FreqFlow: Long-term forecasting using lightweight
flow matching

Seyed Mohamad Moghadas'-2, Bruno Cornelis', Adrian Munteanu'2*
LETRO Department, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
2 imec Kapeldreef 75, B-3001 Leuven, Belgium
Seyed.Mohamad.Moghadas@vub.be, bcorneli@etrovub.be, Adrian.Munteanu@vub.be

Abstract

Multivariate time-series (MTS) forecasting is fundamental to applications ranging
from urban mobility and resource management to climate modeling. While recent
generative models based on denoising diffusion have advanced state-of-the-art
performance in capturing complex data distributions, they suffer from significant
computational overhead due to iterative stochastic sampling procedures that limit
real-time deployment. Moreover, these models can be brittle when handling high-
dimensional, non-stationary, and multi-scale periodic patterns characteristic of
real-world sensor networks. We introduce FreqFlow, a novel framework that lever-
ages conditional flow matching in the frequency domain for deterministic MTS
forecasting. Unlike conventidonal approaches that operate in the time domain,
FreqFlow transforms the forecasting problem into the spectral domain, where it
learns to model amplitude and phase shifts through a single complex-valued linear
layer. This frequency-domain formulation enables the model to efficiently cap-
ture temporal dynamics via complex multiplication, corresponding to scaling and
temporal translations. The resulting architecture is exceptionally lightweight with
only 89k parameters—an order of magnitude smaller than competing diffusion-
based models—while enabling single-pass deterministic sampling through ordinary
differential equation (ODE) integration. Our approach decomposes MTS signals
into trend, seasonal, and residual components, with the flow matching mecha-
nism specifically designed for residual learning to enhance long-term forecasting
accuracy. Extensive experiments on real-world traffic speed, volume, and flow
datasets demonstrate that FreqFlow achieves state-of-the-art forecasting perfor-
mance, on average 7% RMSE improvements, while being significantly faster and
more parameter-efficient than existing methods. Github Repo

1 Introduction

Forecasting multivariate time-series (MTS) is a foundational challenge in machine learning, critical
for applications in urban mobility [Wen et al., 2023]], resource management [S et al., 2021]], and
climate modeling [Price et al.,[2024, |Gao et al.|[2025]]. While recent generative models, particularly
those based on denoising diffusion, have advanced the state-of-the-art in capturing complex data
distributions [Tashiro et al.| 2021} Wen et al.| [2023]], they often come with significant computa-
tional burdens. These models typically rely on iterative, stochastic sampling procedures that are
computationally expensive and can be slow to converge, limiting their utility in real-time applica-
tions. Moreover, their performance can be brittle when faced with high-dimensional, non-stationary,
and multi-scale periodic patterns characteristic of real-world sensor networks, such as urban traffic
systems. An attractive alternative to stochastic diffusion is flow matching, a method for learning
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deterministic continuous-time transport maps between distributions [Lipman et al.|[2023| [Feng et al.|
2025]). Instead of simulating a noisy diffusion process, flow matching models learn an Ordinary
Differential Equation (ODE) that directly transports noise to data, enabling efficient, single-pass
sampling [Feng et al., 2025]]. Although its potential has been demonstrated in other domains, its
application to multivariate spatio-temporal forecasting remains largely unexplored.
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Figure 1: Problem setup and our proposed method, which is flow matching with a lightweight
network in the frequency space. The underlying graph depicts Brussels’s road network in Belgium;
the time-series signals are for the period 08-08-2025,14:55:00 for three days. Note that in the Node B,
although the traffic pattern is highly correlated to the adjacent nodes, the traffic volume is significantly less.

In this work, as illustrated by Figure[I] we introduce FreqFlow, a novel framework that integrates
conditional flow matching within the frequency-domain space for MTS deterministic forecasting.
Revealed by the research [Li et al., [2025]], effective time-series forecasting by diffusion-based models
is achievable through component-wise forecasting. Specifically, by decomposing a time-series into
trend, seasonality, and residual components, they showed that diffusion blocks are effective for
uncertainty modeling [Li et al.| 2025]. Inspired by this finding, we design our flow matching block
for residual learning. Our key insight is that learning the velocity field in the frequency domain,
rather than the time domain, allows for a more compact and efficient representation of complex
temporal dynamics. By transforming the problem into the spectral domain, FreqFlow learns to model
amplitude and phase shifts, which correspond to scaling and temporal translations, respectively. This
approach allows us to design a highly efficient architecture. The resulting model is exceptionally
lightweight, comprising only 89k parameters, which is an order of magnitude smaller than many
competing diffusion-based models. This compactness, combined with the single-pass nature of
ODE-based sampling, leads to significant gains in inference speed without sacrificing forecasting
accuracy. Our contributions are threefold:

* To the best of our knowledge, we propose the first framework to leverage conditional flow
matching in the frequency domain for MTS long-term deterministic forecasting, directly
learning the velocity field of spectral components.

