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ABSTRACT

Recent works have demonstrated that graph convolution neural networks fail
either to capture long-range dependencies in the network or suffer from over-
smoothing issues. Several recent works have proposed implicit graph neural net-
works to remedy the issues. However, despite these issues being magnified in dy-
namic graphs, where the feature aggregation occurs through both the graph neigh-
borhood and across time stamps, no prior work has developed implicit models to
overcome these issues. Here we present IDGNN, a novel implicit neural network
for dynamic graphs. We demonstrate that IDGNN is well-posed, i.e., it has a
unique fixed point solution. However, the standard iterative algorithm often used
to train implicit models is computationally expensive in our setting and cannot be
used to train IDGNN efficiently. To overcome this, we pose an equivalent bi-level
optimization problem and propose a single-loop training algorithm. We conduct
extensive experiments on real-world datasets on both classification and regression
tasks to demonstrate the superiority of our approach over the state-of-the-art base-
line approaches. We also demonstrate that our bi-level optimization framework
maintains the performance of standard iterative algorithm while obtaining up to
1600x speed-up.

1 INTRODUCTION

Graph Convolution Network (GCN) (Kipf & Welling, 2016) and its subsequent variants (Veličković
et al., 2018; Li et al., 2018b) have raised the bar in predictive tasks in various applications: molec-
ular prediction (Park et al., 2022), recommendation (Liao et al., 2022), and hyperspectral image
classification (Hong et al., 2020). GCNs have also been extended to the dynamic setting, where the
graph changes over time. Even in the dynamic setting, GCNs have achieved state-of-the-art results
for tasks including rumor detection (Sun et al., 2022) and traffic prediction (Li et al., 2023).

Despite their success, GCNs have a significant drawback. Empirical evidence suggests that deepen-
ing the layers of GCN can lead to a notable decline in their performance, even beyond a few (2-4)
layers. This phenomenon is called over-smoothing (Li et al., 2018a), wherein the stacked GCN
layers gradually smooth out the node-level features, resulting in a degradation of performance on
node-level tasks. Meanwhile, to capture long-range dependencies, multiple GCN layers need to be
stacked since a single GCN layer can only aggregate information from neighboring nodes that are
one hop away. This creates a conflict where, on the one hand, one would like to capture dependen-
cies between nodes that are far away in the network by stacking multiple layers of GCN together.
On the other hand, one would like to avoid the over-smoothing problem by only using a few layers.
To tackle this dilemma in the static setting, Gu et al. (2020) proposed an implicit graph neural net-
work (IGNN), which iterates the graph convolution operator until the learned node representations
converge to a fixed-point representation. Since there is no a priori limitation on the number of layers,
it is able to alleviate the over-smoothing problem without sacrificing long-range dependency.

In the case of dynamic graphs, GCN needs to aggregate information over the current graph topology
and historical graphs to learn meaningful representations. This corresponds to stacking at least one
GCN layer per time stamp. This is exacerbated in current practice, where widely used approaches
stack multiple GCN layers even within a single time stamp. Therefore, the over-smoothing issue
is even magnified for GCNs in dynamic settings. However, very few prior works study the over-
smoothing phenomenon in dynamic graphs: Yang et al. (2020) proposes an L2 feature normalization
process to alleviate the over-smoothing in dynamic graphs and Wang et al. (2022) mitigates the over-
smoothing problem by emphasizing the importance of low-order neighbors via a node-wise encoder.
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However, these approaches either rescale features or forget neighborhood information, both of which
are not ideal.

Inspired by the success of implicit GCNs in overcoming the over-smoothing and long-range depen-
dency conflict, here we propose to develop an implicit neural network for dynamic graphs from the
first principle. However, we noticed that there are multiple barriers including i) determining if fixed-
point (converged) representations exist in dynamic graphs; ii) and if yes, efficiently training a model
to find these fixed-point representations. In this paper, we overcome barrier i) by first proving the
existence of the fixed-point representations on periodic dynamic graphs and extending this result to
design an implicit model for general dynamic graphs and barrier ii) by designing an efficient bilevel
optimization algorithm. The key contributions of the paper are as follows:

• We propose an effective embedding learning framework for dynamic graphs. To the best
of our knowledge, IDGNN is the first method that tackles the dynamic graph problem via
an implicit neural network.

