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Abstract: Understanding the uncertainty of predictions is a desirable feature for
perceptual modules in critical robotic applications. 3D object detectors are neural
networks with high-dimensional output space. It suffers from poor calibration in
classification and lacks reliable uncertainty estimation in regression. To provide a
reliable epistemic uncertainty estimation, we tailor Laplace approximation for 3D
object detectors, and propose an Uncertainty Separation and Aggregation pipeline
for Bayesian inference. The proposed Laplace-approximation approach can easily
convert a deterministic 3D object detector into a Bayesian neural network capable
of estimating epistemic uncertainty. The experiment results on the KITTI dataset
empirically validate the effectiveness of our proposed methods, and demonstrate
that Laplace approximation performs better uncertainty quality than Monte-Carlo
Dropout, DeepEnsembles, and deterministic models.
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1 Introduction

Detecting key objects in 3D space is an important task in robotic applications. It provides both
semantic and spatial information for decision-making. Due to the success of deep learning, existing
detectors have got great performance on benchmarks [1–3]. However, robots directly interact with
the real world, the data distribution of which may drift over time and space. It is essential for a
robotic perceptual module to know when it is uncertain, since the consequences of mistakes can be
fatal in critical applications, like autonomous driving.

Laplace approximation (LA) [4] provides principled uncertainty estimation as other Bayesian ap-
proaches [5–10], and computes posterior weight distributions in terms of local curvatures. It can
convert a deterministic model, trained under the maximum-a-posteriori framework, into a Bayesian
model for uncertainty estimation, which is in a post-hoc way without changing the training proce-
dure. Recent research reduces the computational costs on computing local curvatures with various
approximations [11–15], and makes Laplace approximation applicable in modern neural networks.
However, existing research is limited to end-to-end networks, and rare has been applied to networks
with high-dimensional output space, like 3D object detection.

Neural networks with high-dimensional output space require Monte Carlo-based Bayesian inference
(MCBI) to approximate the predictive distribution. The MCBI is not applicable in two-stage 3D de-
tectors due to its non-end-to-end architecture. A two-stage detector contains two parts: a Region
Proposal Network (RPN) generates 3D proposals, and an RCNN selects and refines a subset of pro-
posals Sp to get final results. The different weight samples in MCBI have different selections Sp
which are mis-matched in order as shown in Figure 1 (a). It causes overestimating the epistemic un-
certainty in predictive distributions, as shown in Figure 1 (c). We propose an Uncertainty Separation
and Aggregation (U-SPA) method to apply Laplace approximation in two-stage detectors, as shown
in Figure 1 (b). It separates the uncertainty estimation in RPN and RCNN and aggregates them in
the final predictive distribution (d).
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Figure 1: Bayesian inference pipeline for two-stage 3D detectors. (a) Monte-Carlo Bayesian In-
ference pipeline and (c) bird’s-eye-view visualization of predictive distribution y . (b) Uncertainty
Separation and Aggregation pipeline and (d) visualization of y . The contours reflect the objective-
ness probability. The purple box denotes the ground truth.

In this paper, we tailor Laplace approximation methods to estimate epistemic uncertainty for 3D
object detection under the context of autonomous driving. (1) We propose an Uncertainty Sepa-
ration and Aggregation (U-SPA) pipeline to solve the mismatching problem in Monte-Carlo-based
Bayesian inference of two-stage 3D object detectors. (2) We apply Laplace approximation to state-
of-the-art 3D object detection networks, including both one-stage and two-stage detectors, and also
provide a benchmark on the KITTI dataset to compare various Laplace approximation approaches,
including LA (diagonal Fisher), LA (empirical diagonal Fisher), and sub-net LA. The proposed
Laplace-approximation method can easily convert off-the-shelf 3D object detectors into a Bayesian
neural network. The experiment results show that the Laplace approximation performs consistently
better uncertainty quality than deterministic, MCDropout, and DeepEnsembles baselines.

