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ABSTRACT

Seismology faces fundamental challenges in state forecasting and reconstruction
(e.g., earthquake early warning and ground motion prediction) and managing the
parametric variability of source locations, mechanisms, and Earth models (e.g.,
subsurface structure and topography effects). Addressing these with simulations
is hindered by their massive scale, both in synthetic data volumes and numerical
complexity, while real-data efforts are constrained by models that inadequately
reflect the Earth’s complexity and by sparse sensor measurements from the field.
Recent machine learning (ML) efforts offer promise, but progress is obscured
by a lack of proper characterization, fair reporting, and rigorous comparisons.
To address this, we introduce a Common Task Framework (CTF) for ML for
seismic wavefields, demonstrated here on three distinct wavefield datasets. Our
CTF features a curated set of datasets at various scales (global, crustal, and local)
and task-specific metrics spanning forecasting, reconstruction, and generalization
under realistic constraints such as noise and limited data. Inspired by CTFs in
fields like natural language processing, this framework provides a structured and
rigorous foundation for head-to-head algorithm evaluation. We evaluate various
methods for reconstructing seismic wavefields from sparse sensor measurements,
with results illustrating the CTF’s utility in revealing strengths, limitations, and
suitability for specific problem classes. Our vision is to replace ad hoc comparisons
with standardized evaluations on hidden test sets, raising the bar for rigor and
reproducibility in scientific ML.

1 INTRODUCTION

Earthquake hazards, tragically illustrated by events like the 1971 M6.7 San Fernando, the 1999 M5.9
Athens (143 fatalities), and the 2011 M5.8 Virginia (up to $300M in damage) earthquakes, are among
the most challenging domains for prediction. Their underlying physics are inherently multi-physics
and multi-scale, yet current geophysics models cannot fully reproduce the vast observational data that
are available. Computational simulations of seismic wavefields must accommodate high-dimensional
heterogeneous media, with the numerical complexity increasing with the frequencies that need to be
resolved for effective hazard mitigation. Consequently, the seismological community has begun to
investigate machine learning (ML) and artificial intelligence (AI) techniques to accelerate the accurate
reconstruction of wavefields from simulations and data. Early results indicate that AI-accelerated
techniques can advance the probabilistic modeling of earthquake ground motions. Recent AI methods
for wavefield modeling include Neural Operators (e.g., Yang et al., 2023; Zou et al., 2024; Huang
& Alkhalifah, 2025; Kong et al., 2025; Lehmann et al., 2024b), Physics-Informed Neural Networks
(Moseley et al., 2023), a combination of both (Huang et al., 2025), and/or reduced-order models
that leverage many simulations to discover Proper Orthogonal Decomposition and function bases to
reconstruct wavefields at low costs (Rekoske et al., 2023; 2025).

The rapid development and adoption of these methods on seismological data and simulations has
outpaced efforts to compare them objectively. In the absence of a common evaluation standard, new
methods are not assessed fairly against existing approaches, resulting in weak baselines, reporting
bias, and inconsistent evaluations (McGreivy & Hakim, 2024; Wyder et al.). Few scientific and
engineering domains have mitigated these problems, instead relying on self-reporting by providing
both training and testing datasets to the community. While reducing the evaluation burden on the
original authors, self-reporting opens the door to problematic practices such as p-hacking and implicit
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Figure 1: The Seismic Wavefield CTF scores the performance of methods on (a) global wavefields
from sparse sensor measurements, (b) dense observations of real geophysical wavefields, and (c) dense
simulations of 3D crustal wavefields. These three datasets represent a broad range of challenging
datasets encountered frequently by seismologists and present challenges for models in forecasting
and state reconstruction.

optimization on the test set. Only with a truly withheld test set is a rigorous and impartial comparison
among methods possible.

