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ABSTRACT

Since its formal definition in 2011, individual fairness has received relatively little attention from
the machine learning community in comparison to group fairness. The reasons for this are several-
fold. In order to implement it, one must define a similarity metric; obtaining this is a non-trivial
task and an active research area. According to individual fairness, discontinuity in modelling, and
thus deterministic classification, is inherently unfair. To achieve individual fairness we must turn
to probabilistic models in which predictions are randomised. For many, this flies in the face of
logic. Perhaps most importantly, researchers have conflicting views on its compatibility with group
fairness.
In this work we attempt to address conflicting research on the nature of individual fairness. We
clarify important defining features of individual fairness, framing it as an extension of group fair-
ness, rather than acting in opposition to it. We review empirical evidence of the trade-off between
group and individual fairness and analyse the associated individual fairness metric (which we term
individual cost). Taking an analytical approach, we derive a new representation for individual cost
in terms of model accuracy and expected error. With this representation we are able to apply fi-
nite difference method to identify the deviation region, that is, the cases in which individual cost
conflicts with model accuracy. We conclude that empirical evidence does not support the existence
of a trade-off between group and individual fairness but rather, likely demonstrates the well known
trade-off between fairness and utility.

1 INTRODUCTION

The proliferation of data driven algorithmic solutions in social domains has been a catalyst for research in fair machine
learning in recent years. Applications in high stakes decisions for criminal justice, predictive policing Ensign et al.
(2018), healthcare, finance and beyond, have fueled the need for formal definitions of fairness notions, metrics, and
mitigation techniques. In a recent survey, on fairness in machine learning, authors highlight five major dilemmas
regarding progress in the space. The first two of these concern trade-offs. The first is that between fairness and model
performance Hajian & Domingo-Ferrer (2012); Corbett-Davies et al. (2017); Calmon et al. (2017); Haas (2019). The
second is that between different notions of fairness Darlington (1971); Chouldechova (2016); Kleinberg et al. (2016);
Hardt et al. (2016); Barocas et al. (2019); Murgai (2023). The latter of these is credited with stifling progress in
earlier research in the space Cole & Zieky (2001); Hutchinson & Mitchell (2019). Thus clarity around compatibility
of different fairness measures of performance and fairness are important in moving the field forward.

A common claim is that there is a trade-off/tension between the notions of individual fairness and group fair-
ness Narayanan (2018); Speicher et al. (2018); Pessach & Shmueli (2022); Caton & Haas (2023). This stems from the
concern that, in cases where the target trait is indeed distributed differently between sensitive subgroups, the only way
to satisfy statistical parity, is through preferential treatment of one group over another; but this in turn would violate
the requirement to treat similar individuals similarly. For this case, Dwork et al. themselves suggest a modification that
relaxes the Lipschitz condition Dwork et al. (2011). More recently Binns argued the conflict lies in the implementation
rather than the concepts Binns (2019).

Apart from the above scenario, the claim of a trade-off between group and individual fairness has empirical support
in Speicher et al. (2018) and it is this which serves as motivation for studying the corresponding fairness metric
(referred to as individual cost hereafter). In this paper, we highlight important differences in the definition of individual
fairness as originally defined by Dwork et al. (2011) and in the empirical analysis by Speicher et al. (2018). In
particular, we show that while individual fairness defined by Dwork et al. can be viewed as an extension of group
fairness, that decouples the tasks of ensuring fairness and maximising utility, individual cost (as the choice of name
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implies) can be viewed as an extension of utility (or rather expected risk) and so is in some cases is a monotonic
function of accuracy.

The definition of individual cost in the original paper is extremely flexible, and authors make several seemingly ar-
bitrary choices for parameters. Thus, while the construction of the metric seems principled, its behaviour is opaque.
Nevertheless, individual cost has been implemented in open source libraries Bellamy et al. (2018) and has traction
among researchers. Recent surveys include it Pessach & Shmueli (2022); Caton & Haas (2023) and one recent paper
optimises for it while developing a fair algorithm Jin et al. (2023).

Here we examine individual cost in detail, shedding light on its behaviour and meaning. We reason about its generality
and describe constraints on parameters that ensure it is not a measure of expected risk, but rather expected luck. In
addition we discuss important properties of the metric for different choices of the generalisation parameter α. In the
last part of the paper, we derive a new representation of individual cost under the assumption that accurate predictions
are equally lucky for the individual. This allows us to visualise the behaviour of individual cost, covering all but one
remaining degree of freedom. Finally we employ finite difference methods in this novel context in order to analytically
describe the deviation region. That is, the part of the model solution space where incrementally increasing accuracy,
increases unfairness.