2 Related Works

2.1 Laplace approximation

The major challenge in applying Laplace approximation [4] to large-scale neural networks is its
expensive computation on the Hessian matrix. Even though the Fisher information matrix can be
its equivalent, the exact Fisher requires storing and manipulating an O(P 2) matrix, which is im-
practical to deploy in modern neural networks with the limited computational resources on mobile
robots. Diagonal Fisher approximation is the lightest weight approach to approximate the Hes-
sian. It ignores the correlation among model parameters and largely reduces the Fisher matrix size
into O(P ), which has been well applied to second-order optimization [16] as well as incremental
learning [17]. To balance the curvature information and computational efficiency, some researchers
approximate the exact Fisher matrix with Kronecker Factorized Fisher [15] and low-rank approx-
imations [14]. There also exists research applying Laplace approximation to a subset of model
parameters [11–13], called SubNet-LA. Besides, even though empirical Fishers lack a theoretical
foundation [18], it was adopted low-cost surrogate of Fisher information matrix and got success in
practical applications [19–21]. This paper considers the diagonal Fisher approximation, empirical
Fisher implementation, and subnet Laplace approximations in 3D object detection.

2.2 LiDAR-based 3D object detection

The geometrical information in LiDAR scans can be used to classify and locate key objects in
3D space. 3D object detector methods can be categorized into one-stage and two-stage methods.
One-stage 3D detectors are end-to-end networks which consume LiDAR scans and estimate 2D
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Figure 2: Illustra-
tion of one-stage
(a) and two-stage
3D detectors (b).
The one-stage de-
tector also acts as
an RPN subnetwork
in two-stage detec-
tors. (c) shows the
RCNN subnetwork
architecture. The
”MLP” is short for
Multi-layer percep-
trons.
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maps or 3D volumes for classification and regression [22–25], as shown in Figure 2 (a). Its out-
put y = {ycls, yreg} contains classification predictions ycls and regression predictions yreg . Yan
et al. [24] exploited the sparsity of LiDAR scans and replaced the conventional dense convolution
layers with sparse convolution operations. Lang et al. [25] extracted features from point clouds with
PointNet [26] estimate classification and regression maps on bird’s-eye-view images.

Two-stage detectors [27–29] contains two subnetworks: Region Proposal Network (RPN) and
RCNN, as shown in Figure 2 (b). RPN generates proposals from point clouds with the same structure
as one-stage detectors. A non-maximization-suppression (NMS) module then selects top-K unover-
lapped proposals in terms of their classification score from RPN proposals yrpn. RCNN network
refines these proposals with multiple linear layers, as shown in Figure 2 (c). The two-stage pipeline
was proposed in [27], where Shi et al. adopted a PointNet-based RPN and generated point-wise pro-
posals, and further refined these proposals with an MLP-based RCNN sub-network. To balance ac-
curacy and computational efficiency, their follow-up work [28, 30] adopt sparse-convolution-based
RPN to generate proposals in 3D volume. In this paper, we adopt one-stage 3D detectors, PointPil-
lar [25] Second [24], and two-stage detectors PointRCNN [27] to demonstrate the effectiveness of
Laplace approximation in 3D object detection.

2.3 Uncertainty estimation in object detection

Some recent works estimate uncertainties in robotic perceptual modules. Hall et al. [31] extended
object detection to probabilistic object detection and quantified spatial and semantic uncertainties
of detections with Monte-Carlo Dropout. The idea of probabilistic object detection was further ex-
tended to 3D object detection [32–34]. Feng et al. [32, 33] made an one-stage detector PIXOR [23]
to estimate aleatoric uncertainties by adding an additional regression layer, as [35]. The estimated
uncertainties were evaluated independently for each output dimension with Expected Calibration
Errors (ECE) [36, 37]. To evaluate the general predictive distribution for LiDAR-based 3D object
detection, Wang et al. [34] proposed mAP(JIoU), which evaluates the differences between the esti-
mated predictive distribution and a ground-truth predictive distribution. They proposed a generative
model to obtain the ground-truth predictive distribution. In our work, we evaluate the uncertainty
quality with ECE following the method in[32], and also report the negative log-likelihood (NLL)
performance as well as mAP(JIoU) [34].

