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ABSTRACT

Publicly available biomedical videos, such as those on YouTube, serve as valuable
educational resources for medical students. Unlike standard machine learning
datasets, these videos are designed for human learners, often mixing medical
imagery with narration, explanatory diagrams, and contextual framing. In this
work, we investigate whether such pedagogically rich, yet non-standardized and
heterogeneous videos can effectively teach general-domain vision-language models
biomedical knowledge. To this end, we introduce OpenBiomedVid, a biomedical
video instruction tuning dataset comprising 1031 hours of video-caption and Q/A
pairs, curated through a multi-step human-in-the-loop pipeline. Diverse biomedical
video datasets are rare, and OpenBiomedVid fills an important gap by providing
instruction-style supervision grounded in real-world educational content. Surpris-
ingly, despite the informal and heterogeneous nature of these videos, the fine-tuned
Qwen-2-VL models exhibit substantial performance improvements across most
benchmarks. The 2B model achieves gains of 98.7% on video tasks and 71.2% on
image tasks. The 7B model shows improvements of 40.5% on video and 11.2% on
image tasks compared to their respective base models. To address the lack of stan-
dardized biomedical video evaluation datasets, we also introduce two new expert
curated benchmarks, MIMICEchoQA and SurgeryVideoQA. On these benchmarks,
the 2B model achieves gains of 99.1% and 98.1%, while the 7B model shows gains
of 29.3% and 52.1%, respectively, demonstrating the models’ ability to generalize
and perform biomedical video understanding on cleaner and more standardized
datasets than those seen during training. These results suggest that videos created
for human learning offer an effective training signal for biomedical VLMs.

1 Introduction
Vision-language models (VLMs) have made significant progress in integrating visual and textual
modalities, achieving strong performance in image captioning, visual question answering, and
multimodal reasoning (Liu et al., 2023; Meta, 2024; Hurst et al., 2024; Beyer et al., 2024; Wang et al.,
2024; Team et al., 2024; Wang et al., 2025a). Recent advancements in video-language models have
further extended these capabilities to dynamic visual data, enabling the understanding of temporal
dependencies in videos (Beyer et al., 2024; Wang et al., 2024; Team et al., 2024).

In the biomedical domain, there is a growing interest in applying VLMs to tasks such as medical
report generation, disease classification, and question answering (Saab et al., 2024; Thapa et al.,
2024; Tu et al., 2024; Li et al., 2023a). However, the potential of these models for biomedical
video understanding remains largely unexplored, primarily due to the limited availability of diverse
biomedical video instruction tuning datasets in the public domain, which are essential for fine-tuning.

While publicly available biomedical image datasets have supported VLM research, biomedical video
datasets remain limited in both scale and diversity. Existing resources are typically narrow in scope.
For example, MedVidQA (Gupta et al., 2023), though also derived from YouTube, emphasizes
consumer-facing health topics and supports localization and segmentation tasks rather than open-
ended question answering. AVOS (Goodman et al., 2024) focuses on surgical videos, with annotations
for tool tracking, procedural step recognition, and skill assessment via motion kinematics, but
does not address broader biomedical education or instruction-tuning. NurViD (Hu et al., 2023)
centers exclusively on nursing procedures, MIMIC-IV-ECHO (Gow et al., 2023) is restricted to
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Figure 1: Data generation pipeline. (1) Curation: YouTube videos are collected with clinically
guided queries. (2) Frame Segmentation: A SigLIP model fine-tuned on GPT-labeled data filters
biomedical frames. (3) Caption Refinement: Whisper transcriptions are cleaned with GPT-4o for
accuracy and grounding. (4) Instruction Generation: GPT-4o produces multi-turn Q/A pairs and
metadata. Human experts verify quality throughout.

echocardiography, and the EndoVis Challenge datasets (Nwoye et al., 2023) primarily support
surgical tool segmentation (see Section B for extended discussion).

These limitations highlight the need for a comprehensive biomedical video instruction tuning dataset
that covers a diverse range of biomedical concepts, including human anatomy, disease pathology,
medical procedures, and clinical diagnostics. The lack of standardized biomedical video evaluation
datasets further hinders progress, making it challenging to effectively benchmark model performance.

In recent years, YouTube has become an important resource for medical education (Osman et al., 2022;
Akakpo & Akakpo, 2024; Chen et al., 2019; Derakhshan et al., 2019; Rapp et al., 2016), hosting a
wide range of biomedical videos on anatomy, surgical procedures, diagnostic techniques, and clinical
case discussions. Unlike institutional datasets, these videos are informal and heterogeneous, blending
real-world medical imagery with narration, diagrams, and didactic commentary. Despite this, they
have successfully supported the training of thousands of students and practitioners. This motivates
our central question: Can open-domain VLMs learn meaningful biomedical vision concepts from
publicly available educational videos? Answering this is key to understanding whether pedagogically
oriented content can also provide effective supervision for biomedical AI.

To this end, we introduce OpenBiomedVid, a 1,031-hour collection of biomedical educational
videos from YouTube, curated through a multi-step human-in-the-loop process. The dataset spans
multiple domains—including cardiology, radiology, and surgery—and covers diverse anatomical
regions such as the cardiac, vascular, musculoskeletal, and head and neck systems. To address the
lack of biomedical video evaluation resources, we further release two expert-curated benchmarks:
SurgeryVideoQA, with 2,692 QA pairs from high-quality surgical videos, and MIMICEchoQA, with
622 QA pairs derived from MIMIC-IV-ECHO (Gow et al., 2023) focusing on echocardiography.

Using this dataset, we fine-tune Qwen-2-VL models and demonstrate substantial performance gains
across image, and video benchmarks compared to baseline models. Our results suggest that open-
domain VLMs can indeed learn meaningful biomedical concepts from publicly available videos.

Our contributions are:

• We curate OpenBiomedVid, a 1,031-hour biomedical video-text dataset from publicly
available YouTube content. Unlike traditional datasets, it consists of educational material

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

combining medical imagery with narration and explanations, spanning diverse domains and
anatomical regions, and built through a human-in-the-loop pipeline.

• We introduce two expert-curated benchmarks, SurgeryVideoQA and MIMICEchoQA, to
evaluate VLMs on surgical and echocardiographic understanding via Q/A, addressing the
lack of standardized biomedical video evaluation.

• We fine-tune Qwen2-VL and InternVL3 models at multiple scales on OpenBiomed-
Vid, showing substantial gains on video and image benchmarks and demonstrating the
effectiveness of educational videos as supervision signals for biomedical VLMs.

2 Biomedical Video Dataset
In this section, we describe our end-to-end pipeline of collecting raw video data to generate fine-tuning
and evaluation datasets, as shown in Figure 1.
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Figure 2: Distribution of the fine-tuning dataset across different biomedical modalities and anatomical
regions.

2.1 Dataset Curation
We curated our dataset by collecting publicly available biomedical videos from YouTube. The
process involved collaboration with a clinician to compile a list of relevant search queries across
multiple biomedical video modalities, such as echocardiograms, surgical procedures, ultrasounds,
angiograms, colonoscopies, endoscopies, and laparoscopies. Additionally, we manually searched
for biomedical-related YouTube channels and included all videos from those channels in our search
list. Using this combination of expert-guided and manually inspected queries, we programmatically
identified and retrieved videos. After removing duplicates, our final raw dataset consisted of 24,560
videos, totaling 4,137 hours of content.

2.2 Data Processing
Biomedical Frame Segmentation. We randomly sampled 16.9K frames from the entire raw dataset
and annotated them using GPT-4o mini (Hurst et al., 2024), classifying each frame as either
biomedical or non-biomedical (prompt in Section F.1). The annotation prompt was iteratively refined
to ensure accurate labeling, prioritizing frames that contained visual biomedical features such as
medical scans, surgical procedures, and anatomical visualizations, while excluding irrelevant content,
including text overlays or images of medical professionals without supporting visual data. An expert
human annotator independently labeled 1,000 frames, achieving a 95.0% agreement with GPT-4o
mini. We leveraged this labeled data to fine-tune google/siglip-base-patch16-224
classifier (Zhai et al., 2023). The resulting model, siglip-medical, achieved 95.48% agreement
with human annotations on a benchmark of 500 manually labeled medical images.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We applied a segmentation algorithm based on a sliding window approach to identify high-confidence
biomedical segments. Using the fine-tuned siglip-medical model, we classified frames at
0.5-second intervals for all raw videos, generating a probability distribution across the entire video
length. Frames with probabilities above 0.64 were classified as biomedical, while those below this
threshold were labeled non-biomedical. Consecutive biomedical frames were grouped into coherent
segments, allowing gaps of up to 10 non-biomedical frames to ensure smooth segmentation without
compromising accuracy.

We then paired these segments with transcriptions generated by openai/whisper-large-v3
(Radford et al., 2023) to create video-caption pairs. This process resulted in a refined dataset
comprising approximately 45,536 video clips and 1,600 hours of biomedical content.

Caption Refinement. To enhance caption quality, we implemented a two-step filtering and stan-
dardization process using GPT-4o (Hurst et al., 2024). The first step involved removing ambiguous
or purely textual captions, retaining only those that described observable biomedical content, such
as procedures, diagnoses, and anatomical demonstrations. This step reduced the dataset to 22,668
captions and 1031.6 hours of videos.

The second step focused on improving clarity and consistency by standardizing biomedical termi-
nology, preserving spatial and temporal context, and ensuring that descriptions were concise yet
informative. Redundant or overly colloquial language was removed, and captions were refined to
maintain an objective and neutral tone (Section F.2).

Instruction Tuning Dataset and Metadata Generation. We processed the cleaned captions using
GPT-4o to generate both question-answer (Q/A) pairs and metadata annotations, including video
modality and anatomical regions (Sections F.3 and F.4). The Q/A pairs encompassed a range of
tasks, such as hierarchical questions progressing from general to specific, temporal and sequential
reasoning, comparative and explanatory queries, as well as diagnostic and procedural understanding.

We then manually reviewed and divided the dataset into fine-tuning and evaluation set, ensuring that
all video segments from a single video were contained within a single split to prevent data leakage.
The evaluation set was focused specifically on surgical videos, which we discuss further in Section
2.3.

Figure 2 shows the distribution of our fine-tuning dataset, which comprises 22,668 video clips totaling
1031.6 hours of biomedical content. Most videos are under 5 minutes long, with an average length
of 2 minutes. In total, we generated 79,367 Q/A pairs, averaging 3.5 Q/A pairs per video clip. The
most common video modalities include ultrasound (231.8h), CT imaging (201.6h), and surgical and
procedural (136.0h).

Similarly, the predominant anatomical regions in our fine-tuning dataset are the cardiac system
(172.3h), gastrointestinal system (161.9h), musculoskeletal system (126.2h), and cranial and nervous
system (114.9h). Appendix Figure S7 presents the resolution distribution of the fine-tuning dataset.

We provide some qualitative examples of our fine-tuning dataset in Section G. To illustrate the
qualitative differences between our fine-tuning and evaluation datasets, we present side-by-side
comparisons of representative samples in Figure 3.

2.3 Video Evaluation Dataset Curation
There is a lack of biomedical video benchmarks for evaluating large VLMs. Most of the datasets
are focused primarily on classification. This motivated us to curate two relevant biomedical video
evaluation datasets, which we describe in detail below.

SurgeryVideoQA. This benchmark evaluates VLMs in the domain of open surgery. Although cu-
rated from the same YouTube source pool as our fine-tuning dataset, SurgeryVideoQA is substantially
cleaner due to extensive expert review. A human expert manually inspected all videos to exclude
those with overlaid text, embedded answers, or irrelevant segments, retaining only clips in which the
majority of content was directly related to surgical procedures. Through this process, we identified
471 high-quality videos totaling 21.9 hours of footage. Importantly, there is no overlap between
training and evaluation: we filtered strictly by unique video ID to ensure that no video appearing
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Cleaned Capt ion:  The process begins w ith center ing the sl ide on the microscope stage, which is then turned on for  
obser vation. As the sl ide is examined, the cel l  wall , identi f ied as the dark outer  layer , comes into view. The purple area 
r epresents the cytoplasm, w ithin which are visible small ci r cular  str uctures, identi f ied as nuclei  inside the cel l . To 
demonstrate plasmolysis, a salt water  solution is prepared. The salt is applied to the r ight side of the sl ide, whi le a paper  towel 
is placed on the left side. This setup draws the salt water  across the sl ide, effectively r emoving the water  added ear l ier. In a 
time-lapsed sequence, the dramatic impact of the salt water  is obser ved on the cel ls...

