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ABSTRACT

This paper presents a novel method that simultaneously achieves model prun-
ing and low-bit quantization through Bayesian variational inference to effectively
compress deep neural networks (DNNs) while suffering minimal performance
degradation. Unlike previous approaches that treat pruning and quantization as
separate, sequential tasks, our method explores a unified optimization space, en-
abling more efficient compression. By leveraging a spike-and-slab prior com-
bined with Gaussian Mixture Models (GMM), we can achieve both network spar-
sity and low-bit representation. Experiments on CIFAR-10, CIFAR-100, and
SQuAD datasets demonstrate that our approach achieves compression rates of
up to 32x with less than a 1.3% accuracy loss on the CIFAR datasets and a 1.66
point decrease in F1 score on SQuAD. Additionally, we show that the Bayesian
model average of neural networks can further mitigate the impact of quantization
noise, leading to more robust compressed models. Our method outperforms exist-
ing techniques in both compression efficiency and accuracy retention, offering a
promising solution for compressing DNNs.

1 INTRODUCTION

Deep Neural Networks (DNNs) have emerged as a leading approach in various machine learning
tasks due to their superior performance across domains such as computer vision (He et al., 2016;
2017; Dosovitskiy et al., 2021), natural language processing (Devlin, 2018; Xu et al., 2020; Tou-
vron et al., 2023), and speech recognition (Hinton et al., 2012; Zhang et al., 2023). However,
this remarkable performance comes with a significant increase in computational and memory de-
mands (Simonyan & Zisserman, 2014; He et al., 2016; Vaswani, 2017; Radford, 2018; Xu et al.,
2020; Touvron et al., 2023). Various techniques like pruning (LeCun et al., 1989; Han et al., 2015),
weight quantization (Courbariaux et al., 2015; Rastegari et al., 2016; Sze et al., 2017; Frantar et al.,
2022; Lin et al., 2024), knowledge distillation (Park et al., 2019; Gou et al., 2021) and neural ar-
chitecture search (Liu et al., 2018a;b; Wang et al., 2020b) have been proposed to improve DNNs
efficiency and enhance the widespread of DNNs in AI systems.

Model compression techniques, including pruning and quantization, have proven effective in de-
ploying cost-efficient DNNs (Buciluǎ et al., 2006; Choudhary et al., 2020). Pruning involves selec-
tively removing DNN connections (i.e., setting the corresponding weights to zero), whereas weight
quantization entails reducing the bit-width of weight representations. Pruning methods are typically
categorized into structural pruning (Ding et al., 2019; You et al., 2019), which zeroes out groups
of weights, and unstructured pruning (Guo et al., 2016; Dong et al., 2017), which zeroes out in-
dividual weights without altering the model’s architecture. As for the quantization method, recent
studies (Wang et al., 2018; Banner et al., 2018; Sun et al., 2019) have demonstrated that under 8-bit
training techniques, it can effectively accelerate the training of various models, including VGG (Wu
et al., 2018), ResNet (Banner et al., 2018), LSTMs, Transformers (Sun et al., 2019), and vision-
language models (Wortsman et al., 2023).

Han et al. (2015) proposed a model compression pipeline that sequentially applies pruning and
weight quantization, achieving significant compression rates without sacrificing much accuracy,
however, the sequential application fails to explore the complementarity of pruning and quanti-
zation Bai et al. (2023). Recent studies have demonstrated that integrating pruning and quantization
into a single process not only conserves computational resources but also achieves state-of-the-art
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Figure 1: Variational learning of a sparse quantized weight sub-distributions as described in equation
(8), from which sparse and quantized weights are sampled. Then sampled weights are ensembled
via Bayesian model averaging to improve the model robustness to quantization noise.

performance (Van Baalen et al., 2020; Wang et al., 2020b; Frantar & Alistarh, 2022; Bai et al.,
2022). Following this line of research, we propose a novel joint pruning and quantization method
that statistically explores compressed DNNs via variational inference.

In this paper, we introduce the Sparse Quantized Sub-distribution (SQS) compression method, a
novel approach that unifies pruning and quantization by identifying the optimal sparse quantized
sub-distribution and enhancing resilience to performance degradation through Bayesian model av-
eraging. Compared to previous efforts (e.g., Frantar & Alistarh, 2022; Gil et al., 2021), our ap-
proach introduces a novel Bayesian method that unifies the search spaces of both pruning and quan-
tization. Existing approaches (Frantar & Alistarh, 2022; Gil et al., 2021) design separate solvers,
that pursue (greedy) pruning and (greedy) quantization respectively, and combine these two by al-
ternately applying the pruning and quantization solvers. Recognizing the untapped potential in
optimizing the quantization procedure simultaneously with the pruning procedure, our method as
shown in Figure 1 integrates the pruning and quantization process to identify the optimal sparse
quantized sub-distribution that best approximates the original dense, full-precision weight distribu-
tion of DNNs. Moreover, as shown by previous works (Zhang et al., 2022b; Wang et al., 2024),
Bayesian deep neural networks can offset the performance degradation resulting from the DNNs
weight precision loss introduced by the quantization function, leading to more robust performance.
Therefore, we leverage the power of variational learning to solve the sub-distribution approxi-
mation problem and facilitate Bayesian deep neural network training, and our solution achieves
a significant compression rate with minimal impact on performance. Our code is available at
https://anonymous.4open.science/r/SQS-68EE/.

