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Abstract— Training autonomous agents to perform complex
control tasks from high-dimensional pixel input using rein-
forcement learning (RL) is challenging and sample-inefficient.
When performing a task, people visually attend to task-relevant
objects and areas. By contrast, pixel observations in visual
RL are comprised primarily of task-irrelevant information.
To bridge that gap, we introduce Visual Saliency-Guided
Reinforcement Learning (ViSaRL). Using ViSaRL to learn
visual scene encodings improves the success rate of an RL
agent on four challenging visual robot control tasks in the Meta-
World benchmark. This finding holds across two different visual
encoder backbone architectures, with average success rate
absolute gains of 13% and 18% with CNN and Transformer-
based visual encoders, respectively. The Transformer-based
visual encoder can achieve a 10% absolute gain in success rate
even when saliency is only available during pretraining.

I. INTRODUCTION

Human visual attention helps to efficiently process and
understand complex scenes by focusing on the most impor-
tant regions in an image [1]. We hypothesize saliency maps
capturing that human visual attention are a useful signal for
visual scene encodings for AI agents. In this paper, we ask
whether human visual attention helps agents perform tasks.

A key ingredient in solving visual control tasks is to
learn visual representations that capture useful features of the
sensory input to simplify the decision making process. Many
works in the deep reinforcement learning (RL) community
have proposed to learn such representations through vari-
ous self-supervised objectives including contrastive learning
[2] and data augmentation [3]. By contrast, we focus on
self-supervision using saliency as additional human domain
knowledge to inform the representation of task-relevant fea-
tures in the visual input while filtering out perceptual noise.

We present Visual Saliency Reinforcement Learning (ViS-
aRL), a general approach for incorporating human-annotated
saliency maps into learned visual representations.1 The key
idea of ViSaRL is to train a multimodal autoencoder that
learns to reconstruct both RGB and saliency inputs, and
an RL policy on top of the frozen autoencoder as shown
in Figure 1. By using a masked reconstruction objective
for the autoencoder, our approach encourages the learned
representations to encode useful visual invariances and attend
to the most salient regions for downstream task learning. To
circumvent the manual labor of annotating saliency maps,
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Fig. 1. ViSaRL learns a saliency-augmented visual scene encoder for
downstream RL policy training. A saliency prediction network is trained
from a handful of human-annotated maps. Then, RGB and predicted saliency
are used to pretrain the scene encoder.

we train a state-of-the-art saliency predictor model using
only a few human-annotated examples to augment RGB
observations with saliency.

Overall, our contributions can be summarized as: noitem-
sep,nosep

1) We propose the ViSaRL framework for utilizing hu-
mans’ attention in visual control tasks;

2) We develop an easy procedure, consisting of a user in-
terface and a state-of-the-art saliency prediction model,
for collecting and predicting human saliency maps as
proxies for attention; and

3) We conduct extensive experiments that demonstrate
ViSaRL conveniently and consistently improves suc-
cess rate in various visual control tasks.

II. VISUAL SALIENCY-GUIDED REINFORCEMENT
LEARNING

ViSaRL is a simple approach for incorporating human-
annotated saliency to learn more robust representations for
pixel-based control. We collect saliency annotations and
utilize them for training a saliency predictor model. We
augment an offline image dataset with saliency to pretrain
CNN- and Transformer-based encoders (see Fig. 2) for
extracting image representations that can be used during
downstream reinforcement learning.

A. Generating Saliency Maps

We need only a handful of human saliency maps which we
use to bootstrap the saliency predictor. We chose to use Pixel-
wise Contextual Attention network (PiCANet) [23] which we
discuss more in depth in Appendix E. We develop a custom
graphical user interface (GUI) shown in Figure 5 to collect
the saliency annotations. We then use the trained PiCANet
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Fig. 2. ViSaRL Approach. We pretrain a MultiMAE model on a dataset of RGB images and their corresponding saliency obtained from a saliency
predictor trained via supervised learning on a few labelled examples. The pretraining objective for MultiMAE is to reconstruct the masked patches for
both input modalities given the encodings of only the visible patches. The pretrained model is frozen and used for extracting image representations used
as input to the policy during task learning. There is no masking during downstream RL.

model to pseudo-label an offline dataset of RGB observations
collected from the environment. That saliency-augmented
image dataset can subsequently be used for pretraining any
visual encoder.