Cleaned Capt ion:  Breast ultr asounds are uti l ized to assess the nature of breast masses. A mass containing only f luid indicates 
a benign simple cyst, which typical ly does not necessi tate fur ther  evaluation. In contrast, sol id masses have the potential to be 
breast cancer. The procedure for  a breast ultr asound requir es no special preparation. Dur ing the examination, a tr ansducer  is 
used to gl ide over  the skin, captur ing images of the internal str uctures of the breast eff iciently and painlessly.
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normal appear ing?
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hyper trophy?
Answer : Mi ld

(b) Evaluat i on Sam ples

(a) Finetun ing Sam ples

1:20 1:44

Figure 3: Comparison between the fine-tuning dataset and the evaluation dataset, highlighting the
distribution shift. The evaluation dataset is significantly cleaner and more structured than the fine-
tuning dataset, enabling a more accurate assessment of model performance.

in the evaluation set was used for training. This separation was further verified through manual
inspection.

Using the cleaned captions associated with these videos, we generated multi-turn Q/A pairs with
GPT-4o (prompt in Section F.5). We optimized prompt for generating questions that assess a model’s
understanding of procedural steps, anatomical structures, surgical tools, and intraoperative decision-
making. The Q/A format consists of concise, open-ended answers rather than multiple-choice options,
providing a more challenging and realistic setting for biomedical applications. A medical doctor then
manually reviewed all videos and their corresponding Q/A pairs to remove any trivial or non-relevant
questions.

Figure S6 presents the distribution of the SurgeryVideoQA dataset. The dataset contains 2,692
Q/A pairs, with an average of 5.7 pairs per video. The predominant anatomical regions are the
gastrointestinal system (5.9 hours, 141 videos), head and neck (5.2 hours, 100 videos), and the skin
and integumentary system (3.8 hours, 79 videos). Qualitative examples of the SurgeryVideoQA
dataset are provided in Section G.2. The distribution of video resolutions in the SurgeryVideoQA
dataset is shown in Appendix Figure S8.

MIMICEchoQA. This benchmark is derived from a publicly available echocardiogram video
dataset called MIMIC-IV-ECHO (Gow et al., 2023). We paired each study in the dataset with the
nearest available discharge summary following the video, provided the time difference between
the study date and discharge date was within 7 days, removing studies without discharge summary
within the timeframe. From the matched discharge summaries, we extracted the transthoracic
echocardiography (TTE) and ECHO sections as proxies for cardiologist reports. These sections
typically contain diagnostic information such as ejection fraction and cardiac abnormalities.
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To standardize the input format, we converted each DICOM file into an .mp4 video. The correspond-
ing cleaned reports were then processed using Qwen-2-72B-Instruct to generate multi-turn,
closed-ended Q/A pairs. However, this automated process occasionally produced questions referenc-
ing anatomical structures not visible in the associated videos. To mitigate this, we employed a view
classification model (Vukadinovic et al., 2024) to label each video with its specific echocardiographic
view (e.g., A3C, A4C), allowing us to filter out unanswerable questions based on view-specific
visibility constraints.

Because the view classifier is not perfectly accurate, and to ensure clinical validity, two board-
certified cardiologists manually reviewed the generated Q/A pairs. This review identified and
removed questions that remained unanswerable given the visual content of the videos, even after
automated filtering. This process resulted in a final set of 620 high-quality, clinically valid Q/A pairs.
The prompt used for Q/A generation is provided in Section F.6, and qualitative examples from the
dataset are shown in Section G.3.

3 Experiments and Results

3.1 Training
Having curated both the fine-tuning and evaluation datasets, we set out to investigate a core question:
Can open-domain vision-language models learn medicine by studying publicly available educational
biomedical videos? To explore this, we adopted the Qwen2-VL model series as our primary back-
bone—specifically Qwen2-VL-2B-Instruct and Qwen2-VL-7B-Instruct (Wang et al.,
2024)—given their strong performance among open-source vision-language models and their ability
to process both images and videos. For completeness, we also report results from larger models
such as Qwen2-VL-72B-Instruct, a general-domain multimodal model (InternVL3-8B),
and closed-source systems including Gemini-2.0-Flash and GPT-4o, in the ablation study
(Section 4).

Our fine-tuning dataset comprises both video-caption pairs and Q/A pairs. This approach ensures that
the model is exposed to the same data in different formats, enhancing its ability to learn from diverse
input structures. We fine-tuned both the 2B and 7B models on a single node with 8 NVIDIA H100
GPUs for one epoch, tuning the adapter layers and the language model. The fine-tuning process took
five hours. Additional training details, including key hyperparameters, are provided in Section E.

Baselines. Since this study aims to assess whether fine-tuning on publicly available educa-
tional biomedical videos improves a model’s medical understanding, our baselines are the
Qwen2-VL-2B-Instruct and Qwen2-VL-7B-Instruct models prior to fine-tuning.

Evaluation. Given the open-ended nature of SurgeryVideoQA, direct string matching was unsuit-
able for accuracy measurement. Instead, we employed GPT-4o as an automatic judge, comparing
model responses against reference answers and assigning binary scores (1 for mostly correct, 0 for
incorrect). The evaluation prompt is provided in Section F.7. Because GPT-4o was also used during
data cleaning and curation, there is a potential risk of stylistic bias. To assess this, we conducted an
additional evaluation with Gemini-2.0-Flash as an independent judge, with results discussed in
the ablation study (Section 4). For MIMICEchoQA and other text- and image-based tasks, which use
closed-ended Q/A, we measured performance through direct string matching and accuracy.

3.2 Main Results
We evaluated our fine-tuned models across three categories: video benchmarks, image benchmarks,
and text-only benchmarks, to assess their holistic biomedical capabilities.

Video Benchmarks. Figure 4 (a) shows that fine-tuning on biomedical video-text data led to
substantial improvements over the baseline models. On MIMICEchoQA, the accuracy of the
Qwen-2-VL-2B-Biomed model increased from 21.1% to 42.0%, representing an 99.1% rela-
tive improvement, while the Qwen-2-VL-7B-Biomed model improved from 37.9% to 49.0%, a
29.3% gain. On SurgeryVideoQA, the Qwen-2-VL-2B-Biomed model improved from 10.3% to
20.4%, a 98.1% relative increase, while the Qwen-2-VL-7B-Biomed model rose from 16.5% to
25.1%, marking a 52.1% improvement.
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Figure 4: Comparison of fine-tuned models and baseline models across video, image, and text
benchmarks.

Since no publicly available biomedical video-language models currently exist, we evalu-
ated GPT-4o on both MIMICEchoQA and SurgeryVideoQA. Interestingly, our fine-tuned
Qwen-2-VL-7B-Biomed model outperformed GPT-4o on MIMICEchoQA (49.0% vs. 41.6%),
while GPT-4o achieved the highest performance on SurgeryVideoQA (35.8%), surpassing all other
models. Table 1 summarizes the performance of additional open-source multimodal models.

Despite these improvements, performance on video benchmarks remains significantly lower than on
text and image benchmarks (shown below), even after fine-tuning. This suggests that the heteroge-
neous nature of biomedical videos—characterized by complex procedures, dynamic imaging, and
variations in quality—poses significant challenges. Additionally, noisy captions and limited alignment
between video content and text further complicate comprehension. The open-ended evaluation for
SurgeryVideoQA, where models generate free-form responses scored by GPT-4o, also makes these
tasks inherently more challenging compared to the closed-ended evaluations used for text and image
benchmarks.

Further analysis of dataset scaling, provided in Appendix C, shows that while image understanding
saturates quickly, video performance continues to improve as more training data is added. This
highlights both the data-hungry nature of video-language learning and the potential benefits of
expanding biomedical video resources.

Image Benchmarks. For biomedical image understanding, we evaluated the models on three widely
used benchmarks: PathVQA (He et al., 2020), VQA-RAD (Lau et al., 2018), and SLAKE (Liu et al.,
2021). PathVQA is a visual question-answering dataset focused on pathology images, testing models
on histopathological structures and diagnostic reasoning. VQA-RAD is a radiology-based dataset
containing X-rays, CT scans, and MRIs, requiring models to interpret medical imaging and answer
domain-specific questions. SLAKE is a multimodal VQA dataset that spans various medical imaging
modalities, covering questions on anatomy, clinical conditions, and diagnostic interpretation.

We focused on closed-ended question evaluation and measured model performance using accu-
racy. Figure 4 (b) presents a comparison of fine-tuned models against their respective base-
lines. On VQA-RAD, the Qwen-2-VL-2B-Biomed model achieved a 84.8% improvement
over the baseline, while the Qwen-2-VL-7B-Biomed model showed a 16.6% improvement.
On PathVQA, the Qwen-2-VL-2B-Biomed model outperformed the baseline by 107.4%,
and the Qwen-2-VL-7B-Biomed model improved by 0.3%. On SLAKE, we observed
a 21.7% improvement for the Qwen-2-VL-2B-Biomed model and a 16.7% gain for the
Qwen-2-VL-7B-Biomed model. For additional context, we also report results from a biomedical
VLM, Dragonfly-Med (Thapa et al., 2024) (78.1% on VQA-RAD, 90.6% on PathVQA, and
91.6% on SLAKE).

To further analyze performance across different imaging modalities, we stratified the images from
SLAKE and VQA-RAD into three categories: X-ray, CT scans, and MRI. The results are shown in
Appendix Figure S5. Across all modalities, fine-tuned models significantly outperformed baselines.
The highest accuracy was achieved on MRI images, followed by CT scans, which aligns with the
distribution of our training data (Figure 2). Notably, despite having only 38.5 hours of X-ray training
data, the model performed competitively, suggesting that fine-tuning contributed substantially to its
improvement over the base model.
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Text Benchmarks. We evaluated our models on two widely used biomedical text benchmarks:
MedQA (Jin et al., 2021) and PubMedQA (Jin et al., 2019). MedQA is a multiple-choice question
answering dataset designed to assess medical knowledge, including USMLE-style exam questions.
PubMedQA consists of biomedical research abstracts paired with clinical questions, requiring models
to draw conclusions based on scientific literature.

Figure 4(c) presents the results on these text benchmarks. In contrast to the substantial
gains observed in video and image benchmarks, improvements on text benchmarks are less
consistent, and in some cases, performance slightly declines. For instance, on MedQA,
the performance of Qwen-2-VL-2B-Biomed drops marginally from 34.9% to 34.6%, and
Qwen-2-VL-7B-Biomed sees a more notable decline from 52.6% to 47.4%. On the other hand,
we observe modest gains on PubMedQA: Qwen-2-VL-2B-Biomed improves from 67.7% to
68.6%, and Qwen-2-VL-7B-Biomed improves from 73.8% to 77.2%. For reference, we include
results from similarly sized models trained on large-scale biomedical corpora, such as Meerkat-7B
(Kim et al., 2024) for MedQA (70.6%) and AntGLM-Med (Li et al., 2023c) for PubMedQA (80.6%).

Model MIMICEchoQA SurgeryVideoQA Average

Video-ChatGPT (Maaz et al., 2024) 31.7 7.9 19.8
Video-LLaVA (Lin et al., 2024) 32.0 9.2 20.6
Phi-3.5-vision-instruct (Abdin et al., 2024) 41.1 8.5 24.8
Phi-4-multimodal-instruct (Abouelenin et al., 2025) 37.8 8.5 23.2
InternVideo2.5-Chat-8B (Wang et al., 2025b) 40.3 16.4 28.4
Qwen2-VL-7B-Instruct (Wang et al., 2024) 37.9 16.5 27.2
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 34.0 17.9 25.9
Qwen2-VL-72B-Instruct (Wang et al., 2024) 37.5 24.4 31.0
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) 34.2 26.2 30.2
Gemini-2.0-Flash (Team et al., 2023) 38.4 26.8 32.6
GPT-4o (Hurst et al., 2024) 41.6 35.8 38.7
o4-mini (OpenAI, 2025) 43.9 46.6 45.3

Qwen2-VL-2B-biomed 42.0 20.4 31.2
Qwen2-VL-7B-biomed 49.0 25.1 37.1

Table 1: Performance of open-source and proprietary multimodal models on two biomedical video
QA benchmarks: MIMICEchoQA and SurgeryVideoQA. Models generally perform better on MIM-
ICEchoQA, while SurgeryVideoQA remains more challenging. Fine-tuning on our biomedical video
dataset (Qwen2-VL-biomed) yields consistent improvements.