• We present a bilevel optimization viewpoint of our method and propose a novel stochastic
optimization algorithm that can efficiently train our model. We conducted an ablation study
to show that our proposed optimization algorithm is faster than naive gradient descent up
to 1600 times.

• We conduct comprehensive comparisons with existing methods and demonstrate that our
method alleviates the over-smoothing problem and outperforms the state-of-the-art Tempo-
ral GNN models on both classification and regression tasks.

2 RELATED WORK

Dynamic Graph Representation Learning: GNN has been successful for static graphs, leading to
the development of GNN-based algorithms for dynamic graphs (Khoshraftar & An, 2022). DyGNN
(Ma et al., 2020) comprises two components: propagation and update, which enable information
aggregation and propagation for new interactions. EvolveGCN (Pareja et al., 2020) uses an RNN
to update GCN parameters and capture dynamic graph properties. Sankar et al. (2020) proposes
a Dynamic Self-Attention Network (DySAT) with structural and temporal blocks to capture graph
information. TGN (Rossi et al., 2020) models edge streaming to learn node embeddings using an
LSTM for event memory. TGAT (Xu et al., 2020) considers the time ordering of node neighbors.
Gao & Ribeiro (2022) explores the expressiveness of temporal GNN models and introduces a time-
then-graph framework for dynamic graph learning, leveraging expressive sequence representations
like RNN and transformers.

Implicit Graph Models: The implicit models or deep equilibrium models are models with im-
plicitly determined parameters. Bai et al. (2019). propose an equilibrium model for sequence data
based on the fixed-point solution of an equilibrium equation. El Ghaoui et al. (2021) introduce a
general implicit deep learning framework and discuss the well-posedness of implicit models. Gu
et al. (2020) demonstrate the potential of implicit models in graph representation learning, specif-
ically with their implicit model called IGNN, which leverages a few layers of graph convolution
network (GCN) to discover long-range dependencies. Park et al. (2021) introduces the equilibrium
GNN-based model with a linear transition map, and they ensure the transition map is contracting
such that the fixed point exists and is unique. Liu et al. (2021) propose an infinite-depth GNN that
captures long-range dependencies in the graph while avoiding iterative solvers by deriving a closed-
form solution. Chen et al. (2022) employ the diffusion equation as the equilibrium equation and
solve a convex optimization problem to find the fixed point in their model.

Implicit Models Training: Efficiently training implicit models has always been a key challenge.
Normally, the gradient of implicit models is obtained by solving an equilibrium equation using fixed-
point iteration or reversing the Jacobian matrix (Gu et al., 2020). However, training implicit models
via implicit deferential introduces more computational overhead; the following works aim to reduce
the training cost. Geng et al. (2021) propose phantom gradient to accelerate the training of implicit
models based on the damped unrolling and Neumann series. Li et al. (2022) leverage stochastic
proximal gradient descent and its variance-reduced version to accelerate the training.
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3 METHODOLOGY

Here, we first consider a discrete-time cyclic dynamic graphs G = {G1, ..., GT } where each Gt is a
snapshot graph at time t represented by the tuple (At, Xt). At 2 Rn⇥n is the adjacency matrix of
Gt and Xt 2 Rl⇥n is the node attribute matrix, where n the number of distinct nodes in all snapshots
and d the dimension of node attribute. In general, implicit models have the following framework,

Zk+1 = f(Zk, X) (1)
where f is neural network, X is data and Z is learned representation. When we stack infinite
layers of f , we obtain the fixed-point representation Z⇤ = limk!1 Zk+1 = limk!1 f(Zk, X) =
f(Z⇤, X). Thus, the key to designing an implicit model for dynamic graphs is to provide a function
f with a convergence guarantee.