Common task frameworks (CTFs) have been pivotal in driving and quantifying progress in ML and AI
(Donoho, 2017). Landmark CTFs catalyzed key advances: ImageNet (Deng et al., 2009) provided the
stage that revitalized Convolutional Neural Networks, with (Krizhevsky et al., 2012) demonstrating
their superiority over classical methods in large-scale image recognition. Natural-language challenges,
ranging from code generation (Chen et al., 2021) to formal reasoning and mathematics (Hendrycks
et al., 2021; Cobbe et al., 2021), have been central to advancing large language models, with recent
systems such as DeepSeek-R1-Zero demonstrating competitive performance alongside state-of-the-art
models (DeepSeek-AI et al., 2025). Competitive games have served as another CTF: matches in Go
and shogi provided the testbed that led to AlphaZero (Silver et al., 2018). Video game environments
such as the Arcade Learning Environment (Bellemare et al., 2013), based on Atari 2600 games,
enabled the breakthrough results of deep Q-networks (Mnih et al., 2015). Finally, platforms providing
models with control inputs, such as the OpenAI Gym (Brockman et al., 2016) and MuJoCo(Todorov
et al., 2012), have accelerated the development and testing of reinforcement-learning methods at
scale. Mature CTF platforms are therefore critical driving forces of innovation and progress.

Despite these successes, many domains beyond the major areas of computer vision, natural language
processing, and reinforcement learning still suffer from a lack of a community standard for fairly
evaluating new methods. Indeed, aside from critical assessment of protein structure prediction
CASP (predictioncenter.org) (Donoho, 2017), science and engineering have largely ignored CTFs
and have instead relied on self-reporting benchmarks. Recent work from Wyder et al. has begun to
bridge this gap by providing a CTF for scientific ML models on canonical nonlinear systems. But
substantial work remains: discipline-specific CTF suites, standardized evaluation protocols (including
withheld test sets), and community-maintained leaderboards are needed to ensure fair comparison,
reproducibility, and sustained progress.

1.1 THE SEISMIC WAVEFIELD COMMON TASK FRAMEWORK

We propose a CTF for seismology that is, in its initial release, primarily focused on evaluating ML
and AI algorithms modeling the seismic wavefields shown in Fig. 1. Based on the work from Wyder
et al., this CTF provides training datasets with explicit tasks related to forecasting and reconstruction
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under various challenges, such as noisy measurements, limited data, and varying system parameters.
Participants submit predictions for a withheld test set over specified timesteps. The predictions
are evaluated and scored on a diverse set of metrics by an independent referee and posted on a
leaderboard.

Scoring is by nature reductive—reducing a method’s performance to a single floating point value.
We adopt a multi-metric scoring scheme because a single score is often insufficient to characterize
suitability for different scientific uses. As a result, we use the carefully designed twelve-score system
from Wyder et al. which maps to critical tasks for seismic wavefield data objectively. A summary, or
composite score, is also computed that gives the overall score for a given method. Task-specific and
overall rankings are highlighted in this paper and displayed on a leaderboard.

For each submission we generate a radar plot that visualizes the twelve task scores (see Fig. 2-e).
This profile quickly conveys strengths and weaknesses—e.g., robustness to noise, performance in
limited-data regimes, or parametric generalization—so users can choose methods suited to their
needs. The composite score is the mean of the task scores; using multiple task-specific metrics avoids
a winner-take-all outcome and promotes methods that are fit-for-purpose across diverse seismological
applications.

Once the ctf4seismology is launched1, we invite the community to evaluate their methods on the
Seismic Wavefield CTF by taking the following steps:

1. Sign-up and Sign-in on Kaggle

2. Train your model with our training data and generate predictions for each task

3. Submit prediction files to the competition platform

4. See your score on the leaderboard

To interact with ctf4seismology before the competition launches, visit our GitHub repository, install
the ctf4seismology package, and evaluate your method on the seismo dataset. Our dataset and
Python package don’t require high-performance hardware and can be run on a laptop.

