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ABSTRACT

Knowledge tracing (KT) aims to estimate knowledge states of students over a
given set of skills based on their historical learning activities. The learned knowl-
edge states of students can be used to build skill-meters to understand the weak
areas of students so that proper interventions can be taken to help students. Many
deep learning models have been applied to KT with encouraging performance,
but they either have relatively low accuracy or do not directly generate students’
knowledge states at skill level for skill-meter building. Item Response Theory
(IRT) models student knowledge states (ability) and question characteristics sep-
arately. A question arising naturally is whether we can use IRT to estimate stu-
dents’ knowledge states at skill level while achieving high prediction accuracy at
the same time. We examined existing IRT based deep KT models and found that
none of them achieves this objective. Most existing IRT-based models either learn
overall student abilities or question-level student abilities. Overall student abilities
are too summative, and it is hard to tell the weak areas of students from a single
value. Question-level abilities are too fine-grained. When there are a large number
of unique questions per skill, they can cause information overload for teachers. In
this paper, we propose an IRT-based deep KT model called SKKT-IRT to learn
skill-level student abilities which provide just the right amount of information
for teachers to understand students’ knowledge states. Our model consists of an
LSTM layer to learn student historical states, a student ability network for learn-
ing skill-level student abilities, a question difficulty network for learning question
difficulties and a question discrimination network for learning question discrim-
ination. It also learns question-skill relationships as an auxiliary task so that the
embedding of a skill can better capture the information of its questions. We further
regularize the outputs of question difficulty network and question discrimination
network for better performance. Our experimental results show that our model
achieves the objective of learning skill-level student abilities with SOTA accu-
racy. It is also very efficient and produces consistent outputs to be easily used for
downstream tasks like adaptive learning and personalized recommendations.

1 INTRODUCTION

Knowledge tracing (KT) is a key component in intelligent tutoring systems (ITSs) for personalized
and adaptive learning. It aims to estimate knowledge states of students over a set of skills based
on students’ historical learning activities. Given that the ground-truth knowledge states of students
over skills are usually unknown, the performance of knowledge tracing models is usually assessed
using the next question correctness prediction task. Let x = (u, q, y) be a learning activity of a
student, where u is a student ID, q is a question ID, and y is a binary variable (class label) indicating
whether student u answered question q correctly or not. Each question has one or more skills
associated with it. The next question correctness prediction task can be formulated as follows: given
a sequence Su = ⟨x1, x2, · · · , xt⟩ containing historical learning activities of a student u, predict
whether student u can answer the next question at t+1 correctly.

The knowledge states learned by knowledge tracing models can be used to build skill-meters (Cor-
bett & Anderson, 1994) of students. Students can use the skill-meters to understand how well they
master each skill. Teachers can use the skill-meters to identify common weak skills in their classes.
An example skill-meter of a student over eight skills is shown in Figure 1(a). It shows that the
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(a) an example skill-meter (b) a skill-meter generated by our model on assist09

Figure 1: Example skill-meters.

student has mastered addition and subtraction very well, achieves some level of mastery on integer
multiplication and division, and is doing poorly on fraction multiplication and division. The student
may need to work more on integer multiplication and division before moving on to fraction multi-
plication and division. Early knowledge tracing models like Bayesian Knowledge Tracing (Corbett
& Anderson, 1994, BKT) and Deep Knowledge Tracing (Piech et al., 2015, DKT) use skill informa-
tion only to trace knowledge states at skill level. However, their prediction accuracy is low because
important question information is not utilized. Many later models incorporate question information
with much improved accuracy, but their predictions are thus on specific questions. Constructing
skill-meters from predictions on individual questions is non-trivial.

Item Response Theory (IRT) (Lordn, 1980) models student knowledge states (ability) and question
characteristics separately. More specifically, it models the probability of a student answering a ques-
tion correctly as a logistic function of student ability (knowledge states) and question characteristics.
A question arising naturally is whether we can use IRT to estimate students’ knowledge states at skill
level while achieving high prediction accuracy on the next question correctness prediction task at
the same time. We examined existing IRT-based deep KT models and found that none of them
achieves this objective. The first IRT-based deep KT model Deep-IRT (Yeung, 2019) learns overall
student abilities using a key-value memory network. Overall ability is not informative enough as
students may have different abilities over different skills. The accuracy of Deep-IRT is also much
lower than SOTA. PKT (Sun et al., 2024a) and MIKT (Sun et al., 2024b) use the embedding of the
next question at t+1 together with the hidden representation of student learning history to generate
student ability at t + 1. The student ability learned by them are thus at question level, which is too
fine grained especially when the number of questions is large. DKT-IRT (Converse et al., 2021) is
the only IRT-based deep KT model which learns skill-level student abilities, but its accuracy is very
low, i.e., close to that of DKT (Piech et al., 2015).

We also found that existing IRT-based deep KT models may produce contradicting outputs. The
question discrimination parameter learned by DKT-IRT can be negative while it should always be
positive. For a question with negative discrimination, the probability of answering it correctly de-
creases with increased student ability as shown in Figure 2(a), which contradicts both IRT and
common sense. MIKT learns question-level student abilities which may not always be consistent
with learned question difficulties. At a given time point, we can use MIKT to estimate a student’s
question-level abilities over all questions. Figure 2(b) shows the difficulties of a set of questions
from the same skill (x-axis) and abilities of a student over these questions (y-axis) estimated by
MIKT at a given time point. The ability of the student can be higher on a harder question than that
on an easier question with the same skill, which also contradicts IRT. End users will find it hard to
trust and use these contradicting outputs for downstream tasks such as adaptive learning and person-
alized recommendations. Our model is able to eliminate the inconsistency caused by question-level
student abilities. Our model learns skill-level student abilities, so the student has the same ability on
questions from the same skill, and the probability of answering these questions correctly decreases
with the increased question difficulty as shown in Figure 2(c).

