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Abstract
Warning: this paper contains expressions that001
may offend the readers.002

003
Offensive language detection is an important004
task for filtering out abusive expressions and005
improving online user experiences. However,006
malicious users often attempt to avoid filtering007
systems through the involvement of textual008
noises. In this paper, we propose these evasions009
as user-intended adversarial attacks that insert010
special symbols or leverage the distinctive011
features of the Korean language. Furthermore,012
we introduce simple yet effective pooling013
strategies in a layer-wise manner to defend014
against the proposed attacks, focusing on the015
preceding layers not just the last layer to cap-016
ture both offensiveness and token embeddings.017
We demonstrate that these pooling strategies018
are more robust to performance degradation019
even when the attack rate is increased, without020
training of such patterns. Notably, we found021
that models pre-trained on clean texts could022
achieve a performance in detecting attacked023
offensive language, comparable to models024
pre-trained on noisy texts by utilizing these025
pooling strategies.026

1 Introduction027

As the internet becomes an important part of our028

lives, the prevalence of offensive language on on-029

line platforms, particularly social media, has be-030

come a serious concern (Zampieri et al., 2019).031

Deep learning models for filtering offensive lan-032

guages have been proposed to address this problem.033

However, malicious users have consistently found034

ways to avoid them. One such way is the deliberate035

insertion of additional typographical errors or sub-036

stitution of certain characters with visually similar037

alternatives (Wu et al., 2018; Kurita et al., 2019).038

Despite numerous studies on this phenomenon039

in English, there has been a comparatively limited040

exploration in Korean, which is a low-resource lan-041

guage characterized by distinct linguistic features042

(Kim et al., 2021a; Sahoo et al., 2023). As the 043

Korean communities also suffer from the use of 044

abusive language and cyberbullying (Jun, 2020; Yi 045

and Cha, 2020; Saengprang and Gadavanij, 2021; 046

McCurry, 2022), it is desirable to investigate the 047

evasion tactics employed by malicious users and 048

to formulate them. While recent studies have dis- 049

cussed how to avoid offensive language detection 050

(Ahn and Egorova, 2021; Cho and Kim, 2021; Kim 051

et al., 2021c), their definitions are ambiguous, and 052

no clear solutions have been proposed to defend 053

against the evasions. 054

In this paper, we propose the evasion methods 055

as user-intended adversarial attacks and incorpo- 056

rate them into offensive language from the per- 057

spective of malicious users. Our proposed attacks 058

are grounded in prevalent forms that can be found 059

in offensive language online, and reflect the dis- 060

tinct features of Korean language, wherein a single 061

character can be further subdivided (Song, 2006). 062

When we tested the proposed attacks on the exist- 063

ing models for offensive language detection, the 064

results revealed that the performance declines as 065

the ratio of the proposed attacks increases. 066

Furthermore, we introduce simple yet effective 067

pooling strategies in a layer-wise manner to de- 068

fend against the proposed attacks. Motivated by the 069

exploration of the impact of each layer in a pre- 070

trained language model (Jawahar et al., 2019; Oh 071

et al., 2022), we selectively integrate useful features 072

for the attacked offensive language across all layers. 073

The attacked texts have some changes in the tokens 074

used, differing from the original texts. Therefore, 075

we implement pooling strategies to ensure that the 076

model captures not only high-level features but also 077

low-level features, which are related to offensive- 078

ness and token embeddings, respectively. This sim- 079

ple modification enriches the understanding of the 080

attacked offensive language, enhancing the robust- 081

ness of the model against user-intended adversarial 082

attacks without training of such patterns. 083
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The contributions of our study are as follows:084