4 Ablations
Generalizability of OpenBiomedVid Across Multimodal Architectures. Our initial experiments
focused on Qwen2-VL due to its strong open-source baseline, native video support, and reproducibil-
ity. To assess whether OpenBiomedVid benefits other architectures, we additionally fine-tuned
InternVL3-8B, another widely used vision-language model with native video capabilities. As shown
in Supplementary Table S2, InternVL3-8B-Biomed achieves consistent improvements across both
video and image-based benchmarks.

We also examined scaling effects by fine-tuning the larger Qwen2-VL-72B. Despite its strong
baseline, fine-tuning with OpenBiomedVid further improved performance across tasks, particularly
on biomedical video benchmarks. These results demonstrate that OpenBiomedVid provides mean-
ingful gains even at the 72B scale. Overall, OpenBiomedVid is architecture-agnostic: it enhances
performance across different model families and scales, confirming its broad utility for biomedical
vision-language learning.

Benchmarking Public Multimodal Models on Biomedical Video Benchmarks. We evaluate a
range of open-source and proprietary multimodal models on MIMICEchoQA and SurgeryVideoQA.
Some models—such as Qwen variants and InternVideo—support native video input, while others
(e.g., Phi and GPT models) rely on multi-image inputs by sampling and processing up to 250 frames
uniformly.
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On MIMICEchoQA, which features short echocardiogram clips lasting only a few seconds, most
models—including those without native video support—perform reasonably well. The brevity and
focused nature of these videos allow frame-based methods to extract sufficient information for
accurate question answering.

In contrast, SurgeryVideoQA is a more demanding benchmark: surgical videos are long, complex,
and require fine-grained temporal reasoning. Architectural differences become clearer here—models
like Phi, which treat frames independently, perform far worse than video-native models such as
InternVideo and Qwen. Proprietary systems (GPT-4o, o4-mini) achieve the highest scores, even
surpassing our fine-tuned models. Because GPT-4o was also used during caption refinement, one
concern is potential stylistic bias. To test this, we repeated the evaluation with Gemini-2.0-Flash
as an independent judge. Rankings remained consistent across both evaluators (Supplementary ??),
suggesting that the performance gap reflects genuine modeling differences rather than alignment
artifacts.

Our instruction-tuned models, Qwen2-VL-biomed, achieve strong gains on both benchmarks,
outperforming most baselines. This demonstrates the value of domain-specific fine-tuning and
narrows the gap to proprietary systems. Nonetheless, while short-form biomedical videos are well-
handled, performance on long-form surgical content remains limited, highlighting the need for more
advanced architectures and training strategies that can reason over extended temporal contexts.

5 Discussion and Conclusion
We introduce OpenBiomedVid, the first large-scale and diverse instruction-tuning dataset for biomed-
ical video-language modeling, together with two standardized benchmarks, SurgeryVideoQA and
MIMICEchoQA, spanning procedural and diagnostic modalities. Despite their informal format,
these videos yield consistent gains on video and image benchmarks highlighting their value as an
underutilized multimodal training resource.

LLM involvement in caption refinement and Q/A generation introduces potential risks of halluci-
nation. To mitigate this, we incorporated human experts at multiple stages of dataset construction
and benchmark creation. We also designed Q/A prompts to preserve medical semantics while
minimizing stylistic rewriting. While some residual hallucinations may remain, models trained
on OpenBiomedVid demonstrate gains on external standardized benchmarks such as MedQA and
PubMedQA, indicating alignment with clinically validated knowledge.

To ensure semantic and pedagogical fidelity, we applied several quality controls: curating videos from
trusted educational channels, filtering with a biomedical frame classifier, and performing large-scale
entity recognition that identified over 260,000 high-confidence biomedical entities in the Q/A corpus.
Our evaluation benchmarks were constructed or vetted by medical doctors, providing clinically
grounded assessment tasks. These safeguards enhance the dataset’s reliability while leaving room for
future work to further align with standardized curricula and textbooks.

Despite improvements, our fine-tuned models remain far from clinically reliable. Video-language
understanding in medicine is still at an early stage. Future work should integrate video-based training
with curated image and text corpora and conduct quantitative hallucination analysis. Importantly,
models trained on OpenBiomedVid must not be used for clinical decision-making; their intended
purpose is advancing research on multimodal medical reasoning.

Working with publicly available YouTube videos raises important questions about data privacy,
content licensing, and downstream safety. We deliberately release only video URLs and derived
annotations (captions, QA pairs), without redistributing video content, and comply with the PhysioNet
Data Use Agreement for MIMIC-IV-ECHO. Nevertheless, incidental PHI may exist in public videos,
and model misuse in clinical settings poses safety risks. We provide a full discussion of these issues
and our mitigation strategies in the Ethics Statement (Section A).

In summary, our study lays the groundwork for biomedical video-language modeling by curating a
large-scale instruction-tuning dataset and introducing two clinically meaningful benchmarks. We hope
this resource catalyzes further research into multimodal medical understanding, while encouraging
the community to address open challenges in data quality, ethical use, and clinical grounding.
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A Ethics Statement
Our work raises several ethical considerations related to data privacy, consent, copyright, and
downstream safety.

Data sources and licensing. OpenBiomedVid was constructed from publicly available biomedical
educational videos on YouTube. To respect content creators’ rights and YouTube’s terms of service,
we do not redistribute any video files or thumbnails. Instead, we release only video URLs and derived
metadata (captions, QA pairs). All dataset and model releases are restricted to non-commercial,
research-only use.

Privacy and PHI risk. Although YouTube prohibits the posting of protected health information (PHI),
some videos may still contain incidental identifiers such as faces, voices, or on-screen text. We
acknowledge this residual risk. To mitigate it, we curated videos primarily from trusted educational
channels, applied automated biomedical frame filtering (95% agreement with human annotators), and
incorporated human expert review. Downstream users are cautioned that incidental PHI may remain
in linked content. If such cases are identified, we will promptly notify YouTube and remove affected
entries.

Consent and attribution. All content used in this work was publicly available. This practice is
consistent with prior academic works that curate datasets from YouTube and release only URLs and
annotations (e.g., MiraData (Ju et al., 2024), Mr. HiSum (Sul et al., 2023), AVOS (Goodman et al.,
2024)). To promote transparency, we will include a credit list of source YouTube channels in our
dataset documentation.

Use of large language models. LLMs (primarily GPT-4o) were used for caption refinement, metadata
annotation, and Q/A generation, with human-in-the-loop validation by medical experts. GPT-4o was
also used as an evaluator on SurgeryVideoQA, though we verified robustness by repeating evaluation
with an independent judge (Gemini-2.0-Flash), which yielded consistent rankings. While LLM use
raises risks of hallucination and stylistic bias, our safeguards and external evaluations mitigate these
concerns.

Downstream safety. The models trained in this study are not intended for clinical deployment. They
are trained on noisy, heterogeneous educational content and evaluated on open-ended QA tasks. Even
the strongest models remain far from perfect accuracy. We explicitly warn that misuse of these
models for clinical decision-making could pose safety risks. All dataset and model releases will
include a prominent disclaimer: “This model is intended for research use only. It is not clinically
validated and must not be used for medical diagnosis or treatment.”

Compliance. For MIMIC-IV-ECHO, we strictly adhered to PhysioNet’s Data Use Agreement. For
YouTube data, we complied with the platform’s terms by releasing only URLs and annotations, not
video files. All resources will be distributed under a non-commercial research license.

In summary, we acknowledge the ethical complexity of curating biomedical datasets from public
sources. By releasing only metadata, involving medical experts, and explicitly warning against
clinical use, we aim to advance research while minimizing risks. We welcome community feedback
and contributions to further strengthen privacy protections and safety safeguards.

B Related Work

B.1 Vision-Language Models
Vision-Language Models (VLMs) integrate visual and textual modalities for tasks such as image
captioning, visual question answering, and multimodal reasoning (Li et al., 2023a; Wang et al., 2024;
Meta, 2024; Team et al., 2024; Hurst et al., 2024; Anthropic, 2024). Early models like Flamingo,
BLIP, and MiniGPT introduced a now-common architecture—comprising a vision encoder, a large
language model (LLM), and a projection module to align modalities (Alayrac et al., 2022; Li et al.,
2022; 2023b; Liu et al., 2023; Zhu et al., 2023)—but were limited by fixed-resolution inputs (typically
224×224), which led to information loss in high-resolution settings. Recent work addresses this
by either adopting multi-crop strategies (Thapa et al., 2024; Guo et al., 2024; Liu et al., 2024)
or enabling dynamic resolution processing through 2D Rotary Position Embeddings (RoPE) (Su
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et al., 2024; Dehghani et al., 2023; Wang et al., 2024), allowing ViTs to natively handle varying
image sizes. Large-scale instruction-tuning datasets such as LAION-5B (Schuhmann et al., 2022),
ShareGPT4V (Chen et al., 2024), and LLaVA-Instruct-150K (Liu et al., 2023) have further enhanced
reasoning capabilities across diverse domains. Additionally, token-efficient methods like the Perceiver
Resampler (Jaegle et al., 2021; Alayrac et al., 2022) and spatial pooling techniques have enabled
longer context lengths without incurring prohibitive compute.

VLMs have recently expanded into video understanding, introducing new challenges due to the high
token count from sequential frames (Zohar et al., 2024; Wang et al., 2024; Lin et al., 2023; Team
et al., 2024; Beyer et al., 2024). Strategies such as frame sampling and 3D spatiotemporal pooling
have proven effective, aided by large-scale video datasets like WebVid-2M (Bain et al., 2021) and
Video-ChatGPT (Maaz et al., 2023). Unified architectures such as OmniVLM and Gemini now
demonstrate strong performance across both image and video tasks (Beyer et al., 2024; Hurst et al.,
2024), underscoring the growing versatility of modern VLMs.

B.2 Biomedical Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong potential in the biomedical domain,
enabling tasks such as medical report generation, disease classification, and procedural understanding.
Recent models like Dragonfly (Thapa et al., 2024), LLaVA-Med (Li et al., 2023a), Med-PaLM (Tu
et al., 2024), and Med-Gemini (Saab et al., 2024) showcase the ability of VLMs to adapt to medical
contexts. Their success is largely fueled by high-quality biomedical image-text datasets, including
MedTrinity-25M (Xie et al., 2024), MIMIC-CXR (Johnson et al., 2019), CheXpert (Irvin et al., 2019),
Quilt (Ikezogwo et al., 2023), OpenPath (Huang et al., 2023), and LLaVA-Med (Li et al., 2023a),
which span modalities like X-rays, CTs, MRIs, and histopathology. These datasets provide radiology
reports, disease annotations, and sometimes segmentation masks or bounding boxes—enabling
diverse downstream tasks and improving domain-specific reasoning.

B.3 Biomedical Video Datasets
Biomedical video analysis has gained momentum with the emergence of specialized datasets sup-
porting various clinical applications and procedural understanding. Notable among these is Med-
VidQA, which provides educational biomedical videos for video question answering and compre-
hension (Gupta et al., 2023), and NurViD, a video corpus of nursing procedures annotated at the
action-step level (Hu et al., 2023). AVOS supports surgical scene analysis with 1,997 annotated
surgical videos (Goodman et al., 2024), while MIMIC-IV-ECHO offers echocardiograms linked to
clinical records, enabling research in cardiac function and diagnostic imaging (Gow et al., 2023).
Cataract-1K contains annotated cataract surgery videos, facilitating ophthalmic phase recognition
and skill assessment (Ghamsarian et al., 2024). Similarly, MedicalNarratives leverages educational
medical videos to create a dataset focused on spatially grounding visual concepts, primarily targeting
image-centric modalities such as CT, MRI, and X-rays (Ikezogwo et al., 2025). While their source
material includes videos, the emphasis is on extracting and annotating static medical images rather
than analyzing temporal dynamics or reasoning across multiple video frames. Together, these datasets
have advanced the development of medical multimodal models.