2 RELATED WORKS

2.1 PRUNING AND SPARSE DNN

The concept of weight pruning was initially introduced by LeCun et al. (1989), with further develop-
ment by Hassibi et al. (1993) through a mathematical method known as the Optimal Brain Surgeon
(OBS). This approach selects weights for removal from a trained neural network using second-order
information. Subsequent improvements, as indicated by studies (Dong et al., 2017; Wang et al.,
2019; Singh & Alistarh, 2020), have adapted OBS for large-scale DNNs by employing numerical
techniques to estimate the second-order information required by OBS for extensive model parame-
ters. Meanwhile, Louizos et al. (2018b) has introduced an l0 regularized method to enhance sparsity
in DNNs. Frankle & Carbin (2019) established a critical insight that within a randomly initialized
DNN, an optimal sub-network can be identified and extracted. More recently, amidst the rise of large
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language models (LLMs), the work by Xia et al. (2024) has illustrated that structured pruning, com-
bined with targeted retraining, can significantly reduce computational costs while preserving robust
performance. Concurrently, researchers (Deng et al., 2019; Blundell et al., 2015; Bai et al., 2020)
have employed spike-and-slab distributions and show the power of Bayesian Neural Networks in
promoting sparsity in DNNs. Their efforts include comprehensive theoretical analysis that bridges
the theoretical foundations with practical applications, thus advancing our understanding of model
efficiency. Empirically, many of the aforementioned methods would require incremental pruning
followed by retraining to preserve satisfactory performance.

2.2 QUANTIZATION

Quantization has emerged as a pivotal technique for enhancing the efficiency of deep neural net-
works (DNNs) (Sze et al., 2017; Frantar et al., 2022; Lin et al., 2024). Research in this domain
generally follows two approaches: discontinuous-mapping quantization (Gupta et al., 2015; Hubara
et al., 2018; Wu et al., 2018) and continuous-mapping quantization (Louizos et al., 2017; Ullrich
et al., 2017; Dong et al., 2022; Shayer et al., 2018; Roth & Pernkopf, 2018). Discontinuous quan-
tization involves a rounding function that projects full-precision weights onto a low-bit grid (Gupta
et al., 2015; Wu et al., 2018; Louizos et al., 2018a; Hubara et al., 2018; Courbariaux et al., 2015;
De Sa et al., 2018; Marchesi et al., 1993). To address the non-differentiability of discontinuous-
mapping quantization, researchers have adopted the straight through estimator (STE) to facilitate
backpropagation in networks with quantized, discrete weights (Courbariaux & Bengio, 2016; Cour-
bariaux et al., 2015; Hubara et al., 2018; Rastegari et al., 2016). However, the STE can generate
pseudo-gradients that may deviate weights from optimal values and increase training instability (Yin
et al., 2019). Meanwhile, many researchers propose post-training quantization methods that have
limited access to the training dataset (Wang et al., 2020a; Hubara et al., 2021; Li et al., 2021; Frantar
& Alistarh, 2022; Frantar et al., 2022; Lin et al., 2024). BitSplit (Wang et al., 2020a) incremen-
tally constructs quantized values using a squared error metric based on residual errors. In contrast,
AdaQuant (Hubara et al., 2021) utilizes STE for direct optimization. BRECQ (Li et al., 2021) in-
tegrates Fisher information into the optimization process and focuses on the joint optimization of
layers within individual residual blocks. Extending the Optimal Brain Surgeon (OBS) framework,
Exact Optimal Brain Quantization (OBQ) (Frantar & Alistarh, 2022) adapts second-order weight
pruning methods to quantization tasks. With the rise of LLMs demanding substantial computational
resources, GPTQ (Frantar et al., 2022) employs second-order information for error compensation
on calibration sets to speed up generative models. Additionally, AWQ (Lin et al., 2024) implements
activation-aware quantization, selectively bypassing the quantization of key weights.

In contrast to the discontinuous-mapping quantization, continuous-mapping quantization avoids
pseudo-gradients and thus would provide a more stable and accurate solution (Yin et al., 2019).
Various studies have established specific prior distributions to approximate the quantized discrete
distribution through variational learning (Ullrich et al., 2017; Louizos et al., 2017; Shayer et al.,
2018) and Markov Chain Monte Carlo (MCMC) methods (Roth & Pernkopf, 2018). However, these
methods either need manual setting of priors (Ullrich et al., 2017; Louizos et al., 2017; Shayer et al.,
2018) or would increase memory footprint (Roth & Pernkopf, 2018). DGMS (Dong et al., 2022)
is an automated quantization method that utilizes Gaussian Mixture that avoids the aforementioned
problem. Our method is similar to the DGMS (Dong et al., 2022), but further, enhances the compres-
sion rate by unifying pruning and quantization, and boosts performance by utilizing the property that
the Bayesian average of DNNs are particularly robust to the quantization noise (Wang et al., 2024).