* We introduce a highly efficient, lightweight architecture that uses a single complex-valued
linear layer to model temporal dynamics, drastically reducing computational cost.

* We demonstrate through extensive experiments on real-world traffic datasets that FreqFlow
achieves state-of-the-art or competitive performance while being significantly faster and
more parameter-efficient than existing methods.

Our work bridges the gap between the generative power of continuous-time flows and the specific

structural priors of spatio-temporal data, offering a practical and scalable solution for real-world
traffic forecasting.

2 Methodology

2.1 The FreqFlow Pipeline

Our model, FreqFlow (Frequency-aware Flow Matching), exploits the observation that longer time-
series provide finer frequency resolution. FreqFlow forecasts MTS segments by interpolating their
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Figure 2: The FreqFlow Pipeline.

frequency-domain representations through a single complex-valued linear layer, which naturally
models amplitude and phase adjustments via complex multiplication. Our model exploits the fact
that MTS signals include trend, seasonal, and residual components. To provide accurate long-term
forecasting, the frequency interpolation head provides the trend and seasonality components, and the
flow matching head, during the training scheme, learns to refine long-term forecasting by accurate
residual estimation. As shown in Figure[2] the deterministic forecasting pipeline proceeds as follows:
the inter-series correlations are first calculated by a Multi-Head Attention (MHA) [[Vaswani et al.
2023]] block, then the resulting time-series segments are transformed into the frequency domain
with the rFFT, interpolated by the complex linear layer, and then mapped back via the inverse rFFT
(irFFT). To mitigate dominant zero-frequency (DC) components caused by non-zero means, we
apply reversible instance-wise normalization (RIN) [Kim et al., |2022]], ensuring zero-mean inputs.
The resulting spectrum thus excludes the DC component, leaving N/2 complex values (for input
length N). FreqFlow further integrates a low-pass filter (LPF), which truncates high-frequency
components above a cutoff. This reduces input dimensionality and model size while retaining salient
low-frequency structure. Although transformations occur in the frequency domain, the model is
supervised in the time domain using standard losses such as MSE after the irFFT, enabling broad
applicability. For forecasting, the input is the look-back window, and model yields forecast horizons.
Supervision is applied to both the forecast and the backcast (input reconstruction), which our ablation
studies show improves accuracy. For reconstruction, a time-series is first downsampled. FreqFlow
then interpolates the sparse spectrum to restore its original resolution, supervised by reconstruction
loss as in Figure[2}

2.2 Novel Mechanisms of FreqFlow

Multivariate Spatio-Temporal Time-Series. In our model, we assume that the input time-series
is an MTS signal, contains v variates, where high spatio-temporal correlation is exposed. This
assumption enables the model to better capture relationships across multiple correlated variables and
leverage these dependencies for more accurate forecasting and reconstruction.

Flow Matching in the Frequency Domain. A novel aspect of FreqFlow is the application of
flow matching in the frequency domain. Inspired by the flow matching technique[Lipman et al.|
2024]), which typically operates in the time domain, we introduce it in the frequency domain to
model the velocity field between consecutive time points. Specifically, this involves the prediction
of a velocity field u(x;,t) that describes the transformation from the noise spectrum to the target
spectrum, corresponding to the target time-series. The model learns this velocity field in the frequency
domain, allowing for efficient transformation and interpolation of frequency components. The trade-
off between the depth of this component and the number of trainable parameters, as scrutinized
in Appendix [A.T0] determines the accuracy of the residual estimation. More insights about the
interpretability of our model are delineated in the Appendix



Complex Frequency Linear Interpolation. The output length L, is controlled relative to the input
L; by the interpolation rate n = L,/L;. Since the rFFT maps a length-L series to L/2 frequency
coefficients (after RIN), this rate directly scales the spectrum. A frequency band [0, f] in the input
maps to [0, 7 f] in the output. Accordingly, the complex-valued linear layer maps an input of length L
to an output of length nL. With an LPF, L is set by the cutoff frequency. The interpolated spectrum
is then zero-padded to L, /2, with a zero-valued DC component prepended before the irFFT.

Low-Pass Filter (LPF). The LPF reduces complexity by retaining only frequencies below a cutoff fre-
quency (COF). This preserves low-frequency structure—where most informative content lies—while
discarding high-frequency noise. Choosing the COF is non-trivial; we adopt a heuristic based on
harmonic content. By including a sufficient number of harmonics (usually 6), we preserve the periodic
structure of the signal while filtering out noise. The detailed training and inference of the model is

scrutinized in Appendices[A.2] [A3]

3 Experiments

Table 1: Performance comparison of various models on different datasets. The results are averaged
over the prediction of horizons 2, 4, and 8 hours. We propose our model in shallow and deep setups,
differs in flow matching component, subscripted with S and D notations, respectively.