The rest of this paper is organised as follows. In Section 2 we briefly review notions of fairness relevant to the
discussion. In Section 3 we move on to individual fairness Dwork et al. (2011), clarifying its definition and position
as an extension of group fairness, rather than being in contention with it. We note important conceptual features, and
pay special attention to the case of a binary classifier, as this is the case for which empirical evidence of a trade-off is
claimed Speicher et al. (2018). In Section 4, we describe individual cost Speicher et al. (2018). In section 5, we derive
a new representation of individual cost, showing it can be written as a function of two model performance related
parameters; namely, prediction accuracy and mean prediction error. With this new representation of the metric, we are
able to answer the following question. For which set of model error distributions does incrementally increasing the
accuracy, reduce fairness according to this metric? Our analysis shows that this only happens when the ratio of false
positives to correct predictions is sufficiently high (greater than half the number of accurate predictions for the specific
parameter choices in Speicher et al. (2018)). Furthermore, such a ratio can only be achieved if the prediction accuracy
is sufficiently low (66.7% for the specific parameter choices in Speicher et al. (2018)). We conclude that the empirical
evidence does not support the existence of a trade-off between group and individual fairness but rather demonstrates
the well known trade-off between fairness and utility.

Our main contibution is to elucide the behaviour of individual fairness and individual cost.

• We clarify important defining features of individual fairness, framing it as an extension of group fairness rather than
acting in opposition to it.

• We conduct a detailed analysis of individual cost, showing how it can be viewed as an extension of expected risk.
In addition we discuss some much needed guidance around parameter selection in calculating individual cost high-
lighting index properties for different choices.

• We derive a new representation of individual cost in terms of model performance metrics and reconcile conflicting
empirical evidence demonstrating a trade-off between group and individual fairness.

• Using finite difference method, we derive an analytical expression for the deviation region - where decreasing
accuracy increases fairness.

2 BACKGROUND

Early methods for quantifying fairness, motivated by the introduction of anti-discrimination laws in the US in the
1960s, were developed with the goal of measuring bias in assessment tests for education and employment opportuni-
ties Cleary (1968); Einhorn & Bass (1971); Cole (1973); Novick & Petersen (1976). The metrics presented in these
works fall under what has since become known as group fairness Barocas et al. (2019); Hutchinson & Mitchell (2019);
Pessach & Shmueli (2022); Caton & Haas (2023) which considers differences in treatment (outcomes or errors) across
subgroups of a population. Informally, individual fairness is the notion that similar individuals should be treated sim-
ilarly Aristotle (350 B.C.); Guion (1966). A formal definition as equivalence to continuity with capped gradient, was
first proposed by Dwork et al. (2011). Shortly after Zemel et al. Zemel et al. (2013) introduced their individual fairness
metric which quantifies the consistency of a mapping, by comparing each individual outcome with the mean of the
outcomes for its k nearest neighbours and averaging over the population. More recently Speicher et al. Speicher et al.
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(2018) proposed a measure of individual fairness, which we term individual cost, and is the subject of much of this
paper. Finally, related to both group and individual fairness is the concept of counterfactual fairness Kilbertus et al.
(2017); Kusner et al. (2018), which argues that the prediction distribution should be independent of both the sensitive
features, and their causally dependent attributes.

In 2011, Dwork et. al. moved the formal definition of fairness beyond discrimination based on protected character-
istics, towards a more generalised definition known as individual fairness Dwork et al. (2011). Individual fairness is
based on the notion that similar individuals (with respect to the task) should be treated similarly and does not restrict its
attention to protected characteristics, but allows all features to be incorporated in the notion of fairness. Its origin can
be traced back to Aristotle, who wrote in the context of legal theory that “like cases should be treated alike” Schauer
(2018). Formal definition of the concept came in the form of a continuity constraint on the model mapping. This new
definition resolved the above issues with group fairness by construction. Importantly, by requiring the definition of
a similarity metric, it decoupled the tasks of maximising utility and ensuring fairness so that they can be performed
independently.

Implementation of individual fairness presents several challenges, the main one being that its definition is incomplete.
One must define a similarity metric in feature space. Researchers and practitioners alike argue that rather than solving
the problem of finding a fair model that maps individuals to predictions, individual fairness has added to the challenge
by requiring the definition of a task specific similarity metric. Indeed, obtaining the similarity metric is a non-trivial
task and an active area of research Zemel et al. (2013); Lahoti et al. (2019). We argue that this new paradigm makes
explicit the importance of consistency in fair decision making. According to individual fairness, which requires
continuity Dwork et al. (2011), deterministic classification is inherently unfair Narayanan (2018) and to achieve it,
we must turn to probabilistic models in which predictions are randomised Dwork et al. (2011). For many, this flies in
the face of logic.