2 DATASETS & EVALUATION METRICS

We extend the CTF with three new challenging seismic wavefield datasets and evaluate the first one,
the global wavefields dataset, on several commonly used models in scientific machine learning (See
Fig. 1). The global wavefields dataset exhibits complex and challenging behavior for the tasks of
reconstruction and forecasting under the constraints of noise, limited data, and parametric dependence.
While this dataset serves as a starting point, the CTF will evolve to include both more complex
data and more challenging tasks. The Seismic Wavefield CTF is a sustainable platform that evolves
and grows as the community develops more sophisticated methods and algorithms and faces new
challenges.

2.1 SEISMIC WAVEFIELDS AS SPATIO-TEMPORAL SYSTEMS

Seismic wavefields are the response to the elastodynamic wave equation in Earth models of elastic
properties that vary in space. When the Earth models are uniform, solutions are simple spatiotemporal
fields of ballistic waves: P, S, and, when the Earth’s surface is included as a traction-free boundary,
surface Rayleigh and Love waves. Spatial and depth variations in Earth properties distort and scatter
the wavefields, yielding great complexity in the spatio-temporal pattern of seismic wavefields, with
numerical complexity that scales with resolvable seismic frequencies and domain size - the two main
bottlenecks in predicting ground motions relevant for seismic hazard analysis.

The first dataset, for which we present results in the leaderboard, is a dataset of globally propagating
seismic waves (Fig. 1-a). van Driel et al. (2015) developed an efficient workflow to generate and store
Green’s functions that can be reused for arbitrary source locations and receivers on the Earth’s surface
using the AxiSEM numerical solver (Nissen-Meyer et al., 2014). Such a framework has enabled
the vast dissemination of complex global wavefields, for Earth and Mars structures, democratizing

1We are proposing a launch date of March 1, 2026 on Kaggle
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Figure 2: The Seismic Wavefield CTF scores the performance of methods on (e) global wavefields
from sparse sensor measurements. (a) Data is collected and organized into matrices, which is then
split into testing and training sets. RMSE errors are computed for reconstruction and short-time
forecasting, while the spectral error computes the statistics of long-time forecasting (spatial or
temporal). (b) Forecasting and reconstruction tasks are evaluated on noise-free, low-noise, and
high-noise data. Methods are also evaluated when (c) only limited data is available and (d) for
reconstruction of parametrically dependent data.

access of the scientific community to modeled full wavefields (Krischer et al., 2017), which would
be otherwise computationally intractable for most scientists. We leverage this database of Green’s
function to construct a series of earthquake wavefields recorded at 2048 sensors located at the surface
of a sphere. The wavefields are computed in the IASP91 Earth model that was designed to match
the arrival time of P and S waves (Kennett & Engdahl, 1991) and has become a standard of radially
symmetric Earth models, where seismic properties (P wavespeed, S wavespeed, and Earth material
density) increased as a function of depth. Our dataset is built upon these Green’s functions, which,
when convolved with a source mechanism, deliver a realistic seismogram. We choose 2048 sensors
distributed on a Fibonacci sphere of 6371 km radius, a sampling rate of 1 Hz (resampled from the
original simulations that resolved as short as 2-second period waves), and time series up to 3600 s.
Each dataset file contains NumPy arrays with shape (time_steps, 2048) representing the vertical
z-component of velocity seismograms. Given that realistic waveform data span many orders of
magnitude, we normalize the dataset to have zero mean and unit variance per earthquake event,
ensuring temporal continuity and predictability for each task.

The second dataset (Fig. 1-c) is an extension of the curated datasets from Lehmann et al. (2024a).
It comprises synthetic 3D seismic wavefields in a heterogeneous 3D crustal model. Earthquakes
were modeled as point sources with a double-couple mechanism represented by 6 parameters; source
location and focal mechanism (strike, dip, and rake angle) were drawn at random within the model
volume. The modeled spatial and temporal scales are aligned with those used in recent AI models
of wavefields (e.g., Kong et al., 2025; Rekoske et al., 2025), relevant for seismic analysis of crustal
earthquakes that can pose substantial risk to people and infrastructure when they occur in populated
areas. Ten independent simulations were produced. Each simulation yields three-component velocity
seismograms on a 32× 32× 32 heterogeneous grid. Virtual sensors form a 94× 94 grid arranged on
the top of the model volume with 100 m spacing. These seismograms are sampled for 6 seconds at a
50 Hz.