3 Methodology

3.1 Preliminaries

Given a dataset D = {X,Y} = {(xi, yi)|i = 1, ..., N}, we have a neural network fθ(x) with its
prior weight distribution p(θ). We want to derive the posterior weight distribution p(θ|X,Y), so that
we can conduct Bayesian inference and get the predictive distribution with

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, θ)p(θ|X,Y)dθ, (1)

where p(y∗|x∗, θ) depicts the predictive model. In classification tasks, it is commonly defined as a
categorical distribution with p(yc = 1|x, θ) = softmaxc(fθ(x)), where the superscript c denotes the
c−th element of a vector. In regression tasks, it can be defined as p(y|x, θ) = N (y; fθ(x), τ−1I).
The τ can be a hyper-parameter or an estimation from data. This Bayesian inference equation
catches the epistemic uncertainty caused by the weight distribution p(θ|X,Y).
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Algorithm 1: Monte-Carlo Bayesian In-
ference (MCBI)

Input : x: point cloud ; p(θ|X,Y):
posterior weight distribution ;
T : number of MC samples

Output : y : a set of 3D bounding-box
predictive distributions

preds← {} ;
for i← 1 to T do

θ ← sample from p(θ|X,Y) ;
y = f(θ, x) ;
append y into preds ;

end
y ← MMT-EST(preds);
return y ;

Algorithm 2: Uncertainty Separation and Ag-
gregation (U-SPA)

Input : x: point cloud ; p(θ|X,Y):
posterior weight distribution ;
T : number of MC samples

Output : y : a set of 3D bounding-box
predictive distributions

yrpn ← MCBI(x, p(θrpn|X,Y), T ) ;
/* yrpn is the mode of yrpn */

yrpn ← yrpn;
Sp ← NMS-TopK(yrpn) ;
xrcnn ← {yrpni |i ∈ Sp} ;
yrcnn ← MCBI(xrcnn, p(θrcnn|X,Y),M) ;
y ← aggregate yrpn and yrcnn with (9) (10);
return y ;

Laplace approximation The log-posterior weight distribution log p(θ|X,Y) can be unfolded with
Bayes formula: log p(θ|X,Y) = log p(Y|X, θ) + log p(θ) − log p(Y|X). Laplace approximation
unfolds it at θ∗ (∇θ log p(θ|X,Y)|θ∗ = 0) with a second-order Taylor expansion to construct a
normal distribution approximating p(θ|X,Y), i.e.

log p(θ|X,Y) ≈ log p(θ∗|X,Y) +
1

2
(θ − θ∗)THlog p(θ∗|X,Y)(θ − θ∗), (2)

where Hlog p(θ∗|X,Y) = ∂2

∂2θ log p(θ∗|X,Y) is the Hessian matrix of log p(θ∗|X,Y). It is easy to get
Hlog p(θ∗|X,Y) = Hlog p(Y|X,θ) + ∂2

∂2θ [log p(θ)], where the second term can be evaluated easily if p(θ)
is simple or in a closed form. The Hessian matrix in the first term can be approximated with the
Fisher information matrix [15, 17, 38], which is defined as

F .
= EPX [EPY|X,θ [∇ log p(Y|X, θ)T∇ log p(Y|X, θ)]] (3)

The approximate posterior weight distribution is p(θ|X,Y) ≈ N (θ; θ∗,Σ), where Σ = [F+Σ−10 ]−1,
if we consider a Gaussian weight prior p(θ) = N (θ;0,Σ0).

