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Abstract

Estimating optical flow in occluded regions is a crucial
challenge in unsupervised settings. In this work, we intro-
duce M2Flow, a novel framework for unsupervised opti-
cal flow estimation that integrates motion information from
multiple frames to address occlusions. By modeling inter-
frame motion information and employing Motion Informa-
tion Propagation (MIP) module, M2Flow effectively propa-
gates and integrates motion information across frames, while
concurrently estimating bidirectional optical flows for multi-
ple frames. In addition, to handle occlusions across multiple
frames, we provide two augmentation modules specifically
designed for our multi-frame model to further refine optical
flow. The experiments on KITTI and Sintel datasets demon-
strate that M2Flow outperforms other state-of-the-art unsu-
pervised approaches, especially in solving occlusions. Code
is available at https://github.com/sunzunyi/M2FLOW.

Introduction
Optical flow is a crucial domain in computer vision that
provides a description of motion in images. It is widely
applied in tasks such as autonomous driving, object track-
ing, and video editing. In recent years, the field of optical
flow has seen rapid advancements driven by deep learning.
Deep learning-based optical flow estimation can be catego-
rized into two types: supervised (Teed and Deng 2021) and
unsupervised. Unlike supervised optical flow networks, un-
supervised optical flow networks do not require the costly
ground-truth labels for training (Yuan et al. 2022) and can
be directly trained in the target domain without pre-training
on synthetic datasets (Sun et al. 2021; Huang et al. 2023).

Unsupervised optical flow networks define their loss func-
tion based on the assumption of constant brightness (Meis-
ter, Hur, and Roth 2018), which posits that corresponding
points between frames maintain a similar local appearance.
However, this assumption will fail in occluded or significant
lighting changed regions (Marsal et al. 2023). Occlusions
are prevalent in images containing motion, making the han-
dling of these regions crucial for unsupervised methods.

Recently, numerous studies have shown that incorporating
multi-frame data can mitigate occlusion issues (Janai et al.
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Figure 1: Comparison between previous multi-frame optical
flow estimation methods and our approach. (Left) Previous
methods assume that the forward and backward flows are
equal in magnitude but opposite in direction. (Right) We in-
troduce M2Flow, a novel framework that abandons the con-
stant velocity assumption and integrates multi-frame mo-
tion information to concurrently estimate bidirectional op-
tical flows for multiple frames.

2018; Liu et al. 2019b). Specifically, information extracted
from historical frames is utilized for current frame optical
flow estimation. Nevertheless, existing multi-frame unsuper-
vised methods suffer from two primary issues. Firstly, in
model construction, previous multi-frame unsupervised op-
tical flow methods mostly rely on the constant velocity as-
sumption (Janai et al. 2018; Liu et al. 2019b, 2020)(as il-
lustrated in Fig. 1). However, this assumption often fails in
some scenarios involving moving objects, particularly in au-
tonomous driving contexts, leading to erroneous estimation
results. Secondly, in training, most methods lack specifically
designed data augmentation techniques for multi-frame sce-
narios, particularly the lack of occlusions with continuous
motion and the inability to generate large displacement oc-
clusions. Thus, they fail to effectively guide networks in uti-
lizing multi-frame information for occlusion handling.

In this paper, we introduce M2Flow, as shown in Fig.
1, a novel unsupervised optical flow estimation framework
that integrates multi-frame motion information to enhance
the accuracy of optical flow estimation in occluded regions.
Regarding the first issue, rather than using uniform motion
assumption between frames, M2Flow uses a dedicated net-
work to provide a more accurate motion modeling for the
occluded objects using four-frame inputs. It propagates non-
constant motion information between different frames, esti-
mating the motion trends of the scene more precisely. Sub-
sequently, it integrates the motion information from other



frames with that of the reference frame to address occlusion.
To address the second issue, we further propose two data

augmentation methods for multi-frame scenarios, namely
consecutive frames augmentation (CFA) and chain-based
large displacement augmentation (CLDA), respectively. The
CFA creates occlusions across multiple frames, aiming to
improve the model’s capacity to extract optical flow cues,
especially in occluded regions. The CLDA utilizes optical
flow from images with small intervals to self-supervise op-
tical flow in images with large intervals, thereby enhancing
the model’s ability to model motion information.