3 INDIVIDUAL FAIRNESS

Informally, given a model that maps individuals to predictions, individual fairness can be interpreted as the requirement
that, two individuals that are close in input (feature) space X are also close in output (target/prediction) space Y .
Dwork et al. note that in order to satisfy this constraint, the model mapping must be continuous, as defined next.

Lipschitz Continuity Consider a model to be a function ŷ = f(x), which maps individuals x ∈ X to probability
distributions over y ∈ Y , that is, f : X 7→ P(Y). Then the mapping f is Lipschitz continuous if there exists a real
valued, non-negative constant K ∈ R≥0 such that

dP(Y)(f(xi), f(xj)) ≤ KdX (xi,xj) ∀ xi,xj ∈ X

where dX : X × X 7→ R and dP(Y) : P(Y)× P(Y) 7→ R denote distance metrics. dX determines how far apart two
individuals are in feature space and dP(Y) measures the distance between two probability distributions over Y .

For individual fairness we can omit the Lipschitz constant without loss of generality since it can be absorbed into the
definition of the similarity metric. Individual fairness essentially caps the rate at which the predictions can change with
respect to the input features. Individual fairness does not concern itself with the specific decisions ŷ, but rather the
consistency with which they are made across individuals |dŷ/dx|. Individual fairness is a property of a mapping from
input x to output ŷ (or y), not a measure of how one mapping differs from another ŷ−y. In this sense, model accuracy
and individual fairness are orthogonal. Individual fairness cares only how similar people are, not how they are ranked,
the latter is determined by maximising utility. Rather than relying on the existence of a potentially untrustworthy
ground truth data set, individual fairness requires the definition of a similarity metric to determine what is fair.

In summary, according to individual fairness the model mapping must be continuous and the smaller the model gradient
(based on the similarity metric, df/dx), the more similarly individuals are treated. If the gradient is zero, we have
equality - all individuals are mapped to the same distribution over outcomes and we have satisfied the individual
fairness constraint. Of course such a model wouldn’t be much use, as it would not take into account the features x of
the individuals in its predictions. Essentially, we have reduced the problem of training a fair model f(x, y) to one of
constrained optimisation: min

θ

{
E(x,y)∈(X,y) Eŷ=f(x,y;θ) [L(X,y, ŷ)]

}
,

such that dP(Y)(f(xi, y), f(xj , y)) ≤ dX (xi,xj) and f(xi, y) ∈ P(Y) ∀xi,xj ∈ X.
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It might be argued that individual fairness has not provided an answer to the problem, it has instead created a new one
that’s equally hard. However, in this new formulation, the importance of consistency in decision making is explicit.
This separation of the tasks of maximising utility and ensuring fairness means they can be completed independently
by two separate stakeholders. So a trusted party (regulator, auditor, risk manager) could determine the similarity
function. The definition could be open, transparent and subject to debate and improvement over time as laws and
culture evolve. The similarity metric essentially provides a mechanism through which to express a world view. In
spirit, this characterization of (individual) fairness aligns with the arguments of Friedler et al. (2016); Binns (2019).

Conceptually, we can think of individual fairness as group fairness (more specifically statistical parity since it is
interested in outcomes only), but in the limit as the subgroup size tends to one and Z → X . Here, the outcomes are
allowed to vary with the features, but within some limit which can be dependent on the feature. In theory, if X includes
sensitive features, we could set this limit to zero for those features by specification in the similarity metric, though in
practice zeros might complicate things if we are for example trying to learn representations Lahoti et al. (2019). Thus,
individual fairness can be viewed as an extension of group fairness rather than being in contention with it; faced with
observations to the contrary, one would be wise to investigate further.

While randomness in judicial decisions might be contentious, in other contexts it might be desirable, or even neces-
sary, to create a competent model. Indeed the most capable conversational AIs today produce randomised responses to
prompts OpenAI (2023). In 2017, Google translate was consistently translating genderless languages (Finnish, Esto-
nian, Hungarian, Persian, and Turkish) using gender-stereotyped pronouns in all cases (for example he is a doctor and
she is a nurse) Caliskan et al. (2017). Randomised predictions would sometimes return “she is a doctor”. Arguably,
this would be fairer, since female doctors are erased by this technology. In 2019 almost 49% the doctors in the 37
countries in the Organization for Economic Cooperation and Development (OECD) were reportedly female OECD
(2021). The problem that we identify here is not exclusive to gender. There are often multiple reasonable translations
of the same sentence, even without gender associations. By returning only the most probable answer, the technology
hides uncertainty and reduces diversity in its output. In 2018 Google introduced some fixes Kuczmarski (2018), but
the solution (returning multiple translations) is not generalised beyond gender. Though perhaps not the best solution
here, randomisation in predictions is one way to improve diversity in output and thus representation, which is where
choosing the Bayes optimal solution fails spectacularly.