• We propose user-intended adversarial attacks085

that are often associated with offensive lan-086

guage online from the perspective of mali-087

cious users. These attacks are directly per-088

formed by inserting special symbols or lever-089

aging the distinctive features of the Korean090

language.091

• We introduce the pooling strategies in a layer-092

wise manner to selectively utilize all layers093

rather than just the last layer. This approach094

achieves a notable performance when utilized095

to a model pre-trained on clean texts, without096

training of the proposed attacks.097

• We demonstrate the effectiveness of layer-098

wise first pooling and max pooling by assign-099

ing distinct weights to each layer and utilizing100

them to the model depending on the nature101

of the pre-trained texts when user-adversarial102

attacks are involved in offensive language.103

2 Related Work104

2.1 Adversarial Attacks105

Adversarial attacks involve perturbed input data106

that confuses the model. In contrast, a situation107

in which the model consistently predicts well re-108

gardless of the nature of input data is referred to109

as defending (Goyal et al., 2023). Previous studies110

have explored this based on word-level substitu-111

tions (Ren et al., 2019; Jin et al., 2020), and others112

also have explored them on character-level. We113

propose adversarial attacks that utilize not only114

character-level but also smaller-scale alternations115

tailored to the features of Korean language. Such116

attacks are commonly observed in the context of117

offensive languages in various online communities118

(Ahn and Egorova, 2021; Cho and Kim, 2021).119

TextBugger (Li et al., 2019) is an early study that120

focused on character-level alternations, such as re-121

placing characters with visually similar ones (e.g.122

replacing the alphabet ‘o’ with the number ‘0’).123

Other studies have suggested simple leetspeaks that124

employ symbols that resemble the alphabet (Aggar-125

wal and Zesch, 2022), or adversarial attacks that are126

not easily detected visually, such as transforming127

Latin characters into similar-looking Cyrillic char-128

acters (Wolff and Wolff, 2020). Although several129

studies also have explored visually undetectable130

attacks (Kim et al., 2021b; Boucher et al., 2022;131

Bajaj and Vishwakarma, 2023), we utilize a more 132

realistic attack scenario that can occur online from 133

the perspective of malicious users. 134

2.2 Korean Offensive Language Datasets 135

Owing to the increasing demand for online con- 136

tent in Korean language and the growing threats 137

of cyberbullying, previous studies have introduced 138

offensive language datasets collecting comments 139

from diverse resources such as online news, com- 140

munities, and YouTube. 141

BEEP! (Moon et al., 2020) was a pioneering 142

study that utilizes hate speech prevalent in news 143

comments. KoLD (Jeong et al., 2022) and K-MHaS 144

(Lee et al., 2022) specified the target group of the 145

offensive language. Subsequently, KODOLI (Park 146

et al., 2023b) provided labels that refine the de- 147

gree of offensiveness, and built upon these efforts, 148

K-HATERS (Park et al., 2023a) was built to incor- 149

porate the strengths of the preceding datasets. 150

Although numerous datasets have been proposed, 151

there is still a lack of definition for adversarial 152

attacks that are frequently involved in offensive 153

language, and how to defend against them. In this 154

study, we focus on introducing pooling strategies 155

for defending against these attacks, without directly 156

using attacked texts during the training stage. 157

3 Method 158

3.1 User-Intended Adversarial Attacks 159

We present adversarial attacks designed to target 160

offensive languages from the perspective of mali- 161

cious users. By referring to existing offensive lan- 162

guage datasets, we define frequently occurring at- 163

tack types. These attacks are categorized into three 164

groups: INSERT, COPY, and DECOMPOSE. Exam- 165

ples of each attack type are listed in Table 1. 166

User-Intended
Adversarial Attacks Text Examples

original text 쓰레기같은 (such a trash)
INSERT_zz 씈ㅋㅋㅋ레기같은
INSERT_space 쓰레기같은
INSERT_special 쓰@레기같은
COPY_initial 쓸레기같은
COPY_middle 쓰레에기같은
COPY_final 쓰레기가튼
DECOMPOSE_final 쓰레기가ㅌ은
DECOMPOSE_all ㅆㅡ레기같은