3 PRELIMINARY

3.1 QUANTIZATION

A quantization function can be presented as Q : x ∈ R → Q = {µ1, . . . µK}, where x is the
real-valued number andQ denotes the set of discrete representation after quantization. For example,
given a stepsize ∆, a symmetric quantization functionQd maps a full-precision number to its nearest
low-bit representable neighbor within the range [−K∆,K∆] as follows:

Qd(x) = sign(x) ·min

(
∆

⌊
|x|
∆

+
1

2

⌋
,K∆

)
.
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Meanwhile, a naive stochastic quantization function has the following form:

Qs(x) =

{
∆
⌊
x
∆

⌋
, w.p.

⌈
x
∆

⌉
− x

∆

∆
⌈
x
∆

⌉
, w.p. 1−

(⌈
x
∆

⌉
− x

∆

)
.

This stochastic quantization preserves more information because E[Qs(x)] = x, a property that is
particularly advantageous when x is close to zero, as it prevents the value from being consistently
quantized to zero, unlike deterministic quantization Qd. Given the observations of the clustering
effect of DNNs weights (Han et al., 2015), DGMS (Dong et al., 2022) has proposed a trainable
quantization method, where each weight is quantized to one of the representations in the adaptive
quantization set QA = {µ1, · · · , µK} where µk ∈ R is also trained within the overall optimization
process. Let θ denote the weights vector in RT indicating the set of weights, with T being the
total number of weights in the DNN. Rather than storing T full-precision weights, the weights
are quantized into a few discrete values (i.e., shared full precision value), and only a small index
indicating which shared value in QA is assigned is stored for each weight, where the T is the
total number of weights. This technique not only reduces memory footprint but also accelerates
DNN inference through caching and weight reuse (Dong et al., 2022; Han et al., 2015; Xiao et al.,
2019). Trivially, a smaller K results in higher quantization noise; on the other hand, when K
is as large as the total number of DNN weights, the quantization set QA can accurately replicate
the full-precision DNN weights under appropriate settings. Note that inevitably, any quantization
function introduces noise to the DNN weights, i.e., the gap between the full-precision number and
its quantized value, hence harming the predictive performance. In addition, the discontinuity of
the quantization mapping suffers from non-differentiability, posing difficulties to the optimization
process.

3.2 VARIATIONAL LEARNING

Given the observed datasetD, a Bayesian procedure aims to infer from the true posterior distribution
π(θ|D) ∝ π(θ)p(D; θ), where π(θ) is the prior and p(D; θ) is the likelihood. Since the posterior is
usually intractable, variational inference (Jordan et al., 1999; Blei et al., 2017) tries to approximate
the true distribution by the closest member in terms of Kullback–Leibler (KL) divergence (Csiszár,
1975) from the variational family of distributions F :

q∗(θ) = argmin
q(θ)∈F

DKL (q(θ)||π(θ|D)) . (1)

The optimization (1) is equivalent to minimize the negative Evidence Lower Bound (ELBO) defined
as:

Ω = −Eq(θ)[log p(D; θ)] +DKL(q(θ)||π(θ)), (2)

where the first term in (2) is the expected log-likelihood which measures how well the variational
distribution q(θ) aligns with the likelihood of the observed data. The expected log-likelihood usually
cannot be integrated analytically and thus we employ a further soft-max approximation described
in the later context. The second term works as regularization, and by setting a spike-and-slab prior
distribution, it can promote and enforce sparsity in the weight distribution, encouraging the model
to favor sparse solutions.

4 METHODOLOGY

In this section, we first reformulate the traditional weight quantization function and then we propose
a novel spike-and-slab-like variational family to model sparse quantized distributed DNNs. Finally,
we present a Bayesian algorithm to unify the pruning and task-optimal weight quantization process.

4.1 QUANTIZED SUB-DISTRIBUTION

Let f(·, θ) represent the deep neural network. Here, θi denotes the i-th component of the weight
vector θ. Given a quantization setQ, we define an adaptive stochastic quantization mappingQ : θ ∈
R→ Q = {µ1, . . . , µK} as:

Q(θi) = µk, w.p. pki, for k = 1, . . . ,K and i = 1, . . . , T. (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

However, learning quantization functions for all T weights is computationally infeasible (given that
a typical DNN model contains millions or billions of weights), and direct gradient-based optimiza-
tion for discrete quantization functions is also challenging. To address this, we approximate the
multinomial distribution of the quantized weight Q(θi) with a Gaussian Mixture Model (GMM)

g
(
(µ1, σ

2
1), · · · , (µK , σ

2
K), θi

)
∼

K∑
k=1

ϕk(θi)N (µk, σ
2
k). (4)

where N (µ, σ2) denotes the Gaussian random variable, θi is the full-precision preimage weight,
and the mixture weight ϕk(θi) has a parametric form. Note that with slight abuse of notation, we
also use N (·|µ, σ2) to represent the Gaussian density function. Inspired by the connection between
the clustering problem and the Gaussian mixture modeling, we let ϕk(θi) be related to the posterior
probability of the weight θi sampled from the Gaussian components N (µk, σ

2
k). That is, given a

prior distribution ϖ = [ϖ1, . . . , ϖK ] over the quantization set Q, the posterior component weight
φk(θi) is:

φk(θi) = φk(θi;ϖ) =
exp

(
ϖkN (θi|µk, σ

2
k)
)∑K

j=1 exp
(
ϖjN (θi|µj , σ2

j )
) . (5)

Given a temperature parameter τ1, we further define ϕk via temperature-based softmax as

ϕk(θi) = ϕk(θi;ϖ, τ1) =
exp (φk(θi)/τ1)∑K
j=1 exp (φj(θi)/τ1)

, for k = 1, . . . ,K, (6)

such that ϕk’s and ψk’s share the same numerical order, and parameter τ1 grants trainable controls
on the distribution concentration, i.e., as τ1 → 0, (4) reduces to a single normal distribution. Notice
that with small enough σ2

i , the Gaussian Mixture Model in (4) reduces to a multinomial distribution
over Q. It is worth mentioning that DGMS (Dong et al., 2022) utilizes the same mixture normal
structure. But the GMM model merely serves as a clustering tool for DGMS, while our method
adopts a more principled Bayesian modeling approach, laying the foundation for Bayesian model
averaging which could improve robustness to quantization noise. Furthermore, by building on the
GMM approximation, a sparse distribution can be seamlessly integrated, forming a unified search
space for both quantization and pruning, which may lead to a globally optimal solution.

4.2 SQS: SPARSE QUANTIZED SUB-DISTRIBUTION

In this section, we introduce a novel unified pruning and quantization method by finding a sparse
quantized sub-distribution via variational learning. The ultimate goal is to approximate dense full-
precision DNNs denoted as f(·; θ), with Bayesian sparse and low-precision counterparts f(·, θ̃). To
achieve this goal, we utilize a spike-and-slab prior (Ishwaran & Rao, 2005; Bai et al., 2020) incorpo-
rated with a Gaussian Mixture distribution to represent a sparse, quantized weight sub-distribution.

A Dirac distribution located at zero and a flat slab distribution constitute the spike-and-slab which
is utilized to enforce sparsity in DNNs (Bai et al., 2020). With δ0 denoting the Dirac distribution
centered at zero, and γ = (γ1, · · · , γT ) with each γi binary random variable representing whether
the weight θi is selected to be pruned or not, the spike-and-slab prior is defined as:

θ̃i|γi ∼ γiN (0, σ2
0) + (1− γi)δ0, γi ∼ Bern(λ),

for i = 1, · · · , T , where σ2
0 and λ are the hyperparameters representing prior sparsity level and

prior Gaussian variance. By simply integrating out the variable γi, one can derive the marginal prior
distribution π(θ̃i) as:

λN (0, σ2
0) + (1− λ)δ0. (7)

The parameter 1 − λ represents the prior probability that a weight will be pruned. For instance, in
a DNN with a sparsity level of 90%, λ would be set to 0.1, resulting in 1 − λ = 0.9, indicating
a 90% prior chance that a given weight will be pruned. We then design a novel spike-and-slab
with a Gaussian Mixture Model variational family to model the sparse quantized posterior weight
distribution. Given the GMM in (4), one natural idea is to combine this distribution with Dirac
distribution δ0 to form a variational family F . That is, any q(θ) ∈ F has the following form:

θ̃i|γi ∼ γig
(
(µ1, σ

2
1), · · · , (µK , σ

2
K), θi

)
+ (1− γi)δ0,

γi ∼ Bern(λ̃i), for i = 1, . . . , T.
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To make the sub-distribution fully learnable with gradient, we reparameterize λ̃i as follows:

λ̃i =
exp (s̃i/τ2)

1 + exp (s̃i/τ2)
,

for i = 1, . . . , T , where s̃i is an auxiliary variable and τ2 is a temperature to facilitate the training
process. Similar to (7), we can get the marginal variational distribution q(θ̃i) as:

λ̃ig
(
(µ1, σ

2
1), · · · , (µK , σ

2
K), θi

)
+ (1− λ̃i)δ0. (8)

Finally, the variation learning aims to minimize the ELBO defined as the following:

Ω = −Eq(θ̃)

[
log p(D; θ̃)

]
+DKL

(
q(θ̃)||π(θ̃)

)
= −Eq(θ̃)

[
log p(D; θ̃)

]
+

T∑
i=1

DKL

(
q(θ̃i)||π(θ̃i)

)
. (9)

Algorithm 1 Variational Learning Sparse & Quantized Sub-distribution
Input: Training dataset D = {X ,Y}, DNN f(·; θ) of with full-precision initial weights θ ∈ RT ,

GMM component number K, initial temperature τ1, τ2 and prior variance σ2
0 .

1: Initialization
2: R ← {θ|θ ∈ region k}Kk=0; ▷ initial region generation with k-means

3: ϑ←

{
µ̂k, ϖ̂k ← |Rk|

|θ| , σ̂k ←
√∑T

j=1(θj−µ̂k)2

|θ|−1

}K

k=0

;

4: Training
5: while not converged do
6: for k ← 1 to K do
7: ϕk(θ; ϖ̂, τ1)←

exp
(
φk(θ)/τ1

)
∑K

i=1 exp
(
φi(θ/τ1)

) , Eqn. (4) and Eqn. (6);

8: end for
9: Φ̃(θ̃; ϖ̂, τ1)← λ̃

∑K
k=1 µkϕk(θ; ϖ̂, τ1), Eqn. (11);

10: Calculate the relaxed ELBO Ω̃, Eqn (12);
11: Backpropagation and update {θ, ϑ, λ̃} with the stochastic gradient descent;
12: end while
Output: The sparse quantized weight sub-distribution q̂(θ̃).