Experiments show that M2Flow achieves leading accu-
racy compared to state-of-the-art unsupervised methods on
both KITTI and Sintel benchmarks. In particular, we achieve
EPE=1.2 on KITTI-2012 benchmark and F1-all=7.37% on
KITTI-2015 benchmark. In contrast to state-of-the-art ap-
proaches such as SemARFlow (Yuan et al. 2023) and Un-
SAMFlow (Yuan et al. 2024), which require additional se-
mantic segmentation information as input in the inference
phase that depends on large complex models such as Seg-
ment Anything Model (SAM) (Kirillov et al. 2023), M2Flow
only utilizes four raw images during its inference phase.
Even so, M2Flow still outperforms SemARFlow and Un-
SAMFlow. When compared to state-of-the-art approaches
that only use raw images, M2Flow outperforms UPFlow
(Luo et al. 2021) (EPE=1.4, F1-all=9.38%) by a large mar-
gin. In summary, our contributions are as follows:
• We propose a novel multi-frame unsupervised optical

flow estimation framework, termed M2Flow, which en-
hances the accuracy of optical flow estimation in oc-
cluded regions.

• We introduce a CFA technique that enhances the model’s
ability to extract optical flow cues from other frames, par-
ticularly in occluded regions.

• We propose a CLDA method to strengthen the model’s
capability to model motion information.

Related works
Two-Frame Optical Flow FlowNet (Dosovitskiy et al.
2015) pioneered end-to-end trainable CNNs for optical flow
estimation. Subsequently, several supervised learning CNN-
based flow estimators have been introduced (Sun et al. 2018;
Hui, Tang, and Loy 2018). RAFT (Teed and Deng 2021)
develops a recurrent optimizer on a multi-scale 4D correla-
tion volume to estimate flow, yielding superior performance.
Several studies (Sun et al. 2022; Shi et al. 2023b) enhance
this architecture to further improve performance.

Meanwhile, to avoid the requirement for ground-truth la-
bels in supervised training, some works delve into unsuper-
vised methods. Early unsupervised optical flow estimation
used photometric loss and smoothness loss for training su-
pervision (Ren et al. 2017; Luo et al. 2021). However, pho-
tometric loss is not suitable for occluded pixels. To address
the issue of occlusion, some works exclude occluded regions
from photometric loss, including forward-backward consis-
tency (Meister, Hur, and Roth 2018) and distance map occlu-
sion checking (Wang et al. 2018). OIFlow (Liu et al. 2021)
addresses occluded regions by inpainting. Several studies

(Liu et al. 2019a,b, 2020) utilize knowledge distillation tech-
niques to enhance the performance of self-supervised learn-
ing on occluded pixel flows. There are additional methods
to further constrain the problem by introducing supplemen-
tary information, such as pose, depth (Zou, Luo, and Huang
2018; Ranjan et al. 2019), and semantic segmentation cues
(Yuan et al. 2023, 2024). UnSAMFlow (Yuan et al. 2024)
integrates Segment Anything Model (SAM) (Kirillov et al.
2023) at the feature level, achieving SOTA performance
across multiple benchmarks. Our method focuses on unsu-
pervised optical flow estimation and explores solving occlu-
sion problems through multi-frame information.
Multi-Frame Optical Flow In supervised learning, PWC-
Fusion (Ren et al. 2019) improves upon PWC-Net (Sun
et al. 2018) by introducing backward warping of past flow
and fusing it with the current flow. TransFlow (Lu et al.
2023) and VideoFlow (Shi et al. 2023a) use five frames to
model long-range temporal information. However, they rely
on prior access to future frames. MemFlow (Dong and Fu
2024) utilizes attention mechanisms to read and aggregate
motion features. Due to well-designed models and robust
supervision from ground-truth, these methods have achieved
notable effectiveness.

In unsupervised learning, multi-frame information has
been shown to effectively address occlusion issues (Stone
et al. 2021). PCLNet (Guan, Li, and Zheng 2019) used con-
volutional long short-term memory (ConvLSTM) to merge
information from previous frames. Back2Future (Janai et al.
2018) directly encodes temporal relationships by leveraging
the constant velocity assumption across three frames. SelF-
low (Liu et al. 2019b) employs three frames to estimate the
optical flow of the current frame, using initial backward flow
and backward cost volume information during forward flow
estimation. ARFlow (Liu et al. 2020) extends the modified
PWC-Net (Sun et al. 2018) model to multiple frames by
repeating the warping and correlation to the backward fea-
tures. Compared to the aforementioned unsupervised meth-
ods, our approach does not rely on the assumption of uni-
form motion. Instead, it leverages multi-frame estimation to
capture the trend of motion changes for a more accurate op-
tical flow estimation. Furthermore, to enhance the efficiency
of network training, we have designed data augmentation
techniques specifically for training multi-frame models.