B. Pretraining Visual Representation

In this work, we experiment with various techniques for
augmenting both CNN-based and Transformer encoders with
saliency information. To add saliency to a CNN architecture,
we can multiply RGB with saliency (Figure 4) or simply
add saliency as a fourth channel per pixel. We find that
a Transformer backbone pretrained with a patch masking
objective achieves higher task performance, even getting
a 10% gain in success rate by using RGB and saliency
at pretraining time when only RGB is available during
downstream RL.

Masked autoencoders (MAE) [4] are an effective and
scalable approach for visual representation learning. MAE
masks out random patches of an image and reconstructs
the masked patches using a Vision Transformer (ViT) [5].
More concretely, an observation ot ∈ RH×W×C is processed
into a sequence of 2D patches ht ∈ RK×(P 2C) where P
is the patch size and K = HW/P 2 is the number of
patches. A subset of these patches are randomly masked
out with a masking ratio of m. Masking reduces the input
sequence length and encourages learning global, contextu-
alized representations from limited visible patches. Only
the visible, unmasked patches are then used as input to a
ViT encoder which first embeds the patches via a linear
projection, adds positional embeddings and then processes
the set of tokens via a series of Transformer blocks. Finally,
a ViT decoder reconstructs the original input by processing
all of the tokens including the encoded visible patches and
mask tokens. Following [4], we employ a high masking ratio
m = 0.75 and a heavy-encoder light-decoder architecture
design to enable efficiently learning good representations.

The MAE pretraining objective is limited to processing
a single modality, RGB images. We propose to incorporate

saliency as an additional modality during pretraining follow-
ing the MultiMAE [6] architecture as shown in Figure 2.
MultiMAE extends MAE to support pretraining with mul-
tiple input modalities (e.g., depth and segmentation maps).
MultiMAE uses a different linear projection for each input
modality. Similar to the RGB-only MAE, MultiMAE passes
a small randomly sampled subset of tokens to the Trans-
former encoder to obtain the encoded tokens. Each modality
has a separate lightweight decoder for reconstructing the
masked tokens from the visible tokens. A cross attention
layer is used in each decoder to incorporate information from
the encoded tokens of other modalities using the tokens as
queries and all the encoded tokens as keys and values. For
efficiency, we fix the number of encoded tokens between
both modalities to be 32 which roughly corresponds to
1/4 of all the tokens. Following [6], we employ a uniform
sampling strategy to select tokens from each modality to
encode. MultiMAE’s pretraining objective requires the model
to perform well in both the original MAE objective of RGB
in-painting and cross-modal reconstruction, resulting in a
stronger cross-modal visual representation.

C. Pretraining

We use visual observations of 64 × 64 × 3. We use a 4-
layer ViT encoder and a 3-layer ViT decoder with a patch
size of 8 × 8 pixels. We pretrain the model for 400 epochs
on an offline dataset of 200k images collected from the
replay buffer of state-based SAC training. We use the same
training hyperparameters as the MultiMAE paper. Additional
pretraining details can be found in the Appendix (Table II).

D. Downstream Reinforcement Learning

After pretraining the MultiMAE we freeze the ViT encoder
and use it to extract visual representations for downstream
RL training. During RL, only the policy and Q-functions
are trained and image inputs are not masked. We take an
average over all the 128 token embeddings to generate a
global representation of the image. We also tried using the



global learned token embedding, similar to a CLS token in
ViT, which yielded similar results.

III. EXPERIMENTS

To demonstrate the effectiveness of using human-
annotated saliency information to enhance visual representa-
tions for task learning, we show quantitative results of our
approach with two different encoder backbones, CNN and
MultiMAE, across four challenging Meta-World benchmark
tasks [7]. Figure 3 and Table I summarize our main findings.
Incorporating saliency input substantially improves down-
stream task success rate irrespective of the encoder backbone.
Additionally, our proposed approach of using a MultiMAE
objective for fusing the saliency annotations yields the best
overall task performance between all the baseline methods.