4 INDIVIDUAL COST AS AN EXTENSION OF EXPECTED RISK

In this section we describe the individual fairness metric used to evidence the trade-off between group and individual
fairness Speicher et al. (2018), which we term individual cost to avoid confusion. Individual cost is calculated in two
steps. First we must map model predictions ŷi to the individual benefit bi. Second, we must choose an an inequality
index I(b) to calculate how unequally benefits b = (b1, b2, ..., bn) are distributed among the population consisting of
n individuals.

4.1 MAPPING PREDICTIONS TO BENEFITS

To map predictions to benefits in this case, authors suggest using one plus the error, that is, bi = ŷi − yi + 1. For a
binary classifier, the error is either zero, or plus or minus one. Adding one to the error means the benefits are always
zero or positive, a requirement for measuring inequality. In addition, at least one individual must benefit, so that the
total benefit is positive. Here we assume that y = 1 is the advantageous outcome, in which case we can think of
the benefit from the perspective of the individual as luck. A false positive, is the luckiest prediction (bi = 2), a false
negative the unluckiest (bi = 0) and an accurate prediction is between the two (bi = 1). More generally, authors
suggest the benefit can be any function of ŷ and target y, ignoring x ensures anonymity. For a classifier, the benefit
function can be expressed as a matrix. bij = benefit(ŷ = i, y = j).

Individual cost appears to represent a simplified measure of individual fairness. Rather than comparing individuals by
their features, it compares them by their outcome - "treating individuals deserving similar outcomes similarly" Speicher
et al. (2018). Clearly this metric is not the same as individual fairness as described in the previous section. Individual
fairness does not trust the target at all while individual cost relies on it entirely. Individual cost is a property that
compares two mappings (the prediction and the target) while individual fairness is a property of a single mapping.
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4.2 MEASURING INEQUALITY WITH GENERALISED ENTROPY INDICES

There are many indices that measure inequality differently, but they all share the following properties:

• Symmetry: The function is symmetric in benefits, so that changing their order does not change the value of the
index.

• Zero-normalisation: They are minimised with a value of zero, only for uniformly distributed benefits;
• Transfer principal: Transferring benefits from richer to poorer, always decreases the value of the index, provided

the rich and poor don’t switch places in their ranking as a result of the transfer; and
• Population invariance The measure is independent of the size of the population. It depends only on the distribution.

In addition to satisfying the above properties, generalised entropy indices are also scale invariant, that is the value of
the index does not change under a constant scaling of the benefits.

For benefits b = (b1, b2, ..., bn) with mean benefit µ, the generalised entropy index can be written as,

Iα(b) =
1

n

n∑
i=1

fα

(
bi
µ

)
where fα(x) =


− lnx if α = 0
x lnx if α = 1
xα − 1

α(α− 1)
otherwise.

(1)

The generalisation parameter α controls the weight applied to benefits at different parts of the distribution. Since
benefits can be zero for the proposed choice of benefit function, we must choose a value of α > 0. For example,
Speicher et al. (2018) choose α = 2 for their experiments.

Generalised entropy indices are the complete single parameter (α) family of inequality indices with the additional
property of subgroup decomposability Shorrocks (1980). This means that for any partition of the population into
subgroups, we can additively decompose the index into a between-group component and a within-group component.
The between group component is the contribution from variations in the mean benefit, between subgroups. The within-
group component is the contribution from the variation in individual benefits, within the subgroups. If we think of the
predictive system as a means for distributing benefits and we are able to map model predictions to benefits, we can
use inequality indices to measure how unfair the algorithm is in its distribution of those benefits. If we use generalised
entropy indices, we can think of the inequality index as a measure of individual unfairness and the between group
component as a measure of group unfairness, allowing us to identify when trade-offs happen. Empirical evidence of
the trade-off in Speicher et al. (2018) (shared with permission in the Appendix A.1) is provided for two data sets, both
of which are binary classification problems. Index decomposition details can be found in Appendix A.2.

4.3 CONNECTION WITH UTILITY

The connection between measures of inequality and risk has been known for some time. For example, Atkinson
exploited it to derive his own measure of inequality Atkinson (1970) over half a century ago. Note that calculating
individual cost is much like calculating a cost sensitive loss. Here, the associated cost matrix is not constant, but rather
depends on the mean benefit, cij = cost(ŷ = i, y = j) = bij/µ. As our model performance changes, so does the
mean benefit µ, the associated costs cij and index value I(b). The mean benefit µ is always positive and so does not
affect the relative size or ordering of the costs in the matrix. Thus, although mean benefit will affect the index value,
it will not change the order of preference of different benefit distributions b. We can understand the influence of the
mean benefit on the index value as follows,

Iα(b) = E
[
fα

(
b

µ

)]
=

E[fα(b)]− fα(µ)

µα
.