In this paper, we propose an IRT-based deep KT model which learns skill-level student abilities
(knowledge states) without sacrificing accuracy or consistency. We design our model architecture
carefully to achieve this objective. Our model uses an LSTM sublayer to generate hidden represen-
tations of student history sequences, a student ability network to map outputs of the LSTM sublayer
and skill embeddings to student abilities over skills, a question difficulty network to transform ques-
tion embeddings to question difficulties, and a question discrimination network to transform ques-
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(a) negative discrimination (b) question-level abilities (c) consistent outputs by SKKT

Figure 2: (a) contradicting outputs caused by negative question discrimination by DKT-IRT: prob-
ability of answering correctly decreases with increased student ability; (b) contradicting outputs
caused by question-level abilities by MIKT: question-level ability of a student can be higher on
harder questions than on easier questions from the same skill; (c) consistent outputs by our model:
probability of answering correctly decreases with increased question difficulties.

tion embeddings to question discrimination parameters. In addition, our model learns question-skill
relationships as an auxiliary task so that the embedding of a skill can better capture its question
information. We also regularize learned question difficulty and discrimination parameters to fur-
ther improve model performance: loss penalty is imposed if learned question difficulties deviate
from their statistics estimated from data, and if learned question discrimination parameters deviate
from their default value of 1. The outputs of our model can be used easily for skill-meter building
and other downstream tasks. Figure 1(b) shows a skill-meter built from skill-level student abilities
learned by our model on assist09. The main contributions of our paper are summarized below:

• We propose an IRT-based deep KT model which learns skill-level student abilities with
SOTA accuracy on the next question correctness prediction task. To the best of our knowl-
edge, our work is the first IRT-based deep KT model achieving this objective.

• Existing IRT-based deep KT models may produce inconsistent outputs. We clearly point
out the requirements of IRT and design our model architecture carefully so that all the
requirements of IRT are satisfied and our model produces consistent outputs by design.

• We employ a number of techniques to improve the performance of our model, including an
auxiliary task to learn question-skill relationships and two regularization terms to regularize
the outputs of question difficulty network and question discrimination network.

• Our model supports both one-parameter item response function (1P-IRF) and two-
parameter item response function (2P-IRF). We are the first to compare 1P-IRF and 2P-IRF
under the same framework.

• Our model is very efficient. In particular, it is 50+ times faster than MIKT, which is the
best performing IRT-based deep KT model in terms of accuracy.

• We conducted extensive experiments to show the performance of our model. Besides accu-
racy and efficiency, we also show that the IRT parameters generated by our model satisfy
all the requirements of IRT and the question difficulties generated by our model have higher
correlations with question difficulties estimated from data than existing IRT-based models

The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 de-
scribes item response theory and its requirements. Our proposed model is presented in Section 4.
Experiment results are reported in Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

The knowledge tracing problem was first studied in (Corbett & Anderson, 1994), and a Bayesian
Knowledge Tracing (BKT) model was proposed to model knowledge states of students using a Hid-
den Markov Model. Many different approaches have been developed since then, including further
improvements to BKT (de Baker et al., 2008; Pardos & Heffernan, 2010; 2011; Yudelson et al.,
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2013; Khajah et al., 2016), factor analysis models (Cen et al., 2006; 2008; Pavlik et al., 2009; Lind-
sey et al., 2014; Lan et al., 2014b;a; Vie & Kashima, 2019; Choffin et al., 2019) and deep KT models.
For a review of these algorithms, please refer to (Liu et al., 2021b; Abdelrahman et al., 2023).

DKT (Piech et al., 2015) is the first algorithm using a deep learning model for knowledge tracing,
and it uses LSTM. It takes skill IDs and student responses as inputs. Many more deep learning
models are applied to knowledge tracing since then, including variants of RNN models (Yeung &
Yeung, 2018; Minn et al., 2018; Wang et al., 2019a;b; Lee & Yeung, 2019; Liu et al., 2020; 2021a;
Sun et al., 2022; Chen et al., 2023; Liu et al., 2023a), memory-augmented NN (Zhang et al., 2017;
Abdelrahman & Wang, 2019), ConvNN (Shen et al., 2020), Graph NN (Nakagawa et al., 2019;
Yang et al., 2020; Tong et al., 2020; Zhang et al., 2021), attentive models (Pandey & Karypis, 2019;
Ghosh et al., 2020; Pandey & Srivastava, 2020; Choi et al., 2020; Shin et al., 2021; Huang et al.,
2021; Lee et al., 2022; Yin et al., 2023; Wang et al., 2023; Huang et al., 2023) and hybrid models
(Sun et al., 2024b; Ma et al., 2024). These deep learning based knowledge tracing models either
have low accuracy or generate predictions at question-level only.

Several works use IRT for better interpretability. Deep-IRT (Yeung, 2019) transforms outputs of
a key-value memory network to student overall abilities and uses a difficulty network to convert
question embeddings to question difficulties, and then combines the two using a variant of 1P-IRF.
DKT-IRT (Converse et al., 2021) is built from the DKT model, and it uses a variant of 2P-IRF in
its prediction layer. The question discrimination parameters learned by DKT-IRT can be negative,
which contradicts IRT. PKT (Sun et al., 2024a) and MIKT (Sun et al., 2024b) learn question-level
student abilities, which are too fine grained especially when the number of questions is large. PKT
(Sun et al., 2024a) uses 2P-IRF and it unnecessarily restricts the values of question discrimination
aq to be within [0, 1] while in reality, aq can be larger than 1.