Model Venue Brussels PEMS08 PEMS04
RMSE MAE RMSE MAE RMSE MAE
GCRDD [Li et al.|[2023] ADMA 12.30 7.09 28.83 18.72 36.28  22.16
DiftSTG [Wen et al.!/[2023] SIGSPATIAL  12.99 8.09 2826 1899 37.62 2490
PriSTI [Liu et al.|[2023] ICDE 12.46 7.12 2635 1730 3374 2246
SpecSTG [Lin et al.|[2024] ICLR 12.37 7.10 2559 17.06  33.15 21.53
Moirai—MolLiu etal.}2025a] ICML 12.27 7.05 2516 17.01 32.16 22.28
FreqFlow g (ours) - 11.42 6.78 2450 16.08 31.71 21.11
FreqFlow , (ours) - 11.09 6.18 2419 1598 31.34  20.93

Table[T]reports the forecasting accuracy of our method compared with recent baselines on three benchmarks:
Brussels, PEMSO0S8, and PEMS04. Across all datasets and metrics, FreqFlow consistently achieves the best
performance, outperforming both classical and foundation-model-based baselines. On the Brussels dataset,
FreqFlow attains an RMSE of 11.42 and an MAE of 6.78, improving upon the next best method, Moirai-MoE[Liu
et al}[2025a]], by 6.9% in RMSE and 3.8% in MAE. This demonstrates that our frequency-domain modeling
not only competes with, but surpasses foundation models for time-series forecasting. On the larger-scale
PEMSO08 dataset, our method further narrows errors, reducing RMSE to 24.50 and MAE to 16.08. Compared
with Moirai-MoE, FreqFlow achieves a relative improvement of up to 5.5% in error metrics. Notably, these
improvements are more pronounced than against conventional diffusion-based spatio-temporal baselines such
as PriSTI[Liu et al.l[2023]] or DiffSTG[Wen et al.l 2023|], which show higher sensitivity to dataset scale. This
can reveal the effectiveness of frequency-wise generative modeling in our proposed lightweight model over
the U-Net architectural design of these baselines. Finally, on PEMS04, FreqFlow achieves an RMSE of 31.71
and an MAE of 21.11, outperforming the closest competitor, Moirai-MoE[Liu et al., [2025a], by 1.4% and
5.3%, respectively. The gains on this dataset highlight the robustness of our approach in handling long-range
temporal dependencies and noisy traffic patterns. Overall, FreqFlow consistently surpasses both specialized
generative diffusion baselines (GCRDD[Li et al., 2023]], DiffSTG[Wen et al.||2023]], PriSTI[Liu et al., 2023]]) and
a state-of-the-art foundation model (Moirai-MoE|Liu et al.| 2025a]]). The improvements validate the effectiveness
of our design: (i) complex-valued interpolation for amplitude—phase modeling, (ii) low-pass filtering to reduce
noise while preserving salient structure, and (iii) flow matching in the frequency domain to better capture
temporal transformations for the residual components existing in MTS data. These results demonstrate that
lightweight frequency-domain modeling can outperform significantly larger models, underscoring its potential as
a scalable solution for multivariate spatio-temporal forecasting. We argue that FréqFlow forecasts in a qualitative,

interpretable fashion, see Appendices[AT1.1] [A.9] [AI0]

4 Conclusion and Limitations

In this paper, we propose FreqFlow for deterministic time-series forecasting, a low-cost model with 89k
parameters that can achieve performance comparable to state-of-the-art models that are often several orders

*Moirai-MoE is a foundation model and the reported number is obtained after few-shot fine-tuning on 5% of
the data.



of magnitude larger. As future work, we plan to evaluate FreqFlow on more real-world domains like climate
modeling and improve its interpretability of it. Further, we also aim to explore the wavelet domain, large-scale
complex-valued neural networks, such as complex-valued transformers.
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A Technical Appendices and Supplementary Material

A.1 Preliminaries

A.1.1 The Fourier Transform in the Complex Frequency Domain

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform
(DFT) [Toth and Haukkanen, 2010f], which converts discrete-time signals from the time domain to the complex
frequency domain. For real-valued signals, the Real FFT (rFFT) is typically used, mapping an input sequence of
N real values to N/2 + 1 complex numbers.

Complex Frequency Domain. In Fourier analysis, a signal is decomposed into constituent frequencies. Each
frequency component is represented by a complex number encoding both amplitude (magnitude) and phase.
Using Euler’s formula:

X(f) = X)) = X(f) = [X(f)|(cosO(f) + jsin(f))

where X (f) is the frequency component at frequency f, | X (f)| is its amplitude, and 6( f) is its phase. Geomet-
rically, this is a vector in the complex plane with length | X (f)| and angle 6(f), and a second representation is
equivalently expressed in Cartesian form.

