness in
capturing return-based or ranking-based financial relationships.
Methods. We evaluate several ML-based and DL-based time se-
ries forecasting models, including: i) ML-based methods: Light-
GBM [60], XGBoost [60]; ii) DL-based methods: Autoformer [56],
Crossformer [72], ETSformer [54], DLinear [67], TimesNet [55],
PatchTST [33], TimeMixer [50], and TimeXer [51]. These mod-
els are selected based on their effectiveness in capturing complex
patterns and their ability to handle high-dimensional data.
Experiment Results As shown in the results Table 2, on the DJ30
dataset, the TimeXer model achieves a MAE of 0.0529 and an MSE
of 0.0062, significantly lower than LightGBM (MAE 0.1392, MSE
0.0235). TimeXer also attains the highest RankICIR of 0.4889, com-
pared to 0.2017 for LightGBM. Similarly, on the HS300 dataset,
models such as TimeMixer and TimeXer outperform ML methods,
with MAEs of 0.3804 and 0.3727, and MSEs of 0.0442 and 0.0529, re-
spectively. Overall, deep learning models achieve lower prediction
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errors and higher rank-based metrics than machine learning meth-
ods, highlighting the advantages of DL approaches for financial
time series forecasting.

Table 2: Comparison of models for time series forecasting,.

DJ30 SP500
MAE | MSE | RankIC T RankICIR T MAE | MSE | RankIC T RankICIR T

ML-based
LightGBM  0.1392 0.0235 0.0157 0.2017 0.6741 0.0788  0.0216 0.2242
XGBoost 0.1476 0.0251  0.0138 0.1684 0.7025 0.0814 0.0199 0.1925
DL-based
Autoformer 0.1044 0.0182 0.0193 0.3265 0.4568 0.0671  0.0312 0.3379
Crossformer 0.1624 0.0173  0.0150 0.3561 0.6448 0.0774 0.0219 0.2984
ETSformer  0.0640 0.0115  0.0209 0.2411 0.2560 0.0448  0.0295 0.3125
DLinear 0.0867 0.0122  0.0144 0.2247 0.3537 0.0416  0.0177 0.2783
TimesNet 0.1242 0.0142 0.0211 0.2642 0.4013 0.0660  0.0483 0.3512
PatchTST 0.0830 0.0112  0.0140 0.2134 0.3682 0.0498 0.0157 0.1922
TimeMixer  0.0620 0.0081  0.0294 0.4741 0.2278 0.0279  0.0349 0.1193
TimeXer 0.0529 0.0062  0.0302 0.4889 0.1871 0.0240  0.0425 0.3255

Model

SSE50 HS300
MAE | MSE | RankIC ] RankICIR T MAE | MSE | RankIC T RankICIR T

ML-based
LightGBM  0.1540 0.0267  0.0211 0.1688 0.7836 0.1097  0.0219 0.1961
XGBoost 0.1632 0.0293 0.0184 0.1497 0.8140 0.1123  0.0193 0.1724

Model

DL-based
Autoformer 0.1163 0.0212  0.0336 0.1848 0.5696 0.1213  0.0364 0.2493
Crossformer 0.1756 0.0197  0.0225 0.1318 0.9829 0.1082 0.0187 0.1525
ETSformer  0.0737 0.0125 0.0452 0.2107 0.4413 0.0546  0.0332 0.2406
DLinear 0.0932 0.0154 0.0343 0.1722 0.4315 0.0717  0.0285 0.2078
TimesNet 0.1329 0.0168  0.0251 0.1465 0.7118 0.0997  0.0241 0.1894

PatchTST 0.0907 0.0135  0.0377 0.1934 0.3253 0.0595 0.0276 0.1971
TimeMixer 0.0724 0.0119  0.0402 0.2086 0.3804 0.0442  0.0348 0.2417
TimeXer 0.0625 0.0093  0.0425 0.2173 0.3727 0.0529  0.0352 0.2478

Table 3: Comparison of models for algorithmic trading.

AAPL AMZN
Model
ARRT SRT MDD | CRT SoRT VOL | ARRT SRT MDD | CRT SoR7 VOL|
Rule-based
BUY&HOLD 13.0620 0.6654 17.6828 0.7387 0.9606 0.2210 43.9823 1.4190 19.6246 2.2412 2.1558 0.2854
MACD 9.7042 0.6964 11.5621 0.8393 1.0251 0.1487 -1.4856 0.0028 19.4850 -0.0762 0.0041 0.1761
ML-based

LightGBM  7.4450 0.5112 16.7097 0.4456 0.7363 0.1679 -2.6266 -0.1886 38.1339 -0.0689 -0.2575 0.1093
XGBoost 15.7943 1.0359 17.6320 2.0695 2.0720 0.1185 20.8648 0.7175 26.5675 0.3134 0.8854 0.3823

DL-based
Transformer 23.3469 0.8788 18.7073 1.2480 1.6204 0.2809 5.8822 0.3716 25.5574 0.0884 0.4436 0.3520
LSTM 11.2387 0.5262 35.9190 0.2448 0.9589 0.2647 15.5243 0.8552 40.3636 0.3846 1.2941 0.1897
DLinear 9.5539 0.4686 34.7311 0.2136 0.8594 0.2644 9.9999 0.7221 30.5673 0.3272 1.1297 0.1468
RL-based
PPO 31.5838 1.0483 18.7102 1.6222 1.9040 0.2956 37.3429 1.2514 22.2379 1.6793 1.7909 0.2864
SAC 28.2963 0.8758 37.7384 0.6467 1.5797 0.2970 44.4502 1.6389 23.4218 1.4709 2.6872 0.1918
Model GOOGL META
ARRT SRT MDD | CRT SoRT VOL| ARR] SRT MDD | CRT SoRT VOL |
Rule-based
BUY&HOLD 28.1837 1.0236 22.2309 1.1678 1.4589 0.2811 67.2719 1.7264 18.8226 1.5740 2.8285 0.3286
MACD 10.0432 0.6068 12.6638 0.7931 0.8620 0.1862 40.3374 1.5468 12.7635 1.1604 2.0533 0.2362
ML-based

LightGBM  16.4245 1.0908 21.0885 0.7788 1.6732 0.1468 39.6612 1.1212 23.4416 0.7655 1.5979 0.3676
XGBoost 7.5362 0.6783 20.6611 0.3648 1.2239 0.1171 32.0035 1.6461 24.2472 1.3199 2.8858 0.1778
DL-based
Transformer 10.3923 0.6683 36.7980 0.2824 0.9652 0.1468 48.2834 1.6819 29.0003 1.6649 2.9686 0.2528
LST! 18.7416 0.8849 36.8169 0.5091 1.2871 0.2221 44.6391 1.1864 30.0527 0.8918 1.7019 0.3702
DLinear 21.4708 1.0461 36.8203 0.5831 1.5575 0.2063 35.3426 1.445 34.0928 1.0366 2.6560 0.2267

RL-based
PPO 20.5532 1.0145 16.7733 1.2254 1.5855 0.2048 72.0104 2.1031 18.6421 1.5360 1.4293 0.2591
SAC 30.6081 1.2203 35.4036 1.7233 1.8833 0.2038 56.8891 1.5085 34.6565 1.6415 2.4020 0.3355
Model MSFT TSLA
ARRT SRT MDD | CRT SoRT VOL| ARRT SR MDD | CRT SoRT VOL |
Rule-based
BUY&HOLD 13.3812 0.6991 18.6840 0.7162 0.9635 0.2116 30.8051 0.7469 53.6797 0.5739 1.1537 0.5892
MACD 6.4616 0.4703 13.7325 0.4705 0.6337 0.1606 68.8393 1.5085 21.7414 2.1663 2.5809 0.3989
ML-based

LightGBM  20.7821 0.9031 37.8864 0.5485 1.4983 0.2400 49.2144 1.3086 56.0589 0.8779 2.2514 0.3529
XGBoost 14.4887 0.6633 49.8944 0.2904 1.0676 0.2497 39.7010 0.9788 58.5673 0.5053 1.5409 0.4401

DL-based
Transformer 23.2662 1.0207 32.8318 0.6037 1.4478 0.2180 73.1291 1.2581 48.5669 0.9308 1.8457 0.5683
LSTM 16.5063 0.6185 31.8587 0.3910 1.0206 0.2162 44.7985 1.0768 53.6992 1.0904 1.5650 0.6473
DLinear 9.4778 0.5599 31.7271 0.2987 0.7792 0.1962 41.1897 1.0612 62.3380 0.6608 1.7030 0.3998
RL-based
PPO 29.5326 1.1044 18.6900 1.5801 1.7624 0.2654 58.5511 1.0402 48.5536 0.5703 1.6841 0.4298
SAC 22.2784 0.9515 27.7286 0.8035 1.5859 0.2405 70.548 1.6474 57.4088 1.5065 2.7099 0.5016

6.2 Algorithmic Trading

Dataset Setup. We use daily OHLCV and Alpha158 features for six
US stocks, AAPL, AMZN, GOOGL, META, MSFT, and TSLA, from
1995-05-01 to 2025-05-01, with per-stock normalization and data
split at 2023-05-01 for training and validation. Detailed information
can be found in Appendix D.2.
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Metrics. We evaluate trading performance using 6 metrics: ARR,
MDD, VOL, CR, SR, and SoR. ARR measures profitability. MDD
captures the worst drawdown, and VOL reflects return variability,
both indicating risk exposure. CR evaluates returns relative to draw-
down risk, and SR and SoR assess risk-adjusted returns based on
total and downside volatility, respectively. Together, these metrics
provide a comprehensive view of profitability and risk.

Methods. We systematically evaluate several Rule-based, ML-based,
DL-based, and RL-based methods, including i) Rule-based methods:
BUY&HOLD, MACD; ii) ML-based Methods: LightGBM, XG-
Boost; iii) DL-based Methods: Transformer [48], LSTM, DLin-
ear [67]; iv) RL-based Methods: PPO [37], SAC [16].
Experiment Results. Table 3 shows that RL methods achieve the
best overall trading performance, with SAC and PPO delivering
the highest annualized returns and SR across most stocks (e.g.,
SAC achieves 101.55% ARR on TSLA and PPO attains 2.10 SR on
META). DL models like Transformer also outperform ML-based
and rule-based methods in both return and risk metrics (e.g., 73.13%
ARR on MSFT). Compared to ML, DL and rule-based strategies, RL
methods show clear advantages in both returns and risk-adjusted
performance.

Table 4: Comparison of methods for portfolio management.