A. Task Details

We evaluate our method on four different control
tasks in the Meta-World robot manipulation benchmark
[7]: {Reach, Faucet Open, Door Open, Drawer
Open} shown in Figure 4. In all four tasks, the action space
A ⊂ R4, is the ∆(xyz) of the end-effector, and a continuous
scalar value for gripper torque. Object and goal positions
are randomized at the start of every episode, requiring the
learned representation to be robust to visual shifts. As a
consequence, the agent cannot exploit spurious correlations
or memorize trajectories to solve the task.

B. Saliency Map Annotation

For each task, N = 30 observations from the environment
are selected at random and presented to a human annotator in
sequence. The annotator clicks on the pixels in the image that
they think is relevant for performing the given downstream
task. Each mouse click creates a standard Gaussian centered
around the clicked pixel (see Fig.5). For manipulation tasks,
this could include the end-effector position, typically with
more saliency concentrated near the gripper tip, as well as the
task specific objects and the goal location. Each observation
takes roughly 30 seconds to a minute to annotate and 25±5.8
mouse clicks (mean±std).

C. Accuracy of Saliency Prediction Model

We use 80% of the annotations for training and 20% for
testing. We follow the training procedure and hyperparam-
eters outlined in [8] and additionally apply random mirror-
flipping for data augmentation. To evaluate that the trained
predictor network is accurate, we report two main evaluation
metrics from the original paper: F-measure score and Mean
Absolute Error (MAE). F-measure score balances between
both precision and recall:

Fζ =
(1 + ζ2)Precision×Recall

ζ2Precision+Recall
, (1)

where ζ2 is set to 0.3. Saliency maps are first binarized
before computing Fζ . MAE computes the average absolute
per-pixel difference between the predicted saliency maps and
ground truth saliency maps. We find that on our testing

data, we obtain an Fζ score of 0.78 ± 0.02 and MAE of
0.004 ± 0.003 averaged across the four tasks. These values
are consistent with the competitive results reported in [8].
We provide qualitative results of the saliency prediction for
different observations in Figure 7 in the Appendix.

D. CNN Encoder Results

We first present results using a CNN-based encoder trained
through RL critic updates. We follow the CNN architecture
and hyperparameters used in [9], [10], the full details of
which can be found in Appendix F. We evaluate several
different methods of incorporating saliency using a CNN
encoder:

1) RGB: The CNN encoder and the policy are jointly
trained with RGB images as inputs.

2) Saliency: The CNN encoder and the policy are jointly
trained with the predicted saliency maps as inputs.

3) RGB × Saliency: The CNN encoder and the policy
are jointly trained with RGB × saliency map as inputs.

4) RGBS: The CNN encoder and the policy are jointly
trained with inputs that consist of the RGB images and
saliency predictions as an additional channel.

In Table I, we find that naive ways of utilizing saliency
do not yield good performance and is unable to learn to
solve the task. We hypothesize that using only saliency as
input (Saliency) fails to solve any of the tasks because the
saliency map alone is not sufficient for the model to infer the
exact orientation of the end-effector position which is critical
especially for fine manipulation. Supporting this hypothesis,
we find that using saliency to mask the RGB observation
(RGB × Saliency) yields better performance than Saliency,
but is still worse than providing the full RGB input (RGB).
Although masking should help the encoder identify the
important image features, it may still be nontrivial for the en-
coder to differentiate between similarly masked observations.
Lastly, we find that incorporating saliency as an additional
channel to the RGB input (RGBS) can improve task success
rate by > 10% across all tasks. We hypothesize that the CNN
encoder is able to utilize the saliency information to more
effectively associate the observed rewards to the relevant
features in the image.