The third dataset uses a novel geophysical sensing technology that leverages optical scattering to
transform telecommunication fibers into arrays of virtual sensors. Referred to as Distributed Acoustic
Sensing (DAS) (Fig. 1-b), this technology is revolutionizing the observations of earthquakes (e.g., Yin
et al., 2023), marine mammals (e.g., Wilcock et al., 2023), ocean dynamics (Lindsey et al., 2019), and
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structural health of offshore wind turbines. Major challenge for DAS are the massive data volumes
(Spica et al., 2023; Ni et al., 2023) and the complexity of the wavefields (Xu et al., 2025), motivating
AI-based compression and reconstruction (e.g., Ni et al., 2024). We prepared a dataset of ten 1-minute
recordings sampled at 5 Hz and low-pass filtered up to 1 Hz. The data presents interesting overlap
between earthquake and oceanographic signals at multiple spatial and temporal scales. The channel
spacing is 9.57 m and we trimmed the data files to 3000 channels among the 9000 channels available
on that particular fiber. Typical waves that dominate the shallow offshore DAS are the surface swell
that follows the dispersion relation ω2 = gk tanh kh, where ω is the angular frequency, g is the
gravity constant, k is the wavenumber, and h is the water depth. For the test set provided, h ∼ 30m,
making surface gravity waves particularly dispersive in the data.

2.2 METRICS

2.2.1 FORECASTING (2 SCORES)

The first set of tasks, shown in Fig. 2-b, involves the approximation of the future state of the system.
Thus, given a data matrix representing the dynamics over t ∈ [0, 4T ] (X1 ∈ R4m×n), a generated
forecast is requested from the model being tested for t ∈ [4T, 6T ] (X1pred ∈ R2m×n) to compare
with the ground-truth (X1test ∈ R2m×n), with n being the dimension of the system and m being the
number of forecasted time steps. The forecasting score is composed of two scores evaluating both
the short-time forecast EST, which is computed using Root Mean Square Error (RMSE) between the
test set and the model’s approximation, and the long-time forecast ELT, which is computed using the
spectral error based upon the power spectral density, see Fig. 2-a. Short-time forecasting measures
trajectory accuracy where deterministic prediction is feasible, while long-time forecasting measures
statistical fidelity where only the system’s broad statistical properties are recoverable.

For the challenge dynamics of interest, sensitivity of initial conditions is common, making long range
forecasting to match the test set an unreasonable task given fundamental mathematical limitations
with Lyapunov times. Thus, the long-time error is computed by least-squares fitting of the power
spectrum P(X,k, k) = ln(|FFT(X[−k : −1,k])|2), where the fftshift has been used to model the
data in the wavenumber domain and k = n/2− kmax : n/2 + (kmax + 1) with kmax = 100. This
means that we look at the match in the first 100 wavenumbers of the power spectrum over a long time
simulation. Let X̂ be the ground-truth matrix, X̃ be the prediction matrix, and k ∈ (0, T ) an integer
specifying how to split the matrices for the short-time and long-time scores. The following two error
scores are then computed:

SST(X̃, X̂) =
∥X̂[1 : k, :]− X̃[1 : k, :]∥

∥X̂[1 : k, :]∥
, (1)

SLT(X̃, X̂) =
∥P(X̂,k, k)−P(X̃,k, k)||

||P(X̂,k, k)||
. (2)

It is clear that there are many ways to evaluate the long-range forecasting capabilities. We followed
in the footsteps of Wyder et al. and chose a simple and transparent metric fully understanding that
more nuanced scoring could be used. To provide a reasonable range we then compute the two scores

E1 = 100(1− SST(X1pred,X1test)), E2 = 100(1− SLT(X1pred,X1test)), (3)

meaning in each case a score of Ei = 100 corresponds to a perfect match. Note that, as a baseline,
a solution guess of zeros X̃[1 : k, :] = 0 (corresponding also to P(X̃,k, k) = 0) gives a score of
E1 = E2 = 0.