3.1 IMPLICIT MODEL FOR DYNAMIC GRAPHS

We construct the following building block for dynamic graphs with T time stamps:
Zk+1
2 = �(W2Z

k
1A2 + V X2)

· · ·
Zk+1
T = �(WTZ

k
T�1AT + V XT )

Zk+1
1 = �(W1Z

k
TA1 + V X1) (2)

In the model presented above, the learned representations Zk+1
2 of the nodes in the second time

stamp in the (k + 1)th layer depend on the embeddings Zk
1 of nodes in the first time stamp learned

in kth layer and the feature vector in the second time stamp X2. This design enables us to propagate
information among time stamps when stacking layers. The parameters for the t-th layer of the model
are denoted as Wt 2 Rd⇥d and V 2 Rd⇥l (with V being a shared weight). Note that our theory
still holds when V is not shared. We opt for a shared V for simplicity, and a thorough discussion on
this choice is presented in the Appendix. Following the principle of the implicit model (El Ghaoui
et al., 2021; Bai et al., 2019; Gu et al., 2020), we apply our model iteratively until convergence.
We consider the converged result {Z1, . . . , ZT } as the final embeddings. Consequently, the final
embeddings have to satisfy the system of equations in (2) and can be considered a fixed point solution
to (2). However, at this point, it is not clear whether it always exists for arbitrary graph G.

Well-posedness is a property that an implicit function, such as in (2), possesses a unique fixed point
solution. We note that Gu et al. (2020) has already established the well-posedness for one layer
implicit graph neural network on static graphs as given by the following Lemma.

Lemma 1 The equilibrium equation z = �(Mz+b) has a unique fixed point solution if k|M |kop <
1, where k.kop is the operator norm, and �(·) is an element-wise non-expansive function.

In order to establish the well-posedness result for our model, we first introduce a vectorized version
of our model and leverage Lemma 1. The vectorized version of Equation (2) is as follows.

zk+1
2 = �(M2z

k
1 + vec(V X2))

· · ·
zk+1
T = �(MT z

k
T�1 + vec(V XT ))

zk+1
1 = �(M1z

k
T + vec(V X1)) (3)

where z = vec(Z) and Mi = A>
i ⌦ Wi, and ⌦ is the Kronecker product. Note that 3 can also

be expressed using a single matrix. This transformation involves sequentially connecting the shared
nodes between the graphs. Thus, the formula (3) can be reformulated as follows:
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We omit the superscript for simplicity. It is evident that equations (4) and (3) are equivalent, with
Formula (4) representing a single equilibrium equation. Note that Equation (4) represents the time-
expanded static view of our original dynamic graph G. As a result, we can readily deduce the
well-posedness result of (3) based on Lemma (1).

Theorem 1 For element-wise non-expansive function �(·), the coupled equilibrium equations (3)

have a unique fixed point solution if k|M|kop < 1, where M define as

2
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and k|M |kop is the operator norm of M , which is the largest absolute eigenvalue. Furthermore, this

means k|Mt|kop < 1 for any t = 1, ..., T .

In order to maintain kMkop < 1, it is necessary to ensure that the condition �pr(|W |)�pr(A) < 1
is satisfied, where �pr(·) represents the Perron-Frobenius eigenvalue. However, guaranteeing this
constraint can be challenging in general. To overcome this challenge and ensure the condition
k|M|kop < 1, we can leverage the following theorem, which imposes a more stringent requirement
on W . Following the approach used in Gu et al. (2020), we can utilize a convex projection to ensure
the satisfaction of W .

Theorem 2 Let � be an element-wise non-expansive non-linear function. The coupled equilibrium

equations satisfy the well-posedness condition, namely k|W |kopkAkop < 1. There exists rescale

coupled equilibrium equations, which satisfy kWk1kAkop < 1, and the solutions of these two

equations are equivalent.

4 TRAINING

The key challenges in training our model lie in determining how to perform backpropagation ef-
fectively, especially within the context of implicit models. To address this challenge, most implicit
models rely on estimating gradients using the Implicit Function Theorem (Bai et al., 2019; Gu et al.,
2020). This approach offers several advantages, such as eliminating the need to store intermediate
results during the forward pass and enabling direct backpropagation through the equilibrium point.

We first explore the naive gradient descent method employing the Implicit Function Theorem. While
widely used in various techniques, this approach presents certain drawbacks when applied to our
specific model, particularly in terms of computational overhead. Subsequently, we introduce an
efficient training algorithm for our model, which adopts a bilevel viewpoint of our problem. This
novel approach allows us to overcome the limitations of the naive gradient descent method, resulting
in improved computational efficiency during training.