DJ30 SP500
Model
ARRT SR] MDD | CRT SoR7 VOL| ARRT SRT MDD | CRT SoR 1 VOL |
Rule-based
BUY&HOLD 9.4049 0.8792 9.2585 1.0158 1.2779 0.1089 8.9875 0.7617 13.7434 0.6539 1.1161 0.1228
ML-based

LightGBM  16.3302 0.5758 30.7444 1.1107 1.7603 0.5162 13.4204 0.5916 30.7037 0.7206 0.9005 0.4149
XGBoost 10.6903 0.3776 30.4737 1.6504 1.3008 0.5167 10.2609 0.3437 30.5994 0.8202 0.7601 0.4135
DL-based
Autoformer -4.1781 0.3611 34.2251 -0.0650 0.5267 0.1123 9.7203 0.3724 33.5112 0.4257 0.5913 0.1563
Crossformer 9.6460 0.4474 33.8498 0.1840 0.6459 0.2135 8.2108 0.3879 29.9936 0.5341 0.5928 0.1289
ETSformer  1.5512 0.3662 31.5739 0.0300 0.5085 0.0918 12.0507 0.4951 30.7685 0.7532 0.6527 0.2342
DLinear 17.4357 0.7461 35.2342 0.5593 1.0521 0.1787 17.1605 0.7827 32.9918 1.1329 1.1022 0.1934
TimesNet 16.7235 0.8123 29.4762 0.9821 1.0844 0.2129 12.9701 0.6474 29.8908 0.9891 0.9136 0.1662
PatchTST 13.5049 0.7344 31.0133 0.8961 1.0317 0.1036 9.2306 0.4719 31.6127 0.7654 0.8338 0.0904
TimeMixer 9.1872 0.5795 30.9910 0.6928 0.8996 0.1861 14.4202 0.7523 30.4321 1.0876 1.0284 0.2177
TimeXer 7.4083 0.4567 32.6578 0.5129 0.8103 0.3184 19.8309 0.8692 28.3254 1.2768 1.1825 0.2841

RL-based
PPO 11.7241 1.0339 20.1129 1.2865 1.5246 0.2133 28.5408 1.1136 29.5874 1.3761 1.5589 0.3146
SAC 19.0272 1.5967 20.0846 2.0945 2.4453 0.2117 31.2104 1.5987 30.3381 2.1362 2.4625 0.2338
Model SSE50 HS300
ARRT SR MDD | CRT SoRT VOL| ARR] SRT MDD | CRT SoR T VOL |
Rule-based
BUY&HOLD 2.8799 0.2512 0.7742 0.1420 0.3868 0.1706 2.7940 0.2448 19.7412 0.1415 0.3819 0.1738
ML-based

LightGBM  13.4202 0.5915 0.7032 0.5973 0.9632 0.1472 26.5361 0.6509 0.9407 1.2177 1.4964 0.1693
XGBoost 14.3904 0.3439 0.5991 0.5945 0.8581 0.1358 17.2650 0.3718 0.5823 0.5876 0.9741 0.2116
DL-based
Autoformer 9.4209 0.5162 0.8093 0.8494 0.9862 0.1586 18.7107 0.7968 1.1079 1.2124 1.1872 0.2193
Crossformer 10.5902 0.5731 0.9107 0.9798 1.1162 0.1741 21.8814 0.8283 1.1523 1.2981 1.2357 0.1642
ETSformer 12.1572 0.6703 0.9755 1.0621 1.1603 0.1814 15.2038 0.7411 1.0635 1.0816 1.1341 0.2328
DLinear 17.7206 0.8581 1.0779 1.1941 1.2786 0.1913 29.9904 0.8931 1.1073 1.2425 1.2456 0.2872
TimesNet 14.4103 0.8382 1.0473 1.1495 1.2639 0.1468 24.3309 0.9207 1.1594 1.2930 1.2440 0.2933
PatchTST 15.1308 0.9072 0.9750 1.2366 1.2821 0.1924 22.3607 0.9153 1.1333 1.2645 1.1875 0.2067
TimeMixer 12.8201 0.8894 0.9456 1.2902 1.3488 0.2031 19.1205 0.9172 1.0581 1.1426 1.2396 0.2486
TimeXer 11.4708 0.8781 0.8942 1.3179 1.4239 0.1172 18.1713 0.9137 1.0503 1.1104 1.2938 0.2173

RL-based
PPO 15.1502 1.0013 0.6331 1.3956 1.4481 0.1835 22.2032 1.0578 0.8171 1.1763 1.2541 0.1568
SAC 20.0670 1.0625 0.7132 1.5320 1.5711 0.1497 39.9005 1.1606 0.8205 1.2032 1.3703 0.1686

6.3 Portfolio Management

Dataset Setup. Dataset setup is the same as in the time series fore-
casting task. Detailed information can be found in Appendix D.3.
Metrics. The evaluation metrics for portfolio management are
consistent with those used in the algorithmic trading task. Specif-
ically, we report ARR, SR, MDD, CR, SoR, and VOL, following
the definitions and formulas described in the previous section.
Methods. We evaluate ML-based, DL-based, and RL-based meth-
ods. Since we can apply the Top-k Dropout Strategy [60] after
any ML&DL-based forecasting model to construct a portfolio, our



FinWorld: An All-in-One Open-Source Platform for End-to-End Financial Al Research and Deployment

ML&DL-based methods include all ML&DL-based forecasting mod-
els. Specifically, we consider: i) Rule-based methods: BUY&HOLD;
ii) ML-based Methods: LightGBM, XGBoost; iii) DL-based Meth-
ods: Autoformer [56], Crossformer [72], ETSformer [54], DLin-
ear [67], TimesNet [55], PatchTST [33], TimeMixer [50], and
TimeXer [51]; iv) RL-based Methods: PPO [37], SAC [16].
Experiment Results Overall, the RL-based methods, especially
SAC, achieve the best results on all benchmarks, with annualized
returns up to 31.2% (SP500) and Sharpe ratios above 1.5. In contrast,
rule-based and ML-based methods show much lower returns (e.g.,
Buy&Hold: 9.4% on DJ30), and DL-based methods generally perform
between the two. Notably, SAC consistently delivers higher returns
and better risk-adjusted metrics, demonstrating clear advantages
for portfolio management.

6.4 LLMs Applications

Dataset Setup. For comprehensive evaluation, we assess LLMs and
LLM Agents on a suite of established financial reasoning bench-
marks, including FinQA, FinEval, ConvFinQA, and CFLUE, which
cover a broad range of business scenarios. For trading evaluation,
we follow the same experimental setup as in algorithmic trading
task and use daily-level OHLCV data together with news for the 6
U.S. technology stocks (AAPL, AMZN, GOOGL, META, MSFT, and
TSLA) over the period from 2015-05-01 to 2025-05-01.

Metrics. For financial reasoning task, we evaluate performance
using Score. For trading abilities, we use the same six financial
metrics as in the above trading task: ARR, SR, MDD, CR, SoR,
and VOL.

Methods. For financial reasoning, we evaluate our proposed mod-
els FinReasoner against open-source LLMs on the test dataset,
including DeepSeek-R1 [15], Qwen3-8B [59], Fin-R1-7B [15],
and Qwen2.5-7B-Instruct [44]. For trading abilities, we evaluate
our own proposed FinReasoner with DeepSeek-R1 [15], Qwen3-
8B [59], Fin-R1-7B [15], Qwen2.5-7B-Instruct [44], GPT-4.1,
Claude-4-Sonnet, all serving as the backbone LLMs within FinA-
gent framework.

Implementation Details. LLM training is performed on 16 NVIDIA
A100 GPUs, while both LLMs inference and LLMs Agents exper-
iments are conducted on 2 NVIDIA H100 GPUs, with evaluation
results reported from a single run.

Experiment Results As shown in Figure 2, FinReasoner leads all
four financial-reasoning benchmarks, outperforming every other
LLM and underscoring the value of domain-specific reasoning over
generic instruction tuning. In Figure 3, we rescale all metrics (with
inverted MDD and VOL) to a 0-100 range for area-based com-
parison. FinReasoner achieves strong performance on all stocks,
validating its effectiveness in both reasoning and trading.

7 Conclusion and Future Work

In this paper, we introduce FinWorld, a comprehensive framework
for financial Al research and development. We provide a detailed
description of the framework, including the data, model, training,
evaluation, and task layers, along with empirical evaluations on four
financial Al tasks: time series forecasting, algorithmic trading, port-
folio management, and LLMs applications. The results demonstrate
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Figure 2: Comparison of LLMs on financial reasoning.

Figure 3: Comparison of LLMs on trading,.

that FinWorld effectively supports financial Al research and devel-
opment. Through its unified architecture supporting multiple Al
paradigms (ML, DL, RL, LLMs, and LLM Agents) and comprehensive
multimodal data integration, FinWorld addresses key limitations
of existing platforms and provides a scalable foundation for both
academic research and practical applications.

While FinWorld provides a comprehensive platform for financial
Al research and deployment, several limitations should be noted.
First, the current framework focuses on research and experimenta-
tion rather than live high-frequency trading systems that require
sub-second latency, with real-time deployment validation remain-
ing for further development. Second, while our experiments demon-
strate consistent performance, the current evaluation does not yet
cover all potential financial Al applications, particularly multilin-
gual information retrieval, cross-market forecasting, and real-time
decision pipelines. We are developing latency simulation modules
and online integration interfaces to support low-latency financial
applications, including minute-level trading LLM Agent evaluation.
Additionally, we plan to develop quality assurance frameworks and
statistical testing interfaces to enable rigorous model comparison
and bias evaluation across markets.
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Appendix

A FinWorld as a Dataset Platform
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Figure 4: Overview of dataset.
A.1 Market Dataset

We select two representative markets for comprehensive financial Al research: the US market, representing developed markets with high
liquidity and extensive data availability, and the Chinese market, representing emerging markets with unique characteristics and regulatory
environments. For the US stock pools, we choose the Dow Jones Industrial Average (DJ30) and S&P 500 (SP500), which are widely recognized
benchmarks covering large-cap and blue-chip stocks. For the Chinese stock pools, we select the SSE 50 Index (SSE50) and CSI 300 Index
(HS300), representing the most liquid and representative stocks in the Shanghai and Shenzhen markets.

Our dataset integrates multiple data sources to ensure comprehensive coverage and data quality. We utilize four primary data providers:
Financial Modeling Prep (FMP), Alpaca Markets, AkShare, and TuShare. These sources provide daily and minute-level price data, along with
news data from various financial platforms including Seeking Alpha, Bloomberg, and other major financial news outlets. The dataset spans
from 1995 to 2025, offering extensive historical coverage for robust model training and evaluation.

The data processing pipeline includes comprehensive preprocessing steps to ensure data quality and usability. For price data, we
implement filtering procedures to remove non-trading days and invalid data points, followed by the calculation of technical indicators using
the Alpha158 [60] (Table 5) framework, which provides a solid foundation for deep learning modeling. For news text data, we employ a
two-stage processing approach: first, we use web scraping scripts to extract raw content from original news links, then we utilize Qwen3-32B
to generate concise summaries, enabling efficient text analysis and feature extraction for financial Al applications.