If we define bi = P(ŷi = yi) and choose α = 0, the index behaves like the cross entropy loss. If we instead have
a regression problem we can define bi = ŷi − yi and choose α = 2, then the index behaves like the mean squared
error. So, we can see that in some cases, this generalised metric behaves like known measures of expected risk.
Individual cost might then be viewed as an extension of expected risk (or luck), since not all the possible metrics
that can be constructed via the recipe, would result in a valid or meaningful objective function. For example, one
such requirement is that of Fisher consistency. That is, we want a model to be an unbiased estimator of the target,
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E(ŷ) = E(y). For this we need the minima of our objective function to coincide with the expected value of the target.
For a binary classifier with bi = P(ŷi = yi), α = 0 and α = 2, are the only two values for which this is true Buja
et al. (2005).

The parameter α determines how fast the contribution to the index grows as a function of the benefit. For α > 1 the
contribution to the index grows faster than the benefit (prioritising equality among the lucky), and slower for α < 1
(prioritising equality among the unlucky). Thus arguably, we should choose a value of 0 < α < 1. Finally, for the
values α = 0 and α = 1, the within-group component is a true weighted average of the index values for the subgroups,
since the coefficients sum to one. For α ∈ (0, 1) the coefficients sum to less than unity, being the sum minimised for
α = 1/2. For α > 1, the coefficients sum to more than unity.

Though the original authors specify no constraints regarding the benefit matrix, we argue that there should be some,
much like for the cost matrix. In particular, if an accurate prediction is more beneficial than an incorrect prediction
(the leading diagonal dominates), then the index is simply a cost sensitive expected risk which always decreases with
increasing accuracy. We can assume then, without loss of generality, that ŷ = 1 is the advantaged outcome. In this
case, the second row of the benefit matrix bij = benefit(ŷ = i, y = j) must dominate the first, b10 > b00 and
b11 > b01. Since the index is scale invariant we can fix the value b11 = 1 (akin to fixing the unit of account). Since
we know that a false negative is the least lucky outcome, setting this value to zero establishes the baseline. Although
increasing all the benefits in the matrix by a fixed amount, will no doubt decrease inequality (a rising tide lifts all
boats), it will not change the ranking of different benefit distributions. Then we can write the benefit matrix most
generally as, bij = ((b−, 0), (b+, 1)) where b+ > b− > 0.

5 INDIVIDUAL COST ANALYSIS

In this section we elucidate further the behaviour of individual cost. To simplify the problem, we assume that accurate
predictions are equally lucky. Then we have b− = 1 with b+ > 1. b+ tells us how much luckier a false positive is
compared to an accurate prediction. The value of the inequality index depends on the mean benefit µ, or equivalently
the total benefit B = nµ. As the model performance changes, so does the mean benefit and thus the associated costs.
The mean benefit µ is always positive and so does not affect the relative size or ordering of the costs in the matrix, but
can still impact the relative preference of different predictions. Crucially, specifying b+ > b− means that making a
more accurate prediction might not always reduce the value of the index.

5.1 THE INDEX AS A FUNCTION OF MODEL PERFORMANCE METRICS

Individual cost can be written as a function of two model performance related parameters; prediction accuracy λ and
the mean benefit µ. Recall, the latter is just the expected prediction error plus one E(Ŷ − Y ) + 1.
Theorem 1. For the benefit function bi = ŷi − yi + 1 we can rewrite the generalised entropy index as:

Iα (µ, λ) =


(
1− λ

µ

)
ln b+ − lnµ if α = 1

1

α(α− 1)

[(
b+
µ

)α−1

−
(bα−1

+ − 1)

µα
λ− 1

]
if α > 0.

(2)

See Appendix B for the proof.

Equation (2) shows that for fixed µ, Iα(µ, λ) is a linearly decreasing function of the accuracy λ. For b+ = 2, the mean
benefit µ, gives us an indication of the relative number of false positive to false negative errors made by the model;
it tells us if the model ŷ is over or underestimating the target y on average. From another point of view, it quantifies
the amount of skew in the distribution of errors. µ < 1 indicates positive skew (and vice versa for µ > 1). Figure 1
provides visual illustrations of benefit distributions with different mean benefits µ. When the mean benefit is one (as
in the central figure), the distribution has no skew; it is symmetric.