Input: X1train ∈ R4m×n; Output: X1pred ∈ R2m×n; Scores: E1, E2.

2.2.2 NOISY DATA (4 SCORES)

The ability to handle noise is critical in all data-driven applications as sensors and measurement tech-
nologies are by default embedded with varying levels of noise. Methods that work with numerically
accurate data, for example data points that are 10−6 accurate, may be useful for model reduction, but
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are rarely suitable for discovery and engineering design from real-world data. Both strong and weak
noise are considered as these represent realistic challenges to be addressed in practice.

This task is very similar to forecasting described above, but now with noise added to the data. Specifi-
cally, the model is provided data matrices X2train ∈ R4m×n and X3train ∈ R4m×n representing
the evolution with low or high noise respectively. The objective is to first produce a reconstruction
of the data itself, i.e. denoise the data to produce an estimate of the true state of the dynamics,
X2pred,X4pred ∈ R4m×n for X2train,X3train respectively, and the second objective is to then
forecast the future state, matrices X3pred,X5pred ∈ R2m×n for X2train,X3train respectively. For
the reconstruction objective, a least-square fit is used between the approximation of the denoised data
and the truth, and for the forecasting objective, a long-time evaluation is computed, leading to the
following scores:

E3 = 100(1− SST(X2pred,X2test)), E4 = 100(1− SLT(X3pred,X3test)),

E5 = 100(1− SST(X4pred,X4test)), E6 = 100(1− SLT(X5pred,X5test)).

Input: X2train,X3train ∈ R4m×n; Output: X2pred,X4pred ∈ R4m×n, X3pred,X5pred ∈
R2m×n; Scores: E3, E4, E5, E6.

2.2.3 LIMITED DATA (4 SCORES)

Data limitations are common in real world physical systems and often affect the success of data-
driven methods. Thus, testing for model performance on low-data is critically important and provides
important insight to potential users.

Figure 2-c demonstrates the nature of the task. In this case only a limited number of snapshots M on
numerically accurate data are given X4train ∈ RM×n. From this limited data, a forecast must be
made which is evaluated with both error metric equation 1 and equation 2 on the approximated future
X6pred ∈ R2m×n. The experiment is repeated with noise on the measurements using the training
matrix X5train ∈ RM×n for which a forecasting prediction matrix is produced X7pred ∈ R2m×n.
The performance is evaluated on the following scores representing short and long-time metrics for
both noise-free and noisy data respectively.

E7 = 100(1− SST(X6pred,X6test)), E8 = 100(1− SLT(X6pred,X6test)),

E9 = 100(1− SST(X7pred,X7test)), E10 = 100(1− SLT(X7pred,X7test)).

Two error scores (analogous to E1 and E2) are produced for the noise-free and noisy limited data.
These scores are E7 (short-time forecast) and E8 (long-time forecast) for the noise free case and E9

(short-time forecast) and E10 (long-time forecast) for the noisy case.

Input: X4train,X5train ∈ RM×n; Output: X6pred,X7pred ∈ R2m×n;
Scores: E7, E8, E9, E10.

2.2.4 PARAMETRIC GENERALIZATION (2 SCORES)

Finally, the ability of a model to generalize to different parameter values is evaluated. For this
case, the model’s ability to interpolate and extrapolate to new parameter regimes is considered with
noise-free data. The interpolation and extrapolation are each their own score, resulting in two scores
that evaluate parametric dependence.