3 ITEM RESPONSE THEORY

Item response theory (IRT) (Lordn, 1980) is a framework in psychometrics used for explaining
the relationship between latent traits (e.g., student ability) and their manifestations (e.g. student
responses to questions). It models the probability of a student answering a question correctly as a
logistic function of student ability and question characteristics. The one-parameter item response
function (1P-IRF), also called Rasch model, uses only one parameter for questions. It calculates
the probability of a student u answering a question q correctly as follows, where θu is the ability of
student u and bq is the difficulty of question q.

f(u, q) = σ(θu − bq) =
1

1 + e−(θu−bq)
(1)

The two-parameter item response function (2P-IRF) also considers question discrimination, and it
calculates the probability of a student u answering a question q correctly as follows, where aq is the
discrimination of question q, and it controls the slope of change when θu ̸= bq . In 1P-IRF, aq is 1
for all questions.

f(u, q) = σ(aq(θu − bq)) =
1

1 + e−aq(θu−bq)
(2)

IRT requires the following on student and question parameters:

1. student ability θu should not contain question level information, and question parameters
bq and aq should not contain student information.

2. θu and bq should be on the same continuum so that they can be compared directly.

3. aq must be positive so that f(u, q) increases with increased θu and decreased bq .

4. When θu = bq , there is even odd of answering correctly or wrongly, i.e., f(u, q)=0.5.

Existing IRT-based models do not meet all of the above requirements which causes inconsistent out-
puts as shown in Figure 2. In the next section, we propose a model to satisfy all these requirements
so that the final predictions are consistent with the learned IRT parameters and these outputs can be
used easily for skill-meter building and other downstream tasks.
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4 THE PROPOSED SKKT-IRT MODEL

In this section, we introduce our IRT-based deep knowledge tracing model called SKKT-IRT which
learns skill-level student abilities without sacrificing accuracy or consistency. We first describe its
overall architecture, and then describe individual components.

4.1 THE OVERALL ARCHITECTURE

The overall architecture of our model is shown in Figure 3. It consists of an LSTM sublayer to
generate representations of student history sequences, a student ability network to map outputs of
the LSTM sublayer and skill ID embeddings to student abilities over skills, a question difficulty net-
work to transform query sequence embeddings to question difficulties, and a question discrimination
network to transform query sequence embeddings to question discrimination parameters in 2P-IRF.

Figure 3: Architecture of SKKT-IRT. Length-L history sequence is fed to LSTM to generate hid-
den representation of history sequence. Length-L query embedding sequence is used to generate
question difficulty and discrimination parameters. Query sequence is one position ahead of history
sequence. sis are skill IDs, qis are question IDs, and yis are class labels at position i, i=0, 1, · · · , L.

Our model takes length-(L + 1) learning activity sequences as inputs. For a given length-(L + 1)
learning activity sequence, its first length-L sub-sequence is regarded as history sequence and is
fed to the LSTM sublayer, and the last length-L sub-sequence is regarded as query sequence whose
class labels are to be predicted. Note that the query sequence (from 1 to L) is one position ahead of
the history sequence (from 0 to L− 1). History sequences contain skill IDs, question IDs and class
labels. Query sequences contain skill IDs and question IDs only. The model is trained to predict the
class labels over the whole length-L query sequence.

4.2 EMBEDDING LAYER

The inputs to our model include skill IDs in S, question IDs in Q and student responses ∈ {0, 1}
(class labels). Skill IDs are mapped to ds-dimensional embeddings using an embedding matrix
MS ∈ R|S|×ds , where the i-th row vector of MS is the embedding of skill ID i and it is ds-
dimensional. Question IDs are mapped to dq-dimensional embeddings using an embedding matrix
MQ ∈ R|Q|×dq , where the i-th row vector of MQ is the dq-dimensional embedding of question ID
i and dq can be different from ds. Class labels are mapped to d-dimensional embeddings using an
embedding matrix MC ∈ R2×d, where d is the input dimension to the LSTM sublayer and it can be
different from ds and dq .

We use qi to denote question ID, si to denote skill ID, and yi to denote class label at position i
in a length-(L + 1) sequence, i=0, 1, · · · , L. To generate the input vectors to the LSTM sublayer
on history sequences, skill ID embeddings and question ID embeddings are concatenated and then
linearly transformed to d-dimensional vectors, and then added to the class label embeddings. More
formally, let esi be the skill ID embedding, eqi be the question ID embedding, and eyi be the class label
embedding at position i, i=0, 1, · · · , L− 1. The input vector ehi to LSTM is a d-dimensional vector
and it is generated as follows, where W1 ∈ R(ds+dq)×d and d1 ∈ Rd are learnable parameters.

ehi = Dropout(([esi , e
q
i ] ·W1 + d1) + eyi ), i = 0, 1, · · · , L− 1 (3)
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Let esi be the skill ID embedding, and eqi be the question ID embedding at position i of the query
sequence, i=1, 2, · · · , L. The query sequence is converted to d-dimensional input vectors to the
question difficulty network and the question discrimination network as follows.

ei = Dropout([esi , e
q
i ] ·W1 + d1), i = 1, 2, · · · , L (4)

Note that skill ID embeddings, question ID embeddings, W1 and d1 are shared between history
sequences and query sequences. If more than one skill IDs are associated with a question, the
embeddings of these skill IDs are summed together and then the resultant ds-dimensional vector is
concatenated with the question ID embedding.