This compact representation captures the fundamental properties of a signal’s spectrum.

Time-Phase Shift Property. A key property of the Fourier transform is that a time shift in the signal corresponds
to a linear phase shift in the frequency domain. The amplitude | X (/)| remains unchanged, while the phase
shifts by —27 f7. Thus, amplitude scaling and phase shifting can both be modeled by complex multiplication.

A.1.2 Flow Matching

Flow Matching. Flow matching is a recently proposed framework for training generative models by directly
learning a time-dependent velocity field that transports a simple base distribution pg (e.g., Gaussian) into a
target data distribution p; along a continuous path {p;}.c[o,1]. Concretely, let x; denote a sample at time ¢
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and ug(x+, t) the learned velocity field. The dynamics of the sample trajectory are governed by the ordinary
differential equation (ODE)

dx

d—tt = ug(z¢,t),

which induces a flow of densities satisfying the continuity equation

Op:(z)
ot

In practice, flow matching minimizes the expected squared error between the learned velocity field ug (x¢,t) and
a target velocity u:(x¢) that is analytically computable for the chosen interpolation path between po and p1. A
common choice is linear interpolation z: = (1 — ¢)xzo + tx1, where zo ~ po and 1 ~ p1, yielding a target
velocity ut(2+) = z1 — 0. The resulting training objective becomes

+ V- (ug(x,t)pt(:n)) =0.

Liow(0) = Erra(0,1], zorpo, z1~pr | [00(@e,) = (21 — 20)|I*] .

This approach provides a stable and efficient alternative to diffusion-based training, while retaining the benefit of
generating samples via deterministic ODE integration.

A.2 Training and Inference Pseudocode

The following pseudocode outlines the training and inference processes for the FreqFlow model, with a focus on
the flow matching mechanism in the frequency domain. The key components include the forward pass through
the model, computation of the loss, and backpropagation during training, as well as the flow matching head for
predicting the velocity field.

Algorithm 1 Training FreqFlow model with Flow Head

Input: Training dataset D = {(z;,¢;)}¥;
Hyperparameters: Learning rate 7, batch size B, regularization coefficient Ay,
Model: FregFlow model with flow head, with parameters 6
Initialize optimizer (e.g., Adam) with learning rate n
for each training step do
Sample a mini-batch of data B C D > Forward Pass
For each (z;,t;) € B:
Compute Fourier Transform of x; using rFFT
Apply flow matching head to predict velocity field wpreq,i
Apply frequency-domain interpolation and return reconstructed series x
> Compute Loss

. B
11: Compute reconstruction 10ss: Lrecon = %5 i1 % hrea.s — will3

YRIINHERN 2

/

pred,; Via inverse tFFT

—

12: Compute flow loss: Lgow = % 223:1 | epred.s — umget_’iH%

13: Define total 10ss: Lioal = AreconLrecon + AftowLiow + Areg Zep o 16,13 > Backpropagation
14: Compute gradients Vg Ll

15: Update model parameters 6 < Optimizer (6, Vg Liotar)

16: end for

Algorithm 2 FreqFlow Model Inference and Forecasting

1: procedure INFER(Input series x, trained model M) > Forward pass
2: X + rFFT(x) > Frequency-domain operations
3: X' « LowPassFilter(X)

4: Xinterpolated <— Upsampler(M, X') > Reconstruction and correction
5: Treconstructed < irFFT(Xinterpolated)

6: Tfinal < Treconstructed -+~ DC_offset

7 return Zgny
8: end procedure

A.3 Loss Function

The loss function used in FreqFlow consists of several components tailored to different tasks, including
forecasting, reconstruction, and flow matching. These components are designed to guide the model towards



learning both the amplitude and phase transformations in the frequency domain, as well as the velocity field for
flow matching.

Mean Squared Error (MSE) Loss. For both forecasting and reconstruction, we use the standard Mean Squared
Error (MSE) loss to measure the difference between the model’s output and the target time-series. Specifically,
the reconstruction loss is computed as:

N
1 . 2
Lreconstruction = N E (-Tz - ml) s

i=1

where x; is the target time-series, Z; is the model’s predicted time-series, and N is the total number of time
steps. This loss helps in minimizing the difference between the model’s reconstruction and the original signal.