Method
Our goal is to estimate dense optical flow fields using an
unsupervised optical flow estimation given four consecutive
RGB images I0, I1, I2, I3 ∈ RH×W×3. This includes estimat-
ing the forward flow Ffw = {F1→2,F2→3} and the backward
flow Fbw = {F0←1,F1←2}.
Motivation Previous unsupervised multi-frame optical
flow methods typically use three frames and assume con-
stant velocity. This assumption states that the backward opti-
cal flow from the current frame to the previous frame has the
same magnitude but opposite direction compared to the for-
ward optical flow from the current frame to the next frame.
Nevertheless, this assumption is fragile in dynamic scenes,
especially in autonomous driving scenarios, where both the
ego vehicle and other vehicles can accelerate and decelerate.
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Figure 2: Network structure (t ∈ {0, 1, 2, 3}, l ∈ {6, 5, 4, 3, 2}). The green solid arrows and dashed arrows represent forward
flow and forward motion information, respectively, while the red solid arrows and dashed arrows denote backward flow and
backward motion information, respectively. The red solid arrows from the backward flow iteration are depicted simply.

Moreover, due to the perspective effect, the velocity of ob-
jects within an image varies according to their distance from
the camera. Our method abandons the unreliable constant
velocity assumption and instead utilizes multi-frame motion
information to estimate the trend of object motion changes.

Network Structure
Our M2Flow is based on ARFlow (Liu et al. 2020) network
backbone. The network structure is shown in Fig. 2.
Encoder We employ a fully convolutional encoder (Fig.
2a) to extract the pyramid features {f(l)t | 2 ≤ l ≤ 6} for each
input image It(t ∈ {0, 1, 2, 3}).
Decoder The iterative residual refinement decoder estimates
F̂
(l)

fw = {F̂
(l)

1→2, F̂
(l)

2→3} and F̂
(l)

bw = {F̂
(l)

0←1, F̂
(l)

1←2} from zero.
Fig. 2b illustrates a single forward flow iteration from the esti-
mated F̂

(l+1)

fw to F̂
(l)

fw. Specifically, F̂
(l+1)

fw is upsampled to match
the resolution and used to warp f(l)2 and f(l)3 . The correlation vol-
umes corr(l)1→2 and corr(l)2→3 between two warped features and their
respective warp targets f(l)1 and f(l)2 are computed. A one-by-one
convolution layer conv(l) compresses the feature channels of f(l)1

and f(l)2 to a fixed number, resulting in c(l)1 , c(l)2 . The flow estima-
tor network predicts the residual flow to be added to the current
flow, and a context network then further refines the flow. In the fi-
nal iteration, the learned upsampler network (Teed and Deng 2021)
upsamples F̂

(2)

fw to obtain the final output F(2)
fw = {F(2)

1→2,F(2)
2→3}

on the original resolution (H,W ).
In Fig. 2b, the Motion Information Propagation (MIP) module

is designed for four-frame input to propagate inter-frame forward
motion information M̂

(l)

fw = {M̂
(l)

1→2, M̂
(l)

2→3} and backward mo-

tion information M̂
(l)

bw = {M̂
(l)

0←1, M̂
(l)

1←2}.

Motion Information Propagation
Motion Information Modeling For representing motion in-
formation, similar to flow, higher-dimensional motion information
is also output by the flow estimation network. We add an auxil-
iary branch to the baseline flow estimation network, which outputs
motion information concurrently with flow estimation. During the
first iteration, the motion information is randomly initialized using
learnable parameters and updated in subsequent iterations.
MIP for Inter-Frame Information Propagation As shown in
Fig. 2b, the MIP module takes M̂

(l+1)

fw and M̂
(l+1)

bw from the previ-
ous level as inputs, performs inter-frame information propagation,
and outputs M(l)

fw and M(l)
bw. The input M̂

(l+1)

fw and M̂
(l+1)

bw are first

deconvolved to match the resolution, resulting in M̂
(l)

fw and M̂
(l)

bw.
The initial frames of the corresponding forward and backward mo-
tion information are the same, either I1 or I2. Therefore, the motion
residuals are computed by directly adding the forward and back-
ward motion information as follows:

∆M(l) = M̂
(l)

fw + M̂
(l)

bw, (1)

where ∆M(l) comprises ∆M(l)
1 and ∆M(l)

2 . ∆M(l)
1 represents the

variation in motion information between the frame pairs I0, I1 and
I1, I2, while ∆M(l)

2 denotes the variation in motion information
between the frame pairs I1, I2 and I2, I3.

