V-PRISM: Probabilistic Mapping of Unknown Tabletop Scenes
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Figure 1: Our method takes a segmented (left) point cloud obser-
vation (middle left) and builds a continuous probabilistic map. This
map can be used to reconstruct the scene (middle right) or measure
uncertainty about the scene (right). The heat map shows uncertainty
in a 2D slice parallel with the table plane.

I. INTRODUCTION

As robots continue to be deployed in the world, there
is an ongoing need for methods that allow them to safely
and robustly operate in unknown, noisy scenes. The planning
techniques for tasks in such scenes often require an accurate
3D map of the objects within the scene. While some work
reconstructs scenes where objects belong to known classes
[1]], we focus on the harder problem of unknown objects.

The safe operation of robots necessitates not only accu-
racy but also introspection and uncertainty-awareness. These
notions of uncertainty can be incorporated into downstream
motion planning solvers for robustness and safety. However,
many algorithms typically used to reconstruct unkown objects
utilize neural networks to predict geometry [2]-[8]. Such
neural networks lack the ability to reason about uncertainty
and confidently predict incorrect labels [9]], [10]. Here, we
outline a Bayesian approach to capture uncertainty in a
principled manner.

We propose V-PRISM: Volumetric, Probabilistic, and
Robust Instance Segmentation Mapsﬂ V-PRISM is a frame-
work for building differentiable segmentation and occupancy
maps of tabletop scenes that contain multiple unseen objects.
The produced maps have a principled uncertainty metric.

Section [l gives an overview of Sigmoid Bayesian Hilbert
Maps. An overview of our method is given in Section 1l
The algorithmic details are then explained in Section [[V]and
Section [Vl We evaluate our method in Section [VIl

II. SIGMOID BAYESIAN HILBERT MAPS

Hilbert Maps. Introduced in [11], Hilbert Maps are a
method for continuous occupancy mapping of a robotic
environment. A map m : R? — [0,1] is built from a
feature transform ¢(x) by first observing a point cloud
with a depth sensor, then negative sampling along depth
rays to create an augmented dataset. Gradient descent is
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Figure 2: Overview of our method, V-PRISM. We take a segmented
point cloud and output a probabilistic segmentation map over 3D
space that can be used for both object reconstruction and principled
uncertainty. Our method first generates negative samples and hinge
points, then uses these to create an augmented dataset. Then the
probabilistic map is constructed by running an EM algorithm.

Principled Uncertainty

used to find the optimal weights for a map of the form
m(x) = o(w'¢(x)) where o : R — (0,1) is the sigmoid
function. This is equivalent to performing logistic regression
over the transformed points {(f(x;), ¥i) }ic[n)-

Usually, the feature transform ¢ is constructed from a
kernel function k and a set of hinge points hy, ..., h,, € R3.
Usually, these hinge points are chosen to be an evenly spaced
3D grid of points. The feature transform is then given by:

() = [k(x,hy), k(x,hy),..., k(x,hy,), 11T, (1)

Bayesian Extension. Hilbert Maps were extended to the
Bayesian setting in [12]. Instead of an individual weight
vector, the weight is treated as a normally distributed random
variable, w ~ P(w). Variational Bayesian logistic regression
as described in [13] is then performed over the augmented
data to obtain the approximate posterior distribution.

Once the posterior weight distribution is obtained, the
map m is defined by taking the expectation over the w
distribution. Because there is no analytic solution for this
expectation, approximations are used. The most common is:

Ew[w ' ¢(x)]
\/1 + § Var(w " ¢(x))

III. METHOD OVERVIEW

Ewlo(w'¢(x))] ~ o )

We want to construct a multiclass map m(x) that outputs
a distribution over c classes. Our method builds such a map
from segmented camera depth observations of a multi-object
scene through two main steps. A high level overview is
displayed in Figure 2] First, negative sampling is performed
as described in Section [V] where additional points are added
to the observed ones in order to form a new labelled point
cloud. We then generate a set of hinge points that are used
to construct a feature transform according to Equation (T).
This creates a set of augmented data.