Both λ and µ are constrained. For any reasonable binary classifier, model accuracy is bounded, 0.5 ≤ λ ≤ 1. The
total number of benefits B, is minimized when all errors are false negatives and maximised when all errors are false
positives. For a model with accuracy λ = nc/n, the total benefit B, must satisfy the following bounds,

nc ≤ B ≤ nc + b+(n− nc) = b+n+ (1− b+)nc.
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Figure 1: Characterization of benefit distributions with different mean benefits µ.

Figure 2: Generalised entropy index Iα (µ, λ) as a function of µ for varying λ and fixed α and b+ = 2.

Since, B = nµ, we must have λ ≤ µ ≤ b+ + (1− b+)λ. Thus, Iα(µ, λ) : ([λ, b+ + (1− b+)λ], [0.5, 1]) 7→ R≥0. As
model accuracy λ increases, the range of possible values the mean benefit µ can take, decreases. The domain is then a
triangle. When b+ = 2, the domain is an isosceles triangle. In Figure 2, we provide a side-view of the index surface
for the case b+ = 2.
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Figure 3: Visualisation of the local domain space for given µ, λ and n, assuming the point (µ, λ) is not on an edge.

5.2 WHEN DOES INCREASING THE ACCURACY REDUCE THE INDEX?

Let us denote the cost of an error as,
∆I±α (b) = Iα(b

±)− Iα(b).

Here b± differs from b by one prediction only, containing one less correct prediction, and one more erroneous one.
For b+, the additional error is a false positive. For b−, the additional error is a false negative. An additional false
negative error, reduces the total benefit B, by one; both the accuracy λ and the mean benefit µ are reduced by 1/n. An
additional false positive error, increases the total benefit B, by δ = (b+ − b−); the accuracy λ is once again reduced
by 1/n, but this time the mean benefit µ increases by δ/n. The discrete grid of adjacent models that we can reach
through a small change in the model (given µ, λ and n), is shown in Figure 3. Hence,

∆I±α (µ, λ;n) = Iα

(
λ− 1

n
, µ± δ

n

)
− Iα(µ, λ). (3)

Theorem 2.
∆I−α (µ, λ;n) < 0 ⇒ µ < h−(α, b+)λ
∆I+α (µ, λ;n) < 0 ⇒ µ > h+(α, b+)λ

}
(4)

where,

h±(α, b+) =


(b+ − 1) ln b+
b+ − 1∓ ln b+

if α = 1

α(b+ − 1)(bα−1
+ − 1)

[(α− 1)(b+ − 1)∓ 1]bα−1
+ ± 1

if α > 0, α ̸= 1.

(5)

See Appendix B for the proof.
Theorem 3. For the benefit function bi = ŷi − yi + 1, the only kind of error which is ever preferable to a correct
prediction under this benefit function is a false positive. This happens only when the mean benefit exceeds h+(α, b+)λ.
We note that for a model whose accuracy is greater than λ̂(α), it is not possible for the mean benefit to exceed the
required level. That is,

∆I−α (µ, λ;n) > 0 ∀µ, λ, n
∆I+α (µ, λ;n) < 0 ⇒ µ > h+(α, b+)λ,

where, h+(α, b+) is defined in Equation (5).

See Appendix B for the proof.

We term the part of the domain for which the index is reduced by decreasing the accuracy, the deviation region. The
deviation region is described as, µ > h+(α, b+)λ. We mark the deviation region on the contour plot for Iα(µ, λ) in
Figure 4. These results show that individual cost expresses a preference for false positives, which makes sense given
that they increase the total benefit. This is inline with the results from the original authors who find that for both tested
datasets (Adult and COMPAS), rejecting more individuals increases the index. See the Appendix A.1 for details. For
reference, in Table 1, we provide some values of λ̂(α) and h+(α, b+). Now that we have identified the deviation
region we return to the original question. For which set of error distributions does increasing the accuracy reduce
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Figure 4: Contour plots showing Iα(µ, λ) for different values of α and b+ = 2.

Table 1: Reference thresholds that tell us when increasing the error rate must reduce the value of the index. This
corresponds to the top of the triangular deviation regions shown in the contour plots in Figure 4.

α λ̂(α)a h+(α, b+)
b

1 61.4% 2.26 a We require λ < λ̂(α) for the possibility that reducing the index value may not correspond
to reducing the error rate. At λ = λ̂(α), all the errors must be false positives to achieve the
value of µ required for ∆I+(µ, λ;α, n) < 0.

b We require µ > h+(α, b+)λ for a false positive error to result in a reduction of the index
value.