To further propagate motion information across four frames, the
motion residuals are warped using optical flow to adjacent frames:{

∆M̃(l)
1 = Warp(∆M(l)

2 ; F̂
(l)

1→2)(1− O(l)
1→2),

∆M̃(l)
2 = Warp(∆M(l)

1 ; F̂
(l)

1←2)(1− O(l)
1←2),

(2)

where O(l)
l→2 and O(l)

l←2 are occlusion maps(Meister, Hur, and Roth
2018). The new motion information is obtained from original mo-
tion information and the warped motion residuals:{

M̄(l)
fw = {∆M̃(l)

1 − M̂
(l)

0←1,∆M̃(l)
2 − M̂

(l)

1←2},
M̄(l)

bw = {∆M̃(l)
1 − M̂

(l)

1→2,∆M̃(l)
2 − M̂

(l)

2→3}.
(3)

Eq. 3 represents the computation of motion information for the
current frame by utilizing the motion variation trends of other
frames. The new motion information are then concatenated with
the corresponding original motion information to obtain M(l)

fw and

M(l)
bw, respectively. Thus, MIP completes the propagation and fu-

sion of motion information across four frames. The final output are
fed into the flow estimator network to estimate the optical flow.

Consecutive Frames Augmentation
Our approach to consecutive frames augmentation (CFA) is moti-
vated by the requirement for the network to further learn how to
utilize multi-frame information for optical flow estimation. More-
over, supervision based on photometric loss exhibits reduced effi-
cacy in the presence of occlusions. Therefore, we create occlusions
within consecutive frames to achieve robust self-supervision.
Overview As shown in the top part of Fig. 3, after obtaining
the estimated F1→2, F2→3, F0←1, and F1←2 from the input I0,
I1, I2, and I3, some transformations are manually applied sequen-
tially to I0, I1, I2, and I3 to obtain Ĩ0, Ĩ1, Ĩ2, and Ĩ3. These trans-
formed frames are then input into the network to obtain F̃′1→2,
F̃′2→3, F̃′0←1, and F̃′1←2. Since the previous transformations are
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Figure 3: Illustration of CFA (top) and CLDA (bottom).

known, F̃1→2 can be derived from F1→2 to supervise F̃′1→2. Dur-
ing the transformation process, we first adopt appearance augmen-
tations (e.g., color, contrast, random noise) and spatial transfor-
mations (e.g., translation, random rotation, random rescaling) (Liu
et al. 2020). Additionally, we incorporate CFA based on masks.
CFA for Self-Supervision This enhancement is inspired by Se-
mARFlow (Yuan et al. 2023), but we extract object masks from
a set of consecutive frames instead of a single frame and impose
additional constraints to avoid improper mask selection.

Initially, after a single inference, we select specific objects (e.g.,
cars and poles) in the images through semantic segmentation. Next,
in our case, the object masks are extracted from four separate
frames, requiring us to ensure that the same object is consistently
extracted across consecutive frames. Furthermore, since the opti-
cal flow used for self-supervision is directly derived from the first
inference, we need to assess its accuracy.

We first compute the Intersection over Union (IoU) of identi-
cal semantic objects between adjacent frames. Objects with the
highest IoU between two frames are considered to be the same
object, preliminarily filtering out identical object masks in consec-
utive frames. Then, we utilize the optical flow obtained from the
initial inference to calculate the photometric loss of the four-frame
masks, and set a corresponding loss threshold to further filter out
non-corresponding and high optical flow error masks:{

ρ
(
Warp (IjMj ;Fi→j) , Ii,OM

i

)
≤ θ,

OM
i = 1− (1− invalid(Fi→j))Mi,

(4)

where (i, j) ∈ {(1, 0), (1, 2), (2, 1), (2, 3)}. ρ(·) denotes the pho-
tometric error calculation method, employing census loss (Meister,
Hur, and Roth 2018). OM

i represents the occlusion mask. Mi and
Mj are the object masks corresponding to Ii and Ij , respectively.
invalid(·) is used to compute the mask for points in optical flow
that are directed outside the image boundaries, and θ is the loss
threshold. Only object masks with photometric errors of all four
masks below this threshold will be retained. The qualified four-
frame masks and the corresponding masked F1→2 will be stored.
In the next inference, some samples will be randomly loaded from
the cache to augment the current sample.