4.3 THE STUDENT ABILITY NETWORK

The LSTM sublayer takes ehi generated by Equation 3 as inputs. The hidden state of the LSTM cell
at position i−1, denoted as hi−1, is regarded as the representation of the history sequence for query
question qi at position i. The student ability network converts the concatenation of hi−1 and skill
ID embedding esi to skill-level student ability θsi at position i. It is a two-layer feed-forward neural
network (FNN) given as below, where W2 ∈ R(d+ds)×df , b2 ∈ Rdf , W3 ∈ Rdf×1 and b3 ∈ R are
learnable model parameters, df is the hidden dimension of the FNN network.

θsi = σ(Dropout(ReLU(BatchNorm([hi−1, e
s
i ]) ·W2 + b2)) ·W3 + b3) (5)

A batch normalization layer is applied to the concatenation of hi−1 and esi before FNN is applied.
The value range of θis is controlled to be within (0, 1) using the sigmoid function. Question level
information is not used to generate student abilities, so requirement 1 of IRT is satisfied.

4.4 THE QUESTION DIFFICULTY NETWORK

The question difficulty network maps query sequence embeddings eis generated by Equation 4 to
question difficulties using a two-layer feed-forward neural network as follows, where W4 ∈ Rd×df ,
b4 ∈ Rdf , W5 ∈ Rdf×1, b5 ∈ R are learnable model parameters, and df is the hidden dimension
of the FNN network.

bi = σ(Dropout(ReLU(BatchNorm(ei) ·W4 + b4)) ·W5 + b5) (6)

A batch normalization layer is applied to ei before FNN is applied. The value range of bis is also
controlled using the sigmoid function to be within (0, 1) like that of student abilities. This ensures
that requirement 2 of IRT is satisfied.

Question difficulties can also be estimated directly from training data. We use the same method as in
(Liu et al., 2024) to estimate question difficulties as follows, where n is the number of first attempts
of q by students in training data, np be the number of activities with positive class labels among
the n activities, p1 be the overall percentage of correct answers in training data, and λ is used for
smoothing and it is set to 5 in our experiments.

b̂q = 1− np + λ ∗ p1
n+ λ

(7)

We restrict that question difficulty bi learned using the question difficulty network should not deviate
too much from that estimated using Equation 7, and a penalty is imposed if it deviates using L2 loss
as follows. This is called question difficulty loss.

Lb =

√∑L
i=1 (bi − b̂i)2

L
(8)

4.5 THE QUESTION DISCRIMINATION NETWORK

Question discrimination parameters control the slope of change when student ability θu and question
difficulty bq are not equal. They must be positive numbers so that the predicted probability increases
with increased θu and decreases with increased bq . The question discrimination network maps query
sequence embeddings to question discrimination parameters. It consists of a two-layer feed-forward
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neural network and an activation function as defined in Equation 10, where W6 ∈ Rd×df , b6 ∈ Rdf ,
W7 ∈ Rdf×1 and b7 ∈ R are learnable model parameters.

a′i = Dropout(ReLU(BatchNorm(ei) ·W6 + b6)) ·W7 + b7 (9)

ai =

{
1 + log(1 + a′i) a′i ≥ 0

(1 + log(1− a′i))
−1 a′i < 0

(10)

Question discrimination parameters are additional parameters used in 2P-IRF. In 1P-IRF, question
discrimination is 1 for all questions. In Equation 10, when a′i = 0, ai = 1; when a′i > 0, ai > 1;
when a′i < 0, 0 < ai < 1. We choose to use log function in Equation 10 so that ai does not
change too fast with the change of a′i. The question discrimination parameters learned by Equation
10 are always positive, so requirement 3 of IRT is satisfied. To better align 1P-IRF and 2P-IRF,
we add the following regularization term called question discrimination loss to ensure that question
discrimination parameters are not too far away from 1 unless the deviation improves model accuracy.

La =

√∑L
i=1 (a

′′
i − 1)2

L
, a′′i =

{
ai ai > 1
1
ai

0 < ai < 1 (11)

4.6 THE IRT PREDICTION LAYER

SKKT-IRF supports both 1P-IRF and 2P-IRF. For 1P-IRF, the question discrimination network, its
outputs ais and La are not used. Class label at position i is predicted as follows using 1P-IRF.

ŷi = σ(5 ∗ (θsi − bi)) (12)

Similar to MIKT, we use a constant factor of 5 to extend the value range of ŷi and it is multiplied to
(θi − bi). When θi = bi, ŷi = σ(0) = 0.5, so requirement 4 of IRT is satisfied.

Class label at position i is predicted using 2P-IRF as follows:

ŷi = σ(ai ∗ 5 ∗ (θsi − bi)) (13)

4.7 LEARNING QUESTION-SKILL RELATIONSHIPS AS AN AUXILIARY TASK

SKKT-IRT learns question-skill relationships as an auxiliary task so that the embedding of a skill
can better capture the information of its questions. A question-skill pair is positive if the skill is
associated with the question. In each batch, we randomly sample negative skills for questions, and
then use the cosine similarity between the skill embeddings and question embeddings to predict
whether the skills are associated with the questions as follows, where eqi is the embedding of the
question at position i, esi is the embedding of the positive skill at position i, and es−i is the embedding
of the negative skill at position i.

ẑ+i = cosine similarity(eqi , e
s
i ), i = 1, 2, · · · , L (14)

ẑ−i = cosine similarity(eqi , e
s−
i ), i = 1, 2, · · · , L (15)

The relationship loss LR is calculated using binary cross entropy loss as below:

LR =
1

2L

L∑
i=1

(− log(ẑ+i )− log(1− ẑ−i )) (16)

Learning question-skill relationships has been explored in (Liu et al., 2020) to pre-train question and
skill embeddings for knowledge tracing. Here we jointly optimize the relationship loss and the loss
of the main task as described in the next subsection.