2 66.7% 2
3 71.4% 1.8
4 75.6% 1.65

unfairness according to this metric? The analysis shows that this only happens when the ratio of false positives to
correct predictions is sufficiently high (greater than half the number of accurate predictions for the specific parameter
choices in the paper). Furthermore, such a ratio can only be achieved if the prediction accuracy is sufficiently low
(66.7% for the specific parameter choices in Speicher et al. (2018)).

6 CONCLUSIONS

In this work we present arguments which resolve conflicting research on the nature of individual fairness Dwork et al.
(2011). We clarify important defining features of individual fairness, framing it as an extension of group fairness, rather
than acting in opposition to it. In particular, we emphasise the importance of the definition of individual fairness being
orthogonal to utility. We review empirical evidence of the trade-off between group and individual fairness and derive
a new representation for the associated individual fairness metric Speicher et al. (2018) (which we term individual
cost). With this new representation we prove that individual cost is a function of model accuracy and express exactly
when fairness and accuracy are inversely related. We conclude that empirical evidence does not support the existence
of a trade-off between group and individual fairness but rather likely demonstrates the well known trade-off between
fairness and utility.
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7 REPRODUCIBILITY STATEMENT

For readers who wish to reproduce any part of this paper, all relevant resources are open source and can be found on
GitHub. All proofs can be found in the Appendix.
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A INDIVIDUAL COST AS AN EXTENSION OF EXPECTED RISK

A.1 EMPIRICAL EVIDENCE OF THE TRADE-OFF BETWEEN GROUP AND INDIVIDUAL FAIRNESS

Figure 5 from Speicher et al. (2018) shows how the between-group component of the index IGβ (b;α) (solid line) and
index value Iα(b) (dotted line) change with the acceptance threshold, for a variety of models. We see that the optimal
thresholds for each metric (assumed to be measures of group and individual fairness respectively) do not coincide,
supporting the theory of a trade-off between group and individual fairness.

Figure 5: Between-group unfairness (solid lines) and overall unfairness (dotted lines) as a function of the decision
ranking threshold (τ ) for various classifiers from Speicher et al. (2018).

A.2 GENERALISED ENTROPY INDEX DECOMPOSITION

For any partition G of the population into subgroups, the generalised entropy index I , is additively decomposable, into
a within-group component IGω , and between-group component IGβ ,

I(b;α) =
1

n

n∑
i=1

fα

(
bi
µ

)
= IGω (b;α) + IGβ (b;α).

The within-group component is the weighted sum of the index measure for each subgroup

IGω (b;α) =

|G|∑
g=1

ng

n

(
µg

µ

)α

I(bg;α) ∀α. (6)

The between-group component is computed as the value of the index in the case where, each individual is assigned
the mean benefit of their subgroup

IGβ (b;α) =

|G|∑
g=1

ng

n
fα

(
µg

µ

)
. (7)

B INDIVIDUAL COST ANALYSIS

Theorem 1. For the benefit function bi = ŷi − yi + 1 we can rewrite the generalised entropy index as:

Iα (µ, λ) =


(
1− λ

µ

)
ln b+ − lnµ if α = 1

1

α(α− 1)

[(
b+
µ

)α−1

−
(bα−1

+ − 1)

µα
λ− 1

]
if α > 0.

(2)
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Proof. Let’s suppose the model makes nc correct predictions (in which case b = 1); n+ false positive predictions (in
which case b = b+); and the remaining n − nc − n+ predictions are false negative (in which case b = 0). We can
write the value of the index as,

Iα(b) =
1

n

[
(n− nc − n+)fα(0) + ncfα

(
1

µ

)
+ n+fα

(
b+
µ

)]
.

From equation (1) we know,

fα(0) =


0 for α = 1

−1

α(α− 1)
for α > 0,

fα

(
1

µ

)
=


− lnµ

µ
for α = 1

1

α(α− 1)

(
1

µα
− 1

)
for α > 0,

fα

(
b+
µ

)
=


b+(ln b+ − lnµ)

µ
for α = 1

1

α(α− 1)

(
bα+
µα

− 1

)
for α > 0.

⇒ Iα(b) =


− (nc + b+n+)

n

lnµ

µ
+

b+n+ ln b+
nµ

for α = 1

1

α(α− 1)

(
nc + bα+n+

nµα
− 1

)
for α > 0.

Let us denote the accuracy of our model with λ. We have,

λ =
nc

n
and µ =

nc + b+n+

n
⇒ b+n+

n
= µ− λ.

Substituting completes the proof.

Theorem 2.
∆I−α (µ, λ;n) < 0 ⇒ µ < h−(α, b+)λ
∆I+α (µ, λ;n) < 0 ⇒ µ > h+(α, b+)λ

}
(4)

where,

h±(α, b+) =


(b+ − 1) ln b+
b+ − 1∓ ln b+

if α = 1

α(b+ − 1)(bα−1
+ − 1)

[(α− 1)(b+ − 1)∓ 1]bα−1
+ ± 1

if α > 0, α ̸= 1.