Table 1: Text examples of user-intended adversarial at-
tacks with three categories: INSERT, COPY, and DE-
COMPOSE. There are various attacks that involve special
symbols or exploit the distinctive features of Korean.
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First, INSERT involves adding incomplete Ko-167

rean character forms, which are often used online168

without significant meaning. For example, ‘ㅋㅋ’169

(equivalent ‘LOL’ in English) is a commonly used170

and somewhat meaningless string frequently used171

in online communications. In this case, INSERT_zz172

is performed by inserting the string at a specific lo-173

cation within the word, as in real situations. Other174

types of INSERT also include unnecessary spaces175

or special symbols.176

The following two types of user-intended adver-177

sarial attacks take advantage of the distinct features178

of the Korean language. A single character must179

have an initial sound, a middle sound, and an op-180

tional final sound (Song, 2006). For example, in the181

expression ‘쓰레기같은’ in Table 1, the character182

‘쓰’ has only the initial and middle sounds, whereas183

the character ‘같’ has all three sounds.184

Second, COPY utilizes the distinctive features,185

copying one of the three sounds from the selected186

character to the other character. For example, the187

character ‘레’ from the expression ‘쓰레기 같은’188

has the initial and middle sounds of ‘ㄹ’ and ‘ㅔ’.189

In this case, COPY_initial is performed by copy-190

ing the initial sound of that character ‘ㄹ’ to the191

final sound of the preceding character ‘쓰’. Con-192

sequently, ‘쓰’ is transformed into ‘쓸’, thus, the193

attacked expression will be ‘쓸레기같은’.194

Finally, DECOMPOSE also utilizes the unique195

characteristics, isolating the final sound of the se-196

lected character or breaking down the character197

itself. For example, the single character ‘쓰’ from198

the expression ‘쓰레기 같은’ has the initial and199

middle sounds of ‘ㅆ’ and ‘ㅡ’. In this case, DE-200

COMPOSE_all is performed by breaking down the201

character, resulting in the sounds being indepen-202

dent of that character. Consequently, ‘쓰’ is trans-203

formed into ‘ㅆㅡ’, thus, the attacked expression204

will be ‘ㅆㅡ레기 같은’. Further details and ex-205

amples of all user-intended adversarial attacks are206

provided in Appendix A.207

3.2 Layer-Wise Pooling Strategies208

In standard text classification tasks, pre-trained209

models such as BERT are fined-tuned to the target210

domain. This is based on the assumption that the211

[CLS] token from the last layer effectively captures212

the sentence representation (Devlin et al., 2018).213

However, when we tested from the assessment of214

the existing models, we found that they lost the215

consistency of prediction for the proposed attacks.216

User-Intended
Adversarial Attacks Tokenized Examples

original text 쓰레기,같, ##은 (such a trash)
INSERT_zz [UNK],같, ##은
INSERT_space 쓰,레, ##기,같, ##은
INSERT_special 쓰, @,레, ##기,같, ##은
COPY_initial 쓸, ##레기,같, ##은
COPY_middle 쓰, ##레, ##에, ##기,같, ##은
COPY_final 쓰레기,가, ##튼
DECOMPOSE_final 쓰레기,가, ##ㅌ, ##은
DECOMPOSE_all [UNK],같, ##은

Table 2: Tokenized examples of user-intended adversar-
ial attacks. Although the texts have the same meaning,
the tokens are represented differently.