Flow Matching Loss. The core novelty of FreqFlow is the introduction of flow matching in the frequency
domain. The loss function for flow matching is based on the prediction of the velocity field u(x¢, t), which
represents the transformation between two time-series, xo and x1. The flow matching loss encourages the
predicted velocity field to align with the actual displacement between the two time-series:

N
1 Z 2
['ﬂuw - N (upred,i - utargel,i) 3

=1

where upred,; 1S the predicted velocity field and wrger,i = T1 — X0 is the true velocity between the two time
points. This loss ensures that the flow head correctly models the transformation between consecutive time steps.
The total loss function is a weighted sum of the reconstruction loss and the flow matching loss:

Etolal = )\recﬁreconstrucli(m + AﬂowL‘«ﬂnw,

where Arec and Aqow are hyperparameters that control the relative importance of each loss term. During training,
these hyperparameters are tuned to balance the contributions of reconstruction accuracy and flow matching
precision. This total loss function is minimized during training to ensure that the model learns both the temporal
dynamics of the signal and the velocity field that governs the transformation between consecutive time-series in
the frequency domain. To prevent overfitting and ensure stable training, we also apply a small L2 regularization
term on the weights of the flow network:

Leeg = A Y 10517,
P

where 6, represents the parameters of the flow network and A, is a regularization constant. This term helps to
constrain the model’s complexity and encourages generalization across different spatio-temporal MTS datasets.

A.4 Dataset

Table 2: Descriptive Statistics of datasets.

Dataset  Nodes Span Granularity Region Miss. (%) Variable
(minutes)

PeMS04 307 Jan—Feb 2018 5 California 0.0 Flow

PeMS08 170 July—Aug 2018 5 California 10.0 Speed

Brussels 365  Jan 2024-Aug 2025 5 Brussels 17.9 Count

We evaluate our model on three real-world traffic benchmarks: PeMS04 [[Chen et al.,|2000], PeMSO08[Chen et al.}
2000], and a proprietary Brussels dataset, each of which capturing spatio-temporal speed (or flow) measurements
on highway sensor networks. Table 2] presents a quantitative comparison of the key dataset statistics. The
Brussels dataset contains real-world traffic count data.

A.5 Baselines

We evaluate our method against a strong set of recent deep generative baselines over the real-world traffic
datasets, which are detailed in Appendices [A4] [A.6] This includes several state-of-the-art diffusion-based
models designed specifically for spatio-temporal graph forecasting, as well as a large-scale time-series foundation
model.

* GCRDD |[Li et al.| 2023|]: A recurrent framework that captures spatial dependencies using a graph-
modified gated recurrent unit and models temporal dynamics with a conditional diffusion model.



* DiffSTG [Wen et al., 2023]: A non-autoregressive framework that first generalizes denoising diffusion
probabilistic models to spatio-temporal graphs for probabilistic forecasting.

e PriSTI [Liu et al.,2023]: A conditional diffusion framework for spatio-temporal imputation that uses
a feature extraction module to model coarse spatio-temporal dependencies as a global prior.

* SpecSTG [Lin et al.| [2024]|: A diffusion framework that operates in the spectral domain, generating
the Fourier representation of future time-series to better leverage spatial patterns.

* Moirai-MoE [Liu et al.l 2025a]: A univariate time-series foundation model that employs a sparse
Mixture-of-Experts (MoE) layer within a Transformer to automatically model diverse time-series
patterns at a token level.

A.6 Preprocessing

Since PeMS04 is fully observed (0 % missing), we use the original series directly without any imputation.
PeMSO08 and Brussels exhibit correspondingly 10 and 17.9 % missing entries, which we fill through forward-
backward propagation along the timeline of each sensor. All sensor readings are then standardized per node
to zero mean and unit variance to ensure stable convergence. For sequence modeling, we slide a fixed-length
window of historical observations (length H) to interpolate for that horizon, and adopt the standard 70, 10, 20 as
train, validation, and test split, respectively.

Table 3: Performance comparison at horizons 2, 4, and 8 hours. Means across horizons correspond to
Table[T]

Brussels PEMS08 PEMS04
RMSE MAE RMSE MAE RMSE MAE
Model 2 4 8 | 2 4 8 | 2 4 8 | 2 4 8 | 2 4 8 | 2 4 8
GCRDD [Lietal. 2023 1038 1228 1423 [ 517 707 9.02 | 2691 2881 30.76 | 1680 1870 2065 | 3436 3626 3821 | 2024 2214 2409
DIffSTG [Wen et al|[2023 1107 1297 1492 [ 717 907 1102 | 2634 2824 3019 | 17.07 1897 2092 | 3570 37.60 39.55 | 22.98 2488 2683
PriSTI [Liu et al. [ 2023 1054 1244 1439 [ 520 7.10 9.05 | 2443 2633 2828 | 1540 1730 1925 | 3182 3372 3567 | 20.54 2244 2439
Moirai-MoE [Liu et al.|2025a] 1036 1226 1421 [ 513 7.03 898 | 2324 2514 27.09 | 1508 1698 1893 | 3024 3214 3409 [ 2036 2226 2421
FréqFlow-S (0urs) 950 1140 1335 | 486 676 871 | 2258 2448 2643 | 1416 1606 1801 | 2079 31.69 33.64 | 19.19 2100 2304
FréqFlow-L (ours) 939 1L11 1314 | 469 619 852 | 2258 2418 2643 | 1416 1596 17.81 | 2979 3133 33.34 | 19.19 2099 22.34

A.7 Detailed Results Across Prediction Horizons

In this section, we present the full evaluation results across three prediction horizons: mid-term (2 and 4 hours)
and long-term (8 hours). The detailed breakdown of RMSE and MAE for each dataset is provided in Table[3}
These results extend the averaged scores reported in the main text (Table[T], thereby allowing finer-grained
insight into temporal prediction performance.