Figure 2-d shows the basic architecture of the task. Three training datasets are provided with
three different (unknown) parameter values X6train,X7train,X8train ∈ R4m×n. Construction
of the dynamics in parametric regimes that are interpolatory X8pred ∈ R2m×n and extrapolatory
X9pred ∈ R2m×n are required. For both of the tasks, a burn in matrix of size M ×n (where M < m)
is given (X9train and X10train respectively) and the performance is evaluated using the short-time
metric equation 1.

E11 = 100(1− SST(X8pred,X8test)), E12 = 100(1− SST(X9pred,X9test)).

Input: X6train,X7train,X8train ∈ R4m×n,X9train,X10train ∈ RM×n;

Output: X8pred,X9pred ∈ R2m×n; Scores: E11, E12.
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Figure 3: Ranked average scores of each model on the global wavefields dataset.

Table 1: Model Scores on the global wavefields dataset. The evaluated models are:
Chronos (Ansari et al., 2024), DeepONet (Lu et al., 2021), FNO (Li et al., 2021), Higher Order DMD
(Le Clainche & Vega, 2017), KAN (Liu et al., 2025), LSTM (Hochreiter & Schmidhuber, 1997),
Moirai (Liu et al., 2024), NeuralODE (Ruthotto, 2024), ODE-LSTM (Coelho et al., 2024), Opt DMD
(Askham & Kutz, 2018), PyKoopman (Brunton et al., 2022; Pan et al., 2024), Reservoir (Jaeger,
2001; Maass & Markram, 2004; Pathak et al., 2018), SINDy (Brunton et al., 2016; Fasel et al., 2022),
and Spacetime (Zhang et al., 2023)

Model Avg Score E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
ODE-LSTM 11.53 -0.57 2.24 69.98 8.71 35.43 21.6 -7.14 0.54 -11.19 12.36 -0.39 -5.33
LSTM 9.75 -1.36 5.63 71.83 24.97 46.41 17.61 -39.47 4.23 -36.48 25.79 3.16 -5.3
SINDy 2.57 -0.0 3.12 -1.68 0.07 -1.74 7.62 4.18 0.26 0.07 18.89 0.1 0.0
KAN 0.35 -0.0 0.0 0.0 2.55 -0.0 0.13 0.29 0.4 0.08 0.4 -0.0 0.0
Baseline Average 0.16 -0.0 0.0 0.0 0.02 3.59 0.03 -1.73 0.01 -0.02 0.02 -0.03 -0.02
Baseline Zeros 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HigherOrder DMD -0.38 0.0 -0.0 0.0 0.02 -0.0 0.03 0.01 -1.73 0.02 -0.02 -1.54 -1.34
Opt DMD -0.74 -4.26 10.92 4.39 18.57 0.56 -10.81 -35.65 1.72 -15.6 27.89 -3.3 -3.26
DeepONet -7.37 -0.1 -1.1 6.5 -93.09 2.49 -0.52 -0.66 0.1 -0.66 -1.09 -0.25 -0.05
PyKoopman -9.35 0.09 0.0 10.54 0.03 0.08 0.06 -3.42 11.06 -5.27 -100.0 -25.54 0.14
Chronos -23.38 17.43 1.38 -100.0 14.95 -97.0 -59.34 -22.14 0.45 27.43 6.93 -35.29 -35.4
NeuralODE -27.33 12.4 -13.0 -39.3 30.2 -100.0 28.1 8.6 -100.0 16.8 -60.5 -57.2 -54.1
Spacetime -44.56 -12.29 -100.0 14.61 -100.0 -8.26 -1.68 -54.8 -100.0 -26.2 -100.0 -34.2 -11.94
FNO -53.27 -100.0 -100.0 -100.0 -5.34 -100.0 -100.0 -2.56 0.01 -24.02 -100.0 -7.18 -0.14
Moirai -58.44 -35.4 -50.37 -100.0 -85.68 -82.55 6.1 -35.29 -15.63 -100.0 -94.32 -8.19 -100.0
Reservoir -58.5 0.76 -100.0 46.5 -100.0 0.0 50.69 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0

2.2.5 COMPOSITE SCORE

We compute a composite score (AvgScore) per dataset from metrics E1 through E12 by averaging
the resulting scores for each method. This score is evaluated per method, not per model. Thus, each
method can fit a model for each task and produce the best possible score. All scores are clipped such
that Ei ∈ [−100, 100], thus AvgScore ∈ [−100, 100]. Methods that cannot produce a result for a
given task receive the minimum score −100.