4.8 TRAINING LOSS

We use binary cross entropy loss Llabel, question difficulty loss Lb, question discrimination loss
La and question-skill relationship loss LR to learn model parameters. Binary cross entropy loss

7
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between the ground-truth class labels yis and predicted probabilities ŷis over the whole length-L
query sequence is calculated below.

Llabel =
1

L

L∑
i=1

(−yi log(ŷi)− (1− yi)log(1− ŷi)) (17)

The overall loss combines the four losses as below, where α, β and γ are hyper-parameters.

L = Llabel + αLb + βLa + γLR (18)

5 EXPERIMENT RESULTS

In this section, we first introduce the datasets and settings used in our experiments, and then present
the results of the following experiments: 1) comparing prediction accuracy and efficiency of SKKT-
IRT with baseline deep KT models; 2) ablation studies; 3) showing distribution of learned IRT
parameters by different IRT-based deep KT models to see whether they satisfy the four requirements
of IRT; and 4) studying the correlation between question difficulties learned by different models with
those estimated from data.

5.1 EXPERIMENT SETTINGS

The datasets used in our experiments and their statistics are listed in Table 1. For all the datasets,
students with less than 10 activities are removed. The statistics are calculated after the removal. The
last column is average sequence length. More details of the datasets can be found in Appendix A.

Table 1: Dataset statistics
datasets #students #skills #questions #activities % of corrects avg len
algebra05 571 138 52,846 813,632 76.7% 1424.9
assist09 3168 150 26,628 341,879 64.5% 107.9
assist17 1708 102 3,162 936,572 37.3% 548.3
ednet 10k 10000 189 12,202 2,215,069 65.6% 221.5

We include several groups of baseline models in our experiments:

• KT models using skills and responses only: DKT (Piech et al., 2015) and KQN (Lee &
Yeung, 2019);

• KT models using questions and responses only: DKVMN (Zhang et al., 2017) and SAKT
(Pandey & Karypis, 2019);

• KT models using skills, questions and responses: AKT (Ghosh et al., 2020), LPKT (Shen
et al., 2021), IEKT (Long et al., 2021), DIMKT (Shen et al., 2022), simpleKT (Liu et al.,
2023b) and QIKT (Chen et al., 2023);

• IRT-based deep KT models: Deep-IRT (Yeung, 2019), DKT-IRT (Converse et al., 2021),
PKT (Sun et al., 2024a) and MIKT (Sun et al., 2024b).

More details on these baseline models and hyper-parameter tuning can be found in Appendix B and
Appendix D.

5.2 COMPARISON WITH BASELINES

Table 2 shows the mean and standard deviation of model AUC evaluated using five-fold cross-
validation. The last column is the mean AUC over all the datasets. Accuracy of the models are
reported in Appendix F. The best performance is highlighted in bold. The second best performance
is highlighted using underline. We include two variants of SKKT-IRT for comparison. They use
1P-IRF and 2P-IRF respectively at their prediction layer, and they are denoted as SKKT-IRT1 and
SKKT-IRT2 respectively. MIKT has the highest mean AUC among all the baseline models. The
mean AUC of our model is higher than all baseline models, though the gap between MIKT and our
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Table 2: Comparison with baseline models. SKKT-IRT1 uses 1P-IRF. SKKT-IRT2 uses 2P-IRF.
models algebra05 assist09 assist17 ednet 10k mean
DKT 0.6798±0.0081 0.7203±0.0043 0.7129±0.0111 0.6903±0.0075 0.7008
KQN 0.6853±0.0071 0.7302±0.0058 0.7232±0.0028 0.6861±0.0077 0.7062
DKVMN 0.7885±0.0035 0.7229±0.0048 0.7491±0.0029 0.7460±0.0052 0.7516
SAKT 0.8015±0.0029 0.7351±0.0045 0.7210±0.0065 0.7521±0.0048 0.7524
AKT 0.8166±0.0021 0.7857±0.0016 0.7795±0.0049 0.7601±0.0051 0.7855
LPKT 0.8083±0.0036 0.7586±0.0033 0.7939±0.0028 0.7573±0.0042 0.7795
IEKT 0.8164±0.0041 0.7728±0.0021 0.7862±0.0040 0.7449±0.0081 0.7801
DIMKT 0.8186±0.0023 0.7801±0.0016 0.7841±0.0020 0.7555±0.0054 0.7846
simpleKT 0.8163±0.0021 0.7790±0.0025 0.7780±0.0049 0.7558±0.0054 0.7823
QIKT 0.8135±0.0028 0.7018±0.0030 0.7810±0.0040 0.7512±0.0053 0.7619
Deep-IRT 0.7743±0.0039 0.7159±0.0058 0.7475±0.0025 0.7435±0.0043 0.7453
DKT-IRT 0.7842±0.0055 0.6970±0.0049 0.6985±0.0194 0.7119±0.0054 0.7229
PKT 0.7480±0.0052 0.6886±0.0068 0.6394±0.0087 0.7083±0.0052 0.6961
MIKT 0.8224±0.0023* 0.7914±0.0020* 0.7700±0.0080 0.7645±0.0045 0.7871
SKKT-IRT1 0.8197±0.0026 0.7923±0.0015 0.7932±0.0041 0.7574±0.0052 0.7907
SKKT-IRT2 0.8230±0.0019 0.7920±0.0015 0.7962±0.0037 0.7580±0.0052 0.7923