Then, we perform Bayesian multi-class regression over
the transformed data with an expectation maximization (EM)
algorithm. The EM algorithm and model are explored in
Section along with evaluating m(x) for new x values.
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Algorithm 1 V-PRISM
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Once we have our map, we can use it to evaluate how likely
different points are to be occupied by different objects. We
can also reconstruct the meshes of each object by running
the marching cubes algorithm [14].

IV. SOFTMAX EM ALGORITHM

To create a Bayesian multi-class map, we consider using
a weight matrix W € R*™ where each row is normally
distributed, with the following likelihood function:

Py = kE|W,x) = softmax(W¢(x)) .

Because a conjugate prior for the softmax likelihood doesn’t
exist, we must use variational inference to find a posterior
Gaussian distribution. In our case, we will approximate
our posterior by a lower bound on the likelihood, Q(y =
EIW,x;0,8) < Py = k|W,x). We can maximize this
lower bound and use it as an approximation to the true
likelihood by solving the following:

argmagxIEw I Q(y = vilxi, Wi, §)].

This can be analytically solved for Wy ~ N(ug, Xg),
yielding the following optimal values found in [15]):
35— 1) X M)y B(xi)
a; = = ; (3)
Zk:1 )‘(fk)
2 = 0(x:) T Ska(xi) + (] 6(x,))* + 0 = 201 d(x).
4)

This implies a posterior distribution defined by /i, 3, where:

Sl = e MEwdx)ea) )

i=1

fix = S likluk + E (yi,k - % + 2ai)\(§i,k)) ¢(Xi)]
i=1
(6)

are the updates for a prior parameterized by fi, . These
equations create the EM algorithm shown in Algorithm [T}
which performs an update to our W distribution.

In order to make predictions about new points we need to
evaluate the following expectation:

P(y = k|x) = Ew [softmax(W¢(x))], . (7

There is no closed-form solution, so this requires approxi-
mation. Instead of sampling, we use a more computationally

efficient approximation described in [[16]:
1

2-c+ 3 Blo(z)) 7
with z; = [Wo(x)]r — [Weo(x)];. When combined with the
sigmoidal approximation in Equation (2), this becomes an
easily computable approximation to Equation (7).

Ew [softmax(W¢(x))], ~

V. OBJECT-CENTRIC NEGATIVE SAMPLING

Similar to many mapping methods, V-PRISM requires
negatively sampling points along depth camera rays. The
traditional negative sampling used, mentioned in Section [[]
performs poorly when the goal is to map an object resting
on a tabletop or other surface. To fully utilize the tabletop
structure within the environment, we propose a new negative
sampling method for object-centric mapping based on two
realizations: (1) negative samples are most useful when near
known objects; (2) points below a surface plane cannot be
occupied by objects resting entirely on or above that surface.

Our sampling method begins with a segmented point cloud
of the scene. We perform stratified uniform sampling along
each depth ray, only keeping points that are within 7g;
distance from at least one object center. Kept points are
labeled as unoccupied and added to the augmented dataset.
Next, we run RANSAC [[17] on the observed point cloud
to recover the table plane. Then, we uniformly randomly
sample points within rq,; from each object center and keep
any such points that fall below the plane. Again, kept points
are stored and labelled as unoccupied. Lastly, we perform
grid subsampling as described in [[18] in order to reduce the
number of points. We use different resolutions to subsample
empty points and points on object surfaces.

The resulting points are then transformed according to
Equation (I) to construct our set of augmented data. We
choose a set of hinge points consisting of a fixed grid around
the scene as well as a fixed number of random points sampled
from the surface points of each object.

VI. EXPERIMENTS
A. Baseline and Metrics

Baseline: Our baseline is a learning-based approach. We
use the PointSDF architecture from [5] with a sigmoid final
activation. We train this model on a dataset of scenes similar
to those discussed in Section composed of objects
from a subset of the ShapeNet [[19] dataset. We refer to this
baseline as PointSDF.

Metrics: We use two main metrics for comparison: inter-
section over union (IoU) and Chamfer distance (CD). IoU
is calculated by evaluating points in a fixed grid around each
object. Chamfer distance is calculated by first running the
marching cubes algorithm [[14]] on a level set of the prediction
function, then sampling surface points.