Chain-Based Large Displacement Augmentation
Chain-based large displacement augmentation (CLDA) is a method
that utilizes optical flow between single-frame intervals to obtain

optical flow for two-frame intervals, subsequently used for self-
supervision. The term ”chain-based” implies that the optical flow
is linked together like a chain. As shown in the bottom part of Fig.
3, since we concurrently estimate the bidirectional optical flows of
multiple frames, such as I0, I1, I2, and I3, we can link the optical
flow between multiple frames, taking F0←1 and F1←2 as examples:

F̃0←2 = F1←2 +Warp (F0←1;F1←2) , (5)

where F̃0←2 represents the optical flow for two-frame intervals.
Next, we input the two-frame interval images I0, I2, I4, and I6, into
the network to obtain the F0←2, using F̃0←2 for self-supervision.

The concept of CLDA stems from two straightforward ideas:
1). Our method models the motion information of multiple frames,
and increasing the data for large displacements helps enhance the
network’s ability to extract motion information. 2). Appearance
changes between single-frame interval images are relatively in-
significant, while those between two-frame interval images are rel-
atively significant. Using single-frame interval images simplifies
obtaining optical flow, which is used for self-supervised two-frame
interval optical flow, thereby improving the network’s robustness
to large displacements.

Loss Functions
In our method, the forward and backward optical flows share net-
work parameters. Thus, supervising any single optical flow can
train the entire network. Our loss function includes photometric
loss and augmentation loss but excludes smoothness loss, as it con-
flicts with the learned upsampler (Yuan et al. 2023).
Photometric Loss During the first inference, we predict the
forward and backward optical flows F(l)

fw = {F(l)
1→2,F(l)

2→3} and

F(l)
bw = {F(l)

0←1,F(l)
1←2} at each level. We warp the corresponding

frames with F(l)
1→2 and F(l)

1←2:

I′(l)i = Warp(I(l)j ;F(l)
i→j), (i, j ∈ {1, 2}), (6)

where I(l)i is the downsampled version of Ii at the l-th scale. Fol-
lowing ARFlow (Liu et al. 2020) , we compute the photometric
differences between I(l)i and I′(l)i using a linear combination of the
L1 distance, structural similarity (SSIM), and census loss (Meis-
ter, Hur, and Roth 2018). The final photometric loss ℓph calculates
both forward and backward optical flows at each level while oc-
cluded regions are masked out.



Method
Train Test

Param.2012 2015 2012 2015
EPE EPE Fl-all Fl-noc EPE Fl-all Fl-noc

PWC-Net+ (Sun et al. 2019) (0.99) (1.47) 6.72 3.36 1.4 7.72 4.91 8.75M
Su

pe
rv

is
ed PWC-Fusion (Ren et al. 2019)MF − − − − − 7.17 4.47 9.33M

RAFT (Teed and Deng 2021) − (0.63) − − − 5.10 3.07 5.26M

VideoFlow-MOF (Shi et al. 2023a)MF − (0.56) − − − 3.65 − 13.45M

MemFlow-T (Dong and Fu 2024)MF − − − − − 3.88 2.45 12.71M

U
ns

up
er

vi
se

d

Back2Future (Janai et al. 2018)MF − 6.59 − − − 22.94 13.85 12.21M

SelFlow (Liu et al. 2019b)MF 1.69 4.84 7.68 4.31 2.2 14.19 9.65 4.79M
UFlow (Jonschkowski et al. 2020) 1.68 2.71 7.91 4.26 1.9 11.13 8.41 4.36M
ARFlow (Liu et al. 2020) 1.44 2.85 − − 1.8 11.80 − 2.24M

ARFlow (Liu et al. 2020)MF 1.26 3.46 − − 1.5 11.79 − 2.37M
UPFlow (Luo et al. 2021) 1.27 2.45 − − 1.4 9.38 − 3.49M

SemARFlow (Yuan et al. 2023)† 1.28 2.18 7.35 3.90 1.5 8.38 5.43 2.65M

UnSAMFlow (Yuan et al. 2024)† 1.26 2.01 7.05 3.79 1.4 7.83 5.67 2.63M

M2Flow (Ours)MF 1.09 1.95 6.24 3.95 1.2 7.37 5.73 2.65M

Table 1: KITTI benchmark errors (EPE/px and Fl/%). Metrics evaluated at “all” (all pixels), “noc” (non-occlusions). MF indi-
cates methods using multi frames for optical flow. † denotes models with semantic inputs. Missing entries (-) denote unreported
results. Parentheses indicate that training and testing are conducted on the same dataset.

Augmentation Loss The augmentation loss consists of three
components. First, similar to ARFlow (Liu et al. 2020), we calcu-
late the L1 distance between the transformed F1→2 and the optical
flow obtained after the second inference. This distance, averaged
over non-occluded regions, yields ℓar.