Table 3: Ablation studies.
models algebra05 assist09 assist17 ednet 10k mean
SKKT-IRT1-C 0.8155±0.0022 0.7792±0.0030 0.7917±0.0023 0.7551±0.0052 0.7854
SKKT-IRT2-C 0.8133±0.0023 0.7737±0.0026 0.7939±0.0031 0.7578±0.0051 0.7847
SKKT-IRT1-R 0.8150±0.0027 0.7789±0.0018 0.7912±0.0031 0.7569±0.0048 0.7855
SKKT-IRT2-R 0.8137±0.0022 0.7766±0.0030 0.7962±0.0037 0.7580±0.0052 0.7861
SKKT-IRT1 0.8197±0.0026 0.7923±0.0015 0.7932±0.0041 0.7574±0.0052 0.7907
SKKT-IRT2 0.8230±0.0019 0.7920±0.0015 0.7962±0.0037 0.7580±0.0052 0.7923

model is small. We also studied the efficiency of all models. Our model is around 50 times faster
than MIKT, about seven times faster than AKT and 14 times faster than DIMKT, whose AUC is the
second and the third highest among all baselines respectively. More details of on the running time
of the models can be found in Appendix E.

The mean AUC of the other three IRT-based deep KT models is all significantly lower than our
model. The low AUC of Deep-IRT comes from its embedding layer which ignores skill IDs and
its key-value memory network which is not as good as LSTM at capturing sequential information.
The low AUC of DKT-IRT comes from its inefficient prediction layer where the output of LSTM is
mapped to K + 1-dimensional vectors, K is the number of skills, and skill ID of the next question
is used to get student ability. PKT suffers from the same problem as DKT-IRT in its MLP layers for
generating student and question parameters.

5.3 ABLATION STUDIES

In this experiment, we study the effectiveness of the three techniques used in our model and the
results are shown in Table 3. SKKT-IRT1-C and SKKT-IRT2-C use class label loss Llabel only, and
they do not use the other three losses. SKKT-IRT1-R and SKKT-IRT2-R use Llabel and LR only.
Using the two regularization techniques can improve the AUC of SKKT-IRT2 by around 1.5% on
assist09 and by around 0.9% on algebra05, but they are not useful on the other two datasets. We
recommend the use of the two regularization terms on datasets with a large number of questions.
Using 2P-IRF improves the model performance very slightly than using 1P-IRF.

5.4 STATISTICS OF LEARNED IRT PARAMETERS

Table 4 shows the statistics of the IRF parameters generated by all IRT-based deep KT models. For
DKT-IRT, the value range of its question difficulty parameters is quite different from that of student
abilities, which violates requirement 2 of IRT. Also, question discrimination parameters generated
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Table 4: Statistics of IRF parameters learned by different models.
models algebra05 assist09 assist17 ednet 10k

min max mean min max mean min max mean min max mean
Deep-IRT θ -0.97 0.98 0.54 -0.99 0.99 0.32 -0.91 0.91 -0.16 -0.79 0.87 0.22

b -0.71 0.69 -0.09 -1.00 1.00 -0.08 -0.57 0.58 -0.01 -0.71 0.64 -0.10
MIKT θ 0.01 1.00 0.80 0.00 1.00 0.66 0.00 1.00 0.36 0.00 1.00 0.66

b 0.36 0.65 0.48 0.40 0.61 0.49 0.07 0.91 0.47 0.22 0.78 0.48
SKKT-IRT1 θ 0.00 0.93 0.54 0.00 0.96 0.52 0.00 1.00 0.48 0.01 0.98 0.52

b 0.00 0.97 0.23 0.00 0.91 0.34 0.00 1.00 0.57 0.00 0.98 0.32
DKT-IRT θ -22.18 21.65 0.29 -20.47 20.80 3.18 -11.47 25.40 -0.22 -21.64 23.31 -0.10

b -0.13 0.13 -0.04 -0.13 0.12 -0.03 -0.70 0.78 0.07 -0.53 0.41 -0.04
a -0.32 0.31 -0.01 -0.25 0.24 0.00 -1.50 1.50 0.00 -1.26 1.34 0.02

PKT θ 0.50 1.00 0.97 0.00 1.00 0.79 0.32 0.70 0.50 0.00 1.00 0.86
b 0.00 1.00 0.35 0.00 1.00 0.44 0.06 0.99 0.55 0.00 1.00 0.43
a 0.00 1.00 0.62 0.00 1.00 0.58 0.02 0.99 0.46 0.00 1.00 0.59

SKKT-IRT2 θ 0.01 0.87 0.51 0.00 0.96 0.51 0.00 1.00 0.47 0.02 0.97 0.53
b 0.00 0.96 0.23 0.00 0.92 0.34 0.00 1.00 0.55 0.00 0.98 0.33
a 0.81 1.79 1.19 0.99 1.02 1.00 0.99 1.02 1.00 0.97 1.03 1.00

Table 5: Pearson correlation coefficient between question difficulties learned by models and b̂.
AKT DKT-IRT DeepIRT PKT MIKT SKKT-IRT1 SKKT-IRT2

algebra05 -0.085 0.940 0.602 0.423 0.919 0.999 0.996
assist09 -0.093 0.938 0.419 0.627 0.833 0.999 0.999
assist17 0.250 0.832 0.770 0.417 0.781 0.866 0.936
ednet 10k 0.008 0.820 0.878 0.526 0.841 0.984 0.964
mean 0.020 0.882 0.667 0.498 0.843 0.962 0.974

by DKT-IRT can be negative, which violates requirement 3 of IRT. Even though Deep-IRT, PKT
and MIKT restrict that student ability and question difficulty to be in the same range, but on some
datasets, the value ranges of the two parameters can be different. These cases are highlighted in
bold. PKT restricts the value range of question discrimination to be within [0, 1], while in reality, it
can be larger than 1. The value ranges of the IRF parameters generated by our model conform very
well to IRT. More specifically, student abilities and question difficulties have the same value range,
and question discrimination parameters are positive numbers centered around 1.