Objective: Let us consider classification and regression tasks for the following discussion. We
consider a dataset (Gi, yi)

N
i=1, which consists of N dynamic graphs and their corresponding targets.

Each dynamic graph comprises T time stamps. We utilize a neural network, parameterized by ✓
and denoted as f✓(.), to map graph embeddings to their respective targets. Our objective can be
summarized as follows:

min
✓,W ,V

L(✓,W , V ) =
NX

i=1

`(f✓(z
(i)
T ), yi) (5)

s.t. z(i)2 = �
⇣
(A(i)
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2 )z(i)1 + vec(V X(i)

2 )
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· · ·
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(A(i)
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1 )z(i)T + vec(V X(i)

1 )
⌘
,

kWtk1  

kA(i)
t k1

, i = 1, ..., N, t = 1, ..., T

where ` is a loss function ( e.g. cross entropy loss, mean square error). Let A(i)
j , X(i)

j , and z(i)j
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represent the adjacency matrix, feature, and embedding, respectively, of the j-th timestamp within
the i-th dynamic graph.

Naive Gradient Descent: Naive Gradient Descent operates in a straightforward manner: it first
finds the fixed-point embedding through fixed-point iteration and then computes the gradient based
on this embedding. The gradient with respect to parameter ✓ can be obtained as @L

@✓ , which is easily
computed using autograd functions given the fixed point. However, computing the gradient for other
parameters presents a greater challenge. Let @L

@Pi
represent the gradient with respect to Wi or Vi. For

simplicity, we only consider the gradient of only one dynamic graph. The gradient is computed as
@L
@Pi

=
PT

j=1
@L
@zj

@zj
@Pi

. The computation of @L
@zj

can be achieved through the autograd mechanism.

However, determining @zj
@Pi

is non-trivial due to the implicit definition of zj .

To avoid using tensors, we represent the matrices W , and V as column-wise vectorized vectors
denoted as w, and v, respectively. The learned embeddings must satisfy the following equations:

F2(z,W, V ) = z2 � �(M2z1 + vec(V X2)) = 0

...
FT (z,W, V ) = zT � �(MT zT�1 + vec(V XT )) = 0

F1(z,W, V ) = z1 � �(M1zT + vec(V X1)) = 0

According to the implicit function theorem, we can calculate the gradients @z
@w and @z

@v through
implicit differentiation. The detailed derivation is provided in the Appendix. Therefore, for any
time stamp k, the gradient of zk with respect to the a-th layer of GCN, wa, can be expressed as:

@zk
@wa

� ⌃0
k �

✓
�akHk ⌦ I +Mk

@zk�1

@wa

◆
= 0 (6)

Here, Hk := (Zk�1Ak)>, �ak is the indicator function which equals 1 only when a = k, and �
denotes element-wise multiplication. Each column of ⌃0

k represents the vectorized �0(Mkzk�1 +
vec(V Xk)), where �0(·) is the derivative of �(·). Similarly, we can compute the gradient of zk with
respect to v.

@zk
@v

� ⌃0
k �

✓
X>

k ⌦ I +Mk
@zk�1

@v

◆
= 0 (7)

Per-iteration Complexity of naive gradient descent: Formulas (6) and (7) reveal that the deriva-
tives are determined by equilibrium equations. Consequently, in order to compute the derivatives,
we must solve these equations using fixed-point iteration. Each layer necessitates one round of fixed-
point iteration, and in total, including V , we need to perform fixed-point iteration T + 1 times. The
major computational overhead arises from the multiplication of M with the derivatives, resulting
in a complexity of O((nd)2d2). Each fixed-point iteration involves T instances of such computa-
tions. Consequently, the overall runtime for each update is O(T 2n2d4). Although the adjacency
matrix is sparse, it only reduces the complexity to O(T 2nd4). This limitation in complexity poses
constraints on applying our model to deeper dynamic graphs and hampers our ability to utilize large
embeddings.

4.1 EFFICIENTLY UPDATE VIA BILEVEL OPTIMIZATION

To address the previously mentioned challenges, we can turn to Bilevel Optimization as a potential
solution, considering that Formula (5) can be regarded as a conventional problem in bilevel opti-
mization. To facilitate this approach, we will rephrase Formula (5) using the subsequent Lemma.