Despite this progress, existing biomedical video datasets remain limited in both scale and scope,
often targeting narrow tasks or specific modalities. MedVidQA and NurViD center on instructional
and nursing procedures, AVOS targets open surgeries, and MIMIC-IV-ECHO is confined to echocar-
diography. Similarly, the EndoVis Challenge datasets emphasize surgical tool segmentation and
phase recognition (Nwoye et al., 2023), offering limited support for broader multimodal learning.
MedicalNarratives (Ikezogwo et al., 2025) also leverages educational medical videos but primarily
focuses on extracting and annotating static medical images—such as CT, MRI, and X-rays—rather
than enabling reasoning over dynamic video content. The lack of large-scale, diverse, and stan-
dardized datasets continues to hinder progress in biomedical video-language modeling. To address
this gap, we introduce OpenBiomedVid, a large-scale and diverse corpus of educational biomedical
videos sourced from YouTube, paired with carefully cleaned captions and an instruction-tuning
dataset tailored for video-language modeling. Additionally, we release two standardized evaluation
benchmarks—MIMICEchoQA and SurgeryVideoQA —designed to systematically assess biomedical
video understanding.
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C Additional Results

C.1 Effect of Dataset Size on Performance.
To examine the impact of dataset size on performance, we evaluated the model across increasing
proportions of the fine-tuning dataset and averaged the results for text, image, and video benchmarks.
Supplementary Figure S1 illustrates the overall trends.

On image and video benchmarks, we observed a clear upward trajectory as more data was introduced,
underscoring the importance of dataset scale for multimodal understanding. For image tasks, the
Qwen-2-VL-7B-biomed model achieved most of its gains between 0% and 25% of the data,
suggesting early saturation in image understanding. In contrast, video performance continued to
improve more steadily up to 50% of the dataset, with further gains at a slower pace beyond that point.
While the relatively small size of our fine-tuning dataset limits projections at larger scales, these
trends suggest that both image and video performance could benefit from further data expansion.

On text benchmarks, however, the model exhibited minimal gains with additional data. The per-
formance curve remained relatively flat across different dataset sizes, mirroring patterns observed
earlier in Supplementary Figure 4. These results indicate that scaling biomedical video-caption data
provides limited benefit for purely textual reasoning tasks. One likely reason is that the benchmark
datasets—such as MedQA and PubMedQA—require specialized domain knowledge and structured
question-answering capabilities, which may not be captured effectively through video-text instruction
tuning.
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Figure S1: Average performance of the Qwen2-VL-2B-biomed and Qwen2-VL-7B-biomed
models at various training checkpoints. The results highlight the impact of increasing training data,
showing marginal gains for text benchmarks but substantial improvements for image and video
benchmarks, underscoring the importance of multimodal data scaling.
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Figure S2: Performance of the Qwen2-VLmodels on text benchmarks at various training checkpoints.
The figure illustrates how increasing the amount of training data impacts performance on text-based
tasks, highlighting the marginal gains observed compared to image and video benchmarks.
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Figure S3: Performance of the Qwen2-VL models on image benchmarks at various training check-
points. The figure illustrates how increasing the amount of training data leads to steady performance
gains on image-based tasks, highlighting the importance of data scaling for enhancing visual under-
standing in biomedical contexts.
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Figure S4: Performance of the Qwen2-VL models on video benchmarks at various training check-
points. The figure shows a more substantial performance gain on MIMICEchoQA compared to
SurgeryVideoQA, suggesting that the model benefits more significantly from additional training
data in certain biomedical video contexts. The modest improvements on SurgeryVideoQA indicate
potential challenges in capturing the complexity of surgical videos despite increased data.
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Figure S5: Performance of the Qwen2-VL models stratified by imaging modalities, including X-ray,
CT scans, and MRI. The figure highlights how model accuracy varies across different modalities,
with the highest performance observed on MRI images, followed closely by CT scans.
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Table S1: Comparison of GPT-4o and Gemini-2.0-Flash judges across all models. Values are
accuracy (%) with 95% bootstrap confidence intervals in parentheses. Agreement and Cohen’s κ
measure inter-judge consistency.

Model GPT-4o (Judge) Gemini-2.0-Flash (Judge) Agreement (%) Cohen κ

Video-ChatGPT-7B 7.9 (6.9–8.9) 7.4 (6.4–8.5) 95.8 0.70
Video-LLaVA-7B 9.2 (8.1–10.1) 8.8 (7.7–9.8) 95.0 0.69
Phi-3.5-vision-instruct 8.5 (7.5–9.5) 8.1 (7.1–9.1) 95.7 0.71
Phi-4-multimodal-instruct 8.5 (7.5–9.5) 10.2 (9.2–11.4) 94.6 0.68
InternVideo2.5-Chat-8B 12.2 (11.0–13.4) 11.9 (10.7–13.2) 94.4 0.74
Qwen2-VL-7B-Instruct 16.5 (14.9–18.3) 13.2 (11.8–14.9) 92.6 0.71
Qwen2.5-VL-7B-Instruct 17.9 (16.4–19.4) 18.6 (17.2–20.1) 91.9 0.73
Qwen2-VL-72B-Instruct 24.3 (21.9–26.5) 26.8 (24.3–29.1) 90.0 0.74
Qwen2.5-VL-72B-Instruct 24.3 (21.9–26.5) 26.8 (24.3–29.1) 90.0 0.74
Gemini-2.0-Flash 26.8 (23.0–30.6) 27.2 (23.4–31.5) 88.3 0.70
GPT-4o 35.8 (32.6–39.0) 38.4 (35.2–42.6) 90.0 0.78
o4-mini 46.6 (39.4–52.9) 51.4 (44.7–58.2) 86.5 0.73

Qwen2-VL-2B-biomed 20.4 (18.9–22.0) 20.1 (18.6–21.7) 93.2 0.79
Qwen2-VL-7B-biomed 25.1 (23.5–26.6) 26.7 (25.1–28.3) 91.3 0.77

Table S2: Performance of multimodal models before and after fine-tuning on OpenBiomedVid.
Results show that OpenBiomedVid improves both InternVL3-8B and Qwen2-VL-72B across video
and image-based biomedical QA benchmarks, confirming its architecture-agnostic utility.

Task InternVL3-8B InternVL3-8B-Biomed Qwen2-VL-72B Qwen2-VL-72B-Biomed

MIMICEchoQA 35.1 42.2 37.6 47.0
SurgeryVideoQA 15.5 20.1 25.3 28.1
VQA-RAD 67.3 72.1 77.0 76.5
PathVQA 58.0 65.8 73.8 71.0
Slake 64.0 66.2 75.1 75.0
MedQA 61.2 61.0 68.6 76.2
PubMedQA 62.6 67.5 76.3 79.4

C.2 LLM-as-Judge Bias Analysis
To rigorously assess potential stylistic or evaluator bias introduced by GPT-4o, we conducted a
comprehensive multi-judge analysis using both GPT-4o and Gemini-2.0-Flash across all 14 evaluated
models. As shown in Supplementary Table S1, accuracy estimates under the two judges are highly
consistent, with overlapping 95% CIs, 93.0% raw agreement, and Cohen’s kappa = 0.748. Model
rankings remain nearly identical (Spearman correlation = 0.972, Pearson r = 0.993).

To ensure evaluator independence, we also carried out a human study on 400 randomly sampled
items across GPT-4o, Gemini-2.0-Flash, and our 2B/7B biomedical Qwen2-VL models, as shown in
Supplementary Table S4. Both LLM judges show strong alignment with humans (90–95%, Cohen’s
kappa = 0.72–0.84 for GPT-4o; 89–95%, Cohen’s kappa = 0.66–0.83 for Gemini), and also agree
closely with each other (88–95%, Cohen’s kappa = 0.65–0.85).

Finally, we highlight that GPT-4o is not generating captions de novo—the captions originate from
the original YouTube audio; the LLM only cleans them and formulates Q/A pairs. Every stage of
the pipeline includes human verification to prevent artifacts, and the entire SurgeryVideoQA and
MIMICEchoQA benchmarks were fully reviewed by clinical experts.

C.3 Evaluation Error Analysis
We conduct a comprehensive quantitative and qualitative error analysis of the model trained on our
dataset (Qwen2-VL-7B-Biomed-Video) across both evaluation benchmarks. For MIMICEchoQA, we
grouped errors by anatomical structure and ultrasound view and found that mistakes disproportionately
concentrate in regions such as left atrium (68.4% error), pulmonary artery (66.7%), and right atrium
(72.7%). Doppler and PSAX/PLAX great-vessel views also exhibit the highest error (e.g., DOPPLER:
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Table S3: Comparison across Qwen2-VL 2B and 7B models (base, biomed-frame, biomed-video).
Numbers are accuracy (%). Bold indicates the highest-performing model per task.

Task 2B-base 2B-biomed-frame 2B-biomed-video 7B-base 7B-biomed-frame 7B-biomed-video

Video Benchmarks

MIMIC-EchoQA 21.1 40.0 42.0 37.9 44.0 49.0
SurgeryVideoQA 10.3 15.6 20.4 16.5 23.0 25.1

Table S4: Human evaluation results on 100 sampled SurgeryVideoQA items. Accuracies are
percentages judged correct. Agreement and Cohen’s κ quantify alignment between (H.) the human
annotator, GPT-4o (GPT), and Gemini-2.0-Flash (Gem).

Model H. Acc GPT Acc Gem Acc GPT↔H. Gem↔H. GPT↔Gem κ(GPT,H.) κ(Gem,H.)

GPT-4o 23.0 27.0 29.0 90.0 94.0 94.0 0.73 0.84
Gemini-2.0-Flash 18.0 21.0 23.0 95.0 89.0 88.0 0.84 0.66
Qwen2-VL-7B-biomed 20.0 22.0 21.0 94.0 93.0 93.0 0.82 0.79
Qwen2-VL-2B-biomed 15.0 19.0 20.0 92.0 95.0 95.0 0.72 0.83

83%; PSAX great-vessels: 70–71%), consistent with the need for dynamic spectral reasoning. A
manual review of 100 incorrect predictions further revealed clear, non-random patterns: roughly 60%
of errors arise from severity miscalibration, where mild or severe findings are collapsed to moderate;
25–30% stem from threshold ambiguities (e.g., under-calling small pericardial effusions or over-
calling physiologic aortic regurgitation); and 10% reflect systematic Ejection Fraction overestimation.
These error modes likely arise from the inherent noise and subjectivity in report-derived labels (e.g.,
borderline severity categories, inter-expert disagreement, and variability in clinical phrasing).

For SurgeryVideoQA, we manually examined 100 randomly sampled incorrect predictions and
again observed consistent, interpretable failure categories. Approximately 22% of errors involve
anatomy/localization mistakes (e.g., confusing strap muscles with pectoralis major/minor, or pre-
sacral space with the left iliac fossa). Instrument/technique/suture misidentification accounts for
25–33% of failures (e.g., predicting diathermy instead of a surgical knife). Procedural step or
temporal confusion explains another 16%, where the model describes an earlier or later operative
phase rather than the interval queried. Around 10% of errors arise from overly generic responses (e.g.,
“a knot” instead of “purse-string notch”), and 5–10% involve quantitative or extent misestimation
(e.g., dissection distance, graft volume). Across all categories, most mistakes are near misses—the
model generally identifies the correct procedure and high-level context but lacks the fine-grained,
expert-level specificity required by the benchmark. These patterns are consistent with residual noise
and label coarseness in the large, automatically curated YouTube-derived dataset.

C.4 Training Data Quality Assessment
Human verification occurred at different depths for the training dataset versus the evaluation bench-
marks. For the training dataset, human review was performed through random spot checks: a medical
doctor inspected 1,000 sampled clips together with all associated Q/A pairs, covering a broad range
of channels and content areas. This sampling strategy was intentional—the goal of the paper is to test
whether models can learn from naturally noisy and heterogeneous educational videos, so we did not
exhaustively clean the training corpus. In contrast, human verification for the evaluation benchmarks
was conducted at the per-clip and per-QA level (i.e., full passes). MIMICEchoQA was fully curated
by a board-certified cardiologist, and SurgeryVideoQA was fully curated by a general medical doctor;
both experts removed any items showing common LLM failure modes such as generic answers,
incorrect grounding, temporal mismatch, or hallucinated clinical content.