5.5 CORRELATION BETWEEN IRT PARAMETERS LEARNED BY MODELS AND THOSE
ESTIMATED FROM DATA

Table 5 shows Pearson correlation coefficients between question difficulties learned by different
models and b̂ calculated using Equation 7. AKT uses Rasch model (1P-IRF) at its embedding layer,
so it also has question difficulty parameters and is included in Table 5. All the correlations are sta-
tistically significant with p-value < 0.05 except AKT on dataset ednet 10k. Question difficulty pa-
rameters learned by AKT have substantially weaker correlations with b̂ than other models. PKT has
the second weakest correlations. The question difficulties learned by our model have the strongest
correlation with b̂ due to the use of the question difficulty loss Lb.

6 SUMMARY AND CONCLUSION

In this paper, we propose an IRT-based deep KT model which learns skill-level student abilities with
SOTA accuracy and consistent outputs. The skill-level student abilities and other IRT parameters
generated by our model can be easily used for skill-meter building and other downstream tasks like
adaptive learning and personalized recommendations. Our model is also very efficient. The question
difficulties learned by our model has higher correlation with those estimated from data than existing
IRT-based deep KT models.
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A DATA PROCESSING

algebra05 (Stamper et al., 2010)1 was used for KDD Cup 2010 Educational Data Mining Challenge.
On this dataset, values of column “Problem Hierarchy” are used as skills, and combinations of values
in “Problem Name” column and “Step Name” column are used as questions. All values are converted
to lower case. We also replace concrete numbers in “Step Name” by variable names like a, b, c so
that similar step names can be merged together and regarded as the same step.

assist09 2 was collected on the ASSISTments platform in the school year of 2009-2010. We use
the skill builder dataset. On this dataset, a question may have more than one skills, and we map
combinations of skill IDs to single skill IDs.

assist17 3 was also collected on the ASSISTments platform and used in ASSISTments Data Mining
Competition 2017. It contains student responses to math questions across two academic years.

ednet 10k 4 was collected by Santa—a multi-platform tutor for English learning. The original
dataset is very large. We sampled 10000 students to form a smaller dataset. On this dataset, one
question can have up to six skills (tags). For DLKT models that do not allow multiple skills per ques-
tion, we map combinations of skill IDs to single skill IDs and there are 1482 unique combinations
in the sampled data.

B BASELINE MODELS

Table 6 shows the base deep learning models used by baseline deep KT models, which IRF function
they use, and whether skill IDs and question IDs are used.

For DKVMN, DIMKT, simpleKT, KQN, QIKT and Deep-IRT, we obtain their model implementa-
tions from the pyKT library (Liu et al., 2022). The implementations of AKT, LPKT, IEKT, PKT and
IEKT are downloaded from the links provided in the original paper. We implemented DKT, SAKT
and DKT-IRT ourselves based on their original papers.

C TRAINING AND TESTING

All the models use the same data loader and training and testing process. During the training phase,
sequences are sampled from students’ full learning activity sequences randomly. In each epoch,
students with more activities are sampled more frequently. More specifically, the frequency that a
student u is sampled in each epoch is calculated as ⌈Nu/(L+ 1)⌉, where Nu is the number of activ-
ities of student u and L is the length of the sequences to be fed to knowledge tracing models. Once
a student is sampled, a random position from this student’s full activity sequence is picked as the
ending position of the sampled segment. Using this sampling method, for a same student, different
segments are sampled from this student’s full activity sequence in different epochs, which has some
regularization effect on model performance. All the sampled sequences have length L+1. Sampled

1https://pslcdatashop.web.cmu.edu/KDDCup/
2https://sites.google.com/site/assistmentsdata/home/

2009-2010-assistment-data
3https://sites.google.com/view/assistmentsdatamining/dataset
4https://github.com/riiid/ednet
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Table 6: Baseline models
models deep model IRF skill ID ques ID
DKT (Piech et al., 2015) LSTM - yes no
KQN (Lee & Yeung, 2019) LSTM - yes no
DKVMN (Zhang et al., 2017) memory - no yes
SAKT (Pandey & Karypis, 2019) attention - no yes
AKT (Ghosh et al., 2020) attention - yes yes
LPKT (Shen et al., 2021) sequential - Q-matrix yes
IEKT (Long et al., 2021) sequential - yes yes
DIMKT (Shen et al., 2022) sequential - yes yes
simpleKT (Liu et al., 2023b) attention - yes yes
QIKT (Chen et al., 2023) LSTM - yes yes
Deep-IRT (Yeung, 2019) memory 1P-IRF no yes
DKT-IRT (Converse et al., 2021) LSTM 2P-IRF Q-matrix yes
PKT (Sun et al., 2024a) LSTM 2P-IRF yes yes
MIKT (Sun et al., 2024b) sequential+graph 1P-IRF yes yes

sequences with length less than L+1 are padded with zeros at the beginning of the sequences. Dur-
ing the inference phase, every testing activity x is used as the last activity of a sequence, and the
L activities prior to x are used to form a length-(L+1) testing sequence to be passed to knowledge
tracing models.

D HYPER-PARAMETER TUNING

On all datasets, the following fixed hyper-parameters are used for all models (if applicable) so that
all models have comparable size: skill embedding dimension ds and model input dimension d are
both set to 64, hidden layer dimension of FNN is set to 512, number of RNN and attention layers is
set to two, and attention head number is set to eight.