When using perturbed text to a model, the tok- 217

enization results differ from those of the original 218

text, as shown in Table 2. By involving special 219

symbols or exploiting the distinctive features of 220

Korean, we observed that even if the text had the 221

same meaning to human readers, the tokenized out- 222

puts differed significantly. Therefore, we did not 223

rely on the information only from the last layer, 224

but utilized the preceding layers, which focus more 225

on token embeddings (Ma et al., 2019). This also 226

reflects the previous finding that meaningful infor- 227

mation for a certain task can be captured in the 228

preceding layers (Oh et al., 2022). 229

We extend pooling strategies in a layer-wise man- 230

ner, allowing us the flexibility to utilize text rep- 231

resentations from all layers. Denoting the [CLS] 232

token of the N th layer as hclsN , we introduce four 233

strategies that optionally consider the [CLS] to- 234

kens from all the layers hcls1 , ..., hclsN . 235

Mean, Max Pooling: We apply mean pooling 236

utilizing the L1 norm, which averages all [CLS] to- 237

kens from all the layers, and max pooling utilizing 238

the L∞ norm, which takes a max-over-time opera- 239

tion on the values corresponding to each dimension 240

from all [CLS] tokens. 241

When the dimension of [CLS] token is M , and 242

all the values of jth dimension of [CLS] tokens 243

from all the layers are concatenated and denoted 244

by hjall, these two poolings are defined as follows: 245

poolmean = mean(hcls1 , ..., hclsN ), (1) 246

poolmax = max(h1all), ...,max(hMall), (2) 247

Weighted Pooling: We apply weighted pooling 248

utilizing a learnable parameter that determines the 249

importance of each layer. Through adaptive incor- 250

poration of the layers, we train weights that selec- 251

tively capture both offensiveness and token embed- 252

dings, initializing all weights to zero. 253
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Figure 1: Layer-wise pooling strategies that selectively
use [CLS] tokens from all layers. From the upper left,
there are mean, max, weighted, and first pooling.

When the wi represents the weight of each254

layer and αi represents its softmax distribution,255

the weighted pooling is defined as follows:256

poolweighted =
N∑
i=1

αih
cls
i , (3)257

First Pooling: We apply first pooling utilizing258

[CLS] token from the first layer. Rather than con-259

sidering all the layers, we focus on leveraging in-260

formation from layers directly associated with of-261

fensiveness and token embeddings.262

poolfirst = hclsN + hcls1 , (4)263

The layer-wise pooling strategies described264

above are illustrated in Figure 1. We conducted265

experiments to verify the robustness of these strate-266

gies for detecting offensive languages that reflect267

user-intended adversarial attacks.268

4 Experiment269

4.1 Datasets270

We collect both the KoLD (Jeong et al., 2022) and271

K-HATERS (Park et al., 2023a) datasets and divide272

them into train, validation, and test sets by strati-273

fying their labels. We randomly shuffle and split274

them into the ratio of 8:1:1. We set the attack rates275

into 30%, 60%, and 90%, corrupting a portion of276

the words in a sentence. The attacks were only ap-277

plied to the test set to evaluate the robustness of the278

model against user-intended adversarial attacks.279

4.2 Baselines 280

We experiment the effectiveness of the layer-wise 281

pooling strategies with the baselines, which are 282

presented below. The experimental details includ- 283

ing hyperparameters and metrics are reported in 284

Appendix B. 285

• BiLSTM: This model addresses the long-term 286

dependency problem of RNN by remember- 287

ing only the information in need (Schuster 288

and Paliwal, 1997). It was built bidirectionally 289

by stacking two LSTMs, and the forward and 290

backward [CLS] tokens from the last layer 291

were combined and passed through the classi- 292

fication layer. 293

• BiGRU: This model is derived from the BiL- 294

STM and further evolved by reducing the 295

training parameters through the selective uti- 296

lization of gates (Cho et al., 2014). Its config- 297

urations are the same as BiLSTM. 298

• BERTclean: This model follows the BERT 299

(Devlin et al., 2018) structure, which is built 300

on a self-attention mechanism with masked 301

language modeling. It was pre-trained on pre- 302

processed texts in Korean (Park et al., 2021). 303

The [CLS] token from the last layer is passed 304

through the classification layer. 305

• BERTnoise: This model also follows the 306

BERT structure, but it is pre-trained on noisy 307

texts in Korean, such as online comments 308

(Lee, 2020). Its configurations are the same as 309

BERTclean. 310

• Ensemblehard, Ensemblesoft: These models 311

utilize both the BERTclean and BERTnoise, 312

employing voting methods from ensemble 313

techniques. Hard voting is conducted through 314

a majority vote, but soft voting occurs in the 315

cases of tied votes. Soft voting averages the 316

prediction probabilities of each model. 317

5 Discussion 318

5.1 Experimental Results 319

The performances of the models when exposed to 320

user-intended adversarial attacks are presented in 321

Table 3. Each of the best performances from the 322

layer-wise pooling strategies and the baselines in 323

the original, and 30%, 60%, and 90% attacked are 324

highlighted in bold. 325
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Model
Original 30% Attacked 60% Attacked 90% Attacked