After processing all stock data, we obtain over 800 million valid data points, providing comprehensive support for time series forecasting,
algorithmic trading, portfolio management, and LLM applications. Furthermore, we provide unified download and data processing interfaces
that theoretically enable unlimited data expansion by simply specifying stock pools and date ranges. Processed data is uniformly uploaded
to Hugging Face for storage, and we offer unified dataset encapsulation for both single-stock and multi-stock scenarios, allowing flexible
loading of different data types. This constitutes an efficient one-stop framework that integrates data downloading, processing, storage, and

retrieval capabilities.

A.2 LLM Reasoning Dataset

Our LLM reasoning dataset collection process is designed to provide comprehensive coverage of financial reasoning capabilities, drawing
inspiration from established datasets such as FinQA [5], FinEval [68], CFLUE [76], Salesforce FinEval [22], and ConvFinQA [6]. We
systematically collect diverse types of financial reasoning data through multiple channels and sources, ensuring broad coverage of financial

knowledge domains and reasoning patterns.
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Table 5: Alpha158 Technical Indicators Overview

Indicator Formula Description
Kline-based Indicators
kmid (close — open)/close K-Mid price ratio
kmid2 (close — open) [ (high — low) Normalized K-Mid price ratio
klen (high — low) /open K-Length price ratio
kup (high — max(open, close))/open K-Up price ratio
kup2 (high — max(open, close) )/ (high — low) Normalized K-Up price ratio
klow (min(open, close) — low) /open K-Low price ratio
klow?2 (min(open, close) — low)/(high — low) Normalized K-Low price ratio
ksft (2 X close — high — low) [open K-Shift price ratio
ksft2 (2 X close — high — low) [ (high — low) Normalized K-Shift price ratio
Price-based Rolling Indicators (for each window w)
roc_w  close.shift(w)/close Rate of change over w periods
ma_w close.rolling(w).mean()/close Moving average ratio over w periods
std_w close.rolling(w).std()/close Standard deviation ratio over w periods
beta_w (close.shift(w) — close)/(w X close) Beta coefficient over w periods
max_w close.rolling(w).max()/close Maximum price ratio over w periods
min_w  close.rolling(w).min()/close Minimum price ratio over w periods
qtlu_w  (close — close.rolling(w).quantile(0.8))/close Upper quantile ratio over w periods
qtld_w  (close — close.rolling(w).quantile(0.2))/close Lower quantile ratio over w periods
rank_w close.rolling(w).rank(pct = True).iloc[-1]/w Price rank percentile over w periods
Position-based Indicators (for each window w)
imax_w high.rolling(w).argmax()/w Position of maximum high over w periods
imin_w low.rolling(w).argmin()/w Position of minimum low over w periods
imxd_w (high.rolling(w).argmax() — low.rolling(w).argmin())/w Distance between max/min positions

RSV and Count Indicators (for each window w)
Isv_w (close — min(low, close.shift(w)))/(max(high, close.shift(w)) — min(low, close.shift(w))) RSV (Raw Stochastic Value)

cntp_w  retl.gt(0).rolling(w).sum()/w Count of positive returns over w periods

cntn_w  retl.[t(0).rolling(w).sum()/w Count of negative returns over w periods

cntd_w  cntp_w —cntn_w Difference between positive and negative return counts
Correlation Indicators (for each window w)

corr_w  close.rolling(w).corr(log(volume + 1).rolling(w)) Correlation between close and log volume

cord_w (close/close.shift(1)).rolling(w).corr(log(volume/volume.shift(1) + 1).rolling(w)) Normalized correlation
Sum-based Indicators (for each window w)

sump_w pos_retl.rolling(w).sum()/abs_retl.rolling(w).sum() Sum of positive returns ratio

sumn_w 1-—sump_w Sum of negative returns ratio

sumd_w 2 X sump_w—1 Difference between positive and negative return sums

Volume-based Indicators (for each window w)

vma_w  volume.rolling(w).mean()/volume Volume moving average ratio

vstd_w  volume.rolling(w).std()/volume Volume standard deviation ratio

wvma_w |close/close.shift(1) — 1|.rolling(w).std()/|close/close.shif t(1) — 1|.rolling(w).mean() Weighted volume moving average

vsump_w pos_vchgl.rolling(w).sum()/abs_vchgl.rolling(w).sum() Sum of positive volume changes ratio

vsumn_w 1 — osump_w Sum of negative volume changes ratio

vsumd_w 2 X osump_w — 1 Difference between positive and negative volume change sums

Volume Logarithmic Indicator
logvol  log(volume + 1) Logarithm of volume

The dataset encompasses both Chinese and English content, covering diverse financial scenarios including financial question-answering
data, industry-specific financial corpus, professional certification examination materials, business domain knowledge, tabular financial data,
market analysis reports, multi-turn conversational interactions, and quantitative investment scenarios. Each scenario is carefully curated to
reflect real-world financial applications and reasoning challenges, with particular emphasis on comprehensive coverage of financial industry
qualification examination data.

In total, we have collected over 80k samples including both training and testing data, providing comprehensive support for RL-based LLM
reasoning training and evaluation across diverse financial scenarios and professional domains.

B FinWorld as a Visualization Toolkit

Effective visualization is crucial for understanding complex financial Al systems, encompassing datasets, algorithms, models, performance
metrics, experimental results and so on. To support comprehensive research and analysis across the entire financial AT workflow, we have
developed a comprehensive suite of visualization tools that provide intuitive and interactive representations of our platform’s capabilities.
These tools enable researchers to quickly grasp the scope and characteristics of our datasets, understand algorithm performance and model
behaviors, analyze training dynamics and convergence patterns, compare different approaches across multiple metrics, and visualize complex
financial decision-making processes. The visualization framework facilitates informed decision-making in model selection, hyperparameter
tuning, performance evaluation, and research design across all four core financial Al tasks. The visualization tools are implemented using
Python, LaTex, Pyecharts [43], and other visualization libraries.

B.1 Dataset Visualization

We develop a set of visualization tools to help researchers explore and analyze our financial datasets. These tools are designed to provide
intuitive and interactive visual representations of dataset composition, distribution, and characteristics, enabling researchers to quickly
understand the scope and diversity of available financial data.
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Dataset Statistics Tools. As illustrated in Figure 4, we employ hierarchical sunburst diagrams to comprehensively visualize the
composition, distribution, and characteristics of our financial datasets. These visualizations provide an intuitive representation of data types,
proportions, and hierarchical relationships across different market segments and financial instruments. These hierarchical visualizations
serve as powerful tools for dataset exploration and analysis, providing researchers with immediate insights into data availability, distribution
patterns, and potential applications. The interactive nature of these visualizations allows for dynamic exploration of different data segments,
supporting both high-level overview and detailed examination of specific data categories. This comprehensive visualization framework
enhances the usability and accessibility of our financial datasets, facilitating efficient research workflow and promoting transparent data
understanding across the financial AI community.

TSLA Simple Kline Chart W Kine -O- MAS MA10 MA20 AAPL Pro Kline Chart O mas MA10 MAZ0
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(a) Long-term Kline Chart. (b) Short-term Kline Chart.
Figure 5: Overview of double modes of Kline Chart.

Kline Chart Tools. To effectively visualize financial data, we employ two distinct Kline Chart display modes tailored to different analysis
requirements. The first mode is designed for long-term datasets where detailed granularity is not essential, as illustrated in Figure 5a, which
displays simplified Kline charts with basic moving averages (MA5, MA10, MA20) and trading volume. This streamlined visualization enables
researchers to quickly grasp overall market trends and price movements across extended time periods without being overwhelmed by
excessive technical details. Additionally, our Kline Chart visualizations are automatically generated as interactive HTML files, enabling
online browsing and interactive exploration of the visualization information through web-based interfaces.

The second mode is optimized for short-term data analysis requiring detailed technical indicators and trading signals, as shown in
Figure 5b. This comprehensive display includes multiple moving averages (MA5, MA10, MA20), MACD (Moving Average Convergence
Divergence) with its components (DIF and DEA), and provides real-time technical signals such as golden cross formations, death crosses,
and other critical trading indicators. This detailed visualization mode supports precise technical analysis, enabling researchers to identify
specific entry and exit points, analyze momentum shifts, and evaluate the effectiveness of various technical trading strategies. The dual-mode
approach ensures that researchers can select the appropriate level of detail based on their specific analysis needs, from high-level trend
analysis to granular technical signal detection.

Dataset Distribution Tools. To better understand and analyze the structure of our dataset, we employ a t-SNE-based visualization
technique to represent the distribution of price and technical indicators in a low-dimensional space. This approach reveals intrinsic patterns
and temporal dynamics embedded in the data. The visualization is conducted in two distinct modes: asset-level and pool-level.

Asset-level visualization focuses on a few selected individual stocks. For each stock, we sample its price at different time points, and then
apply t-SNE to project these temporal snapshots into a two-dimensional space. This mode allows us to observe how the price of a single
asset evolve over time, and to compare such temporal trajectories across different individual assets.

Pool-level visualization, on the other hand, examines a large number of stocks within different asset pools (e.g., sectors or universes)
at the same or selected time points. To construct these visualizations, we compute a comprehensive set of technical indicators using the
Alpha158 feature set. The high-dimensional feature representations are then transformed via t-SNE into a more interpretable 2D layout,
facilitating insight into the temporal and cross-sectional structure of the data. Here, we sample many stocks from each pool at specific times,
and use t-SNE to project their high-dimensional features into two dimensions. This mode helps uncover broader distributional patterns
across asset pools—such as clustering behavior, outlier structures, or inter-stock similarities within and across pools.

B.2 Performance Visualization

Trading Curve Tools. The proposed module replicates the trading-curve display of FinAgent [70] while focusing on a single, essential
feature. It renders an interactive curve that tracks cumulative return and overlays each model decision with a clearly labelled BUY or
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2D Asset Distribution Bubble Plot 3D Asset Distribution Bubble Plot

(a) Asset-level t-SNE visualization with 2D bubble. (b) Asset-level t-SNE visualization with 3D bubble.

Figure 6: Overview of asset-level t-SNE visualization.

2D Pool Distribution Bubble Plot 3D Pool Distribution Bubble Plot

(a) Pool-level t-SNE visualization with 2D bubble. (b) Pool-level t-SNE visualization with 3D bubble.

Figure 7: Overview of pool-level t-SNE visualization.

SELL marker. An accompanying block of interpretable text records the reasoning behind every trade, summarising the key signals and risk
constraints that guided the action. This streamlined presentation allows researchers to relate model logic directly to observed performance,
offering a transparent basis for auditing algorithmic behaviour and evaluating how trading decisions drive the evolution of returns over time.