Approximation It is important to note that the KL divergence between the variational distribution
and the spike-and-slab prior distribution does not have a closed-form solution. To simplify the ELBO
and validate our approach, we reformulate a key lemma from previous work (Chérief-Abdellatif &
Alquier, 2018), as follows:

Lemma 1. For any K > 0, the KL divergence between any two mixture densities
∑K

k=1 wkgk and∑K
k=1 w̃kg̃k is bounded as

DKL(

K∑
k=1

wkgk||
K∑

k=1

w̃kg̃k) ≤ DKL(w||w̃) +

K∑
k=1

wkDKL(gk||g̃k),

where DKL(w||w̃) =
∑K

k=1 wk log
wk

w̃k
.

Given the definitions in equation (7), (8) and Lemma 1, the ELBO can be further bounded as:

Ω ≤ −Eq(θ̃)[log p(D; θ̃)] +
T∑

i=1

(
λ̃i log

λ̃i
λ

+ (1− λ̃i) log
1− λ̃i
1− λ

)

+

T∑
i=1

λ̃iDKL

(
g((µ1, σ

2
1), · · · , (µK , σ

2
K), θi)||N (0, σ2

0)
)
. (10)
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Again the KL divergence between the Gaussian Mixture Model and Gaussian distribution
DKL(g((µ1, σ

2
1), · · · , (µK , σ

2
K), θi)||N (0, σ2

0)) does not have a closed form, but can be further
upper bounded as:

DKL(g((µ1, σ
2
1), · · · , (µK , σ

2
K), θi)||N (0, σ2

0))

=DKL

(
K∑

k=1

ϕk(θi)N (µk, σ
2
k)||

K∑
k=1

ϕk(θi)N (0, σ2
0)

)

≤
K∑

k=1

ϕk(θi)DKL

(
N (µk, σ

2
k)||N (0, σ2

0)
)
,

where the last inequality is by Lemma 1. Combined with equation (10), the ELBO Ω can be bounded
as:

Ω ≤− Eq(θ̃)[log p(D; θ̃)] +
T∑

i=1

(
λ̃i log

λ̃i
λ

+ (1− λ̃i) log
1− λ̃i
1− λ

)

+

T∑
i=1

K∑
k=1

ϕk(θi)λ̃iDKL(N (µk, σ
2
k)||N (0, σ2

0)).

Beyond that, the first term Eq(θ̃)[log p(D; θ̃)] is also intractable. A common approach to approxi-
mate this term is Monte Carlo sampling James (1980), where samples are drawn directly from the
distribution q(θ̃) via the so-called reparameterization trick. However, this method requires massive
computations to provide an accurate estimation. Instead, we consider the distribution mean of q(θ̃)

Φ̃(θ̃i;ϖ, τ1) = λ̃i

K∑
k=1

µkϕk(θi;ϖ, τ1) + (1− λ̃i) ∗ 0 = λ̃i

K∑
k=1

µkϕk(θi;ϖ, τ1), (11)

and approximate first term of (9) Eq(θ̃)[log p(D; θ̃)] by log p
(
D; Φ̃(θ̃)

)
. That is, we approximate q(θ̃)

by a Delta measure on Φ̃(θ̃i;ϖ, τ1). This approximation seems brutal, but works well in practice, as
we notice that we need to pick a relatively small τ1 value to achieve a satisfactory performance, and
σ2
k’s usually converge to small values. Along with the small temperature τ1, ϕk(θi), k = 1, . . . ,K

converges to one-hot vector, thus
∑K

k=1 ϕk(θi)DKL(N (µk, σ
2
k)||N (0, σ2

0)) is close to

K∑
k=1

DKL(N (µk, σ
2
k)||N (0, σ2

0)) ∗ I(k = argmax
k

ϕk(θi)).

Finally, we define an approximate objective:

Ω̃ = − log p
(
D; Φ̃(θ̃)

)
+

T∑
i=1

(
λ̃i log

λ̃i
λ

+ (1− λ̃i) log
1− λ̃i
1− λ

)

+

T∑
i=1

K∑
k=1

DKL(N (µk, σ
2
k)||N (0, σ2

0))I(k = argmax
k

ϕk(θi)). (12)

We are now prepared to combine all components into a comprehensive training algorithm, as out-
lined in Algorithm 1.

Inference Let q̂(·) ∈ F denote the optimization solution of the above variational learning, asso-
ciated with parameter estimations θ̂i, µ̂i, σ̂

2
i , λ̂i for i = 1, · · · , T . In the inference stage, the sparse

quantized weight can be sampled as the following:

θ̃i =

{
µ̂k, w.p. ϕk(θ̂i; ϖ̂, τ1) for k = 1, . . . ,K, if γi = 1,

0, if γi = 0,

γi ∼ Bern(λ̂i).