P R F1 P R F1 ∆atk P R F1 ∆atk P R F1 ∆atk

BiLSTM 71.83 68.80 69.81 70.84 66.23 67.38 -3.48% 68.97 62.82 63.67 -8.79% 69.32 61.64 62.25 -10.82%
BiGRU 71.32 65.71 66.91 70.40 63.32 64.26 -3.96% 68.84 60.31 60.52 -9.55% 68.05 58.83 58.48 -12.59%
BERTclean 79.81 77.79 78.64 79.51 73.35 75.19 -4.38% 77.74 66.38 67.96 -13.58% 76.14 62.01 62.44 -20.60%
BERTclean +mean 78.57 79.06 79.01 79.41 73.97 75.70 -4.18% 77.15 66.97 68.62 -13.15% 74.90 62.45 63.09 -20.14%
BERTclean +max 78.51 78.81 78.65 78.47 74.03 75.54 -3.95% 77.80 66.66 68.29 -13.17% 76.79 61.51 61.72 -21.52%
BERTclean + weighted 79.93 78.50 79.14 79.19 73.70 75.43 -4.68% 77.14 67.62 69.33 -12.39% 75.44 63.66 64.85 -18.05%
BERTclean + first 79.05 79.37 79.21 78.89 75.85 77.02 -2.76% 77.58 69.38 71.21 -10.09% 76.08 64.33 65.49 -17.32%
BERTnoise 80.64 78.88 79.64 80.67 75.42 77.17 -3.10% 78.44 69.42 71.33 -10.43% 76.46 65.55 66.96 -15.92%
Ensemblehard
(BERTclean + BERTnoise)

81.63 79.42 80.36 81.57 75.03 77.04 -4.13% 80.47 68.60 70.60 -12.14% 78.68 64.24 65.35 -18.67%

Ensemblesoft
(BERTclean + BERTnoise)

81.52 79.53 80.38 81.54 75.29 77.25 -3.89% 80.27 68.86 70.87 -11.83% 78.47 64.42 65.58 -18.41%

Table 3: Experimental results of offensive language detection when a certain ratio of user-intended adversarial
attacks are involved. P, R, and F1 represent macro precision, recall, and f1-score, respectively. ∆atk represents the
performance drop in the f1-score as the attacks are involved in the same model.