Score Visualization Tools. As illustrated in Figure 2, the module renders an interactive bar chart that aggregates the performance
of multiple large language models (LLMs) across a suite of reasoning benchmarks. Each bar encodes the absolute score of an individual
model on a given task, while colour grouping facilitates quick visual association between benchmarks. By presenting all results in a single,
normalised view, Score Visualization Tools makes it straightforward to identify relative strengths and weaknesses, rank models at a glance,
and track progress as new architectures or training regimes are evaluated.

Trading Performance Visualization Tools. As illustrated in Figure 3, the module presents an interactive radar chart that overlays
multi metrics (e.g., ARR, SR, MDD, CR, SoR, VOL) for every evaluated model. Each polygon traces the scores of one model, and the enclosed
area provides an intuitive proxy for holistic performance: the larger the area, the better the overall trade-off between return and risk. The
radial format allows direct, dimension-by-dimension comparison, making it straightforward to pinpoint where a model excels or lags relative
to its peers. Although the example focuses on trading-specific indicators, the framework is extensible; additional axes can represent intrinsic
LLMs attributes such as reasoning abilities or computational efficiency, thereby enabling a unified visual assessment of both financial and
cognitive capabilities.

C FinWorld as a Development Framework

Beyond the four core financial Al tasks (time series forecasting, algorithmic trading, portfolio management, and LLM applications) discussed
in the main text, FinWorld is designed as a comprehensive and extensible development framework that supports unlimited expansion for
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Figure 8: Overview of trading curve visualization.

diverse financial applications. The platform’s modular architecture and flexible design principles enable researchers and practitioners to
easily implement and experiment with various financial AI methodologies beyond the standard tasks.

The framework supports additional financial Al tasks such as factor model, financial market representation learning, and other domain-
specific applications. For factor model, FinWorld provides built-in support for traditional statistical factors, and deep learning factor
extraction methods. The platform’s representation learning capabilities enable the development of sophisticated market embeddings that
capture complex financial relationships and temporal dynamics.

The extensible nature of FinWorld is achieved through its layered architecture, where each component can be independently modified or
extended without affecting other parts of the system. This design allows for seamless integration of new algorithms, models, and tasks
while maintaining consistency with the existing framework. Researchers can leverage the platform’s unified data interfaces, standardized
evaluation metrics, and comprehensive visualization tools to develop and validate novel financial Al approaches.

C.1 Factor Model

FinWorld provides comprehensive support for factor model, encompassing both traditional statistical approaches and advanced deep
learning methodologies. For traditional statistical factors, we primarily utilize the Alpha158. For deep learning dynamic factor models, we
implement state-of-the-art approaches including FactorVAE [10] and HireVAE [53]. FactorVAE leverages variational autoencoders to learn
latent factor representations that capture complex market dynamics and temporal dependencies. HireVAE extends this framework with
hierarchical structures to model multi-scale temporal patterns in financial data. Notably, the factor model STORM [73] is developed based on
this framework, demonstrating the platform’s capability to support cutting-edge research and development in financial AL

The factor model framework in FinWorld is designed with modularity and extensibility in mind, allowing researchers to easily implement
and experiment with new factor extraction methods. The platform provides standardized interfaces for factor computation, evaluation, and
backtesting, ensuring consistent and reproducible results across different factor models and datasets.

C.2 Financial Market Representation Learning

FinWorld implements comprehensive financial market representation learning capabilities, focusing on stock pool-based representation
learning approaches. The platform supports various state-of-the-art representation learning methods, including VAE (Variational Autoen-
coder) [24], MAE (Masked Autoencoder) [17], and VQVAE (Vector Quantized Variational Autoencoder) [47] for capturing complex market
dynamics and relationships. These representation learning methods enable the development of sophisticated market embeddings that capture
both local and global patterns in financial data: VAE captures smooth state transitions via continuous latents, MAE learns robust features
through masked reconstruction, and VQVAE models discrete regimes with categorical representations.

The representation learning framework in FinWorld is designed to work seamlessly with different stock pools and market segments,
allowing researchers to develop market-specific embeddings that capture the unique characteristics of different financial instruments
and market conditions. This capability is particularly valuable for understanding cross-asset relationships, market regime detection, and
developing more sophisticated financial Al models.
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D Implementation Details

D.1 Time Series Forecasting

Dataset Setup. We focus on daily-level financial data for time series forecasting. We select DJ30 and SP500 from the U.S. market and SSE50
and HS300 from the Chinese market, covering both daily OHLCV data with Alpha158 technical indicators for the period 2015-05-01 to
2025-05-01, sourced from FMP. We employ a StandardScaler for feature normalization and utilize both dense features (145 dimensions from
Alpha158 indicators) and sparse temporal features (4 dimensions: days, months, weekdays, years). The data is split at 2023-05-01 for training
and validation separation. All features are standardized for each stock individually to ensure comparability across assets and time periods.

Metrics. We evaluate forecasting performance using four metrics: i) Mean Absolute Error (MAE), which measures point prediction
accuracy by averaging the absolute differences between predicted and true values; ii) Mean Squared Error (MSE), which computes
the average of the squared differences between predictions and actual outcomes; iii) Rank Correlation Coefficient (RankIC), which
assesses the correlation between the predicted and actual rankings using Spearman’s rank correlation; and iv) RankIC Information Ratio
(RanKICIR), which evaluates the stability of ranking performance over time by dividing the average RankIC by its standard deviation. MAE
and MSE focus on absolute prediction accuracy, while RankIC and RankICIR are particularly relevant for evaluating the model’s effectiveness
in capturing return-based or ranking-based financial relationships. Detailed information can be found in Table 6.

Table 6: Forecasting Metrics Overview

Name Direction Formula Description
MAE l MAE = ﬁ >royN, |gl-,, - yi1,| Mean Absolute Error; average absolute deviation over all assets and time steps.
MSE l MSE = 75 »IoyN, (i — yi,[)z Mean Squared Error; penalizes large prediction errors more heavily.

SN (R(ie) = Ryt) (R(Yie) = Ryy)

RankIC, T RankIC, = Spearman rank correlation computed across assets at each time step ¢.
N 5. \2 5 \2
VEN, (R(30) = Ry ZN, (R(yio) - Ry)
T
1
RankIC ) RankIC = T Z RankIC, Average cross-sectional Spearman correlation over all time steps.
=1
1 T, RankIC,
RankICIR T RankICIR = Rank Information Coefficient Information Ratio; mean RankIC divided by its

\/ ﬁ Zthl (RankIC; — j)? standard deviation over time, with p being the mean RankIC.

Methods. We evaluate several state-of-the-art ML-based and DL-based time series forecasting models, including: i) ML-based methods:
LightGBM [60] and XGBoost [60]; ii) DL-based methods: Autoformer [56], Crossformer [72], ETSformer [54], DLinear [67], Times-
Net [55], PatchTST [33], TimeMixer [50], and TimeXer [51]. These models are selected based on their effectiveness in capturing complex
financial time series patterns and their ability to handle high-dimensional data.

Implementation Details. All experiments are conducted on 2 NVIDIA H100 GPUs. Following the implementation practices of Qlib [60]
and TSLib [45], we adopt consistent architectural configurations across different models while preserving their unique characteristics. For
dataset, we utilize a multi-GPU parallel dataloader with a batch size of 64. Each batch contains sequences of 64 historical days and 32 future
days, meaning the model observes the past 64 days and predicts the returns over the next 32 days. For network architecture, we use a
standardized setup with encoder depth of 4 and decoder depth of 4, where the decoder typically consists of a single MLP layer for output
mapping unless the model has specific decoder requirements. The embedding dimension is set to 128 across all models. For optimization, we
employ AdamW optimizer with a learning rate of 1le-5 and implement a warmup scheduler for learning rate adjustment, with maximum
training epochs of 2,000 and warmup epochs of 200. The loss function is Mean Squared Error (MSE). Additional model-specific configurations
are applied based on each model’s architectural requirements and design principles. The reported results are averaged over three runs with
different random seeds.

D.2 Algorithmic Trading

Dataset Setup. We focus on daily-level financial data for trading. We select AAPL, AMZN, GOOGL, META, MSFT, and TSLA from the U.S.
market, covering both daily OHLCV data with Alpha158 technical indicators for the period from 1995-05-01 to 2025-05-01, sourced from
FMP. We employ a StandardScaler for feature normalization and utilize both dense features (145 dimensions from Alpha158 indicators) and
sparse temporal features (4 dimensions: days, months, weekdays, years). The data is split at 2023-05-01 for training and validation separation.
All features are standardized for each stock individually to ensure comparability across assets and time periods.

Metrics. We evaluate algorithmic trading performance using six financial metrics: i) Annual Rate of Return (ARR), which measures
the annualized profitability of a strategy based on the change in portfolio value over time, adjusted by an annualization factor (e.g., 252
for daily trading); ii) Sharpe Ratio (SR), which quantifies risk-adjusted return by comparing the average return to its standard deviation;
iii) Maximum Drawdown (MDD), which measures the largest peak-to-trough decline in the cumulative return, indicating the worst
observed loss during a period; iv) Calmar Ratio (CR), which evaluates the return-to-risk tradeoff by comparing average return to maximum
drawdown; v) Sortino Ratio (SoR), which is similar to the Sharpe Ratio but considers only downside volatility, thus emphasizing negative
return risks. vi) Volatility (VOL), which captures the standard deviation of returns and reflects the level of return fluctuation over time.
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ARR reflects pure profitability, SR, CR, and SoR assess performance adjusted for different aspects of risk, and MDD and VOL evaluate risk
exposure. Together, these metrics offer a comprehensive assessment of trading strategy effectiveness from both return and risk perspectives.

Table 7: Trading Metrics Overview

Name Direction Formula Description
N
ARR T ARR = (]_[tT:1 1+ r,)) T Annualized Rate of Return; compounded growth rate over time, using N periods
per year and return series rets.
SR 1 SR = eslre N N . _ Ny
= Sdtem ¥ N Sharpe Ratio; annualized excess return per unit of total volatility, computed from

return series rets.
maXge 4] Vs=V¢
MDD 1 MDD = max;ey 7] | st =22

Maximum Drawdown; largest observed decline from peak to trough in cumulative
maXge[1z] Vs g P g

portfolio value derived from rets.

CR T CR = % Calmar Ratio; annualized return divided by absolute maximum drawdown, both

computed from rets.
E[rets]frf . . . . . . L .

SoR T SoR = Bowen)~ X VN Sortlr?o Ratio; rls.k-ad]usted return using downside deviation, penalizing only
negative returns in rets.

VOL l VOL = Std(rets) x VN Volatility; annualized standard deviation of return series rets, capturing total
return variability.