E. MultiMAE Results

Unlike the CNN-based experiments where the encoder
weights are learned from scratch along with the policy, we
first pretrain the MultiMAE encoder with an offline dataset
of (image, saliency map) pairs as an autoencoder. We then
keep the encoder weights frozen during downstream RL,
decoupling the representation learning and policy learning.
MultiMAE experiments use the same SAC training hyper-
parameters as the CNN experiments (see Appendix F). We
highlight the benefits of saliency and using a MultiMAE
pretraining procedure by employing the following methods:

1) RGB: The MultiMAE encoder is pretrained using
RGB images only.

2) RGB+Saliency Pretrain Only (PO): The MultiMAE
encoder is pretrained with both the RGB image and
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Fig. 3. Learning curves for four visual robotic manipulation tasks in Meta-World evaluated by task success rate. (Top) CNN encoder methods. (Bottom)
Transformer encoder methods. We select tasks that require manipulating small objects with different motions such as a pushing, pulling, and reaching. The
solid lines represent the mean and shaded region the standard error across three seeds.

predicted saliency, but uses only the RGB input during
downstream RL.

3) RGB+Saliency: The MultiMAE encoder is pretrained
with both the RGB image and predicted saliency, and
uses both as inputs during downstream RL.

We compare the full ViSaRL method (RGB+Saliency) to
pretraining using only the RGB images (RGB) in Table I,
which shows that multimodal pretraining with saliency infor-
mation significantly outperforms single modality pretraining
by at least a 10% margin across all tasks. Notably, RGB
achieves only 19% success on Faucet Open, while our
approach can solve the task with 61% success rate. We also
show that even without saliency input during downstream
RL, using saliency as an additional input modality during
pretraining still improves downstream performance on 3 of
the 4 tasks. Except for the Reach task, where performances
are similar, RGB+Saliency(PO) achieves better success rate
than RGB, with an average absolute gain of 10% across
tasks. Using saliency as an input for both pretraining and
downstream RL (RGB+Saliency) is better than just during
pretraining likely because there are new observations during
online training that were not in the pretraining dataset
and the encoder could benefit from the saliency input to
generate a better state representation. These results show
that our approach of incorporating human-annotated saliency
information can help learn better visual representations to
facilitate better task learning.

IV. CONCLUSION

Summary. In this paper, we propose to use human
saliency as an additional input modality for solving challeng-
ing visual robot control tasks and present a simple approach

to incorporate saliency for improving task performance. We
train a state-of-the-art saliency predictor model using only a
handful of human annotations to accurately predict saliency
maps of unseen frames. We then pretrain a Multimodal
MAE model on a saliency-augmented offline dataset of RGB
images to generate visual representations. We find that both
saliency input and the Transformer pretraining are crucial for
achieving strong performance on a variety of visual control
tasks in Meta-World.

Limitations and Future Work. One potential limitation
of our user interface is that it could be tedious to collect
saliency annotations when scaling to more complex real
world applications or video saliency [11]. Future work could
investigate alternative interfaces that will enable collecting
more saliency data, e.g., area-based methods or by tracking
the eye gaze of the user [12]. Additionally, a comprehensive
study of these various user interfaces with many human sub-
jects could reveal their strengths and weaknesses, potentially
pointing out venues for improvement for more reliable and
cheaper saliency maps.

In this paper, we only considered static frame saliency
maps for atomic manipulation tasks that interact with only a
single object. To extend our approach to handle multi-object
manipulation and longer-horizon tasks, one could consider
video saliency models [13] which can learn to encode more
flexible temporal saliency representations across a sequence
of frames. This extension could be done by asking the
human users to watch some video clips of the trajectories
and annotate saliency over these clips.



REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 20, no. 11, pp. 1254–1259,
1998.

[2] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 5639–5650.

[3] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels,” arXiv
preprint arXiv:2004.13649, 2020.

[4] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 16 000–16 009.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[6] R. Bachmann, D. Mizrahi, A. Atanov, and A. Zamir, “Multi-
mae: Multi-modal multi-task masked autoencoders,” arXiv preprint
arXiv:2204.01678, 2022.

[7] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and
S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on robot learning.
PMLR, 2020, pp. 1094–1100.