Grid search is used to select the best values for the following hyper-parameter values on valida-
tion data for all models. The maximum learning rate is selected from [0.01, 0.003, 0.001, 0.0003,
0.0001]. Dropout rate is selected from [0, 0.1, 0.2, 0.3, 0.4, 0.5]. For SKKT-IRF, α, β and γ are
tuned using values from [0, 0.03, 0.1, 0.3, 0.5, 1]. Number of latent concepts for DKVMN and
Deep-IRT is selected from [4, 8, 16, 32, 64]. The number of questions on assist09 and algebra05 is
very large. To avoid over-parameterization, we tune the dimension of question ID embeddings for
applicable models using values from [1, 2, 4, 8, 16, 32, 64].

For training, sequence length L is set to 200 and batch size is set to 256. Adam optimizer is used
for model training. All models are trained using one cycle of cosine annealing scheduling with a
minimum learning rate of 0.0001, and the number of epochs is set to 100. Early stopping is used if
the performance of a model does not improve after 20 epochs.

E RUNNING TIME

Table 7 shows the time requried for training one epoch by different models. This experiment was
conducted on an NVIDIA A40 GPU with 48GB memory. The last column is the ratio of the epoch
time of a model to the epoch time of SKKT-IRT2. MIKT, AKT and DIMKT are the top-3 baselines
with the highest AUC. They are 51.7, 7.5 and 13.9 times slower than our model.

F ACCURACY OF MODELS

Table 8 shows the accuracy of our model and baseline models.

Paired t-test over five folds is used to get the statistical significance of the improvement achieved by
our model. For AUC reported in Table 2 and accuracy reported in Table 8, if the performance of
our model is higher than that of a baseline model, the improvement is always statistically significant
with p-value < 0.05 except for the cases marked by “*”.
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Table 7: Time for training one epoch by different models in seconds.
models algebra05 assist09 assist17 ednet 10k mean x
DKT 0.8 0.7 0.9 2.1 1.1 0.6
KQN 0.9 0.8 1.0 2.8 1.4 0.7
DKVMN 5.8 3.7 7.3 17.0 8.4 4.6
SAKT 1.0 0.9 1.2 3.0 1.5 0.8
AKT 7.6 7.0 9.5 31.1 13.8 7.5
LPKT 21.6 21.4 27.0 103.8 43.4 23.5
IEKT 33.8 31.5 35.9 111.5 53.2 28.7
DIMKT 13.0 14.9 17.0 58.2 25.8 13.9
simpleKT 2.6 2.5 3.3 9.5 4.5 2.4
QIKT 9.2 4.8 2.0 13.9 7.5 4.0
Deep-IRT 3.9 3.8 5.1 15.1 7.0 3.8
DKT-IRT 1.1 1.0 1.3 3.1 1.6 0.9
PKT 1.5 1.3 1.7 14.8 4.8 2.6
MIKT 46.5 45.0 57.9 233.3 95.7 51.7
SKKT-IRT1 1.0 0.9 1.2 3.1 1.5 0.8
SKKT-IRT2 1.2 1.0 1.4 3.7 1.9 1.0

Table 8: Comparison with baseline models on Accuracy.
models algebra05 assist09 assist17 ednet 10k mean
DKT 0.7733±0.0104 0.6966±0.0133 0.6844±0.0024 0.6887±0.0065 0.7107
KQN 0.7728±0.0104 0.7106±0.0034 0.6882±0.0040 0.6864±0.0069 0.7145
DKVMN 0.8041±0.0078 0.6955±0.0073 0.7050±0.0030 0.7156±0.0062 0.7301
SAKT 0.8103±0.0075 0.6980±0.0067 0.6932±0.0055 0.7178±0.0054 0.7298
AKT 0.8181±0.0074 0.7413±0.0031 0.7229±0.0032 0.7237±0.0056 0.7515
LPKT 0.8137±0.0078 0.7258±0.0051 0.7356±0.0040* 0.7219±0.0053 0.7492
IEKT 0.8167±0.0065 0.7302±0.0033 0.7280±0.0042 0.7246±0.0094 0.7499
DIMKT 0.8178±0.0067 0.7381±0.0048 0.7267±0.0018 0.7203±0.0058 0.7507
simpleKT 0.8166±0.0065 0.7347±0.0033 0.7210±0.0007 0.7205±0.0058 0.7482
QIKT 0.8180±0.0073 0.6733±0.0043 0.7241±0.0026 0.7170±0.0063 0.7331
Deep-IRT 0.7954±0.0056 0.6908±0.0043 0.7010±0.0024 0.7146±0.0056 0.7255
DKT-IRT 0.7972±0.0081 0.6796±0.0071 0.6684±0.0035 0.6988±0.0052 0.7110
PKT 0.7715±0.0130 0.6759±0.0081 0.6313±0.0079 0.6916±0.0049 0.6926
MIKT 0.8206±0.0069 0.7449±0.0029* 0.7195±0.0028 0.7265±0.0053 0.7529
SKKT-IRT1 0.8196±0.0076 0.7456±0.0033 0.7330±0.0045 0.7216±0.0062 0.7550
SKKT-IRT2 0.8206±0.0073 0.7450±0.0036 0.7361±0.0036 0.7221±0.0057 0.7560

G LIMITATIONS AND FUTURE WORK

In this paper, we consider only question IDs, skill IDs and class labels. Other information in student
learning activity data like timestamp, response time are not used. We will explore how to use such
information effectively to model student learning and forgetting in our future work.
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