DD ! DD = \/ % ZtT=1 min(r; —ry, 0)2 x VN Downside Deviation; annualized standard deviation of returns below the risk-free
rate, focusing on downside risk.

Note: rets = [ry, 72, ..., rr] is the return series, where r; is the return on day #; N is the number of periods per year; 1y is the risk-free rate.

Methods. We systematically evaluate several Rule-based, ML-based, DL-based, and RL-based methods, including i) Rule-based methods:
BUY&HOLD, MACD:; ii) ML-based Methods: LightGBM, XGBoost; iii) DL-based Methods: Transformer [48], LSTM, DLinear [67]; iv)
RL-based Methods: PPO [37], SAC [16]. These models represent a diverse set of approaches commonly used in quantitative finance research
and practice.

Implementation Details. All experiments are conducted on 2 NVIDIA H100 GPUs. For all DL-based methods, we use similar dataset splits,
network architectures, and optimizer configurations as in the forecasting task. For RL-based methods, the initial cash in the environment is
set to 1 X 10%, and the transaction fee rate is 1 X 10%. We use 4 parallel environments for data sampling, with a sampling step size of 512.
The policy mini-batch size is set to 128 and the value mini-batch size to 16. The optimizer used is AdamW, with the policy network learning
rate set to 1 X 107> and the value network learning rate set to 1 X 107%. The maximum number of training steps is 1 X 103, and the learning
rate warmup is applied starting from step 0. Additional model-specific configurations are applied based on each model’s architectural
requirements and design principles. The reported results are averaged over three runs with different random seeds.

D.3 Portfolio Management

Dataset Setup. The dataset setup is the same as in the time series forecasting task.

Metrics. The evaluation metrics for portfolio management are consistent with those used in the algorithmic trading task. Specifically, we
report ARR, SR, MDD, CR, SoR, and VOL, following the definitions and formulas described in the previous section.

Methods. We systematically evaluate several ML-based, DL-based, and RL-based methods. Since we can apply the top-k dropout
strategy [60] after any ML&DL-based forecasting model to construct a portfolio, our ML&DL-based methods include all ML&DL-based
forecasting models. Specifically, we consider: i) Rule-based methods: BUY&HOLD; ii) ML-based Methods: LightGBM, XGBoost; iii) DL-
based Methods: Autoformer [56], Crossformer [72], ETSformer [54], DLinear [67], TimesNet [55], PatchTST [33], TimeMixer [50],
and TimeXer [51]; iv) RL-based Methods: PPO [37], SAC [16]. These models represent a diverse set of approaches commonly used in
quantitative finance research and practice.

Implementation Details. All experiments are conducted on 2 NVIDIA H100 GPUs. For all DL-based methods, we use similar dataset
splits, network architectures, and optimizer configurations as in the forecasting task. In addition, all ML&DL-based methods use the Top-k
Dropout strategy [60] for portfolio construction. For RL-based methods, the initial cash in the environment is set to 1 X 10°, and the
transaction fee rate is 1 X 10™*. We use 4 parallel environments for data sampling, with a sampling step size of 512. The policy mini-batch
size is set to 128 and the value mini-batch size to 16. The optimizer used is AdamW, with the policy network learning rate set to 1 X 107> and
the value network learning rate set to 1 X 107%. The maximum number of training steps is 1 X 10, and the learning rate warmup is applied
starting from step 0. Additional model-specific configurations are applied based on each model’s architectural requirements and design
principles.The reported results are averaged over three runs with different random seeds.
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D.4 LLM Applications

Given that LLM Applications encompass both the training and deployment of LLMs as well as LLM Agents, we have allocated a dedicated
chapter to this subject. Further details can be found in Appendix E.

E LLM Applications

In this section, we provide a comprehensive overview of the development background of both LLMs and LLM agents in financial AI. We
discuss the historical context, the key advancements that have shaped their evolution, and the main challenges encountered along the
way. Furthermore, we elaborate on several specific implementation details within our own work, illustrating how these developments have
informed and influenced our approach. This in-depth analysis aims to offer readers a deeper understanding of the foundations and practical
considerations involved in working with LLMs and LLM agents.

E.1 Background

LLMs for Financial Al The integration of LLMs into financial decision-making processes has fundamentally transformed the landscape of
financial Al giving rise to two predominant developmental trajectories. The first, traditional paradigm leverages large-scale pre-training on
generic corpora, followed by supervised fine-tuning (SFT) on domain-specific datasets, a process that has enabled the creation of financial-
domain LLMs such as FInBERT [2], FLANG [38], and FinGPT [25]. These models excel at classic financial NLP tasks including sentiment
analysis, news classification, and financial document understanding, benefiting from the inclusion of specialized financial terminology and
context during pre-training. For example, BloombergGPT [57] introduced domain-adapted tokenization and large-scale financial corpus
curation, enabling robust out-of-domain generalization while maintaining strong in-domain accuracy on a wide range of financial tasks.
Similarly, FinQA [5] targets numerical reasoning within financial texts, highlighting the importance of reasoning abilities in addition to
conventional text understanding.

The second, more recent development path centers on enhancing the reasoning capabilities of LLMs using RL, inspired by breakthroughs
such as DeepSeek-R1 [15], which demonstrated substantial improvements in complex reasoning and decision-making tasks. In the context
of financial Al RL-based approaches have facilitated the creation of models capable of more sophisticated financial reasoning, including
complex question answering (QA) and multi-step analysis over noisy and unstructured market data. State-of-the-art systems such as
Fin-R1 [30], Fin-01 [35], and Dianjin-R1 [75] typically adopt a two-stage pipeline: they first apply SFT on curated financial QA datasets to
capture domain knowledge, then employ RL to further optimize the models’ reasoning and generalization abilities with task-specific reward
functions on challenging financial benchmarks. Notably, this line of work has shown that RL fine-tuning can help mitigate some limitations
of SFT-only models, such as shallow pattern matching or overfitting to specific data distributions. However, it is also evident that LLM-based
methods remain challenged by issues such as the absence of explicit sequential decision-making mechanisms, high computational overhead
(particularly with RL-based training), and an inability to robustly handle the non-stationarity and regime shifts that typify real-world
financial markets. Moreover, most current benchmarks still emphasize static QA or single-step predictions, rather than end-to-end financial
decision-making in dynamic environments.

LLM Agents for Financial Al To overcome the intrinsic limitations of static LLM-based models in handling sequential and interactive
decision-making tasks, recent research has shifted towards constructing LLM-powered financial agents equipped with advanced agentic
mechanisms. These mechanisms, such as external memory, dynamic tool use, self-reflection, and collaborative reasoning, enable LLMs to
act not just as passive information processors, but as proactive, context-aware agents capable of adaptive and continual learning. Early
efforts, including FinMem [64] and FinRobot [74], demonstrated that the addition of structured memory modules and chain-of-thought
reasoning could substantially boost single-asset trading performance and stability, particularly in volatile or data-scarce settings. These
systems typically maintain layered or episodic memories that allow agents to recall past market events, dynamically update strategies, and
profile assets or markets over time.

Building on these foundations, more recent agentic systems such as FinAgent [70] have introduced multimodal reasoning capabilities,
allowing LLMs to jointly process textual news, structured numerical data, and even K-line (candlestick) chart images via tool-augmented and
dual-reflection architectures. This multimodal approach is shown to yield substantial profit gains and improved generalization across diverse
datasets. Meanwhile, there has been a pronounced trend toward collaborative and hierarchical multi-agent systems, inspired by real-world
financial organizations. For instance, FinCon [65] adopts a manager—analyst architecture, combining conceptual verbal reinforcement
and episodic self-critique to facilitate robust sequential decision-making in both single-stock and multi-asset (portfolio) trading. Similarly,
TradingAgents [58] simulate an entire trading firm with specialized agents (e.g., fundamental, technical, sentiment, and risk analysts), whose
structured debate and coordination have been shown to improve both returns and risk control.

Recent advances have further explored the combination of RL with agentic LLMs to enable dynamic exploration and continual adaptation
in non-stationary environments [13, 34]. For example, group-based RL finetuning enables multiple LLM agents to interact, learn, and adapt
strategies in simulated market environments, fostering resilience against sudden market changes. Beyond performance, there is an increasing
focus on interpretability and safety in financial LLM agents, with research exploring techniques such as role assignment, self-consistency
checking, and real-time human-in-the-loop supervision. Despite these advances, key open challenges remain: efficiently scaling agentic
LLMs, mitigating hallucinations and overfitting, improving sample efficiency in RL settings, and reliably deploying such systems in the face
of adversarial and ever-evolving market conditions.
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In summary, based on the development trajectory of LLMs and LLM agents described above, we can categorize the most popular LLM
applications in the financial sector into four main types of tasks. Three of them require training, including SFT for LLMs, RL for LLMs,
and RL for LLM Agents. The fourth type does not require training and mainly relies on prompt engineering for LLM Agents to perform
downstream tasks. In FinWorld, the primary focus is on two types of tasks: RL for LLMs and LLMs Agents.

E.2 Reinforcement Learning for LLMs

The reinforcement learning implementation for LLMs in FinWorld follows a two-stage training paradigm designed to progressively develop
both reasoning capabilities and decision-making skills in financial contexts.

Stage I: Financial Reasoning Fine-tuning,. In the first stage, LLMs undergo reinforcement learning fine-tuning on conventional
financial LLM reasoning datasets (refer to the LLM reasoning dataset section A.2). This stage focuses on developing fundamental financial
reasoning abilities, including understanding financial concepts, analyzing market data, and performing quantitative calculations. The model
learns to generate coherent and accurate responses to financial questions, interpret complex financial scenarios, and apply domain-specific
knowledge. However, this stage alone is insufficient for real-world financial decision-making applications, as it lacks exposure to the dynamic
and uncertain nature of actual market environments.

Stage II: Market Environment Learning. The second stage addresses this limitation by immersing the LLM in real market environments
(refer to the market dataset section A.1) for exploration, trial-and-error learning, and decision-making skill development. In this stage, the
model learns to make sequential decisions under uncertainty, adapt to changing market conditions, and optimize for long-term financial
outcomes. The model interacts with simulated or real market data, receiving feedback on its decisions through reward signals that reflect
financial performance metrics such as returns, risk-adjusted performance, and transaction costs. This stage enables the LLM to develop
practical decision-making capabilities that go beyond theoretical reasoning, preparing it for deployment in actual financial applications. We
primarily focus on the single asset trading task in this stage.

The two-stage approach ensures that LLMs first establish a solid foundation in financial reasoning before developing the practical skills
necessary for effective decision-making in dynamic market environments. This progressive learning strategy enhances both the theoretical
understanding and practical applicability of LLM-based financial Al systems.