Lemma 2 If Formula (3) has an unique embedding {z⇤1 , · · · , z⇤T }, let j := j mod T , then

the equation zj = �(Mj+T�(Mj+T�1 · · ·�(Mj+1zj + vec(V Xj+1)) · · · + vec(V Xj+T�1)) +
vec(V Xj+T )) has the same fixed point as z⇤j for any j 2 {1, · · · , T}, and vice versa.

According to Lemma 2, we can convert the problem presented in Equation (5) into a standard bilevel
optimization problem. This transformation allows us to utilize established techniques and method-
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Algorithm 1 Stochastic Training Algorithm for IGDNN

Require: D = {(Gi, yi)}Ni=1, ⌘1, ⌘2, �
Ensure: !, ✓

for t = 0, 1, ...,M do

Sample a batch data B 2 D

zt+1
j =

⇢
(I � ⌘1)ztj + ⌘1�(ztj ,!

t;Gi) j 2 B
ztj o.w.

vt+1
j =

⇢
(I � ⌘2r2

zzg(z,!
t))vtj + ⌘2rz`j(ztj ,!

t) j 2 B
vtj o.w.

Update gradient estimator

�t+1 =
1

|B|
X

j2B

⇥
r!`j(z

t
j ,!

t)�r2
!zgj(zj ,!

t)vtj
⇤

mt+1 = (1� �)mt + ��t+1

!t+1 = ⇧⌦

�
!t � ⌘0mt+1

�

end for

ologies for solving such problems.

min
✓,W ,V

L(✓,W , V ) =
NX

i=1

`(f✓(z
(i)), yi) (8)

s.t. z(i) = argmin
z

kz � �(z,W , V ;Gi)k22

kWtk1  

kA(i)
t k1

, i = 1, ..., N, t = 1, ..., T

where �(z,W , V ;Gi) = �(M (i)
T ...�(M (i)

1 z + V X(i)
1 )...+ vec(V X(i)

T )),  2 (0, 1] is the hyperpa-
rameter to control the strength of the projection. The main difference between these problems lies
in the constraint. Formula (8) introduces explicit constraints solely on the last snapshot, leading to
a multi-block bilevel optimization problem. This problem has been investigated in recent studies
by Qiu et al. (2022) and Hu et al. (2022). Qiu et al. (2022) focus on top-K NDCG optimization,
formulating it as a compositional bilevel optimization with a multi-block structure. Their approach
simplifies updates by sampling a single block batch in each iteration and only updating the sampled
blocks. Hu et al. (2022) employ a similar technique but address a broader range of multi-block
min-max bilevel problems.

However, these state-of-the-art bilevel optimization algorithms are designed to address problems
with strongly convex lower problems, which does not hold true for our problem. For simplicity,
we use notation ! = {W , V }, let gi(z,!) represent the ith-block lower problem, defined as kz �
�(z,!;Gi)k22, and let `i(z,!) := `(f✓(z), yi). It is evident that g(.) is nonconvex with respect to z.
Additionally, these methods utilize stochastic gradient descent on the lower level in each iteration,
leading to potential extra computation. Nevertheless, it is crucial to note that the optimal solution to
our lower-level problem corresponds to the fixed point of Eq (3), as per Lemma 2. Leveraging this
insight, we employ a fixed-point iteration to update the lower-level solution. We propose a single
loop algorithm 1 with fixed-point updates.

To better illustrate our algorithm, let us introduce the hypergradient with respect to ! as follows:

rL(!) = 1

N

NX

i=1

r`i(z
(i),!)�r2

!zgi(z
(i),!)

h
r2

zzgi(z
(i),!)

i�1
rz`i(z

(i),!)

If we compute this directly, we may encounter problems with the Hessian
⇥
r2

zzgi(z
(i),!)

⇤�1

for each block. Inspired by Hu et al. (2022) and Qiu et al. (2022), we approxi-
mate

⇥
r2

zzgi(z
(i),!)