Regarding annotator counts, each benchmark involved two clinical annotators, and the frame-filtering
stage involved two independent annotators, where we observed 95% human–model agreement
and 93% human–human agreement on 1,000 frame-level samples immediately after training the
SigLIP classifier. We agree that LLM-generated training captions/QAs may still contain occasional
artifacts—this is inherent to the educational YouTube domain and aligned with the research question
of whether models can learn effectively from such heterogeneous supervision.
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To better quantify residual noise in the training corpus, we conducted an manual analysis of 100
randomly sampled caption–QA pairs, labeling each item with its primary issue when present. We
found that 15% of samples contained ambiguous or low-information captions (e.g., generic openings
such as “In this video. . . ” that provide little clinical grounding), and 10% showed signs of incorrect
grounding, where the caption was vague but the QA referred to specific anatomy or procedures.
Only 5% exhibited clear LLM-style noisy phrasing (e.g., “the example under consideration. . . ”).
Importantly, 70% of samples were mostly normal and clinically grounded, consistent with our design
choice to preserve some natural heterogeneity in the training data. As emphasized earlier, the two
evaluation benchmarks—MIMICEchoQA and SurgeryVideoQA—are fully expert-curated and do not
contain these artifacts. We will include representative cases in an error-analysis appendix to further
document these patterns.

D Dataset Details

D.1 Dataset Statistics
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Distribution of Hours by Anatomical Region

Anatomical Regions
Gastrointestinal System (5.9h, 26.8%)
Head and Neck (5.2h, 23.5%)
Skin and Integumentary System (3.8h, 17.3%)
Endocrine System (2.1h, 9.6%)
Musculoskeletal System (1.9h, 8.5%)
Genitourinary System (1.0h, 4.5%)
Other (0.6h, 2.9%)
Thoracic and Respiratory System (0.6h, 2.7%)
Cranial and Nervous System (0.4h, 1.6%)
Vascular System (0.3h, 1.5%)
Cardiac (0.2h, 1.1%)

Distribution of Count by Anatomical Region

Anatomical Regions
Gastrointestinal System (141 videos, 29.9%)
Head and Neck (100 videos, 21.2%)
Skin and Integumentary System (79 videos, 16.8%)
Endocrine System (41 videos, 8.7%)
Musculoskeletal System (38 videos, 8.1%)
Genitourinary System (20 videos, 4.2%)
Other (15 videos, 3.2%)
Thoracic and Respiratory System (13 videos, 2.8%)
Cranial and Nervous System (7 videos, 1.5%)
Vascular System (11 videos, 2.3%)
Cardiac (6 videos, 1.3%)

Figure S6: Statistics of the SurgeryVideoQA evaluation dataset, showing the distribution of videos
and Q/A pairs across different anatomical regions and surgical procedures.

E Training Details

E.1 Model Training
VLM Training Traditional training of vision-language models (VLMs) involves padding sequences
to a fixed maximum length, which becomes increasingly inefficient as dataset size and sequence
variability grow. To improve training efficiency, we implement a sequence packing algorithm (Krell
et al., 2022; Ding et al., 2024) tailored for VLMs. During preprocessing, we pre-allocate placeholders
for visual input tokens and apply a best-fit decreasing algorithm to efficiently pack sequences of
varying lengths within the maximum sequence limit.

To ensure attention is restricted to individual sequences within each packed batch, we utilize
FlashAttention-2 (Dao, 2024), allowing each sequence to attend only to itself. During the for-
ward pass, placeholders are dynamically replaced with embeddings from the vision encoder, avoiding
redundant computation and significantly accelerating training. Detailed training hyperparameters
are provided in Table S5. The total training time for Qwen-2-VL-2B-Biomed was 4.5 hours on a
single node, while Qwen-2-VL-7B-Biomed required 5 hours on a single node.
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Figure S7: Video resolution distribution in the fine-tuning dataset
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Figure S8: Video resolution distribution in the SurgeryVideoQA dataset.
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Table S5: Training configuration for fine-tuning Qwen-2-VL models.
Parameter Qwen2-VL-2B Qwen2-VL-7B
Max Sequence Length 16,384 tokens
Learning Rate 1× 10−5

Optimizer AdamW
Gradient Accumulation Steps 8
Batch Size (Per Device) 1
Epochs 1
Warmup Ratio 0.1
Weight Decay 0.01
Gradient Checkpointing Enabled
FP16/BF16 Precision BF16
Learning Rate Scheduler Cosine Decay
GPUs Used 8× NVIDIA H100

The original Qwen2-VL models sample videos at 2 frames per second (fps) and process them using
3D convolutions with a depth of two. They dynamically adjust frame resolution to constrain the
total number of visual tokens per video to 16,384. In our fine-tuning, we retained most of these
original settings but introduced a key modification: we sampled frames at 1 fps instead of 2 fps.
This allowed us to use higher-resolution frames while maintaining the same token budget per video,
thereby reducing the need for aggressive frame downsampling.

Table S6: Combined Training Configuration for Fine-tuning Siglip classifier.
Parameter Value

Learning Rate 2× 10−5

Batch Size (Per Device) 32
Epochs 1
Weight Decay 0.01
GPUs Used 8× NVIDIA H100

Classifier Training For classifier training, we trained the linear layer on top of the SigLIP vision
encoder (Zhai et al., 2023). The total training time was less than 1 hour. The training parameter is
shown in Table S6.
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F Prompt Details

F.1 Medical Image Classification

Prompt for Medical Image Classification

You are an expert at identifying biomedical content in images. Your task is to classify each
image as either True or False based on the following structured criteria:

Classification Criteria:
1. True: The image predominantly features biomedical visuals. Examples of valid biomedical
visuals include, but are not limited to:

- Echocardiograms
- Sonograms
- Surgical procedures
- Animations illustrating biological processes
- Ultrasounds
- X-rays
- Body organs or tissues
- CT scans
- Cells or cellular structures
- Endoscopy
- Microscopic images
- Fluoroscopy
- Fundoscope
- PET scans
- Otoscopy
- Mammography
- Dermatoscopy
- Cystoscopy
- Angiogram
- Colonoscopy
- MRI
- Arthroscopy

The biomedical visuals must be the dominant part of the image.

Additional context:
- Biomedical text, even if descriptive of biomedical content, does not qualify.
- The presence of medical professionals alone, without dominant biomedical visuals, does not

qualify.

2. False: Any image that does not meet the above “True” criteria. Examples include:
- Images where biomedical content is not the dominant feature.
- Images with only biomedical text.
- Images with only medical professionals without accompanying biomedical visuals.
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F.2 Filter and Clean Captions

Prompt for Filtering and Cleaning Captions

You are an AI assistant that determines if a caption describes relevant biomedical video content
and cleans it to be neutral and descriptive.

STEP 1: FILTER FOR BIOMEDICAL RELEVANCE
The caption must meet BOTH criteria to be considered biomedical:

1. Describes observable visual content:
- Medical imaging (ultrasounds, X-rays, MRI, CT scans, etc.)
- Clinical procedures or examinations
- Surgical operations
- Microscopic views
- Anatomical demonstrations
- Medical device operations
- Patient assessments
- Laboratory procedures with visual components

2. Contains specific biomedical elements:
- Not just medical settings or personnel
- Must describe actual medical/biological content
- Should reference visual elements that would be seen in the video

STEP 2: CLEAN THE CAPTION
Clean all captions following these guidelines:

1. NO HALLUCINATION:
- Do not make up information
- All cleaned captions must be entirely grounded in the original

2. Standardized Terminology:
- Use consistent and precise terminology
- Replace colloquial terms with standardized phrases

3. Level of Detail:
- Reflect only explicitly stated details
- Do not infer additional information

4. Spatial and Temporal Context:
- Include spatial/temporal references only when explicitly described
- Avoid assuming spatial or temporal details

5. Remove Noise but Keep Context:
- Remove non-visual information unless essential

6. Neutral and Objective Language:
- Remove conversational tone and subjective comments

Output Format:
<is biomedical>: true/false
<cleaned caption>: cleaned caption
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F.3 Generate Question Answer Pairs

Prompt for Generating Question Answer Pairs

You are an expert in biomedical video analysis and medical diagnosis. Your task is to generate
high-quality question-answer (Q/A) pairs for a biomedical video benchmark dataset.

Generate only Q/A pairs that meet all of these criteria:

1. The answer must require watching the video. It should be based on visual details
observed in the video, not general medical knowledge.

2. Focus on specific biomedical aspects:
- Diagnoses, such as identifying visible pathologies
- Procedures, including surgical techniques or medical interventions
- Medical findings, such as abnormalities in tissues or organs
- Anatomical features, including structural changes in biological samples

3. Avoid generic, basic, or trivial questions. Ensure they are medically relevant and
non-obvious.

4. The questions must be strictly based on the visual content of the video. Do not in-
troduce hallucinated or unrelated information.

5. Ensure that each question focuses on a single, specific detail. Avoid compound or
multi-part questions.

6. Use diverse question formats, such as:
- What is the ejection fraction of the heart as shown in the video?
- What abnormalities are detected in the lungs as shown in the video?
- Where is the ulcer located?
- Which visual signs indicate arterial plaque in the coronary artery?
- When does peristalsis slow down in the small intestine?
- Which feature distinguishes this tumor from surrounding tissue?

7. Keep answers concise and direct (few words), avoiding unnecessary elaboration.

Return the generated Q/A pairs as a valid JSON array in this exact format:
{“question”: “question text”, “answer”: “answer text”}
{“question”: “question text”, “answer”: “answer text”}
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F.4 Generate Metadata

Prompt for Video Metadata Generation

Based on this medical video caption: {cleaned caption}

Select exactly ONE video modality from:
- Echocardiography
- Ultrasound
- CT Imaging
- MRI
- Angiography
- X-ray
- Fluoroscopy
- Endoscopy and Laparoscopic Surgery
- Surgical and Procedural
- Anatomy and Biological Processes
- Microscopy
- Other

And exactly ONE anatomical category from:
- Cardiac
- Vascular System
- Musculoskeletal System
- Cranial and Nervous System
- Thoracic and Respiratory System
- Gastrointestinal System
- Genitourinary System
- Head and Neck
- Endocrine System
- Skin and Integumentary System
- Other

Output Format:
<modality>: Single most relevant video modality (no commas)
<anatomical region>: Single most relevant anatomical category (no commas)

Base your selection purely on the primary focus described in the caption. Choose the
single most central category that best matches the main content. Do not include multiple
categories or variations.

You must select exactly one option from each list above - do not create new categories
or combine existing ones.
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F.5 Generate SurgeryVideoQA Benchmark

Prompt for Creating Surgical Benchmark

You are an expert in surgical video analysis and intraoperative decision-making. Your task is to
generate high-quality question-answer (Q/A) pairs for an open-surgery video benchmark dataset.

Generate only Q/A pairs that meet all of these criteria:

1. The answer must require watching the video.
- The answer should be based on visual details observed in the video, not general surgical

knowledge.
- Avoid questions that could be answered without analyzing the surgical footage.

2. The questions must be strictly grounded in the video caption.
- Do not introduce hallucinated or unrelated information.
- Ensure that each question is fully supported by the caption.

3. The questions must focus on these critical open-surgery aspects:
- Surgical procedures (e.g., dissection, hemostasis, suturing, anastomosis)
- Anatomical structures (e.g., vessels, organs, tissues, nerves)
- Pathological findings (e.g., necrosis, tumor, hemorrhage, infection)
- Surgical instruments (e.g., scalpel, forceps, electrocautery, retractors)
- Complications (e.g., excessive bleeding, ischemia, perforation)
- Intraoperative decision-making (e.g., changing instruments, modifying the approach)

4. The questions must be direct, precise, and non-trivial.
- Avoid vague or general questions (e.g., “What is happening?” is not acceptable).
- Each question must target a single, specific surgical detail.
- Do not ask broad, multi-part, or ambiguous questions.

5. The answers must be concise (only a few words).
- No explanations or unnecessary elaboration.
- Keep answers strictly factual and directly grounded in the caption.

Return the generated Q/A pairs as a valid JSON array in this exact format:
{“question”: “question text”, “answer”: “answer text”}
{“question”: “question text”, “answer”: “answer text”}
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F.6 Generate MIMICEchoQA Benchmark

Prompt for Creating Echocardiogram Benchmark

You are an expert in cardiology and echocardiogram interpretation. Your task is to generate
high-quality question-answer (Q/A) pairs based strictly on the given echocardiogram video
caption.

Generate only Q/A pairs that meet all of these criteria:

1. Only focus on heart, valve, and chamber abnormalities and ejection fraction.
- The questions must target visible findings such as valve regurgitation, stenosis, chamber

dilation, wall motion abnormalities, or ejection fraction.
- Avoid questions that could be answered without analyzing the echocardiogram footage.