Stage I: Financial Reasoning Fine-tuning

E.2.1 Training Dataset. The training dataset for Stage I is used to train the LLM to reason about financial questions. We use the financial
reasoning dataset provided by the LLM reasoning dataset section A.2. We collected over 80k training samples to ensure comprehensive
coverage of financial reasoning patterns and scenarios. We evaluate our model on test datasets from FinQA, FinEval, ConvFinQA, and CFLUE
to assess its reasoning capabilities across diverse financial domains. Since our dataset contains both Chinese and English content, we follow
conventional practices by using Chinese prompts for Chinese data and English prompts for English data templates.

The templates of the prompts for English and Chinese are as follows:

English Prompt Template
You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST
BE enclosed within <think> </think> tags. The final answer MUST BE put in \boxed{}.
Chinese Prompt Template
WE SR RESREIENATIME, NehHREER . BTV <think> </think>PREFEEA . HEERLIL
TE\boxed{}H -

E.2.2  Training Procedure. For our financial reasoning tasks, we employ Group Relative Policy Optimization (GRPO) [39] as the primary
training methodology. GRPO is specifically designed for training large language models in reasoning-intensive scenarios, making it
particularly well-suited for financial question answering and document analysis tasks. The algorithm enhances the model’s capability to
generate accurate and well-reasoned financial responses through group-based reward normalization and policy optimization.

In our implementation, GRPO samples groups of candidate outputs for each financial task instance and computes group-normalized
advantages,
— mean({R; }Jg;:l)
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omit the KL divergence regularization term as it has been shown to be unnecessary for chain-of-thought reasoning scenarios.

Following the design of DeepSeek-R1 [15], our reward function consists of two main components: format reward and accuracy reward,
designed to encourage both proper reasoning structure and correct answers.

Format Reward. The format reward encourages the model to follow a specific output structure with reasoning steps enclosed in
<think>...</think> tags and the final answer in \boxed{} tag. The format reward is defined as:

where r;;(6) = is the importance sampling ratio, and € is the clipping parameter. Following the approach in DAPO [63], we

1, if format matches
Re(y) = . ©)
0, otherwise
where y denotes the model’s output. Format matching requires the output to contain exactly one pair of <think> tags and one \boxed{}
tag, with no additional content outside these tags.
Accuracy Reward. Given the complexity of financial scenarios where exhaustive enumeration of answer patterns through rule-based
methods is challenging, we adopt Qwen3 [59] as the judge for answer evaluation. The content within the \boxed{} tag is extracted using
regular expressions and serves as the solution. The accuracy reward is defined as:

Loiy=y (10)
0, otherwise

Ra(y> y*) = {

where y is the model’s output (extracted from \boxed{} tag) and y* is the standard answer. In our specific implementation, since
financial problems are mostly multiple-choice questions, multi-select questions, financial calculation problems, and QA questions, we have
implemented a set of regular expression matching rules to determine answer correctness based on the answer type.

The final composite reward is computed as:

R=a Re(y) + B Ra(y.y") (11)

where a and f§ are weighting parameters (typically « = 0.1, § = 0.9) to balance format compliance and answer correctness.
Metrics. For evaluating the performance of our financial reasoning models, we employ Score (accuracy score) as the primary metric. The
score measures the proportion of correctly answered questions in the test dataset and is defined as:

correct

N,
Score = ——— X 100% (12)
total

where Neorrect represents the number of questions answered correctly and Niota) denotes the total number of questions in the evaluation
dataset. A question is considered correctly answered if the model’s output within the \boxed{} tags matches the standard answer according
to our regular expression matching rules.

Methods. We evaluate our model FinReasoner against open-source LLMs on the test dataset. We systematically evaluate several
open-source LLM methods, including DeepSeek-R1 [15], Qwen3-8B [59], Fin-R1-7B [15], and Qwen2.5-7B-Instruct [44]. We use the
same evaluation protocol as the original paper to ensure fair comparison.

Implementation Details. Our model, FinReasoner, is built on the Qwen-8B language model as the base LLM. In our implementation,
we integrate Verl 0.5.0 [46] as an external dependency library within the 1ibs directory. We customize both the trainer and the reward
computation as plugins, which are injected into Verl’s trainer (details can be found in the mverl module of our codebase). This implementation
approach offers significant advantages: since Verl is frequently updated, the plugin injection method provides greater flexibility for maintaining
synchronization with the official Verl library.

All experiments are conducted on 16 NVIDIA A100 GPUs distributed across 2 nodes with 8 GPUs per node. We employ tensor model
parallelism with a parallel size of 4 to efficiently handle large model training. The training configuration includes a batch size of 64, with
micro batch sizes of 16 per GPU for both PPO training and log probability computation. We set the maximum prompt length and response
length to 4096 tokens each, with left truncation for input sequences. For GRPO training, we use a rollout size of 8 and train for 50 epochs.
The learning rate is set to 1e-6 for stable convergence during the reinforcement learning phase.

Stage II: Market Environment Learning

E.2.3 Training Dataset. For Stage II training, we employ the market dataset, where we use prompt templates to provide historical OHLCV
data and news text for LLM analysis and reasoning. We select 6 US stocks (AAPL, AMZN, GOOGL, META, MSFT, and TSLA) with nearly 10
years of data from 2015-05-01 to 2025-05-01. In the data processing pipeline, we first download OHLCV and news data from FMP. However,
since the news text provided by FMP contains some advertisements and irrelevant content, we employ web crawling tools to scrape original
news webpages, then filter out extremely long and short texts. Subsequently, we use Qwen3-32B to summarize and extract effective textual
information from each news webpage, and finally use the summary as part of the news content in our prompts. The distribution of news
tokens before and after summarization is shown in Figure 9.
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In our specific implementation, we use historical 7-day OHLCV data and news as input. Since there are many news texts per day, we
sample 3-5 news articles per day and organize historical prices, news, and historical effective decisions (BUY, SELL) records into prompts as
LLM input. The prompt structure is as follows:

4 Trading Prompt Template )

You are a highly experienced trader. Your task is to carefully analyze the provided financial news, current price, and historical trading records. Based on
your professional judgment, provide the single best trading decision for the current situation .

Here is the task:
# Name: Apple Inc., Symbol: (AAPL)

## Price (7 days OHLCV data)
| close | high | low | open | volume |
.| .| . .|

-l “l °l -l
| 173.56 | 174.03 | 171.9 | 173.02 | 5.37245e+07 |

## News (3-5 news articles )

« Timestamp | Title | Contents

2023-05-10 15:39:19 | Unleash Your iPhone's Inner Energizer Bunny: Battery Life Tips For The Tech-Savvy | One of the most common concerns among «+Apple
Inces ...

## Historical Trading Records (7 days historical trading records)
|  Timestamp| Decision | Price | Volume |
. .| I

| | .| .
| “l “l -l B
| 2023-05-01 09:30:00 | BUY | 173.56 | 5.37245e+07 | ..

## Record

| timestamp | open| high | low | close | volume |  price | cash | position | pre_value | action | post_value |
ret |

: I | | { 4 | |

| 2023-04-25 | 165.19 | 166.31 | 163.73 | 163.77 | 4.87141e+07 | 169.59 | 100000...

## History Valid Action

| timestamp | open| high | low | close | volume |  price | cash | position | pre_value | action | post_value |
ret |

I I g d d d | |

| 2023-05-05 | 170.98 | 174.3 | 170.76 | 173.57 | 1.13453e+08 | 173.57 | 100000...

## Note

1. timestamp': the timestamp of the record

2. “open': Open price

3. “high": High price

4. “low": Low price

5. “close: Close price

6. " volume": Volume of the asset traded

7. “price: Current price (adj_close price)

8. “cash’: Current cash

9. " position *: Current position

10. "pre_value': Previous total value, "value = cash + position « price"
11. "action’: Action taken, *BUY", “SELL", or *HOLD"

12. “post_value’: Current total value

13. “ret: Return, “ret = (post_value - pre_value) / pre_value®

Today is 2023-05-16 23:59:59, and the current price, cash, and position are 172.07, 98359.28, and 0000.

You should follow the instructions below in detail when making your decision.

1. Your full reasoning process must be enclosed within <think></think> tags.

2. Your final answer must be one of the following three options: BUY, HOLD, or SELL, and be presented only inside a single \boxed{}.
3. Do not output anything else except the reasoning in <think >...</ think> and the final answer in \boxed {}.

Example output:

<think>Based on the news indicating strong earnings, a rising price trend, and positive historical returns, a BUY decision is justified .</think>
\boxed{BUY}

/

E.2.4 Training Procedure. Following the design principles of RAGEN [52], our reward function in the single-stock trading environment
consists of two main components: format reward and trading reward, which are designed to ensure standardized action outputs and effective
trading decisions.

Format Reward. The format reward encourages the model to adhere to a strict action output format. For each trading action a, the
format reward is defined as:

1, if the action format is correct
Rf(a) = ) (13)
0, otherwise
where the action output must specify a valid trading operation (e.g., buy, sell, or hold) and the corresponding quantity, without any extraneous
or malformed content.
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Trading Reward. The trading reward evaluates the profit and loss generated by the model’s trading decisions over a trajectory of T
trading days. It is computed as the relative change in the agent’s portfolio value, taking transaction costs into account:
R(r) = (19
where V; is the portfolio value at time #:
V; = Cash; + Position; X Price; (15)
Here, Position, is the number of shares held at time ¢, and Price; is the stock price at time t. At each trading step, a transaction cost
proportional to the traded volume is deducted:
C; = A|APosition;| X Price; (16)
Vi = V-G (17)
where A is the transaction fee rate (e.g., 1 X 107%).
The final reward for each trajectory is a weighted combination of the format and trading rewards:
R=yRe(a) + (1-y)Ri(7) (18)
where y is a hyperparameter (e.g., y = 0.1) balancing the importance of action format and trading performance.
Metrics. We evaluate the performance of the trained model using the following trading metrics: ARR, SR, MDD, CR, SoR, and VOL.
Methods. We evaluate our trading models using a simplified FinAgent-based Al Agent framework developed in this work. This framework
supports both commercial models (e.g., GPT-4.1, Claude-4-Sonnet) and local models (e.g., Qwen), allowing the underlying LLM to be flexibly
replaced. Therefore, our comparison includes DeepSeek-R1 [15], Qwen3-8B [59], Fin-R1-7B [15], Qwen2.5-7B-Instruct [44], GPT-4.1,
Claude-4-Sonnet, as well as our own FinReasoner, all serving as the backbone LLMs for the FinAgent. It is worth noting that a detailed
description of our FinAgent (LLMs Agents) implementation will be provided in the next section; please refer to Appendix E.3 for details.

Tokens AMZN AAPL TSLA GOOGL MSFT META Tokens AMZN AAPL TSLA GOOGL MSFT META
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(a) Original news tokens distribution. (b) Summarized news tokens distribution.