3 METHODS, BASELINES AND RESULTS

We characterize twelve highly-cited modeling methods on our initial ctf4seismology dataset. Table 1
shows all scored methods and their resulting performance scores. The ctf4seismology includes two
naive baseline methods: predicting zero and predicting the average. In our evaluations, we use the
zero prediction as the reference baseline for the global wavefields dataset. Due to the dataset having
zero mean after normalization, the average and zeros baseline report similar scores.
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Figure 4: Top three performing models per metric on the global wavefields dataset. Global wavefields
uses the constant zero prediction as its baseline.

In Fig. 3, we show all evaluated methods per dataset including the naive baselines—constant and
average—ranked by their AvgScore. While some models score high on specific tasks, no model
scores high-across all tasks (see Table 1). Overall, the results demonstrate that the dataset and specific
tasks are challenging enough to produce a distribution of scores that characterize the methods. A
complete overview of all model’s performance metrics on the global wavefields dataset can be found
in table 1. The overall score performance for each method in in Fig. 3 while the top three performers
in each error category are shown is shown in Fig. 4.

3.1 OBSERVATIONS

The results in Table 1 demonstrate that many complex ML architectures fail to outperform the
baseline of predicting zeros on the global wavefields dataset. Our multi-score evaluation scheme
provides deeper insight into the difficulty of the dataset as well as the strengths and weaknesses
of the evaluated models. Notably, many commonly used ML/AI models perform very poorly on
the assigned tasks. Although the current CTF provides limited data, the difficulty most methods
have in exceeding the zero baseline indicates that considerable research and development are still
needed before ML/AI models make a meaningful impact in the field. The overall best models are the
RNN-based architectures: LSTM and ODE-LSTM (Coelho et al., 2024; Hochreiter & Schmidhuber,
1997). They outperform all other models on tasks E3 and E5, corresponding to the denoising of low-
and high-noise data. Their advantage likely stems from a relatively modest parameter count combined
with relatively strong expressive power, allowing them to act as implicit regularizers when training
on the limited data available for auto-regressive forecasting. In contrast, statistical approaches such
as DMD tend to overfit the noise in these datasets, whereas the RNNs, trained with an MSE loss, are
more robust.

This result also demonstrates how the multi-metric scoring in the CTF is better than a single score.
While the RNNs achieve the highest average score, they perform exceptionally poorly on tasks E7

and E9, corresponding to short-term prediction on limited data (noiseless and noisy respectively).
This disparity underscores that no single model dominates across all regimes and that task-specific
evaluation is essential. We present these findings to stimulate discussion within the seismology com-
munity about the appropriate choice of ML models for different problem settings and to demonstrate
the value of a comprehensive CTF framework. As Figure 4 shows, every task on the global seismic
wavefields dataset offers room for improvement that can result in real-world benefit. We hope that,
as the CTF grows, more models will emerge that can reliably forecast seismic data, perform state
reconstruction, and interpolate across diverse parameter regimes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 LIMITATIONS & FUTURE WORK