[8] N. Liu, J. Han, and M.-H. Yang, “Picanet: Learning pixel-wise
contextual attention for saliency detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 3089–3098.

[9] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884–19 895, 2020.

[10] D. Bertoin, A. Zouitine, M. Zouitine, and E. Rachelson, “Look
where you look! saliency-guided q-networks for visual rl tasks,” arXiv
preprint arXiv:2209.09203, 2022.

[11] W. Wang, J. Shen, F. Guo, M.-M. Cheng, and A. Borji, “Revisiting
video saliency: A large-scale benchmark and a new model,” in
Proceedings of the IEEE Conference on computer vision and pattern
recognition, 2018, pp. 4894–4903.

[12] D. P. Papadopoulos, A. D. Clarke, F. Keller, and V. Ferrari, “Training
object class detectors from eye tracking data,” in European conference
on computer vision. Springer, 2014, pp. 361–376.

[13] D. Rudoy, D. B. Goldman, E. Shechtman, and L. Zelnik-Manor,
“Learning video saliency from human gaze using candidate selection,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 1147–1154.

[14] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed,
R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Scaling
data-driven robotics with reward sketching and batch reinforcement
learning,” arXiv preprint arXiv:1909.12200, 2019.

[15] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan, “Feature
expansive reward learning: Rethinking human input,” in Proceedings
of the 2021 ACM/IEEE International Conference on Human-Robot
Interaction, 2021, pp. 216–224.

[16] N. Wilde, E. Biyik, D. Sadigh, and S. L. Smith, “Learning reward
functions from scale feedback,” in Conference on Robot Learning.
PMLR, 2022, pp. 353–362.

[17] S. Tao, X. Li, T. Mu, Z. Huang, Y. Qin, and H. Su, “to-executable
trajectory translation for one-shot task generalization,” in Deep Rein-
forcement Learning Workshop NeurIPS 2022, 2022.

[18] Y. Tong, H. Konik, F. Cheikh, and A. Tremeau, “Full reference
image quality assessment based on saliency map analysis,” Journal of
Imaging Science and Technology, vol. 54, no. 3, pp. 30 503–1, 2010.

[19] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolu-
tional networks: Visualising image classification models and saliency
maps,” arXiv preprint arXiv:1312.6034, 2013.

[20] T. N. Mundhenk, B. Y. Chen, and G. Friedland, “Efficient saliency
maps for explainable ai,” arXiv preprint arXiv:1911.11293, 2019.

[21] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by
saliency learning,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 2, pp. 356–370, 2016.

[22] A. Atrey, K. Clary, and D. Jensen, “Exploratory not explanatory:
Counterfactual analysis of saliency maps for deep reinforcement
learning,” arXiv preprint arXiv:1912.05743, 2019.

[23] M. Rosynski, F. Kirchner, and M. Valdenegro-Toro, “Are gradient-
based saliency maps useful in deep reinforcement learning?” arXiv
preprint arXiv:2012.01281, 2020.

[24] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in International
conference on machine learning. PMLR, 2017, pp. 3145–3153.

[25] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[26] S. Frintrop, E. Rome, and H. I. Christensen, “Computational visual
attention systems and their cognitive foundations: A survey,” ACM
Transactions on Applied Perception (TAP), vol. 7, no. 1, pp. 1–39,
2010.

[27] J. Zhang and S. Sclaroff, “Saliency detection: A boolean map ap-
proach,” in Proceedings of the IEEE international conference on
computer vision, 2013, pp. 153–160.

[28] A. Boyd, K. W. Bowyer, and A. Czajka, “Human-aided saliency
maps improve generalization of deep learning,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2022, pp. 2735–2744.

[29] A. Boyd, P. Tinsley, K. W. Bowyer, and A. Czajka, “Cyborg: Blending
human saliency into the loss improves deep learning-based synthetic
face detection,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2023, pp. 6108–6117.

[30] C. Craye, T. Lesort, D. Filliat, and J.-F. Goudou, “Exploring to
learn visual saliency: The rl-iac approach,” Robotics and Autonomous
Systems, vol. 112, pp. 244–259, 2019.