7
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Note that we sample from discrete values of µ̂k’s rather than the Gaussian distributions N (µ̂k, σ̂
2
k),

as it incurs more memory cost to sample from N (µ̂k, σ̂
2
k), which is against the original purpose of

DNNs compression. Another minor concern is that pruning via (posterior) distribution, although
popular (Bai et al., 2020; Sun et al., 2022), fails to attain the exact target sparsity level due to its
stochastic nature. As a consequence, it may require extra effort of second-round pruning. To handle
this, one can adopt a semi-stochastic sampling scheme: instead of sampling γi from the Bernoulli
distribution with parameter λ̂i independently, one can directly set γi = 0 for those who have the
smallest λ̂i values (i.e., smaller λ̂i implies a higher chance of θ̃i = 0), and set the rest to be 1. In
such a way, the model sparsity level is fully tunable The proposed inference procedure is summarized
in algorithm 2.

Algorithm 2 Inference Phase

Input: A sparse quantized weight distribution q̂(θ̃), Bayesian Model Average number N , and spar-
sity level st.

1: for n← 1 to N do
2: Sample θ̃q from the posterior, i.e., θ̃q,i = µ̂k w.p. ϕk(θ̂i; ϖ̂, τ1).
3: Prune the top-st ∗ 100% of weights, according to the λ̂i, to zero, and get one final sample θ̃n.
4: end for
5: Inferences via Bayesian Averaged Model, e.g., Bayesian prediction as ŷ = f(x;θ̃n)

N .
Output: Bayesian inferences such as ŷ.

Additional Remark While our approach described above uses one quantization set QA for all
weight parameters θi, extending our method to use layer-wise quantization sets is natural. That is,
the group of weight parameters within one layer uses its own quantization set, and different layers
have different trainable quantization sets. Our implementation in the next section always uses layer-
wise quantization sets.

5 EXPERIMENTS

To demonstrate the effectiveness of our method, we consider various experiments and models. We
test our methods on variants of the following models and tasks: ResNet (He et al., 2016) for im-
age classification task on CIFAR-10/100 (Krizhevsky et al., 2009) and BERT (Devlin, 2018) for
question answering task on SQuAD V1.1 (Rajpurkar, 2016). The Appendix A contains additional
experiments and full details of our experiment settings. Our primary performance metrics for com-
parison purposes are the compression rate (CR) and the accuracy drop (Acc. Drop). Given a baseline
model, i.e., full-precision pre-trained model, the former is the ratio between the baseline model’s
memory footprint and the compressed model’s, and the latter measures the decline in predictive per-
formance after compression. Note that the baseline model is also used as the initialization of θ in
our algorithm.

5.1 CIFAR

In this section, we present experiments using ResNet architectures on the CIFAR-10 and CIFAR-
100 datasets. When compressing ResNet models, our method requires fine-tuning over the training
dataset, completing the compression process within 10 epochs. To achieve high compression rates,
we represent each layer’s weights with either 4 or 16 components (i.e. K = 4 or K = 16 for each
layer) and apply a sparsity level of 50%. As shown in Table 1, our methods compress the models by
factors ranging from 16 ∼ 32× while keeping accuracy drops below 1.3%. For example, compress-
ing ResNet-20 by a factor of 16 results in an accuracy drop of only 0.52%. Likewise, compressing
ResNet-32 by a factor of 32× yields a minimal accuracy reduction of 1.29%. Additionally, we com-
press ResNet-56 by a factor of 32, observing an accuracy drop of only 0.84%. Compared to other
methods, our approach achieves much higher compression rates with smaller decreases in accuracy.

Subsequently, we compress ResNet-18 and ResNet-50 models and evaluate them on the CIFAR-100
dataset, comparing our results with the DGMS (Dong et al., 2022) compression method. To investi-
gate the effectiveness of our method in handling quantization noise and to ensure a fair comparison,

8
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Model Method Pruning/Quantization Bits NZ% CR Top-1 Acc.

ResNet-20

FP32 Dense NA 32 100% 1× 92.60%

Method Pruning/Quantization Bits↓ NZ%↓ CR↑ Top-1 Acc. Drop ↓
LQNets Q 2 100% 16× 1.2%
DGMS P+Q 2 55.6% 28.8× 0.87%
SQS(Ours) P+Q 4 50% 16× 0.52%
SQS(Ours) P+Q 2 50% 32× 1.47%

ResNet-32

Method Pruning/Quantization Bits NZ% CR Top-1 Acc.

FP32 Dense NA 32 100% 1× 93.53%

Method Pruning/Quantization Bits↓ NZ%↓ CR↑ Top-1 Acc. Drop ↓
TTQ Q 2 100% 16× 1.9%
DGMS P+Q 2 58.7% 27.2× 1.3%
SQS(Ours) P+Q 2 50% 32× 1.29%

ResNet-56

Method Pruning/Quantization Bits NZ% CR Top-1 Acc.