2. Do not use any external information beyond what is explicitly in the caption.
- Do not introduce hallucinated or unrelated information.
- Ensure that each question is fully supported by the caption.

3. Frame questions as if they are about the echocardiogram video itself, not a
text report.

- Questions should refer directly to observations in the video, not inferred or historical data.

4. Do not hallucinate findings—if the caption does not provide enough information, return
None.

- If the caption lacks specific details, avoid making assumptions or introducing unsupported
information.

5. Ensure answers are short and direct.
- No explanations or unnecessary elaboration.
- Keep answers strictly factual and directly grounded in the caption.

6. Only include findings that are currently visible in the echocardiogram.
- Do not reference past medical history or prior diagnoses.
- Focus solely on present and visible findings in the video.

7. Return the generated Q/A pairs as a valid JSON array in this exact format:
{“question”: “question text”, “answer”: “answer text”}
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F.7 Video Evaluation

Prompt for Video Evaluation

You are an expert evaluator for medical image and video understanding. Your task is to compare
a gold standard answer to a predicted answer and determine the similarity score.

Ignore minor differences in formatting and verbosity. Focus on whether the predicted
answer conveys the same essential meaning as the gold answer.

Instructions:
Assign a score of 0 or 1 based on how similar the prediction is to the gold answer:
1: Correct - The prediction is mostly correct and captures the essential meaning, with minor
errors being tolerable.
0: Incorrect - The prediction is largely incorrect or unrelated.

You must respond with ONLY a single integer number: 0 or 1.

Question: {question}
Gold Answer: {gold answer}
Predicted Answer: {pred answer}
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G Qualitative Examples

G.1 Finetuning Dataset

Example #1

Modality: Ultrasound
Anatomical Region: Other
Query: ultrasound
Link: https://youtu.be/akxn2mI2rQc

1:20 1:44

Cleaned Caption: Breast ultrasounds are utilized to assess the nature of breast masses. A mass
containing only fluid indicates a benign simple cyst, which typically does not necessitate further
evaluation. In contrast, solid masses have the potential to be breast cancer. The procedure for a
breast ultrasound requires no special preparation. During the examination, a transducer is used
to glide over the skin, capturing images of the internal structures of the breast efficiently and
painlessly.

Question: What characteristic observed in the breast mass indicates it is a benign simple cyst as
shown in the video?
Answer: The mass contains only fluid.

Question: What is the procedure used during the breast ultrasound in the video?
Answer: Gliding a transducer over the skin.
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Example #2

Modality: MRI
Anatomical Region: Genitourinary System
Query: dynamic mri
Link: https://youtu.be/251EKL3SKao

12:308:30

Cleaned Caption: The presentation begins by illustrating the progression of a breast lesion.
Initially, the lesion showed an increase in intensity, eventually washing out, and subsequently
opened up, indicating a malignant breast lesion rather than a benign one. This case serves as an
example.
The second case concerns a patient undergoing neoadjuvant chemotherapy. Post-chemotherapy
ultrasound indicated that the mass size had increased compared to the pre-chemotherapy size,
raising concerns about the treatment’s effectiveness. To address this issue, a breast MRI was
conducted to evaluate the size and activity of the tumor following chemotherapy.
The T1-weighted fat-saturated images before contrast injection showed areas of increased signal
intensity. To further assess the condition, a dynamic breast MRI was performed after contrast
administration. This technique involves acquiring images both before and after contrast
injection, allowing for the identification of any post-contrast enhancement areas. Post-contrast
subtraction images were obtained, with contrast being applied six times, though only five
sequences are demonstrated here.
Initially, no enhancement was observed during the first sequence. In the third stage, areas of
enhancement began to appear. These included slight central necrosis, indicating suspicious and
potentially malignant characteristics. The progression showed a distinct pattern in the lymph
nodes, where their visibility improved, becoming more evident over subsequent sequences.

Question: What does the initial increase in intensity and subsequent washout of the lesion in the
breast suggest?
Answer: A malignant breast lesion.

Question: What was the unexpected finding in the ultrasound after neoadjuvant chemotherapy?
Answer: The mass size increased.

Question: What was observed in the T1-weighted fat-saturated images before contrast injection?
Answer: Increased signal intensity areas.

Question: What changes were visible in the lymph nodes during the post-contrast sequences?
Answer: Improved visibility.
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Example #3

Modality: Echocardiography
Anatomical Region: Cardiac
Query: echocardiogram
Link: https://youtu.be/dic24ssb7Mk

5:21 7:03

Cleaned Caption: During early diastole, a notable gradient is observed. Intercavitary gradients
are commonly detected in patients exhibiting concentric hypertrophy, large or malformed
papillary muscles, or hyperdynamic cardiac function. The patient in question demonstrates
moderate concentric hypertrophy and a reduced left ventricular cavity size. To ascertain the
precise location of the gradient, color Doppler imaging is employed, revealing turbulence
throughout the left ventricular cavity. Pulse wave Doppler is also utilized to pinpoint the
obstruction. In the initial pulse wave Doppler signal, the sonographer positions it within the left
ventricular outflow tract (LVOT), where laminar flow appears, indicating a normal LVOT
waveform. When the sample volume is adjusted to the mid-left ventricle, a late peaking
waveform emerges, identifying the region of turbulence. Continuous wave Doppler analysis
highlights the late peaking gradient, distinguished from the aortic gradient by its triangular shape
and lower velocity. This patient may benefit from a provocative maneuver to evaluate the
presence of a provokable gradient. Despite being challenging, color Doppler imaging can be
conducted during the Valsalva maneuver to observe changes in LVOT turbulence and mitral
regurgitation under provocation. The sonographer acquires an extended loop capturing images
before the patient initiates the Valsalva maneuver and during the Valsalva strain phase, during
which worsening turbulence in the LVOT and mitral regurgitation is observed.

Question: What feature differentiates the late peaking gradient seen in the video from the aortic
gradient?
Answer: Triangular shape and lower velocity.

Question: What change occurs in the LVOT and mitral regurgitation during the Valsalva
maneuver as observed in the video?
Answer: Increased turbulence and worsened mitral regurgitation.

Question: Where is the initial pulse wave Doppler signal placed, as shown in the video, to
observe normal laminar flow?
Answer: Left ventricular outflow tract (LVOT).

Question: What is revealed when the sample volume is placed in the mid-left ventricle as shown
in the video?
Answer: Late peaking waveform indicating turbulence.
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Example #4

Modality: Angiography
Anatomical Region: Vascular System
Query: angiogram
Link: https://youtu.be/NKTVKRMfONU

6:06 8:44

Cleaned Caption: The examination of the posterior circulation adopts an approach akin to that
used for assessing the anterior circulation. Initially focusing on the right side, the vertebral artery
is traced as it ascends, subsequently turning posteriorly to make another turn before entering the
dura. It is common for vertebral arteries to exhibit slight narrowing at this juncture. The
intracranial portion then ascends to join the contralateral vertebral artery. Although the posterior
inferior cerebellar artery (PICA) was not visible on this side, a clear view is anticipated on the
opposite side.
Upon observing the vertebral artery, which demonstrates some tortuosity by appearing
intermittently through the slices, it is seen entering the foramen magnum and re-entering the
dura. As the view progresses upwards, a small PICA becomes apparent, supplying the inferior
region of the left cerebellum, with additional swirling PICA branches visible. The vertebral
artery proceeds to merge with the right side, forming the basilar artery.
Attention is drawn to the basilar artery’s first significant branch, the anterior inferior cerebellar
artery (AICA). It is identified on the right, near the level of the internal auditory canal, which
correlates with the vessel’s proximity to the ICA. A slightly smaller AICA is noted on the
opposite side, correlating with the presence of a larger PICA on the same side, indicating
potential variability in vascular supply.
The superior cerebellar artery, appearing right before the termination of the basilar artery, is
observed on the right, with a paired counterpart on the left encircling the midbrain. These
arteries show symmetry without narrowing. As the view reaches the basilar artery’s tip, the
midbrain is examined for aneurysms. The posterior cerebral artery (PCA) bifurcation is visible,
with the right and left PCA traced forward. Although a posterior communicating artery (PCOM)
is not clearly visible, the PCA branches are seen around the midbrain, extending along the
tentorium and supplying the occipital lobe. Similar features are represented on the left side, with
the PCA circling the cerebral peduncle along the tentorium to supply the inferior occipital lobe.
Both sides display symmetry, with no evidence of occlusion.

Question: Which artery connects with the basilar artery on the left side as shown in the video?
Answer: Vertebral artery.

Question: What structural feature is observed in the superior cerebellar arteries in the video?
Answer: Symmetry without narrowing.

Question: Which artery branches near the internal auditory canal as it is shown on the right side
in the video?
Answer: Anterior inferior cerebellar artery (AICA).

Question: What is the visibility status of the posterior inferior cerebellar artery (PICA) on the
right side as shown in the video?
Answer: It is not visible.
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Example #5

Modality: Microscopy
Anatomical Region: Other
Query: microscopy
Link: https://youtu.be/Iv7eGCPVaAk

1:16 2:50

Cleaned Caption: The process begins with centering the slide on the microscope stage, which
is then turned on for observation. As the slide is examined, the cell wall, identified as the dark
outer layer, comes into view. The purple area represents the cytoplasm, within which are visible
small circular structures, identified as nuclei inside the cell.
To demonstrate plasmolysis, a salt water solution is prepared. The salt is applied to the right side
of the slide, while a paper towel is placed on the left side. This setup draws the salt water across
the slide, effectively removing the water added earlier. In a time-lapsed sequence, the dramatic
impact of the salt water is observed on the cells. The osmotic effect causes the water to be drawn
out of the cells, resulting in a noticeable shrinkage of the cell interiors, while the cell wall
remains unchanged in size. This shrinkage of the onion cells is identified as plasmolysis.
Next, the salt water is removed and replaced with fresh water using the same technique.
Observation reveals that the cells swell back to their original size, a demonstration of osmosis.
This process of alternating shrinkage and swelling can be repeated multiple times, illustrating
osmosis in action within the cells. The experiment concludes with a clarification of the observed
phenomena.

Question: What cellular process is demonstrated when the salt water causes shrinkage of the
cell interiors while keeping the cell wall unchanged in size?
Answer: Plasmolysis.

Question: What happens to the cells when the salt water is removed and replaced with fresh
water?
Answer: The cells swell back to their original size.
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Example #6

Modality: Endoscopy and Laparoscopic Surgery
Anatomical Region: Gastrointestinal System
Query: endoscopy
Link: https://youtu.be/qZjoBAGjlFo

0:26 5:15

Cleaned Caption: The video begins on the morning of day two, highlighting the importance of
the case being presented, which primarily focuses on organ preservation, specifically that of the
gallbladder. Despite the presence of stones causing symptoms in the patient, the gallbladder is
otherwise healthy. The case description underscores that the use of LAMS, a device not
approved for gallbladder drainage in the U.S., aligns with standard care due to the patient’s
unsuitability for surgery. The patient was assessed by interventional radiology (IR), which
concluded that internal drainage is preferable over external drainage for a long-term solution.
Should surgery become viable, a percutaneous cholecystostomy would likely have been
performed. The intent of using LAMS here, although off-label, is to preserve the gallbladder by
enabling internal drainage, consistent with the original aim of the technology.
The video proceeds with several teaching points, notably the use of a therapeutic
echo-endoscope with a large 3.7 mm channel necessary for placing the LAMS. It highlights the
preference for a transduodenal method for gallbladder drainage, as opposed to the transantral
approach, to reduce the risk of food entering the gallbladder through the LAMS. Ensuring clear
avoidance of the pylorus with the LAMS flange is stressed, necessitating a thorough endoscopic
evaluation to confirm the bulb is normal and free from any pathology. The video guides the
viewer through positioning the LAMS correctly, avoiding the apex and positioning near, but not
at, the pylorus due to the ultrasound’s leading viewpoint relative to the endoscopic one.
During the procedure, the transition to ultrasound imaging is made to visualize the gallbladder
and identify complications such as a significant stone occupying most of the gallbladder space,
leaving minimal bile. This necessitates filling the gallbladder with saline via an FNA needle
already attached to the scope, expanding it to provide a large enough target for the LAMS
placement. The video also addresses the challenge presented by the stone absorbing the cautery
energy, complicating penetration efforts. The solution proposed involves using additional saline
to facilitate the procedure, paralleling aspects of the EDGE procedure discussed in the video.