⇤�1 rz`i(z(i),!) using vi for each block by moving average estimation.
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Table 1: Statistics of datasets. N : number of dynamic graphs, |V |: number of nodes, min |Et|:
minimum number of edges, max |Et|: maximum number of edges, T : window size, d: feature
dimension, y label dimension

N |V | min |Et| max |Et| T d y
Brain10 1 5000 154094 167944 12 20 10
DBLP5 1 6606 2912 5002 10 100 5
Reddit4 1 8291 12886 56098 10 20 4
PeMS04 16980 307 680 680 12 5 3
PeMS08 17844 170 548 548 12 5 3

English-COVID 54 129 836 2158 7 1 1

More specifically, we maintain a vi to track the optimal point of the following problem
minv

1
2v

Tr2
zzgi(z

(i),!)v�vTrz`i(z(i),!) for each block. Let zi be a moving average approxima-
tion to the optimal lower-level solution z(i). Moreover, we use fixed-point iteration to update z, as
presented in Algo. 1. We do not want to update all blocks in every iteration since this is impractical
when the number of blocks is large. To address this issue, we use stochastic training. For sampled
blocks, we update their z and v, and we compute the hypergradient. In cases where the lower-level
problem is strongly convex, the errors introduced by these approximations are well-contained (Hu
et al., 2022). We notice our lower-level problem admits a unique fixed point, and then employing
fixed-point iteration becomes an efficient means of attaining the optimal lower-level solution, akin
to the effectiveness of gradient descent under strong convexity. Hence, it is justifiable to assert that
our approximations are effective in this scenario, with empirical evidence robustly endorsing their
practical efficacy.

It is important to note that the multiplication r2
!zgj(zj ,!

t)vtj can be efficiently obtained using a
trick called Hessian vector product. As a result, the training time for our algorithm is proportional
to normal backpropagation, eliminating the need for fixed-point iterations.

Per-iteration Complexity of naive gradient descent: the main computational overheads are up-
dating v and estimating gradient. Both steps are involved with estimating a huge Hassian matrix,
but, in practice, we can use a trick called Hassian-Vector-Product to avoid explicitly computing the
Hessian matrix. Therefore, the dominant runtime of bi-level optimization is three times backpropa-
gation. Each backpropagation takes O(Tnd2 + Tn2d).

5 EXPERIMENTS

In this section, we present the performance of IDGNN in various tasks, including effectiveness in
capturing long-range dependencies and avoiding over-smoothing on a synthetic dataset. We evaluate
the performance of IDGNN against nine state-of-the-art baselines on various real-world datasets.
Detailed descriptions of the baseline approaches are presented in the Appendix. Specifically, we
perform experiments on three node classification datasets and four node regression datasets. The
statistics of the dataset are presented in Table (1). For more detailed descriptions, experimental
setup, and hyper-parameter selection, please refer to the Appendix.

5.1 OVER-SMOOTHING AND LONG-RANGE DEPENDENCY ON TOY DATA

The toy example aims to test the ability of all approaches to capture long-range dependencies while
preventing over-smoothing. The toy data we constructed consists of {5, 10, 15, 20} snapshots, with
each snapshot being a clique of 10 nodes. Each node has 10 associated attributes. The task is to
classify nodes at the last snapshot, where each node represents its own class (i.e., there are a total
of 10 classes). The node attributes consist of randomly generated numbers, except for the first
snapshot, which uses the one-hot representation of the class. Successful classification of this dataset
requires effective information aggregation starting in the initial time stamp, propagating the class
label information over time, and avoiding over-smoothing as the information is propagated. In this
dataset, there are no testing nodes; all nodes are used for training.

The training results are presented on the right. Our model is compared with GCN-GRU (Seo et al.,
2018) and TGCN (Zhao et al., 2019). Based on these models, we propose two more modified
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(a) (b) (c)

Figure 1: (a) and (b) are training loss and accuracy curves when using 10 layers. The x-axis is
epochs, and the y-axis is cross entropy loss and accuracy, respectively. (c) represent the accuracy
results of all baselines under different layer settings.

baselines: IGNN-GRU and TIGNN, which are obtained by replacing GCN with IGNN. We ensure
the comparison is fair by ensuring a similar number of parameters are used, and we test all models
on {5, 10, 15, 20} layers. All methods are trained for a maximum of 2000 epochs, followed by
the hyper-parameter selection approach described in the Appendix. As shown in the figure, our
method achieves fast convergence to a low loss state and maintains 100% accuracy. In contrast,
the baselines fail to reach 100% accuracy due to over-smoothing issues. This demonstrates that our
model effectively mitigates the problem of over-smoothing while capturing long-range dependency.