3.2 Bayesian inference in detection

3D object detectors contain both classification and regression predictions. We conduct Bayesian
inference and estimate p(y∗|x∗,X,Y) in (1) with Monte-Carlo estimators as [39]. In classification,
p(y∗,c = 1|x∗,X,Y) ≈ 1

T

∑
θ∈P (θ|X,Y) softmaxc(fθ(x∗)), where p(y∗|x∗,X,Y) is assumed a cate-

gorical distribution, and T denotes the number of Monte-Carlo samples. In regression, we assume
p(y∗|x∗,X,Y) as a normal distribution. Its mean and covariance matrix can be estimated with

Ey∗ [y∗] =
1

T

∑
θ∈P (θ|X,Y)

fθ(x∗) (4)

Cov[y∗] =
1

T

∑
θ∈P (θ|X,Y)

fTθ (x∗)fθ(x) + τ−1I− Ey∗ [y∗]TEy∗ [y∗]. (5)

For conciseness, we denote this moment estimation step with MMT-EST(·).

One-stage detectors are end-to-end neural networks, as shown in Figure 2 (a). It outputs two sibling
predictions ycls ∈ RM×C and yreg ∈ RM×D, where M denotes the number of all 3D bounding-
box proposals (anchors), C is the number of classes, and D is the dimension of a parameterized
3D bounding box. Algorithm 1 shows the MCBI with moment estimation to estimate predictive
distributions y . It is note that the set of 3D bounding-box predictive distributions y contains two
components: a set of 3D bounding-box predictive classification distributions ycls and its regression
counterpart yreg, i.e. y = {ycls, yreg}.

Mis-matching in two-stage detectors Two-stage detectors are not end-to-end neural networks
and contain two separate sub-networks: RPN and RCNN. RPN generates proposals yrpn =
frpn(θrpn, x). A non-maximization-suppression (NMS) module computes the overlapped area
among proposals and selects the top-K unoverlapped proposals by their classification scores. We
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denote this step as Sp = NMS-TopK(yrpn), where the Sp contains the indices of selected propos-
als. Since the ranking results of NMS depending on the RPN output frpn(θrpn, x), different weight
samples θrpn drawn in Monte-Carlo sampling may generate different selections Sp. Formally,

Sp1 = NMS-TopK(frpn(θ1rpn, x)), θ1rpn ∼ p(θrpn|X,Y), (6)

Sp2 = NMS-TopK(frpn(θ2rpn, x)), θ2rpn ∼ p(θrpn|X,Y), (7)

P (Sp1 = Sp2) < 1 , if θ1rpn 6= θ2rpn. (8)
These selected proposals across different weight samples are probably not matched. As a result, the
moment estimation process in RCNN cannot estimate the true moments, as shown in Figure 1 (a) (c).

Uncertainty Separation and Aggregation (U-SPA) To solve this problem, we separate the un-
certainty estimation for RPN and R-CNN in two-stage detectors, and aggregate them in the final
predictive distribution as shown in Figure 1 (b). We conduct MCBI on RPN to obtain the predictive
distributions of RPN results yrpn. We then extract the mode yrpn and conduct NMS to get selected
proposals Sp. In estimating uncertainties in RCNN, we adopt the selected modes {yrpni |i ∈ Sp}3 as
inputs and conduct MCBI. With the same input, the outputs of Monte-Carlo samples will be matched
in the order defined by Sp.

In aggregating the uncertainties from RPN and R-CNN, we keep the mode of yrcnn and accumulate
the covariance matrices of yrpn,reg and yrcnn,reg. It can be considered as adding up uncertainties
from two independent sources. Formally, the final predictive distribution with aggregated uncertain-
ties can be formulated as

[ycls]i = categorical([yrcnn,cls]i), i ∈ Sp, (9)

[yreg]i = N ([yrcnn,reg]i,Σ[yrpn,reg]i + Σ[yrcnn,reg ]i), i ∈ Sp, (10)

where the [·]i denotes the i-th element in a set, (a) extracts the mode of a predictive distribution a,
and Σa extracts its covariance matrix. Algorithm 2 summarizes the U-SPA pipeline.