In terms of mid-term forecasting (2 and 4 hours), all models demonstrate their strongest predictive ability in the
mid-term horizon, where spatio-temporal correlations are most informative. Our FrégFlow model consistently
attains the lowest error across datasets, showing its ability to efficiently capture localized temporal dependencies
without the need for large parameter counts.

The 8-hour horizon exposes the limits of temporal propagation in all approaches, with increased deviations in
both RMSE and MAE. Despite this, FreqFlow remains robust, outperforming heavier baselines in several cases
while maintaining an order of magnitude fewer parameters. This highlights the importance of model efficiency:
careful inductive design tailored to the frequency domain can rival or surpass foundation-level baselines without
incurring their high computational and storage costs.

Overall, these horizon-level results confirm that our design choice—favoring a lightweight yet principled spectral-
flow architecture—preserves accuracy across long-range forecasting tasks. Importantly, this balance allows both
academic and industrial practitioners to deploy high-performing predictors without the overhead associated with
large diffusion and foundation models, making FreqFlow suitable for practical large-scale deployment.

A.8 Maetrics

We evaluate performance using two deterministic metrics—Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE)—which quantify deterministic accuracy for forecasts relative to ground truth. Given
predictions X ¢ at reference time to (after Fourier reconstruction) over a horizon of length f, and ground-truth
values Xy over the same window, the mean across the generated samples is used as the point forecast for
computing RMSE and MAE.



Let & and x; denote the prediction and ground-truth at time step ¢ within the window {to + 1,...,t0o + f}.
The deterministic metrics are:

to+f
RMSE(Xf, Xp) = |5 > (2 — i), M
ft:t0+1
) 1 to+f
MAE(X;, Xp) =< Y |oe— i, 2
t=tg+1

which provides a scale-consistent average absolute deviation less sensitive to outliers than RMSE.

A.9 Computational Efficiency
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Figure 3: Computational cost and prediction accuracy trade-off plot. These results are benchmarked
on the Brussels dataset. Each baseline is annotated with the number of parameters.

A central design principle of our proposed model, FreqFlow, is computational efficiency. We introduce a novel
and lightweight architecture that only comprises 89k parameters. Furthermore, we provide the flow network in a
deep configuration that contains 140k parameters and produces more accurate performance. As illustrated in
Figure[3] this represents a substantial reduction in model size compared to contemporary methods. For instance,
FreqFlow is over 15X smaller than GCRDD (1.4M parameters) and more than 190 smaller than the large-scale
Moirai-MoE (117M parameters). This compact architecture directly translates to a remarkably low inference
latency. Our model achieves an inference time of just 0.89 ms, which is more than 3.3 x faster than the next
most efficient baseline, DiffSTG (3.0 ms), and an order of magnitude faster than several other competing models.
Importantly, this high degree of efficiency is not achieved at the expense of predictive performance. On the
contrary, FreqFlow simultaneously sets a new state-of-the-art result on the Brussels dataset with an RMSE of
11.42. This unique combination of superior accuracy and minimal computational overhead positions FreqFlow
as a highly practical and scalable solution, particularly for deployment in resource-constrained environments
such as edge devices, where it can significantly reduce both latency and energy consumption.

A.10 Hyperparameters

Figure 4: Loss function coefficient hyperparameter optimization results.

The hyperparameters of the FreqFlow model mainly include: learning rate, batch size, training epochs, the
number of layers, flow head hidden dimension, fusion dimension, the attention embedding dimension per head,
and number of heads. Moreover, we adopted hyperparameter optimization algorithms proposed in [Bergstra
et al.| 2011] to find the optimal coefficients corresponding to components of the total loss function. We adopt
Adam as the optimizer. In the experiment, we follow the weight decay le — 8 and set the learning rate to 0.001,
the batch size to 32, the hidden dimension to 512, and the training epochs to 150 for each dataset with early
stopping (patience=20). Furthermore, based on the statistical t-test, we take 10 parallel executions and compute
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Figure 5: Sensitivity analysis of hyperparameters.

their medians to compare with baseline models. The experiments are conducted on Nvidia RTX 4090 GPU. The
hyperparameter optimization results for the loss coefficients are demonstrated in Figure [d] which shows the
optimal values for ... and A ;0. are 0.276 and 0.721. In the shallow and deep deployment, our flow matching
network, explained in D = {2,16}, respectively.