FP32 Dense NA 32 100% 1× 94.37%

Method Pruning/Quantization Bits↓ NZ%↓ CR↑ Top-1 Acc. Drop ↓
TTQ Q 2 100% 16× 1.06%
L1 P 32 10% 10× 1.83%
DGMS P+Q 2 51.8% 30.9× 0.89%
SQS(Ours) P+Q 2 50% 32× 0.84%

Table 1: Comparison across different compression methods for compressing ResNet Models on
CIFAR-10. P+Q: joint pruning and quantization, P: pruning only, Q: quantization only, Bits: weights
quantization bit-width, NZ%: proportion of non-zero parameter, CR: compression rate. FP32 Dense
denotes the baseline full-precision model. Compared methods are LQNets (Zhang et al., 2018), TTQ
(Zhu et al., 2017), L1 (Li et al., 2017) and DGMS (Dong et al., 2022).

we fixed the sparsity level at zero (i.e., the compression effect is fully due to weight sharing) and var-
ied the number of Gaussian components. The fewer the components, the higher the compression and
quantization error, and we assess the trade-off between compression and performance. As depicted
in Figure 2, even when using only 8 Gaussian components, our method only incurs an accuracy drop
of less than 1%. Moreover, our approach exhibits more robustness against the intrinsic noise intro-
duced by the quantization than DGMS. As the number of Gaussian components decreased, leading
to increased quantization noise, our method consistently outperformed DGMS.

8 10 12 14 16
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(a): ResNet-18. (b): ResNet-50.

Figure 2: Accuracy of compressed ResNet-18 and ResNet-50 with CIFAR-100 dataset. (a): ResNet-
18 Model. (b): ResNet-50 Model. With a large number of Gaussian components, our method is
comparable to DGMS; however, with fewer Gaussian components, it achieves less performance
degradation.
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5.2 SQUAD

We further investigate our compression method on attention-based models. We apply our compres-
sion model on BERT (Devlin, 2018) base model and test it on the SQuAD V1.1 dataset (Rajpurkar,
2016). Similarly, we consider the F1 score drop and compression rate as the evaluation metrics.
During the compression process, the BERT model is fine-tuned on the training dataset, with the
entire procedure completed within 3 epochs.

We compressed the BERT model using K = 16 Gaussian components and pruned 75% of its
parameters, leading to a 32× compression rate. We employed layer-wise quantization combined
with unstructured pruning to attain these results. Notably, our method resulted in an F1 score drop of
only 1.66, which is less than that observed with existing methods, proving its superior performance
retention despite the high compression rate.

Model Pruning/Quantization Bits NZ% CR F1

FP32 Dense NA 32FP 100% 1× 88.68

Method Pruning/Quantization Bits ↓ NZ% ↓ CR↑ F1 Drop ↓
GMP P 32 50% 2× 22.89
L-OBS P 32 50% 2× 10.86
ExactOBS P 32 25% 4× 6.43
PLATON P 32 20% 5× 2.2
OBQ Q 3 100% 10.7× 3.24
GPTQ Q 3 100% 10.7× 2.51
OBC (ExactOBS+OBQ) P+Q 4 50% 16× 2.33
SQS (Ours) P+Q 4 25% 32× 1.66

Table 2: Comparison across different compression methods for compressing BERT base model on
the SQuAD V1.1. P+Q: joint pruning and quantization, P: pruning only, Q: quantization only, Bits:
weights quantization bit-width, NZ%: proportion of non-zero parameter, CR: compression rate.
FP32 Dense denotes the baseline full-precision model. Compared Methods are GMP (Zhu & Gupta,
2017), L-OBS (Dong et al., 2017), PLATON (Zhang et al., 2022a), GPTQ (Frantar et al., 2022),
ExactOBS, OBQ and OBC (Frantar & Alistarh, 2022).

5.3 ABLATION STUDY

In this section, we conduct an ablation study to evaluate the impact of our proposed method. Specifi-
cally, we perform a detailed analysis of the effect of the spike-and-slab distribution. For comparison,
we consider a zero-mean Gaussian distribution as the prior and replace the delta distribution with a
Gaussian distribution in the variational family. That is, any q′(θ) ∈ F ′ has the form:

θ̃i|γi ∼ γig
(
(µ1, σ

2
1), · · · , (µK , σ

2
K), θi

)
+ (1− γi)N (0, σ2

0),

γi ∼ Bern(λ̃i), for i = 1, . . . , T.

Based on this, we can get the modified marginal variational distribution q′(θ̃i) as:

λ̃ig
(
(µ1, σ

2
1), · · · , (µK , σ

2
K), θi

)
+ (1− λ̃i)N (0, σ2

0). (13)

Thus following the same reasoning and derivation the as we get the equation (10), we can have:

Ω′ = −Eq′(θ̃)

[
log p(D; θ̃)

]
+

T∑
i=1

DKL

(
q′(θ̃i)||N (0, σ2

0)
)

= −Eq′(θ̃)

[
log p(D; θ̃)

]
+

T∑
i=1

DKL

(
q′(θ̃i)||(λ̃i + (1− λ̃i))N (0, σ2

0)
)

≤ −Eq′(θ̃)

[
log p(D; θ̃)

]
+

T∑
i

λ̃iDKL

(
g((µ1, σ

2
1), · · · , (µK , σ

2
K), θi)||N (0, σ2

0)
)
. (14)
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We compressed a ResNet-18 model at varying sparsity levels, representing each layer’s weights
with 16 components, and evaluated it on the CIFAR-100 dataset, comparing the results with our
proposed spike-and-slab prior method. As shown in Table 3, using a Gaussian prior to induce
posterior sparsity on DNN weights does achieve reasonable performance at low sparsity levels.
This is because, to minimize the term −Eq′(θ̃)