Question: What device is used in the video for gallbladder drainage, even though it’s not
approved for this use in the U.S.?
Answer: LAMS.

Question: Which method is preferred for gallbladder drainage to minimize risk in the video?
Answer: Transduodenal approach.

Question: What is the purpose of filling the gallbladder with saline in the video?
Answer: To create a larger target for LAMS placement.

Question: What challenge is presented by the gallbladder stone during the procedure?
Answer: Absorbing cautery energy.
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Example #7

Modality: Anatomy and Biological Processes
Anatomical Region: Musculoskeletal System
Query: ct scan
Link: https://youtu.be/fUZx47OkOvs

0:24 5:12

Cleaned Caption: The video initiates by examining the abdominal wall, focusing on Camper’s
fascia, identified as the dark tissue, which is essentially fat. The video shows how the skin and
Camper’s fascia behave intriguingly near the umbilicus, indicating the connection between the
umbilicus and the liver. This connection comprises the round ligament, part of the falciform
ligament, which separates the liver’s right and left lobes, extending up to the umbilicus.
Attention then shifts to the vertebral column starting with the thoracic vertebrae, identified by
their articulation with the ribs. Moving downward, the transition to lumbar vertebrae is noted
due to the absence of ribs and the presence of prominent mammillary processes. Further down,
the video identifies the sacrum and the sacroiliac joint—a synovial joint with limited mobility.
The focus shifts back to vertebral features, highlighting the spinous and transverse processes,
lamina, vertebral canal, spongy vertebral body, and pedicles. As the examination moves, the
pedicle disappearance signals an intervertebral foramen. This part of the video then highlights
the formation of the os coxa by three bones: the ilium, ischium, and pubis.
Exploration continues with the femur’s appearance, particularly its head and greater trochanter,
forming a ball-and-socket joint at the hip with the acetabulum. Observation highlights the pubis,
forming the pubic symphysis, and the ischium with the ischial tuberosity.
Attention shifts to the abdominal wall muscles, showing three distinct layers: external oblique,
internal oblique, and transverse abdominis, with the rectus abdominis in the front and the linea
alba connecting them. The diaphragm is seen next, similar in tone to the liver, distinguishable by
following the muscle to the right and left crura.
Focus then moves to the psoas major muscle, originating from the lumbar vertebrae and
enlarging distally, with the quadratus lumborum muscle originating from transverse processes.
The iliacus is then located within the iliac fossa, forming the iliopsoas with the psoas major
under the inguinal ligament, serving as major hip flexors.
The narrative concludes with a transition to the cardiovascular system.

Question: What anatomical feature is represented by the dark tissue identified in the video?
Answer: Camper’s fascia.

Question: Which ligament extends from the umbilicus to the liver as shown in the video?
Answer: Round ligament.

Question: Which characteristic differentiates lumbar vertebrae from thoracic vertebrae in the
video?
Answer: Presence of mammillary processes.

Question: In the video, what forms the ball-and-socket joint at the hip?
Answer: The femur head and the acetabulum.

Question: What structure is identified when the pedicles disappear in the video?
Answer: Intervertebral foramen.
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Example #8

Modality: CT Imaging
Anatomical Region: Gastrointestinal System
Query: ct scan
Link: https://youtu.be/tlaS22bIiVE

3:20 6:40

Cleaned Caption: The appendix is identified as the hyperdense bright structure, known as the
appendiculite. The appendiculite always appears bright due to its composition of calcified fecal
material. The presence of an appendiculite can facilitate the location of the appendix. In certain
cases of appendicitis, a CECO bar sign may be observed. This sign involves inflamed tissue seen
between the cecum, which is filled with contrast, and the inflamed appendix. The CECO bar
sign is only visible when contrast medium is present in the cecum. Another observable sign in a
contrast-filled cecum is the arrowhead sign, characterized by the arrowhead shape of contrast at
the appendiceal orifice, which can appear in some appendicitis cases. The coronal blade
provides a valuable perspective for viewing the inflamed appendix. In a normal image, the
appendix may not be visible, which is a common occurrence due to various factors such as the
appendix’s variable location, bowel gases, and fecal matter that can obscure the normal appendix.
Conversely, an inflamed appendix is more easily identifiable. An enlarged and swollen appendix
is seen here. Administration of IV contrast enhances the walls of the appendix, revealing
peri-appendiceal inflammation. The density and heterogeneity of the fat around the appendix
indicate inflammation, appearing brighter than expected. Another image of the same case shows
the enlarged appendix with peri-appendiceal inflammation more clearly. Another coronal image
shows the normal appendix filled with gas, identified by the black area within. The presence of
gas is normal since the appendix is not enlarged. Conversely, an image of appendicitis displays
peri-appendiceal inflammation, with bright high-density areas in the surrounding fat. The
appendix appears enlarged and gas-filled, with intraluminal gas indicating possible gangrenous
appendicitis. This type of inflammation is of greater concern due to its severity.

Question: What visual indication identifies the presence of an appendiculite in the video?
Answer: It appears as a hyperdense bright structure due to calcified material.

Question: What sign can be seen when a contrast medium is present in the cecum during
appendicitis?
Answer: Arrowhead sign.

Question: What feature indicates peri-appendiceal inflammation in the video?
Answer: Bright high-density areas in the surrounding fat.

Question: How is a normal appendix identified in the coronal image shown in the video?
Answer: By the presence of a dark area signifying gas filling.
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Example #9

Modality: Fluoroscopy
Anatomical Region: Musculoskeletal System
Query: fluoroscopy
Link: https://youtu.be/NIL_Ttvl6Co

4:08 8:36

Cleaned Caption: The only way for these facet joints to open or gap like this is through tearing
of the capsular ligaments. The current view is of the right side of the patient’s neck. She has torn
the capsular ligament between the vertebrae C5, C6, C6, C7, and C7, T1, all on one side of her
cervical spine. The examination will soon proceed to the opposite side. Just like all other
projections, this process is repeated three times. In a moment, the patient will be turned to face
the opposite direction to examine the left facet joints.
On viewing the completely opposite side, before she lowers her chin towards her chest, one can
observe a significant gapping of the facet joints. The view will be recounted to ensure clarity of
the segments being examined: C1, C2, C3, C4, C5, C6, C7, and then T1. Notice the marked
gapping at C5 on C6, indicative of a torn capsular ligament. There is a substantial gap between
T1 and T7, which becomes more apparent as the chin moves towards the chest. Observing the
levels C5, C6, C7, and T1, there is noticeable separation. This visual represents the final
projection of a cervical DMX study, specifically the A-P open mouth lateral bending.
This view involves the patient opening her mouth, attempting to bring the right ear to the right
shoulder and the left ear to the left shoulder. C2 is identifiable with the presence of the pyramid
and the two triangular bones, C1 sits atop this, supported by a bone ring. Upon initiating
movement, C1 begins to misalign relative to C2, with the lateral mass on both sides descending
further off the edge with each leaning motion.
A small arrow marks where C1 dislocates from the edge of C2, indicating potential injury or
tearing of the opposite alar and accessory ligaments. The same motion will be repeated with the
left ear towards the left shoulder. Though the freeze-frame timing is slightly late, C1 is observed
to be even further off C2 on the left side, marked by a left indicator. Thus, this examination
suggests injury to both right and left alar and accessory ligaments in this patient.

Question: Which specific ligament tear is visible on the right side of the patient’s cervical spine
in the video?
Answer: Torn capsular ligament between C5 and C6.

Question: What specific motion increases the visibility of the gap between the facet joints on
the opposite side of the cervical spine?
Answer: The patient lowering her chin towards her chest.

Question: What anatomical change is noted when the patient leans her head in the video?
Answer: C1 descends further off the edge of C2 on both sides.

Question: Which ligament injury is indicated by the motion where C1 dislocates from C2?
Answer: Injury to the right and left alar and accessory ligaments.
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Example #10

Modality: X-ray
Anatomical Region: Head and Neck
Query: bone density scan
Link: https://youtu.be/RqfqQqtgADQ

2:24 4:22

Cleaned Caption: The patient, who was over 65 years old, was eligible for insurance coverage
for implants. In addition to this, the post-cork crown option was explained. However, the patient
expressed a preference for the implant procedure. Consequently, an implant was placed
following the extraction. The accompanying photo includes a panoramic X-ray taken prior to the
extraction, as well as a clinical photo of the mandibular occlusal surface. Results from the CBCT
performed before the extraction showed that, although the buccal bone was thin, it was healthy.
This assessment allowed for the determination that immediate placement was viable, facilitating
the establishment of a treatment plan.
The treatment stages are as follows: To ensure a safe extraction, the lingual side of the tooth was
cut, and the tooth was separated in the mesiodistal direction. The extraction process was then
carefully executed, followed by a periapical X-ray to confirm the implant path. Given the depth
of the extraction site, a 2.2 mm drill was used in place of a standard guide pin to verify
parallelism with adjacent teeth. Subsequently, the implant was placed while ensuring a buccal
side gap of at least 2 mm. Once the implant was in position, the adjacent teeth and surrounding
conditions were assessed to confirm the placement depth, verified through another periapical
X-ray. Upon securing the appropriate depth, bone grafting was performed using Allograft to fill
the space between the buccal bone and the implant.

Question: Which diagnostic imaging was performed before the extraction to assess buccal bone
condition?
Answer: CBCT scan.

Question: What modification was made to the tooth before extraction according to the video?
Answer: Tooth was cut on the lingual side.

Question: What size drill was used to verify parallelism with adjacent teeth during the implant
procedure?
Answer: 2.2 mm drill.

Question: What was used for bone grafting between the buccal bone and the implant?
Answer: Allograft.

41

https://youtu.be/RqfqQqtgADQ


2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Example #11

Modality: Other
Anatomical Region: Skin and Integumentary System
Query: dermatoscopy
Link: https://youtu.be/c0jsOLOMwcY

4:39 5:42

Cleaned Caption: The video presents an examination of an acral nevus. In one case, no
changes were observed in the acral nevus over a period of four months. However, in another
instance, alterations were detected in a melanocytic lesion on the upper arm of a man in his 60s
after four months of follow-up. The subsequent image reveals fibrosis and white areas at the 10
o’clock position, along with the emergence of new dotted vessels that were not visible at the
initial observation. This lesion was subsequently excised and diagnosed as melanoma in situ.
Further changes were noted in another lesion after four months, specifically at the 12 o’clock
position. In this area, marked in white, a negative network began to appear that was absent at the
initial examination. This lesion was also excised and identified as an invasive melanoma,
measuring only 0.5 millimeters in thickness and without any ulceration, suggesting a favorable
prognosis.

Question: What was observed in the melanocytic lesion on the upper arm after four months of
follow-up?
Answer: Development of new dotted vessels and fibrosis.

Question: What type of medical condition was diagnosed for the initial altered lesion on the
upper arm?
Answer: Melanoma in situ.

Question: What visual change was noted at the 12 o’clock position in the second lesion after
four months?
Answer: Negative network appearance.

Question: What was the final diagnosis of the lesion with changes at the 12 o’clock position
after excision?
Answer: Invasive melanoma.
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Example #12

Modality: Ultrasound
Anatomical Region: Thoracic and Respiratory System
Query: mghultrasound8334
Link: https://youtu.be/A2cVp8LklRI

7:24 11:04

Cleaned Caption: This biomedical video content describes an urgent clinical scenario involving
a patient experiencing hemodynamic instability due to an undetermined internal bleeding source.
A portable chest X-ray has been conducted prior to the arrival of an ultrasound machine, and
vital signs are deteriorating, indicating a critical situation.
In such cases, it is crucial to initially focus the ultrasound probe around the heart, particularly if
the patient has sustained a stab wound to the left anterior chest, as cardiac injury can be
life-threatening. The first ultrasound image displayed is a parasternal long view, revealing the
left atrium, left ventricle, and aortic outflow tract, alongside the descending thoracic aorta.
Adjacent to the heart, a hypoechoic fluid is observed. The main concern is whether this fluid is
localized in the left chest or around the heart.
On the parasternal long view, bleeding in the right chest is not visible. The differentiation
between pleural and pericardial effusions—even in non-traumatic medical patients—is
determined by the fluid’s location relative to the descending thoracic aorta. Fluid located
posterior to this structure indicates a pleural effusion, while fluid anterior to it suggests a
pericardial effusion.
The video provides a clear example of both conditions: a pleural effusion on the left side of the
chest is identified posterior to the descending thoracic aorta, while a pericardial effusion is noted
where fluid accumulates anteriorly. It is possible for patients to have both conditions. Again, the
parasternal long view illustrates the left atrium, left ventricle, aortic outflow tract, right ventricle,
and the descending thoracic aorta, with fluid observed both posteriorly and anteriorly to this
vessel, indicating simultaneous pleural and pericardial effusions.
If uncertainty persists regarding fluid in the pleural cavities, further examination should include
the FAST (Focused Assessment with Sonography for Trauma) view, specifically the left and right
upper quadrants above the diaphragm. In this examination, no blood is detected in the abdominal
Morrison’s pouch, which appears normal, but an anechoic fluid is noted above the diaphragm.
In a well-aerated lung, a mirror image artifact appears when ultrasound beams cross the
diaphragm, creating an apparent reflection resembling the liver. This artifact disappears in the
presence of fluid, consolidation, or blood, making the anechoic fluid here significant.
Additionally, a positive spine sign is observed: this white ridge along the screen’s bottom is the
spine. Normally, the spine is visible along...