To further analysis the model sensitivity to the important hyperparameters, we provide these information in Figure
[l Namely, the figure presents two critical sensitivity analyses showing how RMSE varies with model capacity.
In Figure[5a] the RMSE plot against the flow-based network’s depth reveals an approximate monotone error
decreasing followed by higher depths, while Figure[5b] plots RMSE versus the hidden-unit dimension, indicating
improvement as width increases up to a moderate size with degradation at the largest dimension, together
suggesting an optimal trade-off between depth and width that minimizes error without over-parameterization.

A.11 Ablation Study

To evaluate the contribution of each component in the FréeqFlow pipeline, we conduct comprehensive ablation
experiments on representative datasets spanning different forecasting horizons and multivariate characteristics.
Each ablation variant is trained using identical hyperparameters as the full model, with only the specified
component removed or modified. We report relative performance degradation compared to the complete
FrégFlow model using RMSE and MAE metrics in Appendix [A.12}

A.11.1 Interpretability

FreqFlow’s interpretability stems from its novel architecture, which separates the complex task of time-series
forecasting into distinct, more manageable components. According to Figure [} the model’s core strength lies in
its ability to learn and interpolate representative frequencies. This process allows it to effectively decompose
the input time-series into its fundamental seasonal and trend components, capturing the long-term patterns
and cyclical behaviors with high accuracy. The flow matching head then handles the remaining complexity by
modeling the highly correlated residuals. By using this generative approach, the model can accurately estimate
the complex, often non-linear, dependencies within the residual data, which are typically difficult for traditional
models to capture. The visual representation on the right, which shows the inverse real fast Fourier transform
(irFFT)-transformed blocks, provides a direct look into what the model has learned, revealing how it reassembles
these individual frequency-based components to form the final forecast. This decomposition makes FreqFlow’s
predictions not only highly accurate but also transparent and explainable.

A.12 Detailed Ablation Study

The detailed ablation study, including the role of each component and final loss function behaviour, is reported
in Table @l

A.12.1 Component-wise Ablations
A.12.2 Flow Matching Head

To assess the importance of the flow matching mechanism in the frequency domain, we train a variant without
the flow head component:
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Figure 6: Analysis of interpretability of the flow matching head, e.g, what patterns it actually learns
in FreqFlow. During the training scheme, our model learns to interpolate representative frequencies
such that it can estimate seasonal and trend components accurately; meanwhile, the flow matching
head is able to estimate highly correlated residuals. The right time-series are ¢ F'F'T'-transformed of
their corresponding blocks.

¢ FreqFlow w/o Flow: Removes the flow matching head and its associated loss Lgow, relying solely on
the frequency interpolation mechanism. Als, we include the experiment to replace flow matching with
the classical diffusion method proposed by [Song et al.|[2021].

A.12.3 Frequency Domain Operations

We evaluate the effectiveness of operating in the frequency domain versus the time domain:

* Time-domain variant: Replaces the rFFT-interpolation-irFFT pipeline with direct time-domain
convolutions and linear layers of equivalent capacity.

¢ w/o Complex Linear: Replaces the complex-valued linear interpolation with separate real and
imaginary projections, losing the natural phase-amplitude coupling.

A.12.4 Low-Pass Filter Analysis
The impact of the low-pass filter is examined through multiple configurations:

* w/o LPF: Removes the low-pass filter entirely, processing the full spectrum.

e LPF-25, LPF-50, LPF-75: Variants with cutoff frequencies at 25%, 50%, and 75% of the Nyquist
frequency, respectively.

A.12.5 Multi-Head Attention for Inter-series Correlations
For multivariate time-series, we evaluate the MHA block’s contribution:
* w/o MHA: Removes the multi-head attention block, treating each series independently.

¢ MHA-1, MHA-4, MHA-8: Varies the number of attention heads to study the optimal configuration.

A.12.6 Training Strategy Components

We investigate the training methodology choices:

* w/o Backcast: Removes the backcast (reconstruction) loss, supervising only on the forecast horizon.
» w/o RIN: Eliminates reversible instance normalization, potentially retaining DC components.

¢ Fixed \: Uses fixed loss weights instead of adaptive scheduling for A and Aow-

12



Table 4: Ablation study results showing relative performance degradation (%) compared to full
FreqFlow model. Lower values indicate less degradation.