Secondly, for consecutive frame augmentation (third inference),
we compute the L1 distance between F̃1→2 and F̃′1→2, averaging
over non-occluded pixels p:

ℓcfa =

∑
p(1− Õ1→2(p))∥F̃1→2(p)− F̃′1→2(p)∥1∑

p(1− Õ1→2(p))
, (7)

where Õ1→2 is the augmentation occlusion mask. Given the ini-
tial occlusion region O1→2, calculated using F1→2 and F1←2

through forward-backward consistency check and the object mask
M, Õ1→2 is defined as:

Õ1→2 = 1−max(1− O1→2,M). (8)

Lastly, for chain-based large displacement augmentation (fourth
inference), a similar loss is defined as follows:

ℓclda =

∑
p(1− O1←2(p))∥F̃0←2(p)− F0←2(p)∥1∑

p(1− O1←2(p))
. (9)

Final Loss Our final loss is:

ℓ = ℓph + λ(ℓar + ℓcfa + ℓclda). (10)

Experiments
Datasets
We evaluated our method using the KITTI (Geiger et al. 2013;
Menze and Geiger 2015), Sintel (Butler et al. 2012), and Cityscapes
(Cordts et al. 2016) datasets. The training data schedules follow
previous approaches (Liu et al. 2019b; Yuan et al. 2023, 2024).

Implementation Details
Our model is implemented in PyTorch (Paszke et al. 2019) and
trained using the Adam optimizer (Kingma and Ba 2014) with
β1 = 0.9 and β2 = 0.99, with a batch size of 4. We first train for
100k iterations on raw data using a fixed learning rate of 0.0002
and then fine-tune on original dataset for another 100k iterations
using the OneCycleLR scheduler (Smith and Topin 2019) with a
maximum learning rate of 0.00025.

We commence appearance and spatial augmentation at 50k iter-
ations (as described in ARFlow (Liu et al. 2020)). Subsequently,
CFA and CLDA begin at 100k iterations. For CFA, on KITTI
dataset, we utilize an off-the-shelf model (Zhu et al. 2019) to es-
timate all semantic segmentation of all images as the initial ob-
ject masks. For vehicle objects and pole objects, the threshold θ
in Eq. 4 are initially set as 0.35 and 0.25, respectively. After 150k
iterations, these values are adjusted to 0.22 and 0.13, respectively.
The augmentation loss weight λ in Eq. 10 is set to 0.02. On Sintel
dataset, we obtained the initial masks using SAM2 (Segment Any-
thing Model 2) (Ravi et al. 2024), with the θ set to 0.35 initially,
and then adjusted to 0.25.

Prior to entering the network, image inputs are resized to
256×832 for KITTI and 448×1024 for Sintel. Data augmentation
strategies follow those of ARFlow (Liu et al. 2020), incorporating
appearance transformations (brightness, contrast, saturation, hue,
gaussian blur, etc.), random flipping, and random swapping.

Benchmark Testing Results
We use standard optical flow metrics, including the average end-
point error (EPE) and the percentage of erroneous pixels (Fl).
When calculating Fl, an estimation for each pixel is considered
correct if the error is less than 3 pixels or 5% of the magnitude of
the ground-truth flow (Menze and Geiger 2015). We compare our



Method
Train Test

Param.Clean Final Clean Final
all all all noc occ all noc occ

PWC-Net+ (Sun et al. 2019) (1.71) (2.34) 3.45 1.41 20.12 4.60 2.25 23.70 8.75M
Su

pe
rv

is
ed PWC-Fusion (Ren et al. 2019)MF − − 3.42 1.38 20.10 4.57 2.22 23.73 9.33M

RAFT (Teed and Deng 2021) (0.77) (1.27) 1.61 0.62 9.65 2.86 1.41 14.68 5.26M

VideoFlow-MOF (Shi et al. 2023a)MF (0.46) (0.66) 0.99 0.40 5.83 1.62 0.77 8.54 13.45M

MemFlow-T (Dong and Fu 2024)MF − − 1.08 0.43 6.38 1.84 0.87 9.71 12.71M

U
ns

up
er

vi
se

d

Back2Future (Janai et al. 2018)MF (3.89) (5.52) 7.23 3.60 36.78 8.81 5.03 39.65 12.21M