Question: What does the video reveal about the location of the fluid in relation to the
descending thoracic aorta?
Answer: Fluid is both anterior and posterior to the descending thoracic aorta, indicating pleural
and pericardial effusions.
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Example #13

Modality: Ultrasound
Anatomical Region: Cranial and Nervous System
Query: sonography
Link: https://youtu.be/RskrEsAGzec

2:40 5:20

Cleaned Caption: The video explains the use of rocking, rotation, and tilting to enhance
imaging in a narrow acoustic window. Rocking helps extend the imaging plane. Rotation
switches between short and long axis imaging. Tilting enables scanning along a structure’s
course through the acoustic window. In nerve imaging, optimizing the transducer’s tilt is crucial
for visualizing nerve fascicles, which are best seen when the plane is orthogonal to the nerve’s
course. The focus is on short-axis nerve imaging and needle approaches.
The out-of-plane needle approach involves the needle starting in front of and crossing the
imaging plane as an echogenic dot. In the in-plane approach, the needle advances along its long
axis within the imaging plane. Challenges in visualizing block needles sonographically are
discussed. Block needles are specular reflectors, reflecting sound back over a narrow angle. As
the angle between the transducer and needle increases, less sound is reflected, weakening the
signal, especially from the needle shaft’s sides.
With a short-axis out-of-plane approach, the needle is best visualized when the tip is in the
imaging plane, as the shaft’s signal may not be stronger than surrounding structures. Generally,
tissue displacement indicates the needle’s trajectory, a dynamic process reliant on the tissue
plane’s transmission.

Question: What technique is demonstrated in the video for improving imaging in a narrow
acoustic window?
Answer: Rocking, rotation, and tilting of the transducer.

Question: How is the needle visualized in an in-plane approach as shown in the video?
Answer: Along its long axis within the imaging plane.

Question: In the context of the video, why is optimizing the transducer’s tilt crucial for nerve
imaging?
Answer: To visualize nerve fascicles orthogonally.

Question: What challenge is discussed regarding the sonographic visualization of block
needles?
Answer: They reflect sound back over a narrow angle.
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Example #14

Modality: MRI
Anatomical Region: Endocrine System
Query: dynamic mri
Link: https://youtu.be/DsJ7Kia1eVg

2:20 5:10

Cleaned Caption: The video describes the planning process for T1 sagittal magnetic resonance
imaging (MRI). The sequence time slice is an odd number, and the scan time is set to be 3
minutes and 24 seconds, with no gap. First, the video demonstrates the planning of the axial
view, which is essential for accurate planning of the sagittal view to ensure comprehensive
coverage. The planning for T1 sagittal is then aligned with the T2 planning, maintaining a zero
gap. The scan time for T2 sagittal is noted to be 2 minutes. The video also references images,
including a flare axial view, and highlights the swollen pituitary gland. It mentions the upcoming
dynamic pituitary contrast imaging to rule out any lesions, as well as the use of dynamic PT2D
contrast. Diffusion imaging is also presented. The video encourages viewers to ask questions in
the comment section if they have any queries.

Question: What is the scan time set for the T1 sagittal MRI as shown in the video?
Answer: 3 minutes and 24 seconds.

Question: What anatomical feature is highlighted in the video as being swollen?
Answer: Pituitary gland.

Question: How does the video describe the alignment between T1 sagittal and T2 imaging?
Answer: Maintaining a zero gap.

Question: What imaging technique is mentioned for ruling out lesions in the pituitary gland?
Answer: Dynamic PT2D contrast.
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. Warning

This example contains surgical material and may not be suitable for all viewers.

Example #15

Modality: Surgical and Procedural
Anatomical Region: Musculoskeletal System
Query: surgical procedure video
Link: https://youtu.be/zfrMhSebW2g

6:46 9:00

Cleaned Caption: The suture is pulled through a loop and subsequently into the subacromial
space, allowing it to be shuttled through the rotator cuff tendon. Upon completion, all four
sutures pass through the tendon, necessitating the grasping of corresponding sutures to facilitate
knot tying. Two white sutures are selected. Outside the cannula, a specific sliding knot known as
the SMC knot is tied. By pulling on one end of the suture, the knot is slid down into the
subacromial space while the knot pusher device firmly positions it onto the rotator cuff,
effectively indenting it. Half hitches, consisting of multiple knots, are tied above the initial knot
to enhance security. This tying occurs outside the cannula, ensuring the knot tightens effectively,
securing the rotator cuff to the anchor. Once completed, the blue sutures are retrieved, with the
white sutures placed in another cannula to avoid tangling. These sutures are then pulled outside
the body to tie the same knot once more. The knot pusher aids in sliding the suture down to
cinch the knot firmly, emphasizing the importance of this step. Preparations for the lateral
anchors begin with retrieving one blue suture and one white suture each. These are loaded
outside the body into push lock anchors designed to secure the tendon over the footprint of the
greater tuberosity. The anchors are seated in the robust lateral bone of the greater tuberosity. The
bone is confirmed solid by our punch, and a pilot hole is made as demonstrated. The loaded push
lock anchor is then placed in the pilot hole. Before seating the anchor, any slack is removed from
the sutures to ensure a snug tendon position. When satisfied with the positioning, the anchor is
seated, and the ends of the suture are cut.

Question: What type of knot is primarily used in securing the rotator cuff in the video?
Answer: SMC knot.

Question: Where are the white sutures initially positioned before tying the knot as shown in the
video?
Answer: Outside the cannula.

Question: What is the purpose of the knot pusher device in the procedure shown in the video?
Answer: To slide the knot down and position it.

Question: What specific area is targeted for the placement of lateral anchors in the procedure
shown in the video?
Answer: Greater tuberosity.
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G.2 SurgicalQABench

. Warning

This example contains surgical material and may not be suitable for all viewers.

Example #1

Modality: Surgical and Procedural
Anatomical Region: Cranial and Nervous System
Query: surgical procedure videos
Link: https://youtu.be/1gKMtSA6VCY

6:10 9:12

Cleaned Caption: The video gradually introduces various anatomical features, beginning with a
part of the eye connected to a nerve. It then highlights the pectorals and their associated nerves,
illustrating the dissection process toward a specific direction. The sarcoid dorsal pedicle is
identified, along with the lateral and medial pectoral regions, demonstrating the healing
approach. The long thoracic nerve is mentioned, though it has not been fully exposed due to the
intent not to remove the fascia or denude the nerve or vein. The dissection technique is
emphasized as crucial for maintaining the integrity of the tissues involved. The pectoralis major
and latissimus dorsi muscles, along with the latissimus dorsi pedicle, have been exposed,
allowing upward movement of the nodal tissue. The video concludes with a focus on the
exposure of the vein and a specific vessel referred to as ”Adam’s Galaxy.”

Question: What muscles are exposed during the procedure?
Answer: Pectoralis major and latissimus dorsi.

Question: What structure is identified after the pectorals?
Answer: Sarcoid dorsal pedicle.

. Warning

This example contains surgical material and may not be suitable for all viewers.
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Example #2

Modality: Surgical and Procedural
Anatomical Region: Gastrointestinal System
Query: surgical procedure videos
Link: https://youtu.be/TZDe6rhoV2Y

0:24 4:04

Cleaned Caption: The abdomen is approached via a midline laparotomy incision, revealing the
previous side-to-side stapled anastomosis from the closure of the ileostomy. The mesenteric
vessels are sealed and divided using a ligature, and the terminal ileum is stapled and divided just
proximal to the ileocecal valve. Accurate measurement of the pouch is crucial; in this case, 15
centimeters are measured from the transected terminal ileum to ensure sufficient small bowel
length for forming the nipple valve and corresponding ileostomy. An additional 15 centimeters
are measured for each of the three adjacent limbs of the S pouch. A suture is inserted to mark the
top of the pouch after the first 15 centimeters, with subsequent sutures marking each subsequent
limb. Any discrepancies in length must be identified and corrected to ensure the limbs are of
equal length.
Once all marking sutures are appropriately inserted, the first and second limbs, as well as the
second and third limbs of the small bowel, are positioned adjacent and joined with a continuous
3-0 Vicryl seromuscular suture. The procedure continues with the joining of the second two
adjacent limbs. Following this, diathermy is used to mark the incision line along each limb on
either side of the suture line, employing the full length of the joined loops of small bowel to
maximize pouch capacity. After the incision lines are marked, the small bowel is carefully
incised along these lines and laid open. Each limb of the pouch is opened in succession, with
care taken to avoid damaging the posterior wall of the lumen, especially when navigating corners
to maintain suture integrity.
Once each loop of ileum has been laid open, the adjacent posterior walls are sutured together
using a continuous 3-0 Vicryl suture, with the second and third limbs also being sutured. Upon
completing the posterior wall, the anterior pouch wall is formed by suturing the lateral edges of
the original first and third limbs of the S configuration. Stay sutures are inserted at each end of
the pouch and in the middle of the anterior wall. Initially, only the lower half of the pouch is
joined with a continuous suture, leaving the top half open to allow access for the nipple valve
formation. Mesenteric fat bordering the terminal ileum is thinned out using diathermy to
facilitate interception for nipple valve construction. A diathermy scratch pad is applied to rub...

Question: What incision is used to approach the abdomen?
Answer: Midline laparotomy.

Question: How is the terminal ileum stapled and divided?
Answer: Just proximal to the ileocecal valve.

Question: What technique is used to mark the incision lines along each limb of the small bowel?
Answer: Diathermy.

Question: How are the anterior pouch walls formed?
Answer: By suturing the lateral edges of the first and third limbs.

. Warning

This example contains surgical material and may not be suitable for all viewers.
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Example #3

Modality: Surgical and Procedural
Anatomical Region: Skin and Integumentary System
Query: surgical procedure videos
Link: https://youtu.be/lBmRC9LhFgw

6:10 8:12

Cleaned Caption: To minimize contamination, benzoin is applied around the wound’s border to
enhance the adherence of the Pravena system. The system is then introduced into the surgical
field and should be assessed to ensure it fully covers the wound area. This assessment is
performed by running the blunt end of an instrument around the sponge. Next, the backing on
the side sections of the dressing is removed. If a slit is necessary for the drain, it should be cut
out at this point. A stoma rod is then inserted through the mesenteric defect and should be
positioned anteriorly to the dressing. Suction is then applied to the completed dressing setup.
The stoma is matured, and the applicable appliance is placed over the Pravena dressing. It is
recommended that the system remain in place until the seventh postoperative day, after which
the incision is left open to air. If the patient is ready for discharge before postoperative day
seven, they may be discharged with a small vacuum canister to maintain the dressing’s function.

Question: What is assessed to ensure full coverage of the wound area?
Answer: Pravena system.

Question: What method is used to assess the coverage of the Pravena system?
Answer: Running the blunt end of an instrument around the sponge.

Question: What needs to be inserted through the mesenteric defect?
Answer: Stoma rod.

G.3 MIMICEchoBench

Example #1

Example: mimic-iv-echo/0.1/files/p16/p16673511/s90022296/90022296 0053.dcm

Question: Is there normal biventricular systolic function?
Answer: Yes
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Example #2

Example: mimic-iv-echo/0.1/files/p12/p12246674/s99997314/99997314 0001.dcm

Question: What is the severity of left ventricular hypertrophy?
Answer: Mild

G.4 SigLIP Image Classification Dataset

. Warning

This example contains surgical material and may not be suitable for all viewers.

Biomedical Images

Non-Biomedical Images
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