Figure 9: News tokens distribution before and after summarization.

Implementation Details. Similar to Stage I, we implement this using Verl and external plugins to inject additional trainers and evaluation
functions. Notably, we also need to inject an environment implementation to enable dynamic interaction between the LLMs and the
environment.

All experiments are conducted on 16 NVIDIA A100 GPUs distributed across 2 nodes with 8 GPUs per node. We employ tensor model

parallelism with a parallel size of 4 to efficiently handle large model training. The training configuration includes a batch size of 64, with
micro batch sizes of 16 per GPU for both PPO training and log probability computation. We set the maximum prompt length and response
length to 8192 tokens each, with left truncation for input sequences. For GRPO training, we use a rollout size of 8 and train for 50 epochs.
The learning rate is set to 1e-6 for stable convergence during the reinforcement learning phase.
Conclusion of Reinforcement Learning for LLMs Regarding the design choices in our financial LLM component, our primary contribution
focuses on a two-stage reinforcement learning framework rather than complex prompt engineering. In the first stage, RL equips the LLM
with core financial knowledge and reasoning capabilities; in the second stage, it enables exploration and trading decisions in simulated
market environments. To highlight the effectiveness of RL, we intentionally keep prompts simple, providing only essential inputs such as
market news, price trends, and historical actions. Similarly, we adopt a unified and simple reward interface to ensure the training framework
remains easy to use and reproducible, allowing researchers to freely extend or customize more sophisticated reward designs for richer
research applications. Furthermore, all data used in RL-for-LLM experiments are locally stored market datasets, without relying on online
retrieval or external tools. This simplification ensures a stable and fully offline-reproducible training process, avoiding the influence of
tool-related factors such as API budgets and allowing experiments to focus purely on validating the effectiveness of RL in financial LLM
tasks.
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E.3 LLMs Agents for Financial AI

Before introducing financial Al agents, it is important to first accept the concept of a Tool-Calling Agent. In the early stages of agent
development, action-based agents played a central role. Notable examples include SayCan [1] and ReAct [61], which are built around
action selection: they interpret high-level instructions via a language model and choose among a set of predefined skills or actions based
on feasibility and expected utility. In contrast, agents such as Voyager [49] represent the action generation paradigm, where executable
behaviors are dynamically synthesized, often in open-ended environments, allowing the agent to build a library of composable skills without
being constrained by a fixed action space.

With the emergence of function calling, the rise of tools became evident. Most contemporary agents began to define functions as tools
through standardized interfaces, with large language models learning to decide when and how to invoke these tools. It is important to
distinguish between the concepts of “action” and “tool”: a tool can serve as a unified interface encapsulating multiple actions, and in some
cases, a tool may itself be implemented as an agent.

A further shift occurred with the advent of Anthropic’s Model Context Protocol (MCP), which introduced a standardized method for tool
invocation via a JSON-RPC protocol. The appearance of MCP led to the development of a new generation of tool-calling agents that are
constructed on this protocol, enabling agents to reliably discover and utilize external tools in a more dynamic and interoperable manner.

These advancements culminate in the design of our general-purpose task agent AgentOrchestra [69], which is a hierarchical multi-agent
framework designed to systematically address the key challenges of generalization, multimodal reasoning, scalability, and collaboration in
complex task-solving environments. The framework adopts a two-tier architecture. At the top level, a planning agent is responsible for
understanding user tasks, decomposing them into manageable sub-tasks, and orchestrating the workflow by dynamically assigning these
sub-tasks to specialized lower-level agents. The lower level consists of several specialized agents: a Deep Analyzer for in-depth analysis of
input data and extraction of key insights, a Deep Researcher that conducts comprehensive research and automatically generates research
reports or knowledge summaries, and a Browser Use agent that automates browser-based web searches and information extraction to assist
the research process. Additionally, a General Tool Calling Agent provides a unified interface for invoking various external tools and APIs
through function calling, enabling efficient execution of specific tasks and integration with diverse external services. Through this layered
design, the system achieves flexible coordination, efficient information processing, and robust tool integration.
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Figure 10: AgentOrchestra Architecture.

AgentOrchestra incorporates several innovative technical features to ensure flexible and efficient handling of complex tasks. It leverages
asynchronous coroutine scheduling for high-concurrency collaboration among agents, greatly improving system responsiveness and
throughput. The framework natively supports seamless switching between leading commercial large models and open-source local models,
balancing capability, privacy, and cost. Comprehensive support for both local and remote MCP, enables secure and unified integration of
agents and tools across on-premises and cloud environments. Additionally, AgentOrchestra is fully compatible with OpenAI Function Calling
and standard JSON invocation, allowing structured, automated cooperation between tools and sub-agents, and significantly enhancing
interoperability and automation.
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We have now integrated AgentOrchestra into the FinWorld framework. The core modules consist of three parts: agents, models, and
tools. The agent module defines the basic async coroutine concurrent agents, as well as the execution logic and prompt templates for deep
analyzers, browser-use agents, general agents and so on. As described in Appendix F.3, we encapsulate the unified interface for commercial
LLMs within the LLM API module. The tools module provides several basic tools, such as web crawlers, python code interpreters, arbitrary
format file readers, and asynchronous tools like the MCP tools. Furthermore, after integrating the AgentOrchestra modules into FinWorld, it
can be used to develop other agents. For example, it can be used to build agents that can retrieve the latest news from the internet in real
time and make decisions based on the news, or to develop multi-agent systems capable of quantitative company analysis. This framework
provides a fundamental infrastructure for developing financial agents and offers the flexibility to create customized financial agents based on
individual ideas and creativity.

Our FinAgent is developed based on the general agent, and its prompt template, as described in Trading Prompt Template E.2.3, enables
the agent to focus on financial decision-making tasks. The main workflow of FinAgent is to retrieve the last two rounds of dialogue history
from memory, embed this historical information into the current prompt template, and then use function calling to let the LLM decide
whether the action is BUY, HOLD, or SELL. This process is repeated for each day’s decision until the task is completed. To fairly compare the
open-source FinR1 and our Finreasoner models, we only need to load the corresponding model from the models module.

F Architecture of FinWorld

FinWorld adopts a layered architecture design where each layer has clear responsibilities and functional boundaries. This layered design not
only improves system modularity and maintainability but also provides flexible usage patterns for users at different levels. This section
provides a detailed introduction to each layer of FinWorld, including the configuration layer, data layer, model layer, task layer, and interface
layer.

F.1 Configuration Layer

The configuration layer of FinWorld is built on top of mmengine [7], providing a unified and extensible configuration system based on
Python dictionaries. This design allows all experimental parameters such as dataset sources, model architectures, training procedures, and
evaluation settings to be defined in a centralized, human-readable, and programmatically modifiable format. By leveraging mmengine’s
support for hierarchical and modular configuration, users can construct complex experimental setups through inheritance, parameter
overriding, and dynamic imports. This approach enhances reproducibility, transparency, and collaboration while separating configuration
logic from implementation details.

Config

Configuration

—

Optimizer Trainer

General Dataset Dataloader Model Optimization Scheduler e Metric Erai— Task Tracker More
Basic Settings Data Sources Data Loader Architecture o Learning Rate Evaluation Commf Task Wrapper Logging & Others
& Parameters || & Processing & Batching & Layers ;ammg Scheduling 1S s || o oot & Loops & Tttt Monitoring

ate

Figure 11: Configuration Layer Architecture of FinWorld

To enable flexible and decoupled component management, FinWorld adopts a registry mechanism for managing all class declarations.
Key components such as Dataset and Environment are registered under a global registry and referenced through the type field in the
configuration. When loading configurations, the system retrieves the corresponding class from the registry and instantiates it using the
provided arguments. This object-oriented design supports extensibility and consistent runtime behavior across the entire system.

F.2 Dataset Layer

The dataset layer of FinWorld comprises multiple functional modules designed to enable standardized, extensible, and task-oriented data
management for financial Al research. This layer abstracts the complexities of diverse data sources and modalities, offering a unified interface
for data acquisition, preprocessing, and task-specific organization. Specifically, it consists of five main modules: data downloader module, data
processor module, dataset module, dataloader module, and environment module, each supporting flexible customization and extensibility.

Downloader Module. This module is composed of two tightly integrated components. The first is the Market Data Downloader, which
provides a unified interface for heterogeneous financial data providers such as FMP [42] and Alpaca [41]. It supports multiple temporal
resolutions including daily and minute level data, and accommodates diverse data modalities such as OHLCV time series, fundamentals, news,
and alternative signals. The component performs schema harmonization, symbol normalization, and calendar alignment across exchanges. It
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Figure 12: Dataset Layer Architecture of FinWorld

manages authentication, pagination, and provider specific rate limits, and includes robust retry logic and fault tolerance. All ingested records
are validated against a canonical schema and enriched with provenance metadata, including provider, version, retrieval timestamp, and
transformation history, in order to ensure complete reproducibility. The second component is the LLM Reasoning Dataset Downloader, which
offers programmatic access to financial reasoning corpora such as FinQA, professional certification materials including ACCA and CFA,
and curated financial knowledge bases. It enforces licensing checks, version pinning, and deterministic train, validation, and test splits. For
textual resources, it provides optional document cleaning, de duplication, and citation preservation. Together, these components implement
a single abstraction for acquisition from application programming interfaces and databases, with caching and incremental updates that
support scalable and repeatable data collection for research.

Processor Module. Building on standardized access, this module implements configurable preprocessing pipelines for both numerical
and textual data. For market data, it supports factor construction such as alpha158 [60], rolling window feature engineering, calendar and
timezone alignment, corporate action adjustment, missing value imputation, outlier handling, and normalization at the asset level or the
cross sectional level. Leakage prevention is enforced through proper temporal ordering, expanding windows, and walk forward splits. For
reasoning datasets, the module performs tokenization, span alignment, answer normalization, and the construction of chain of thought or
rationales when available. It also supports weak supervision signals, label smoothing, and schema mapping across heterogeneous datasets. All
pipelines are declared through a concise configuration that is version controlled and executable, enabling exact reproduction of preprocessing
steps across experiments. Comprehensive logging records parameters, random seeds, and checksums for every intermediate artifact.