(5)

Proof. Equation (2) provides an expression for Iα(µ, λ). Substituting for λ and µ in the case α = 1 gives,

Iα

(
µ± δ

n
, λ− 1

n

)
=

[
1−

(
λ

µ
− 1

nµ

)(
1± δ

nµ

)−1
]
ln b+ − lnµ− ln

(
1± δ

nµ

)
.

For α > 0, we get,

Iα

(
µ± δ

n
, λ− 1

n

)
=

1

α(α− 1)

[(
b+
µ

)α−1 (
1± δ

nµ

)1−α

−
(bα−1

+ − 1)

µα−1

(
λ

µ
− 1

nµ

)(
1± δ

nµ

)−α

− 1

]
.

We showed earlier that we must have, λ ≤ µ ≤ b+ + (1 − b+)λ, in addition, any reasonable model should satisfy
0.5 ≤ λ ≤ 1. We deduce that we must have 0.5 ≤ µ ≤ 1.5 and so µ = O(1). Then for large n, we can be sure that
nµ is large and its reciprocal ϵ = 1/(nµ) is small. For large n, we can write the cost of an error as

∆I±α (µ, λ;n) = ξα(µ, λ)ϵ+O(ϵ2)
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where,

ξα(µ, λ) =


(
1± δλ

µ

)
ln b+ ∓ δ if α = 1

1

α(α− 1)µα−1

[[(
1± (1− α)δ

)
bα−1
+ − 1

]
µ± αδ(bα−1

+ − 1)λ

]
if α > 0.

Theorem 3. For the benefit function bi = ŷi − yi + 1, the only kind of error which is ever preferable to a correct
prediction under this benefit function is a false positive. This happens only when the mean benefit exceeds h+(α, b+)λ.
We note that for a model whose accuracy is greater than λ̂(α), it is not possible for the mean benefit to exceed the
required level. That is,

∆I−α (µ, λ;n) > 0 ∀µ, λ, n
∆I+α (µ, λ;n) < 0 ⇒ µ > h+(α, b+)λ,

where, h+(α, b+) is defined in Equation (5).

Proof. False negatives

h−(α, b+) =


(b+ − 1) ln b+
b+ − 1 + ln b+

if α = 1

1−
(2− b+)b

α−1
+ + α(b+ − 1)− 1

[(α− 1)(b+ − 1) + 1]bα−1
+ − 1

if α > 0, α ̸= 1

(8)

Equation 8 reveals that h−(α, b+) is a strictly increasing function of α, for α > 0 (since αbα−1
+ dominates α). In

addition, we can see that h−(α, b+) → 1− as α → ∞. For a plot of h−(α, b+) see Figure 6 in the Appendix. Earlier

Figure 6: h−(α, b+) = 1−
(2− b+)b

α−1
+ + α(b+ − 1)− 1

[(α− 1)(b+ − 1) + 1]bα−1
+ − 1

.

we showed that we must have µ ≥ λ. Then from Equation (4), for ∆I−α (µ, λ;n) < 0 we need h−(α, b+) > 1. Since
h−(α, b+) < 1 for all α > 0, we know that making an additional false negative error, never decreases the value of the
index.

False positives

h+(α, b+) =


(b+ − 1) ln b+
b+ − 1− ln b+

if α = 1

α(b+ − 1)(1− b1−α
+ )

α(b+ − 1)− b+ + b+1− α
if α > 0, α ̸= 1

(9)
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Figure 7: h+(α, b+) =
α(b+ − 1)(1− b1−α

+ )

α(b+ − 1)− b+ + b+1− α
Figure 8: λ̂(α) =

b+
h+(α, b+) + b+ − 1

.

Equation 9 reveals that h+(α, b+) is a decreasing function of α, since b+1− α is a strictly decreasing function of α.
In addition, we can see that h+(α, b+) → 1+ as α → ∞. Earlier we showed that we must have µ ≤ b+ − (b+ − 1)λ.
Then from Equation (4), for ∆I+α (µ, λ;n) < 0 we need,

h+(α, b+)λ < b+ − (b+ − 1)λ ⇔ λ < λ̂(α) =
b+

h+(α, b+) + b+ − 1
.

From what we know about h+(α, b+), we can deduce that λ̂(α) is an increasing function of α, and λ̂(α) → 1− as
α → ∞. Since λ̂(α) < 1 for all α > 0, we know there are indeed some circumstances, under which a false positive
error, decreases the value of the index. For plots of h+(α, b+) and λ̂(α), see Figures 7 and 8.
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