[31] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel,
T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, “dm control: Software
and tasks for continuous control,” Software Impacts, vol. 6, p. 100022,
2020.

[32] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
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APPENDIX

A. Related Works

Different forms of human data can be leveraged when
solving control tasks. Researchers created various interfaces
to collect different data modalities from humans, for ex-
ample: reward sketches [14], feature traces [15], scaled
comparisons [16], and abstract trajectories [17]. Robots and
machine learning models may benefit from tapping into
different human data sources. Attention saliency maps are
special in that they do not require humans to work with
abstract concepts like rewards and task features, or those
that require watching lengthy trajectories like comparisons.

Attention saliency maps have been used in both computer
vision and machine learning for various applications. Meth-
ods of annotating saliency vary, as do those for incorporating
saliency and other mid-level vision information into learned
scene representations for reinforcement learning.

B. Saliency Maps

Saliency maps approximate which parts of an image tend
to attract human visual attention, which corresponds to where
the human eye would likely fixate when viewing an image
[18]. They have been widely studied in the computer vision
and explainable artificial intelligence communities to under-
stand how a model is making its predictions and to identify
the most informative regions of an image for a particular task
[19], [20], [21]. Most existing works explore using saliency
maps only as tools for interpretation [22], [23]. [22] use
saliency maps to rationalize and explain the actions of RL
agents in Atari games. [23] use various backpropagation-
based techniques to visualize the saliency for trained RL
policies.

Saliency maps can be categorized as either bottom-up or
top-down. Bottom-up saliency maps, also known as feature-
based saliency maps, highlight regions of the input that have
the most distinctive or important features. They are typically
computed by taking the gradient of the model output with
respect to the input features such as Guided Backprop
[24] and GradCam [25]. Top-down saliency maps use task-
specific information to identify the important elements of
the input that are most relevant to the task by taking into
account prior knowledge or context about the task [26], [27].
[28] and [29] show top-down saliency maps for encoding
prior human knowledge help tackle the problem of biometric
attack detection and enable better generalization of deep
learning models, respectively. [30] propose a method for
incrementally learning saliency maps in autonomous robot
navigation and utilizing them to improve exploration. ViS-
aRL uses top-down saliency maps, requiring a small number
of human annotated maps that provide important information
about task-relevant regions of images.

Saliency maps can be categorized as fixation-based [1] or
area-based [27]. Fixation-based saliency maps measure the
probability of a human fixating on a given pixel location,
while area-based saliency maps consider objects as an entity

similar to object segmentation. ViSaRL utilizes fixation-
based saliency, but could be extended to incorporate area-
based saliency.

Closely related to our work is [10] which incorporates
saliency maps as a self-supervised regularization objective
for robot control tasks in DMControl benchmark [31]. By
contrast, we do not use saliency as a regularization objective
during the policy training, but rather use human saliency
annotations to highlight the crucial input pixels and distill
this knowledge into the visual representation.

C. User Interfaces for Human Saliency

ViSaRL needs a small number of human-annotated
saliency maps to bootstrap the saliency prediction network
(Figure 1). Prior work used superpixel segmentation [32] to
first divide each image into segments, and then asked humans
to click on the segments that are salient [21]. However,
that method requires manually checking and combining the
segments that belong to the same object before showing the
images to annotators, burdening system designers.

As an alternative, [28], [29] used interfaces where the
annotators created binary masks by simply clicking on im-
ages. These binary maps were then smoothed by averaging
over multiple annotators. We employ a similar but simpler
interface: one annotator clicks on the salient parts of the
image, and a simple Gaussian kernel is applied around
activated pixels to achieve smooth saliency maps.

D. Representation Learning for RL

Saliency maps are essentially representations of the en-
vironment that carry useful domain knowledge about which
regions of the visual input are important for the downstream
task. Such representations are crucial in reinforcement learn-
ing because they enable agents to tractably deal with large
observation spaces like images. Several approaches have
been proposed to improve representation learning for RL.