3.3 Diagonal Fisher approximation

In 3D detectors, the number of parameters could be in the order of a million. It is hard to compute
the exact Fisher and its inversion directly. To make the Fisher calculation feasible, diagonal Fisher
approximation assumes each single weight parameter as independent:

diag(F) = EPX [EPY|X,θ [diag(∇ log p(y|x, θ))2]], (11)
where diag(·) converts a matrix or a vector to its corresponding diagonal matrix. To evaluate stan-
dard diagonal Fisher (11), we adopt the Monte-Carlo method used in [38] to calculate the inner
expectation over PY|X,θ:

diag(F) ≈ EPX [
1

Tf

∑
y∈PY|X,θ

[diag(∇θ log p(y|x, θ))2]], (12)

where Tf denotes the number of Monte-Carlo samples in calculating the Fisher. It requiresO(NTf )
backward computations to calculate the diagonal standard Fisher and O(P ) storage space.

Empirical diagonal Fisher The empirical Fisher was adopted as a low-cost surrogate of the stan-
dard Fisher or Hessian in [19–21]. It is defined as

F̃ .
=

1

N

∑
(x,y)∈D

[∇ log p(y|x, θ)T∇ log p(y|x, θ)]. (13)

If we approximate the empirical Fisher with diagonal approximation, we have the following empir-
ical diagonal Fisher formulation:

diag(F̃) =
1

N

∑
(x,y)∈D

[diag(∇ log p(y|x, θ))2]. (14)

Compared to the standard Fisher information matrix, it avoids the expectation over the predictive
distribution and computes the expectation over the training distribution instead of the predictive
distribution. Therefore, it only requires O(N) backward computations. Even though the empir-

3We denote yrpn
i = {[yrpn,cls]i ∈ RC , [yrpn,reg]i ∈ RD}, the [·]i returns the i-th element from its input.
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PP SC PR
classification regression classification regression classification regression

methods mean std.×10−4 mean std.×10−3 mean std.×10−4 mean std.×10−3 mean std.×10−4 mean std.×10−3

det. 0.115 - - - 0.100 - - - 0.113 - - -
dropout 0.112 1.4 0.763 0.7 0.126 2.1 0.594 1.5 0.104 10.7 0.746 2.6
deep-en. 0.106 0.0 0.664 0.0 0.096 0.0 0.640 0.0 0.608 0.0 0.767 0.0
LL (E.) 0.115 0.5 0.528 3.6 0.100 1.0 0.510 2.2 0.111 18.9 0.357 3.2
LM (E.) - - - - - - - - 0.064 16.9 0.316 2.5
full (E.) 0.097 10.2 0.418 2.3 0.087 5.2 0.395 5.1 0.061 11.9 0.576 9.6
LL (S.) 0.115 0.8 0.302 6.2 0.100 0.4 0.300 22.8 0.111 19.1 0.519 0.4
LM (S.) - - - - - - - - 0.095 15.0 0.467 1.7
full (S.) 0.111 1.6 0.338 7.7 0.089 6.5 0.311 14.3 0.070 11.8 0.481 34.8

Table 1: Expected calibration error (↓). The ”det”, ”LL”, ”LM”, and ”full” are short for ”determin-
istic”, ”last-layer”, ”last-module”, and ”full-net”. The results are computed from 5 random seeds.

PP SC PR
methods mean std. mean std. mean std.
dropout 3.055 0.604 0.185 0.011 1.435 0.175
deep-en. 0.104 0.000 0.043 0.000 1.546 0.000
LL (E.) 0.332 0.021 0.193 0.019 -0.599 0.007
LM (E.) - - - - -0.690 0.007
full (E.) -0.744 0.002 -0.773 0.006 -0.435 0.011
LL (S.) -0.561 0.022 -0.603 0.079 -0.007 0.012
LM (S.) - - - - -0.297 0.011
full (S.) -0.666 0.005 -0.746 0.021 -0.574 0.041

Table 2: Negative Log-likelihood (↓). The notations are the same to Table 1.
ical Fisher has superior computation efficiency and practical success, it lacks a solid theoretical
grounding to capture the local curvature information[18]. In Section 4, we will compare the Laplace
approximation with standard diagonal Fisher and empirical diagonal Fisher in 3D object detection.