The globally propagating seismic wavefield datasets used here are generated from an axisymmetric
Earth model (van Driel et al., 2015), which captures the increase of seismic velocities and densities
with depth but omits the heterogeneous geological structures that drive real-world geodynamics.
Future datasets, such as those simulated from the REVEAL project (Thrastarson et al., 2024), or
others generated for other planets (e.g., Mars - Stähler et al., 2021), could expand the parameter
space and enable a more rigorous assessment of model generalization. Furthermore, distributed
acoustic sensing (DAS) recordings with earthquake wavefields as more dominant features would
add another layer of complexity. Such data contain higher frequency wavefields that exhibit extreme
scattering due to real, near-surface structure heterogeneity (e.g., features highlighted in Shi et al.,
2025), challenging AI models to capture earthquake ground motion with societal relevance for natural
hazard mitigation. Additional datasets may also come from laboratory experiments of earthquake
behavior, which exhibit a particularly complex spatio-temporal pattern relevant to dynamical system
studies (e.g., Corbi et al., 2022; 2025). Incorporating such experimental data would broaden the scope
of our CTF, increasing their relevance for broader tectonic implications and for scientists conducting
laboratory experiments.

Additional limitations are inherent to our provided evaluations. While many models were tested in
this work, there are many more that should be implemented and scored in the future. We hope that
the Kaggle launch will inspire the scientific community to test many more models than what we
have here, with the hope that community-driven engagement results in model improvements that
vastly outperform our tested models across all tasks. There is also room for improvement in the tasks
provided. While we start the CTF with a set of twelve measurements on the global seismic wavefields
dataset, more tasks can be provided, yielding a deeper understanding of a model’s capabilities. Finally,
for the Kaggle competition we will add a larger number of training data sets to potentially unlock the
approximation capabilities of the models. With significantly more training data, there is the potential
to improve the overall performance of many of the methods and beat the zero baseline. For instance,
we will provide P = 100 simulations with varying initial data and parametrizations with the goal of
predicting new initial data (Q = 10) with different parameter settings.

Input: XJtrain ∈ R4m×n for J = 1, 2, · · · , P ;

Output: XJpred ∈ Rm×n for J = 1, 2, · · · , Q; Scores: E13 − E22.

5 CONCLUSION

CTFs have been critical to the tremendous advancements in the big three ML fields of computer
vision, natural language processing, and reinforcement learning. They have been proven to be
catalysts for key model advancements by providing a clear objective measurement in a competitive
environment. This work marks the beginning of incubating a similar environment in seismology by
providing a challenging dataset and an objective quantification of model performance on tasks that
are notoriously challenging. Our aim is to use our platform to evaluate the current state of methods
and their usefulness in seismology as well as fostering an environment where novel methods are
developed that excel for specific problem classes.

In this work, we introduce the Seismic Wavefield CTF ctf4seismology which quantifies the perfor-
mance of modeling approaches on an amalgam of diverse tasks in seismology. As a first step, we
provide the challenging global seismic wavefields dataset and evaluate 14 different models on the data
to understand the usefulness of current ML models in forecasting, state reconstruction, and parametric
variability. Our work demonstrates that the current state of ML is far behind any meaningful use on
challenging seismic datasets. We hope to inspire researchers and engineers to identify and develop
models that will advance the current modeling capabilities of seismic wavefields, ultimately leading to
more accurate and reliable tools for earthquake science and subsurface characterization. By establish-
ing a CTF, we aim to shift the research focus from incremental improvements on simplified problems
to substantive breakthroughs on complex, realistic challenges. The ctf4seismology framework is
designed to be a living CTF, with plans to expand the datasets and tasks to continuously push the
boundaries of what is possible in computational seismology.
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REPRODUCIBILITY STATEMENT

In this work we introduce the Seismic Wavefield CTF. With the goal of evaluating ML and AI
algorithms on seismic wavefields, we provide a publicly available GitHub repository containing the
training datasets, hyperparameter tuning scripts, visualization notebooks, and all relevant documenta-
tion needed to reproduce and extend our results.

ETHICS STATEMENT

The datasets in this CTF do not contain private or sensitive information. We release this CTF to
encourage rigorous, reproducible research and urge the community to use it responsibly. To our best
understanding, the datasets and the source code do not provide harm to the scientific and global
communities. Throughout this work we adhered to the ICLR Code of Ethics.
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