SelFlow (Liu et al. 2019b)MF (2.88) (3.87) 6.56 2.67 38.30 6.57 3.12 34.72 4.79M
UFlow (Jonschkowski et al. 2020) (2.50) (3.39) 5.21 2.04 31.06 6.50 3.08 34.40 4.36M
ARFlow (Liu et al. 2020) (2.79) (3.73) 4.78 1.91 28.26 5.89 2.73 31.60 2.24M

ARFlow (Liu et al. 2020)MF (2.73) (3.69) 4.49 1.89 25.80 5.67 2.76 29.43 2.37M
UPFlow (Luo et al. 2021) (2.33) (2.67) 4.68 1.71 28.95 5.32 2.42 28.93 3.49M

UnSAMFlow (Yuan et al. 2024)† (2.21) (3.07) 3.93 1.67 22.34 5.20 2.56 26.75 2.63M

M2Flow (Ours)MF (2.01) (3.12) 3.38 1.32 20.21 5.01 2.52 25.29 2.65M

Table 2: Sintel benchmark errors (EPE/px). Metrics evaluated at “all” (all pixels), “noc” (non-occlusions), and “occ” (occlu-
sions). MF indicates methods using multi frames for optical flow. † denotes models with semantic inputs. Missing entries (-)
denote unreported results. Parentheses indicate that training and testing are conducted on the same dataset.

method with both supervised and unsupervised methods on KITTI
and Sintel benchmark.

As shown in Tab. 1, on KITTI-2012 and KITTI-2015 datasets,
our method outperforms the SOTA unsupervised methods on eval-
uation metrics over all pixels (EPE and F1-all), and even surpasses
some early supervised methods. On the training set, we achieve
EPE=1.09 on KITTI-2012 and EPE=1.95 on KITTI-2015. On the
test set, our model achieves EPE=1.2 on KITTI-2012 test set and
F1-all=7.37% on KITTI-2015 test set, which is significantly bet-
ter than UPFlow (Luo et al. 2021) (EPE=1.4, F1-all=9.38%, the
current state-of-the-art) and ARFlow (Liu et al. 2020) (EPE=1.8,
F1-all=11.80%, the backbone network we adapted).

Notably, our model exhibits a slightly higher error in non-
occluded regions (F1-noc) compared to SemARFlow (Yuan et al.
2023) and UnSAMFlow (Yuan et al. 2024), which are also
based on improvements to ARFlow (Liu et al. 2020).The pri-
mary reason is that they integrate semantic segmentation informa-
tion into the network inputs, leading to better handling of motion
boundaries and appearances under different lighting conditions.
However, our model (EPE=1.2, F1-all=7.37%) outperforms Se-
mARFlow (EPE=1.5, F1-all=8.38%) and UnSAMFlow (EPE=1.4,
F1-all=7.83%) in terms of overall error, indicating that our error
reduction primarily stems from occluded regions. This strongly
demonstrates the significant advantage of our multi-frame model
in handling occlusions.

As shown in Tab. 2, on Sintel dataset, we achieve significant
advantages in both occluded and non-occluded regions.

Qualitative Results
Some qualitative results on KITTI-2015 test set are shown in Fig.
4. Sample 9 shows occlusion from an object’s movement (the vehi-
cle is occluded by a traffic light pole), while Sample 17 illustrates
occlusion resulting from the motion of the ego vehicle (depicted
as dark regions in the error map). Compared to other methods, our

approach yields more accurate optical flow in occluded regions.

Ablation Study
We conducted ablation studies to analyze the effectiveness of each
of our proposed modules. All models were trained with the same
settings, except for the corresponding ablation variables.
Network Modules The ablation experiments on different net-
work modules are presented in Tab. 3. As various modules are in-
corporated, the error rate gradually decreases. The ablation of MIP
module demonstrates the effectiveness of our multi-frame model,
particularly in significantly reducing the error in occluded regions
(EPE-occ). Furthermore, the ablation of CFA and CLDA validates
that our proposed augmentation methods for multi-frame process-
ing can effectively guide the network in learning to integrate in-
formation from multiple frames. Specifically, CFA significantly re-
duces EPE-noc, while CLDA notably decreases EPE-ooc.

This is reasonable, the occluded regions caused by the masks
generated by the CFA are generally not extensive. However, using
masked flow allows for self-supervision in the non-occluded re-
gions, resulting in a significant reduction in EPE-noc. Conversely,
CLDA produces substantial occlusions due to the ego-motion of
the camera and the large displacement of objects within the scene,
encouraging the network to learn how to handle occluded regions.
Ablation Analysis for Frames Our method employs one more
frame than the previous multi-frame models. For the purpose
of making comparisons under the same input, we removed MIP
module while retaining the motion information modeling. Subse-
quently, we directly warped motion information between different
frames to implement a 4-frame model under the constant veloc-
ity assumption. As shown in Tab. 4, the results indicate that our
4-frame model with MIP module outperforms the 4-frame model
based on the constant velocity motion assumption.