5.2 REGRESSION

For node-level tasks, there are two evaluation paradigms: transductive and inductive. Transductive
evaluation allows the model to have access to the nodes and edges in testing data during training
(i.e., only the labels are hidden), while inductive evaluation involves testing the model on new nodes
and edges. In simpler terms, transductive evaluation separates training and testing sets based on
nodes, while inductive evaluation separates them based on time stamps (i.e., models are trained on
past time stamps and tested on the future). Here, we conduct experiments on both settings.

The datasets we used for the regression task are England-COVID, PeMS04, and PeMS08. We
use the mean average percentage error (MAPE) as our evaluation metric. The results are reported in
Table. 2 with mean MAPE and standard deviation. Our proposed method outperforms other methods
in both transductive and inductive settings, with the exception of the inductive case in England-
COVID. Our method demonstrates significant improvement for PeMS04 and PeMS08, particularly
in the transductive learning scenario. In comparison to the second-best method, our proposed model
reduces the error by over 1%, but our model on the inductive learning scenario doesn’t enjoy such
improvement. We attribute this difference to our model’s tendency to separate nodes, even when
they have the same labels and topology. We delve into this phenomenon in the Appendix.

Table 2: Performance for classification task (ROCAUC) and regression task (MAPE (%)). Perfor-
mances on Brain10, England-COVID, PeMS04, and PeMS08 for baseline methods are taken from
Gao & Ribeiro (2022). The best performance for each dataset is highlighted in bold, while the
second-best performance is underlined.

Classification Regression
Model Brain10 DBLP5 Reddit4 England-COVID PeMS04 PeMS08

Trans. Induc. Trans. Induc. Trans. Induc.
EvolveGCN-O 0.58±0.10 0.639±0.207 0.513±0.008 4.07±0.73% 3.88±0.47% 3.20±0.25% 2.61±0.42% 2.65±0.12% 2.40±0.27%
EvolveGCN-H 0.60±0.11 0.510±0.013 0.508±0.008 4.14±1.14% 3.50±0.42% 3.34±0.14% 2.84±0.31% 2.81±0.28% 2.81±0.23%

GCN-GRU 0.87±0.07 0.878±0.017 0.513±0.010 3.56±0.26% 2.97±0.34% 1.60±0.14% 1.28±0.04% 1.40±0.26% 1.07±0.03%
DySAT-H 0.77±0.07 0.917±0.007 0.508±0.003 3.67±0.15% 3.32±0.76% 1.86±0.08% 1.58±0.08% 1.49±0.08% 1.34±0.03%

GCRN-M2 0.77±0.04 0.894±0.009 0.546±0.020 3.85±0.39% 3.37±0.27% 1.70±0.20% 1.20±0.06% 1.30±0.17% 1.07±0.03%
DCRNN 0.84±0.02 0.904±0.013 0.535±0.007 3.58±0.53% 3.09±0.24% 1.67±0.19% 1.27±0.06% 1.32±0.19% 1.07±0.03%
TGAT 0.80±0.03 0.895±0.003 0.510±0.011 5.44±0.46% 5.13±0.26% 3.11±0.50% 2.25±0.27% 2.66±0.27% 2.34±0.19%
TGN 0.91±0.03 0.887±0.004 0.521±0.010 4.15±0.81% 3.17±0.23% 1.79±0.21% 1.19±0.07% 1.49±0.26% 0.99±0.06%

GRU-GCN 0.91±0.03 0.906±0.008 0.525±0.006 3.41±0.28% 2.87±0.19% 1.61±0.35% 1.13±0.05% 1.27±0.21% 0.89±0.07%
IDGNN 0.94±0.01 0.907±0.005 0.556±0.017 2.65±0.25% 3.05±0.25% 0.53±0.05% 0.63±0.04% 0.45±0.11% 0.50±0.05%
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(a) Memory and runtime comparison results for all methods
on reddit4 and DBLP5 datasets. We report the memory usage
using MB and runtime using seconds per window.