4 Experiments

In this section, we conduct experiments on the KITTI dataset [1] to explore the following ques-
tions: (1) How is the quality of the estimated predictive distribution? (2) Does the accuracy of
mode estimation get affected after applying Laplace approximation? We adopt well-trained 3D ob-
ject detectors as deterministic models and convert them with the Laplace-approximation-based ap-
proaches in Section 3. The adopted 3D detectors contain one-stage detectors PointPillar[25] (”PP”)
and Second[23] (”SC”), as well as a two-stage detector PointRCNN[27] (”PR”). In particular, we
compute the Fisher on the training set and inference with it on the validation set. Ten Monte-carlo
samples are adopted to approximate the integration in (1). We induce α as the scalar factor of the
posterior weight covariance matrix, and set α = 0.003 for the standard Fisher, and α = 0.01 for the
empirical Fisher by tuning it on the hand-hold set.

4.1 Quality of predictive distributions

In this section, we present the Expected Calibration Error (ECE) and Negative Log-Likelihood
(NLL) to demonstrate the predictive distribution quality, compare the following baselines and vari-
ous Laplace-approximation implementations:

• deterministic model: we use the softmax outputs as classification confidences;
• mc-dropout [39]: we add a dropout layer before the last convolution/linear layer to generate the

Monte-Carlo-based predictive distribution. To make a fair comparison, we use the same model
parameters as the others without retraining;

• deep-ensembles [40]: we train the same network independently with different initialization T
times, and ensemble them to generate the predictive distribution. The deep-ensembles (PR) adopts
the proposed U-SPA pipeline to make it work in practice;

• full-net (E./S.): we implement Laplace approximation on all the layers with the diagonal approx-
imation of the diagonal empirical/standard Fisher;

• last-layer (E./S.): Laplace approximation is applied on the last-layer only;
• last-module (E./S.): Laplace approximation is applied on the R-CNN network.
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Figure 3: Visualization of estimated epistemic uncertainty (left), and the ground-truth spatial un-
certainty [34] used in evaluating mAP(JIoU) (right). The top, middle, and bottom rows are front,
bird’s-eye, and zoom-in views. The contours reflect the objectiveness probability.

Table 1 and Table 2 report the ECE and NLL results. The estimated predictive distributions are
better calibrated than deterministic model outputs. Full-net Laplace approximation perform consis-
tently better than MCDropout and DeepEnsembles baselines, if we compare the rows of full(E./S.)
with dropout and deep-en. in Table 1. MCDropout models the posterior weight distribution of a
subset of parameters with a Bernoulli distribution. It probably cannot characterize the real poste-
rior. DeepEnsembles adopt T independently-trained optimal weight points to generate the predictive
distribution. It can model the multi-modality in weight posterior, but each weight point is a deter-
ministic model and suffers from poor calibration.

We have two interesting findings. Firstly, the empirical Fisher results perform competitive results
to the standard Fisher counterparts in Table 1 and 2, though it lacks theoretical foundations. We
attribute this to the fact that we calculate the empirical Fisher at the optimal θ∗, which makes the
predictions similar to the ground-truth labels. Secondly, an increasing classification calibration qual-
ity can be seen when Laplace approximation is applied to increasing number of layers, if we compare
LL, LM, full in Table 1. The same trend can also be seen in the NLL results (Table 2). It is oppo-
site to the finding in [11], which claims the last-layer empirical Fisher owns the best performance
and full-net Fisher suffers from an under-fitting problem. We attribute our result to the fact that we
implement the Laplace approximation with a diagonal approximation which contains much fewer
parameters than the either full or K-FAC Fisher matrix used in [11].