Additionally, we extend M2Flow to 5-frame. As shown in Tab.
4, while the occlusion region further improves with 5-frame, the



Reference Image

F1-all = 4.88

SemARFlow(ICCV-2023)

F1-all = 9.03

F1-all = 9.13

UnSAMFlow(CVPR-2024)

F1-all = 8.54

Ours

F1-all = 3.51

F1-all = 6.92

Figure 4: Qualitative results on KITTI test set (sample frame #9, 17) compared with SemARFlow (Yuan et al. 2023) and
UnSAMFlow (Yuan et al. 2024). The first and third rows show the predicted optical flow, while the second and fourth rows
display the error maps. In the error maps, correct estimations are indicated in blue, incorrect estimations in red, and occluded
pixels are represented by dark regions. Additional samples can be viewed on the website of benchmark.

MIP CLDA CFA F1-all EPE-all EPE-noc EPE-occ

9.42 2.74 1.92 6.71

✓ 8.19 2.28 1.62 5.16

✓ ✓ 8.01 2.23 1.74 4.50

✓ ✓ 7.57 2.07 1.44 4.85

✓ ✓ ✓ 7.12 1.95 1.45 4.31

Table 3: Ablation study on KITTI-2015 train set (EPE/px
and F1/%). Metrics evaluated at “all” (all pixels), “noc”
(non-occlusions), “occ” (occlusions). “MIP”: motion in-
formation propagation module; “CFA”: consecutive frames
augmentation; “CLDA”: chain-based large displacement
augmentation.

Frames F1-all EPE-all EPE-noc EPE-occ

4 (w/o MIP) 7.77 2.07 1.56 4.36

4 (w/ MIP) 7.12 1.95 1.45 4.31

5 (w/ MIP) 7.18 2.07 1.60 4.02

Table 4: Ablation analysis for frames on KITTI-2015 train
(EPE/px and Fl/%). The experiments used CFA and CLDA.

overall performance is inferior to the 4-frame setting, indicating
that a multi-frame approach requires not only increasing the num-
ber of input frames but also appropriate feature fusion.
Comparison of Flow at Various Positions Our model is capa-
ble of concurrently estimating multiple bidirectional optical flows
across multiple frames. To evaluate the accuracy of the flows at
different positions, we altered the input order of the frames and
compared the corresponding flows with the ground truth. As shown
in Tab. 5, the flows at various positions achieve comparable accu-
racy. This further indicates that our model effectively facilitates the
mutual propagation of motion information across different frames.
Due to the symmetry of the model, F0←1 and F1←2 have been
omitted from Tab. 5.

Flow F1-all EPE-all EPE-noc EPE-occ

F1→2 7.14 1.96 1.46 4.30
F2→3 7.12 1.95 1.45 4.31

Table 5: Comparison of flow at various positions on KITTI-
2015 train (EPE/px and Fl/%).

Method F1-all EPE-all EPE-noc EPE-occ

ARFlow 13.74 4.19 2.86 10.29

M2Flow 9.33 2.47 1.72 5.82

Table 6: Generalization results (train on Cityscapes, and test
on KITTI-2015 train).

Generalization Ability
To evaluate the generalization ability of our model, we trained it
on Cityscapes dataset, which consists of urban street scenes. Sub-
sequently, we tested the model on KITTI-2015 train set without
fine-tuning. Following (Yuan et al. 2023), we cropped 25% from
the bottom of the images to remove the car logo and resized them
to 256×704. All other settings remained consistent with KITTI. As
shown in Tab. 6, our model demonstrates significantly better per-
formance compared to our backbone network ARFlow (Liu et al.
2020), exhibiting robust generalization capability.

Conclusion
We propose M2Flow, an unsupervised optical flow network that
integrates multi-frame motion information. M2Flow utilizes the
MIP module to achieve inter-frame motion information propaga-
tion and fusion, enabling the concurrent output of bidirectional op-
tical flows for multiple frames. To address the challenges in train-
ing multi-frame networks, we propose consecutive frames aug-
mentation (CFA) and chain-based large displacement augmenta-
tion (CLDA) for self-supervision. Experimental results demon-
strate that our network excels at predicting flow in occluded regions
and achieves significant advantages on benchmark tests.
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