Reddit4 DBLP5
Mem. Time Mem. Time

EvolveGCN-O 42 0.0649±0.0165 52 0.0672±0.0144
EvolveGCN-H 52 0.0904±0.0195 82 0.0997±0.0367

GCN-GRU 221 0.0733±0.0118 200 0.1142±0.0446
DySAT-H 181 0.1613±0.0555 165 0.1343±0.0123

GCRN-M2 322 0.4345±0.0804 319 0.4934±0.0763
DCRNN 223 0.1697±0.0185 278 0.2121±0.0397
TGAT 793 0.0750±0.0142 338 0.0770±0.0150
TGN 450 0.0417±0.0042 233 0.0454±0.0121

GRU-GCN 4116 0.0199±0.0084 580 0.0161±0.0071

IDGNN 89 0.0291±0.0069 75 0.0302±0.0022

(b) Runtime and performance comparison
between fixed-point (FP) and bilevel (Bi)
Methods.

Runtime (s/win) Fixed-point Bilevel
Brain10 624 0.39

PeMS04 0.72 0.049

PeMS08 0.29 0.046

England-COVID 0.092 0.030

Performance Fixed-point Bilevel
Brain10 94.7 94.5
PeMS04 0.628 0.58

PeMS08 0.501 0.56
England-COVID 2.97 3.05

5.3 CLASSIFICATION

We conducted classification experiments on Brain10, DBLP5, and Reddit4 datasets. Since these
datasets consist of only one dynamic graph, we focused on testing the transductive case. Evaluation
was done using the Area under the ROC Curve (AUC) metric. The average prediction AUC values
and their corresponding standard deviations are presented in Table. 2. Our proposed model achieved
the top rank in 2 out of 3 datasets and was the second best in the remaining dataset. These results
demonstrate that our model successfully captures the long-range dependencies within the dynamic
graphs, as reflected in the learned embeddings.

5.4 EFFICIENCY

We compare runtime and performance between naive gradient descent and bilevel optimization algo-
rithms. To this end, we conduct comparisons on Brain10, England-COVID, PeMS04, and PeMS08.
The results are summarized on the right. The results are computed by averaging the runtime of a
whole epoch with the number of dynamic graphs N .

These methods have similar performance, but the runtime results show that the bilevel optimization
algorithm is much faster than the naive gradient descent. Especially, in the Brain10 dataset, bilevel
algorithm achieves 1600 times of speedup compared with naive gradient descent. Furthermore, we
notice that the ratio of runtimes in PeMS04 and PeMS08 is 0.72

0.29 = 2.48, and the squared ratio of
their number of nodes is ( 307170 )

2 = 3.26. This confirms our complexity result for naive gradient
descent, which is quadratic in terms of the number of nodes. On the other hand, the bilevel method
exhibits only linear dependency. We also present the memory usage and runtimes of all methods on
Reddit4 and DBLP5, but we leave those and the theoretical complexity comparison in the Appendix
due to space limit. The memory efficiency of implicit models comes from the fact that implicit
models can use few parameters and do not need to store the intermediate results. However, we need
to store intermediate results and backpropagate for our bi-level method. Due to the simple RNN-
free architecture of our method, our approach is competitive in runtime and memory. We provide a
memory and runtime comparison on DBLP5 and Reddit4. The results are summarized in Tab. 3a

6 CONCLUSIONS

In this paper, we propose a novel implicit graph neural network for dynamic graphs. As far as we
know, this is the first implicit model on dynamic graphs. We demonstrate that the implicit model
we proposed has the well-posedness characteristic. We proposed a standard optimization algorithm
using the Implicit Function Theorem. However, the optimization turned out to be too computation-
ally expensive for our model. Hence, we proposed a novel bilevel optimization algorithm to train
our proposed model. We conducted extensive experiments on 6 real-world datasets and one toy
dataset. The regression and classification tasks show that the proposed approach outperforms all
the baselines in most settings. Finally, we also demonstrated that the proposed bilevel optimization
algorithm obtains significant speedup over standard optimization while maintaining the same per-
formance. A key limitation of our proposed approach is that only a single layer can be used for
each time-stamp and it does not naturally lend itself to inductive setting. In the future, we plan on
addressing this issue and also provide a diffusion model-based training algorithm.
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