[
log p(D; θ̃)

]
in (14), important weights with larger

magnitudes are assigned higher values of λ̃i which can guide effective pruning. However, this
approach becomes insufficient when the sparsity is high, as the objective (14) does not favor high
sparsity. In contrast, with the spike-and-slab distribution, the objective (10) includes an additional
term

∑T
i=1

(
λ̃i log

λ̃i

λ + (1− λ̃i) log 1−λ̃i

1−λ

)
which pushes the (1− λ̃i) towards the desired sparsity

level (1− λ), allowing the algorithm to better explore highly sparse weights. The results in Table 3
confirm that the spike-and-slab prior outperforms the Gaussian prior, particularly at higher sparsity
levels.

Prior Bits NZ% CR Top-1 Acc.

FP32 Dense 32 100% 1× 79.26%

Prior Bits↓ NZ%↓ CR↑ Top-1 Acc. Drop↓

Gaussian

4 50% 16× 4.51%

4 40% 20× 5.6%

4 30% 26.6× 11.42%

4 20% 40× 44.04%

Spike-and-slab

4 50% 16× 3.12%

4 40% 20× 3.21%

4 30% 26.6× 5.54%

4 20% 40× 5.59%

Table 3: Comparison of Gaussian prior and Spike-and-slab prior for compressing a ResNet-18 model
on the CIFAR-100 dataset. Bits: weights quantization bit-width, NZ%: proportion of non-zero
parameter, CR: compression rate. FP32 Dense denotes the baseline full-precision model. Using
Gaussian prior could provide reasonable performance when NZ% is low but fails when NZ% is less
than 30%.

6 CONCLUSION

In this paper, we proposed a unified framework for compressing deep neural networks (DNNs) by
combining pruning and quantization into one integrated optimization process through variational
inferences. Our approach addresses the limitations of sequential pruning and quantization methods
by exploring a broader solution space, enabling more efficient compression with minimal perfor-
mance degradation. Additionally, by leveraging Bayesian model averaging which is robust to the
quantization noise, we enhance the model’s resilience to potential performance degradation. We
demonstrated the effectiveness of our method on multiple datasets, including CIFAR-10/100 and
SQuAD which supports that our method not only improves performance but also provides a more
robust solution for compressing modern DNNs. Our results outperform existing methods in both
compression rates and accuracy retention, making it a promising direction for efficient model com-
pression in resource-constrained environments.

In future work, we aim to conduct theoretical analysis to bridge the gap between theory guarantees
and empirical successes. We also plan to test our method on computationally demanding models,
such as large-scale language models.
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A MORE EXPERIMENT RESULTS

In this section, we provide additional details about our empirical experiments and results. During our
experiments on CIFAR-10 and CIFAR-100, we compressed the ResNet variants within 10 epochs.
Besides, we employed different learning rates for the parameter s̃ and the other parameters (0.015
for s̃ and 5 × 10−5 for the others). The hyperparameters were set to τ1 = 0.001, τ2 = 0.012 and
λ = 0.01. We selected N = 10 for model averaging. The runtime details are reported in Table 4.
Additionally, we present our compression results with ResNet-18 on CIFAR-100, where each layer
is represented by T = 16 components and 80% of the parameters have been pruned.

ResNet-18 ResNet-20 ResNet-32 ResNet-50 ResNet-56

Time 35.74min 32.48min 32.5min 35.75min 32.5min

Table 4: Runetime in minutes of Compression procedure on ResNet architecture tested on NVIDIA
V100.

During the compression of the BERT model, we also employed different learning rates for the pa-
rameter s̃ and the other parameters, using 0.01 for s̃ and 2× 10−5 for the rest. The hyperparameters
were configured as τ1 = 0.005 and τ2 = 0.01. The compression procedure is finished within 3
epochs.

Model Method Bits NZ% Top-1 Acc. Top-1 Acc. Drop

ResNet-18 FP32 Dense 32 100% 79.26% NA

Ours 4 20% 76.07% 3.19%

Table 5: Compresson Result of ResNet-18 on CIFAR-100. Bits: weights quantization bit-width,
NZ%: proportion of non-zero parameter.

We also tested our method on the GPT-2 model (Radford et al., 2019), using perplexity as the
evaluation metric on the Penn Treebank (Taylor et al., 2003) dataset. Perplexity measures how
well a language model predicts a sequence of words; lower perplexity indicates better predictive
performance and a higher level of certainty in the model’s predictions. While compressing the GPT-
2 model, we set the learning rates for s̃ to 0.01 and 2×10−5 for the rest. The hyperparameters were
set to τ1 = 0.00001 and τ2 = 0.01. The performance result is reported in Table 6. We compressed
GPT-2 by a factor of 38.53 and achieved a satisfactory perplexity of 30.80.

Method Compression Rate Perplexity ↓
Ours 38.53× 30.80

Table 6: Compression Result of GPT-2 on Penn Treebank.
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