Prior works have shown that self-supervised learning with
data augmentation helps achieve good performance in image-
based RL. Contrastive Unsupervised RL (CURL) [2] em-
ployed a contrastive learning objective as an auxiliary loss
to learn representations for off-policy RL. RL with Aug-
mented Data (RAD) [9] and Data Regularized Q-Learning
(DrQ) [3] showed that simple image augmentations such
as random cropping and color jittering may provide strong
regularization and introduce inductive biases that enhance
the performance of RL algorithms. ViSaRL does not use
data augmentation directly in the value function or policy
update. Instead, saliency augmentation is introduced during
the visual encoder pretraining phase.

[33] demonstrated that mid-level visual representations
such as surface normals or depth predictions from RGB
images can boost performance of RL tasks by removing
unimportant information and providing linearly separable
outputs to simplify downstream decision making. Similar
to [33], ViSaRL utilizes saliency maps as mid-level feature.
However, we empirically show that our approach for incorpo-
rating the saliency information into the visual representation
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Fig. 4. Examples of visual observations, annotated saliency maps, and
RGB × saliency from the tasks in our experiments.

improves task performance beyond just using saliency as
direct input to the policy.

E. Saliency Predictor Network

Saliency prediction is widely used in a variety of computer
vision applications including activity recognition [34], ques-
tion answering [35], and object segmentation [36]. Given an
input RGB image observation, ot ∈ RH×W×3, a saliency
prediction model g maps the input image I to a continu-
ous saliency map Mt = g(ot) ∈ [0, 1]H×W which highlight
important parts of the image for the downstream task.

There have been many deep convolutional neural network
(CNN) based saliency prediction models, e.g., [37], [38],
that have been proposed in the literature. We chose to
use Pixel-wise Contextual Attention network (PiCANet) [8].
PiCANet hierarchically embeds global and local pixel-wise
attention modules to selectively attend to informative context.
Global attention can attend to backgrounds for foreground
objects while local attention can attend to regions that have
similar appearance which makes the saliency prediction more
homogeneous and consistent.

PiCANet samples feature maps from different CNN layers
to facilitate saliency inference at each pixel. Given convolu-
tional feature maps at different scale F ∈ RH×W×C , global
attention generates attention over the whole feature map at
each spatial location (w, h) in F while local attention works
on a local region centered at (w, h). PiCANet is based on a
U-net [39] architecture. The encoder is a VGG [40] backbone
that operates on images of size 224 × 224. The original
PiCANet uses 6 decoder modules. Each decoder module
upsamples the intermediate feature maps and either applies
a global or local PiCANet to obtain the attended contextual
feature map. We opted to remove the global attention decoder
layers, reducing our inference time per frame from 0.1
seconds to 0.01 seconds. Qualitatively, we observed little
degradation in saliency prediction without these layers.

Fig. 5. Web interface for collecting saliency annotations. Frames are
presented to the user one at a time. Users click on salient pixels in the
frame, and each click generates a Gaussian kernel centered at that location
with σ = 10 pixels. Warmer colors represent higher saliency, with unmarked
regions having none.

F. Network architecture

The CNN encoder implementation is based on [9] and
[10]. The encoder consist of a stack of 11 convolutional
layers, each with 32 filters of 3x3 kernels, no padding, stride
of 2 for the first and 1 for all the others. This results in a
feature map of dimension 32×12×12 given an input image
of shape 64× 64× 3.

The policy head πθ and action-value functions Qψi are
parameterized by multi-layer perceptions (MLP).

The policy head is composed of a linear projection of
dimension 100 with normalization followed by 3 linear layers
with 1024 hidden units each and a final linear output layer
for the action prediction. The embedding from CNN encoder
is first flattened before inputted to the policy network. Qψi

share the same structure as the policy network.