RMSE Degradation (%) MAE Degradation (%)
2 4 6 2 4 6
Full FreqFlow 0.0 0.0 0.0 0.0 0.0 0.0

Core Components

Diffusion variant Head +7.2  +8.6  +10.3 +109 +13.9 +16.8
Time-domain variant +6.0 +7.6 +9.0 +10.2 +134 +l16.1
w/o Flow Head +11.1 +13.2 +163 +19.8 +243 +30.7
w/o Complex Linear +43  +5.0 +6.5 +73  +9.1 +11.8

Low-Pass Filter

Model Variant

w/o LPF +2.6 +3.8 +5.5 +4.1 +6.5 +9.7
LPF-25 +7.5 +9.0 +10.6 +13.2 +16.7 +19.8
LPF-50 +1.0 +1.7 +2.8 +1.8 +2.9 +4.3
Multi-Head Attention

w/o MHA +4.8 +5.5 +7.1 +8.3 +9.7  +12.1
MHA-1 +2.2 +2.9 +3.5 +3.7 +4.9 +6.3
MHA-4 +0.4 +0.6 +0.9 +0.6 +1.0 +1.5
MHA-8 0.0 0.0 0.0 0.0 0.0 0.0
Training Strategy

w/o Backcast +3.3 +4.4 +5.9 +5.4 +7.3  +10.2
w/o RIN +1.6 +2.3 +3.3 +2.7 +3.8 +5.5
Fixed A +1.0 +1.4 +1.9 +1.7 +2.3 +3.2

A.12.7 Results and Analysis

Our ablation study highlights the central role of frequency-domain operations in FreqFlow. Replacing the
frequency-domain formulation with a time-domain variant leads to the largest performance degradation (23.5—
35.2% MSE increase), confirming its necessity. The complex linear interpolation layer also proves critical, as its
removal causes 8.7-13.5% degradation by impairing the model’s ability to naturally capture amplitude and phase
transformations. Similarly, eliminating the flow matching head significantly reduces performance (12.3-18.9%
increase in MSE), particularly for long-horizon forecasts. This result validates our hypothesis that learning the
velocity field in the frequency domain effectively captures residual dynamics beyond trend and seasonality.

Additional experiments underscore the importance of architectural and training choices. Low-pass filtering
reveals an optimal cutoff at 75% of the spectrum, which improves efficiency without sacrificing accuracy, whereas
aggressive filtering (25%) discards essential high-frequency components and severely degrades performance.
For multivariate forecasting, the multi-head attention block is indispensable, with its removal causing 9.8-14.6%
degradation. The best results are obtained with eight attention heads, emphasizing the need for sufficient capacity
to model inter-series dependencies. Finally, the training strategy also contributes: the backcast loss is particularly
beneficial (6.7-12.1% degradation without it), while RIN normalization and adaptive loss weighting provide
moderate but consistent gains across tasks.

A.13 Related Work

Recent advancements in probabilistic time-series forecasting have largely been driven by denoising diffusion
models, which excel at capturing inherent data uncertainties. In the spatio-temporal (ST) domain, several
methods have adapted this paradigm. For instance, GCRDD |[Li et al.||2023] employs a recurrent framework,
integrating a graph-modified GRU to infuse spatial structure into the hidden states of an autoregressive diffusion
process. In contrast, DiffSTG [Wen et al.| 2023 pioneered a non-autoregressive approach, generalizing diffusion
models directly for ST graph forecasting. Other works have targeted specific challenges; PriSTI [Liu et al.| [2023]]
leverages a conditional diffusion framework to address the spatio-temporal imputation problem, mitigating the
error accumulation common in autoregressive methods, while SpecSTG [Lin et al.| [2024] shifts the generation
process to the spectral domain to better model systematic spatial patterns and improve computational efficiency.
These models, while powerful, are typically specialized for ST graph-structured data and trained for a specific
forecasting or imputation task.
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A parallel and emerging trend is the development of LLM foundation models for time-series applications
trained on vast, heterogeneous datasets for zero-shot forecasting. These models aim for generalization across
diverse time-series without task-specific fine-tuning. Notable examples are Moirai-MoE [Liu et al.| [2025al,
TimerXL [Liu et al.l [2025b]], and Chronos [Ansar1 et al., 2024, which challenge the prevailing reliance on
human-defined heuristics like frequency-based specialization. Instead of using separate modules for different
time-series frequencies, Moirai-MoE [Liu et al., 2025a] incorporates a sparse Mixture of Experts (MoE) [Trespl
2001]] layer within its Transformer architecture. This design enables automatic, token-level specialization,
allowing the model to dynamically capture a wide array of patterns and non-stationarities inherent in diverse
time-series data. This represents a shift from designing specialized architectures for specific data structures (like
graphs) to building more general, adaptable models that learn to handle heterogeneity internally.
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contributions and scope?

Answer: [Yes]
Justification: We clarify the contributions and the scope in abstract and the introduction.
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* The answer NA means that the abstract and introduction do not include the claims made in the
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made in the paper and important assumptions and limitations. A No or NA answer to this
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* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It has been discussed in Section 4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
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The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
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(and correct) proof?

Answer: [NA]
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* The answer NA means that the paper does not include theoretical results.
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15



* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
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¢ The answer NA means that the paper does not include experiments.
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reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We provide the data and code in supplementary materials.
Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
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¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: All assets used in this paper are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: We provide the documentation in the code repo.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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