4.2 Accuracy of estimated mode

In this section, we explore the effect of Laplace approximation on detection accuracy by varying
α, which is the scalar factor of the posterior weight covariance matrix. When α = 0, the poste-
rior weight distribution will degenerate to a deterministic model. When α increases, the posterior
weight distribution increasingly spans the weight space. We calculate the average mAP(IoU) over
all classes and different levels denoted as Eclass,level[mAP(IoU)] in Figure 4. It is found that as α in-
creases, Eclass,level[mAP(IoU)] decreases. It achieves its maximum at α = 0, in which the model is
deterministic and cannot estimate uncertainty. The mAP(IoU) degrades slightly when the α is small,
while an extremely large value of α will greatly deteriorate the mAP(IoU). It suggests adopting a
relatively small value of α to obtain the uncertainty and preserve the mAP(IoU) performance.

4.3 Visualization and discussion on predictive distributions

To better understand the estimated epistemic uncertainty, we visualize our estimated predictive dis-
tributions compared to those estimated with a generative model in [34]. The generative model
characterizes the generative process of key-object points within 3D bounding boxes. It generates the
predictive distribution with ground-truth 3D bounding box annotations and LiDAR observations.
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bev 3d
method class easy mod. hard easy mod. hard

PP
car 80.2 78.9 75.5 43.7 28.0 23.5
ped. 19.2 20.8 20.7 29.9 29.8 27.6
cyc. 48.3 42.6 40.3 46.3 33.0 31.2

SC
car 87.0 84.8 81.3 58.2 37.6 31.3
ped. 23.6 26.2 25.7 30.9 30.9 28.2
cyc. 50.6 48.3 46.4 45.5 34.7 33.1

PR
car 81.1 78.8 75.1 41.4 29.9 26.1
ped. 26.0 25.9 24.0 39.4 35.8 31.3
cyc. 62.7 51.9 49.4 61.3 43.1 40.7

Table 3: mAP(JIoU) (standard Fisher, full-net) re-
sults on the KITTI val set .The reported results
are mean values from 5 random seeds.

We project the predictive distributions to the bird’s-eye-view (BEV) image plane and get objective-
ness probability for visualization. The objectiveness probability is the probability of a BEV region
subject to a key object, like cars, pedestrians, and cyclists. Figure 3(b) shows the objectiveness
probability of the ground-truth generative model. The objectiveness probability of the ground-truth
generative model is high around key objects. It is relatively low in the region with sparse LiDAR ob-
servations. We visualize estimated predictive distributions of Laplace approximation in Figure 3(a).
It shows similar behavior to the ground-truth generative model in Figure 3(b), and confident in
dense-point regions and relatively uncertain when the LiDAR observation is sparse.

Table 3 reports the mAP(JIoU) between predictive distributions estimated with Laplace approxima-
tion and those with the generative model. It shows that the estimated epistemic uncertainty behaves
like the generative model in relatively large objects, like cars and cyclists.

5 Limitations

The proposed method computes the Bayesian inference formula based on Monte-Carlo, It requires
T× computational costs more than a single forward computation. The run-time performance can
be improved if it parallels the Monte-Carlo computations with batched inputs [39]. For the robotic
application with strong constraints on computational resources, the subnet implementation that only
applies Laplace approximation on the last layer also provides good-quality uncertainty estimations,
as shown in Table 1. This paper assumes that both weight and predictive distributions conform to the
normal distribution. It is limited in characterizing the multi-modality. It can be partially alleviated
by fitting Laplace approximation to each modality [41].

6 Conclusion

In this paper, we tailor Laplace approximation for 3D object detectors. An uncertainty-separation-
and-aggregation method is proposed to make it work in two-stage 3D object detectors. The experi-
ment results on the KITTI dataset show that the estimated epistemic uncertainty is of better quality
than deterministic models and Monte-Carlo Dropout baselines. Even though it lacks theoretical
foundations, empirical diagonal fisher shows competitive performance to standard diagonal fisher in
Laplace approximation. Full-net diagonal Laplace approximation, which provides good uncertainty
quality, is recommended in offline applications, like model diagnosis, active learning, and life-long
learning. If the robotic applications have strong computational resource constraints, subnet Laplace
approximation is a good balance between run-time performance and uncertainty quality. In the fu-
ture, it will be interesting to overcome the discussed limitations and explore the usefulness of the
estimated epistemic uncertainties in downstream tasks, like path planning.
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