B. Generated Scenes from Benchmark Object Datasets

In this section, we evaluate our method against the
PointSDF baseline and ablate our sampling method on proce-
durally generated scenes. We generate a scene by randomly
placing meshes drawn from the ShapeNet [19], YCB [20],



ShapeNet Scenes YCB Scenes Objaverse Scenes
Method ToU CD ToU CD ToU CD
PointSDF | 0.360 0.010 0.460  0.015 | 0.347 0.025
V-PRISM | 0.309 0.011 0.500 0.012 | 0.464 0.018

Table I: Quantitative experiments comparing our method to two
baseline methods on procedurally generated scenes.

Method ShapeNet | YCB | Objaverse
w/ BHM Sampling 0.156 0.313 0.326
V-PRISM (ours) 0.309 0.500 0.464
w/o Under the Table 0.291 0.500 0.439
w/o Stratified Sampling 0.145 0.294 0.291

Table II: IoU Ablation experiments on our negative sampling
method on procedurally generated datasets.

and Objaverse datasets. We generate 100 scenes of up
to 10 objects for each mesh dataset.

Our first experiment on simulated scenes compares our
method with the PointSDF baseline. We report the IoU
and Chamfer distance in Table [Il PointSDF outperforms our
method on the ShapeNet scenes, where the meshes are drawn
from the same mesh dataset that it was trained on. On
all other datasets, our method outperforms PointSDF. The
performance of our method relative to our baseline indicate
that our method results in accurate reconstructions.

Our second experiment on simulated scenes ablates our
negative sampling method. We observe the effect of removing
key components of our technique. To remove the stratified
sampling with discrete, we use fixed steps along each ray.
We also compare against the original BHM sampling method
explained in [12]}, labeled as BHM Sampling. The IoU for
each generated dataset is reported in Table [l Our negative
sampling method outperforms the others on each dataset
and metric. This implies that our proposed sampling method
improves reconstruction quality compared to alternatives. .

C. Real World Scenes

We evaluate our method by qualitatively comparing re-
constructions on real world scenes. In order to get accurate
segmentations of the scene, we use the model from []2;2[] We
compute on five scenes consisting of multiple objects. We
compare our method to PointSDF. The qualitative comparison
can be seen in Figure [3] PointSDF struggles to coherently
reconstruct the scene. In contrast, our method is capable of
producing quality reconstructions even with very noisy input
point clouds. This suggests that our method is capable is
robust to unknown, noisy scenes.

D. Principled Uncertainty

We perform qualitative experiments on the uncertainty
metric of our maps. We measure uncertainty with entropy:

c
H,(x)=- ZP(y = ¢|x)In P(y = ¢|x).
k=1

We compare our method with an alternate version of our
method, where we train a single weight vector with stochastic
gradient descent (SGD) instead of the EM algorithm.

We calculate this uncertainty over a 2D slice for each of
our 5 real world scenes, which can be seen in Figure []
Qualitatively, we can see that our method obtains high
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Figure 3: Qualitative comparisons with PointSDF reconstructions.
First row: RGB images. Second row: the segmented point cloud
used as input. Third row: PointSDF reconstructions. Last row: V-

PRISM’s (our method) reconstructions. V-PRISM results in quality
reconstructions on noisy scenes.
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Figure 4: Qualitative comparison of uncertainty. Top row: the
observed point cloud with a green plane corresponding to the 2D
slice of the heat maps. We compare a non-probabilistic alternative
of V-PRISM (middle row) and our method (bottom row). In the
heat maps, the bottom is closer to the camera and the top is farther.
Lighter areas correspond to more uncertainty. Our method predicts
high uncertainty in occluded areas.

uncertainty values in occluded sections of the scene. The
heat maps suggest V-PRISM captures principled uncertainty.

VII. CONCLUSION

Principled uncertainty is necessary for the safety of many
robotics tasks. We proposed a framework for robustly con-
structing multi-class 3D maps of tabletop scenes named
V-PRISM. Our method works by iterating an EM algo-
rithm on augmented data to produce a volumetric Bayesian
segmentation map. To fully incorporate information from
depth measurements, we proposed a novel negative sampling
technique. Our maps were shown to have desirable properties
including robustness, quality reconstructions, and accurate
uncertainty measures through both quantitative and qualita-
tive experiments.
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