G. Implementation Details

We explain the implementation details for the PiCANet
architecture used for generating saliency maps.
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RGB 0.39 ± 0.13 0.18 ± 0.25 0.82 ± 0.02 0.42 ± 0.04 0.45 ± 0.11
Saliency 0.04 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 0.10 ± 0.06 0.05 ± 0.03
RGB × Saliency 0.38 ± 0.05 0.09 ± 0.04 0.71 ± 0.16 0.22 ± 0.10 0.35 ± 0.09
RGBS 0.51 ± 0.07 0.48 ± 0.07 0.85 ± 0.01 0.48 ± 0.07 0.58 ± 0.37

M
M

A
E RGB 0.49 ± 0.03 0.83 ± 0.20 0.19 ± 0.03 0.35 ± 0.19 0.47 ± 0.11

RGB+Saliency(PO) 0.48 ± 0.06 0.88 ± 0.21 0.40 ± 0.21 0.52 ± 0.08 0.57 ± 0.14
RGB+Saliency (ours) 0.62 ± 0.05 0.94 ± 0.03 0.61 ± 0.16 0.64 ± 0.02 0.65 ± 0.07

TABLE I
SUCCESS RATE ACHIEVED BY VISARL ON FOUR MANIPULATION TASKS FROM META-WORLD AVERAGE ACROSS 50 ROLLOUTS AND 3 SEEDS FOR

THE CNN AND MULTIMAE (MMAE) VISUAL ENCODER BACKBONES. VISARL ACHIEVES THE BEST PERFORMANCE ON 3 OF THE 4 TASKS AND BEST

AVERAGE PERFORMANCE AMONGST ALL OF THE BASELINES. TEXT IN MAROON REPRESENT THE BEST PERFORMING METHOD.
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Fig. 6. MultiMAE predictions for different random masks. We visualize the masked predictions for RGB observation from each of the four tasks.
For each input image, we randomly sample three different masks from a uniform distribution between RGB and saliency. Only 1/4 of the total patches
are unmasked. Even when there are a few unmasked patches from one modality, the reconstructions are still very accurate due to cross-modal interaction.
Saliency maps are shown with color for the purposes of visualization.

Hyperparameter Value
Augmentations RandomResizedCrop
Optimizer AdamW
Base learning rate 1e-4
Weight decay 0.05
Warmup learning rate 1e-6
Warmup epochs 40
Num epochs 200
Batch size 512
Dataset size 200k
Loss function WeightedMSE
Non-masked tokens 32
Sampling α 1.0
Input resolution 64 x 64 x 3
Number of parameters 12M

TABLE II
HYPERPARAMETERS USED FOR PRETRAINING MULTIMAE MODEL

FOLLOWING [6].

Hyperparameter Value
Augmentations ColorJitter
Optimizer AdamW
Learning rate 3e-4
Num epochs 1000
Batch size 16
LR decay 0.1
Weight decay 0.005
Momentum 0.9
Dataset size 30
Loss function WeightedMSE

TABLE III
HYPERPARAMETERS USED FOR TRAINING PICANET MODEL TO

GENERATE PSEUDO-SALIENCY MAPS ANNOTATIONS FOLLOWING [8].

Method Mean Absolute Error Fζ score
DeepGaze II [41] 0.0273 ± 0.006 0.7142 ± 0.021
DeepGaze IIE [42] 0.0153 ± 0.006 0.7283 ± 0.024
PiCANet [8] 0.0032 ± 0.002 0.7970 ± 0.015

TABLE IV
PERFORMANCE OF DIFFERENT STATE-OF-THE-ART PREDICTORS
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Fig. 7. Additional examples of visual observations, predicted saliency, and RGB × saliency from the tasks in our experiments.

Number of annotations Mean Absolute Error Fζ score
5 0.0086 0.7983
10 0.0063 0.7948
20 0.0053 0.8006
30 0.0020 0.8006

TABLE V
EFFECT OF TRAINING DATASET SIZE ON SALIENCY PREDICTION

Number of annotations Mean Absolute Error Fζ score
PiCANet [8] scratch 0.0032 ± 0.002 0.7970 ± 0.015
PiCANet [8] fine-tuned 0.0025 ± 0.0015 0.8010 ± 0.018

TABLE VI
PICANET FROM SCRATCH V.S. FINE-TUNED FROM PRETRAINED MODEL
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