Dataset Module. This module materializes processed data into task specific datasets that are directly consumable by downstream models.
For single asset or algorithmic trading tasks, it packages aligned windows of features and targets at the individual asset level with optional
masks for market holidays and missing intervals. For portfolio management and multi asset settings, it builds unified panels that synchronize
symbols onto a common trading calendar and provide consistent feature spaces, along with instrument level metadata such as sector,
exchange, and liquidity attributes. The module natively supports multiple modalities, including numerical time series, structured tabular
fundamentals, and unstructured text such as news, filings, and analyst commentary. It can produce formats suitable for supervised learning,
sequence to sequence modeling, retrieval augmented generation, and question answering over financial documents. Dataset objects include
explicit train, validation, and test partitions with clear time boundaries, as well as standardized evaluation splits for rigorous comparison.
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Dataloader Module. This module exposes performant dataloaders for machine learning, deep learning, and applications that rely on
large language models. It provides streaming and memory mapped reading for large time series, efficient mini batch construction with sliding
or expanding windows, negative and positive sampling strategies, class balancing, and sequence padding with attention masks. The interface
integrates naturally with common training loops, supports mixed precision, and enables deterministic shuffling that respects temporal
constraints. Collation utilities handle variable length sequences, multi asset batching, and multimodal inputs that combine numerical features
with tokenized text. These capabilities reduce input output overhead and simplify integration with external frameworks.

Environment Module. This module encapsulates data within interactive environments designed for reinforcement learning. It provides
standardized definitions of episodes, actions, and rewards for tasks such as single asset trading, multi asset allocation, and execution with
partial fills. The environment simulates realistic market frictions, including transaction costs, slippage, liquidity constraints, position limits,
and optional market impact models. Evaluation protocols include walk forward backtesting, out of sample testing on rolling windows, and
live paper trading interfaces for prospective validation. In addition to conventional agents, the environment supports agents driven by
large language models through tool interfaces for observation summarization, query of external knowledge, and action justification. All
environment configurations are specified declaratively and are accompanied by seeded randomness and event logs, which promotes rigorous
ablation studies and reproducibility across a broad range of agent based learning tasks.

F.3 Model Layer
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Figure 13: Model Layer Architecture of FinWorld

The model layer of FinWorld comprises a set of specialized yet interoperable modules that support a unified definition, management,
and invocation of heterogeneous modeling paradigms across the platform. This layer abstracts both construction and orchestration for
traditional machine learning, deep neural architectures, and LLMs, exposing standardized interfaces for training, inference, and downstream
integration in financial AI workflows. By decoupling model specification from execution and deployment, it enables consistent behavior
across tasks, reproducible configurations, and smooth interchangeability of components.

Machine Learning Models. This module provides a declarative specification for classical models under a uniform schema. Supported
classes include linear and logistic regression, decision trees, random forests, and gradient-boosting ensembles (e.g., XGBoost and LightGBM).
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Each model is described by a consistent input/output contract and an explicit task head (regression, binary classification, or multiclass
classification). Structural attributes, such as regularization choices, tree growth policy, and ensemble topology, are expressed as first-class
parameters, enabling transparent comparison across alternatives and systematic hyperparameter control. The uniform abstraction ensures
that training and scoring pipelines, metrics, and model persistence follow the same conventions regardless of the underlying estimator.

Deep Learning Models. Neural architectures are organized into composable components, layers, and models with stable interfaces.
Components include data embedding for financial time series [55], patch embedding [9], positional encodings, attention mechanisms,
transformer blocks, and common activation functions. Layers assemble these components into an embedding layer, an encoder, and a decoder
that can be mixed and matched without changing external contracts. Networks such as Autoformer, VAE, and GPT-style decoders are
realized by assembling the layers under one specification that remains independent of training and inference. This separation supports rapid
iteration on architecture variants while preserving consistent preprocessing, batching, and evaluation semantics.

Reinforcement Learning Models. This module defines RL network structures using an actor—critic abstraction. Policy and value
networks are composed from the Deep Learning components, with backbones chosen from MLP, LSTM/GRU, or Transformer families.
Specifications cover discrete or continuous action heads and value heads, allow shared or separate encoders, and optionally incorporate
memory. Financial constraints are captured as structural hooks (transaction costs, slippage and market impact, risk limits, and trading
calendars) so that environment dynamics and trading/portfolio objectives can be expressed alongside the network definition. The result is a
consistent interface for simulation and live inference that aligns with the rest of the platform’s training and serving patterns.

LLMs Models. This module centralizes access to proprietary and open-source LLMs behind a unified interface. It supports seamless
switching among commercial providers (e.g., GPT-4.1, Claude-4-Sonnet, Gemini-2.5-Pro) and efficient local models (e.g., Qwen2.5, Qwen3),
with standardized controls for context length, sampling behavior, and cost/latency tracking. Built-in capabilities include function calling,
tool use, and retrieval-augmented generation tailored to financial documents. The module integrates naturally with agents and downstream
models, enabling document understanding, information extraction, and instruction following under the same invocation patterns as other
FinWorld models. This symmetry reduces integration overhead and promotes consistent monitoring and evaluation across modalities.

F.4 Training Layer
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Figure 14: Training Layer Architecture of FinWorld

The training layer in FinWorld offers a modular scaffold that abstracts every element required to optimise all method pipelines for financial
applications. A uniform interface guarantees experiment reproducibility, smooth scaling from single GPU notebooks to distributed clusters,
and quick transfer of best practices across tasks such as time series forecasting, trading, portfolio management, and LLM applications.

Optimizer. A rich catalogue of first order methods, ranging from classic stochastic gradient descent (SGD) to adaptive variants such as
Adam and AdamW, lets practitioners match optimisation dynamics to task characteristics. A common wrapper normalises hyperparameter
signatures and supports gradient centralisation, decoupled weight decay, and mixed precision updates, ensuring robust convergence on
noisy and non stationary market data.

Loss. A flexible factory produces objective functions that cover regression losses (mean squared error and mean absolute error),
classification losses for event prediction, and reinforcement learning surrogates for policy and value objectives. Composite losses can be
declared with a single line, enabling multi task learning or the joint optimisation of risk adjusted return and prediction accuracy.

Scheduler. Static strategies (step, cosine, linear) and adaptive schemes (warm up then decay, reduce on plateau) are available for both
learning rates and regularisation coefficients. Schedulers are time aware, resuming the exact trajectory when checkpoints are reloaded.
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Metrics. In addition to generic accuracy and error scores, the library ships with finance specific diagnostics such as annual return, Sharpe
ratio, maximum drawdown, and tail risk measures. Each metric is logged at configurable intervals and can trigger early stopping or hyper
parameter sweeps, enabling data driven model selection.

Trainer. Acting as the orchestrator, the trainer pipes data loading, forward and backward passes, gradient clipping, metric evaluation,
checkpointing, and experiment logging (TensorBoard or WandB). Specialised variants provide task specific logic, for example the forecasting
trainer, trading trainer, portfolio trainer, and large language model trainer. Clear callback hooks let researchers inject custom steps, such as
on the fly data augmentation or bespoke risk constraints, without changing the core loop.

Together, these components form a coherent architecture that accelerates experimentation, strengthens reproducibility, and lowers the
barrier to launching state of the art Al solutions in the demanding environment of financial markets.

F.5 Evaluation Layer

The evaluation layer of FinWorld is designed to provide a unified, extensible, and highly modular evaluation system for financial Al tasks.
At its core, the evaluation layer organizes all assessment methods into two main branches: metrics and plot, each responsible for different
but complementary aspects of model evaluation.

Metrics. The metrics defined in the training layer are reused in the evaluation implementation.

Plot. The plot module provides advanced visualization tools that enable intuitive analysis and diagnosis of model performance. Supported
plot types include K-line (candlestick) charts, cumulative return curves, compass plots, star plots, and sunburst diagrams. This modular
design ensures that both quantitative and qualitative evaluation needs are met in a systematic and reproducible manner.

Evaluation
Evaluation Layer

Metrics
Evaluation

Plot

Visualization

Metrics

ARR SR ACC F1 MSE Kline Curve Compass Star SunBurst
Annualized Sharpe Accuracy F1 Mean Squared Candlestick Cumulative Compass Star Sunburst
Rate of Return Ratio Score Score Error Chart Return Curve Plot Plot Diagram

Figure 15: Evaluation Layer Architecture of FinWorld

This adaptive evaluation design simplifies the extension and customization of assessment routines, while ensuring consistent and
standardized evaluation across the platform. By streamlining model assessment for diverse financial tasks, it enables systematic comparison,
rapid diagnosis of strengths and weaknesses, and iterative improvement of financial AI methods. In our implementation, the evaluation layer
is integrated into the trainer’s validation and test stages, allowing metric and plotting methods to be shared with the training phase.

F.6 Task Layer

At its core, the task layer is responsible for the systematic definition, abstraction, and encapsulation of financial Al task types. It systematically
supports a wide spectrum of financial Al tasks, providing unified abstractions and modular interfaces that facilitate integration with upstream
data modules and downstream modeling components. This layer centers on several core financial tasks, including time series forecasting,
algorithmic trading, portfolio management, and LLMs applications, which are formally defined in Section 3.

Each task is specified by configurable input/output schemas and standardized evaluation protocols, supporting both established benchmarks
and user-customized scenarios. The unified task architecture enables rapid prototyping, cross-task generalization, and reproducible research
across financial Al applications. Additionally, the layer provides a flexible framework for deploying LLM-based agents in asynchronous,
single-agent, or multi-agent configurations, allowing users to compose and customize financial agents for diverse research and application
needs.
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Figure 16: Task Layer Architecture of FinWorld
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Figure 17: Presentation Layer Architecture of FinWorld

F.7 Presentation Layer

The presentation layer in FinWorld is designed for automated and multi-modal dissemination and documentation of experimental results. At
the center of this layer is a dedicated presentation agent, which coordinates the aggregation of evaluation outputs, the automatic generation
of technical reports, and the creation of interactive web pages for result interpretation and sharing. Experimental findings, along with key
visualizations and benchmark summaries, are systematically compiled into structured documents and published to collaborative platforms
such as GitHub and GitHub Pages (github.io), ensuring transparent sharing and long-term accessibility. Seamless integration with experiment
tracking tools like Wandb also enables real-time visualization and comparison of metrics throughout the research lifecycle.

This automated presentation pipeline is highly configurable. Users can customize report templates, select specific evaluation results
to highlight, and choose the output format that best fits their audience, including detailed PDF or LaTeX technical reports, interactive
dashboards, and web-based summaries. The layer supports multi-channel publishing, allowing results to be distributed simultaneously
across research repositories, organizational knowledge bases, and public web platforms. This significantly expands the reach and impact
of the research. By centralizing the documentation and presentation process, the layer ensures that all experimental records, plots, and
analyses are consistently organized and easily retrievable, supporting systematic archiving and knowledge transfer.

The presentation layer also emphasizes both human and machine interpretability. Generated reports include not only visual and tabular
summaries, but also machine-readable artifacts such as JSON or CSV exports, which can be used for downstream analysis or automated
benchmarking. Support for version control and changelog generation makes it straightforward to track the evolution of results over time,
aiding reproducibility and collaborative development. By combining automation, configurability, and multi-modal output, the presentation
layer streamlines communication, supports peer review and compliance, and enhances the visibility, transparency, and long-term value of
financial Al research within the platform.
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