We observed that the BERT-based models con-326

sistently outperformed RNN-based models in terms327

of the f1-score across all attack rates. Under origi-328

nal and 30% attacked, employing multiple BERT329

models with soft voting yielded the best scores,330

achieving f1-scores of 80.38 and 77.25. As the331

attack rates increased to 60% and 90%, using a332

single model pre-trained on noisy texts rather than333

ensemble models proved to be the most effective,334

achieving f1 scores of 71.33 and 66.96.335

However, ensemble models require twice com-336

putational resources for both training and inference337

stages compared to a single model. In the case338

of BERTnoise, a large amount of noisy texts is re-339

quired, raising concerns regarding its adaptability340

when inference with attacked input types is not341

encountered during the pre-training stage.342

When applying layer-wise pooling strategies to343

BERTclean, we found that the performances were344

improved in almost all attack rates compared to345

their absence. They only need to train an additional346

one-dimensional parameter equal to the size of all347

layers (e.g. 12 for BERT-based models), or no pa-348

rameters are required. Furthermore, they are robust349

as the attack rate increases compared to models350

with no pooling strategies.351

The average performances when exposed to user-352

intended adversarial attacks across all attack rates353

are presented in Table 4. All layer-wise pooling354

strategies exhibited robustness against attacks com-355

pared to their absence, except for BERTclean +356

max, which exhibited a slight performance drop.357

Moreover, even BERTclean + first, which only358

incorporates information from the first layer with-359

out any parameters or training noisy texts, showed360

comparable performance to BERTnoise across all361

attack rates that were pre-trained on noisy texts.362

Model Average
F1 ∆atk

BiLSTM 64.43 -7.69%
BiGRU 61.08 -8.70%
BERTclean 68.52 -12.85%
BERTclean +mean 69.13 -12.49%
BERTclean +max 68.51 -12.88%
BERTclean + weighted 69.86 -11.70%
BERTclean + first 71.24 -10.05%
BERTnoise 71.82 -9.81%
Ensemblehard
(BERTclean + BERTnoise) 70.99 -11.64%

Ensemblesoft
(BERTclean + BERTnoise) 71.23 -11.37%

Table 4: Average from the experimental results of of-
fensive language detection when a certain ratio of user-
intended adversarial attacks are involved.

5.2 Focus on Performance Drop 363

The degree to which the f1-scores of the models 364

decreased with the attack rates is shown in Figure 365

2. We observed that, with the inclusion of attacks, 366

all models failed to maintain their original perfor- 367

mance, falling within a specific range. Particularly, 368

the performance decreased from -2% to -4% for 369

30% attacked, -8% to -12% for 60% attacked, and 370

-10% to -21% for 90% attacked. 371

We found that BiSLTM exhibited relatively mod- 372

est performance degradation across the models. De- 373

spite the modest decrease in performance, the of- 374

fensive language detection performances of RNN- 375

based models were not as good as that of the BERT- 376

based models because of the limitations of the 377

RNN-based models themselves. 378

Among the BERT-based models, BERTclean, 379

which was pre-trained on clean texts, exhibited 380

the largest performance degradation. However, 381

BERTclean + first, which applied a simple layer- 382

wise pooling strategy to the model, successfully 383
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mitigated performance degradation by 1.62, 3.49,384

and 3.28 at each attack rate, respectively, achieving385

an average performance degradation of 2.79.386

These results are similar to those of BERTnoise387

and Ensemblesoft, which used the model pre-388

trained on noisy texts. At attack rates of 30% and389

60%, the model with the first pooling exhibited the390

lowest performance drop, and at 90%, its degrada-391

tion was higher than that of BERTnoise but lower392

than that of Ensemblesoft. Therefore, we found393

that the model pre-trained on clean texts with a394

simple pooling strategy can achieve a certain level395

of performance, or even be more robust compared396

to the model pre-trained on noisy texts in defending397

against user-intended adversarial attacks.398

Figure 2: Degree to which the f1-scores of the models
decrease with the attack rates. We selected several base-
line models and BERTclean+first for the comparison.

5.3 Focus on Layer Weights399

We focused on the observation that when perturbed400

text with the proposed attacks is used as an input,401

the tokenization results eventually differed from402

the original text. Therefore, we leveraged infor-403

mation from the preceding layers not just the last404

layer. Consequently, the first pooling achieved the405

best performance among the layer-wise pooling406

strategies, and its performance was nearly equiv-407

alent to that of BERTnoise which was pre-trained408

on noisy texts, despite the absence of explicitly409

training noisy texts in pre-training stage.410

Additionally, we conducted experiments to de-411

termine whether useful information could be cap-412

Figure 3: Initialized weights for each of the down-up
and up-down poolings. Each strategy shares the shape
of a cosine function but varies in the range on the x-axis
depending on the layers to be focused.

tured not only in the first and last layer, but also in 413

the layers close to these two layers of the model. 414

We hypothesized that layers close to the last layer 415

would capture the offensiveness that determine the 416

text representations, whereas layers close to the 417

first layer would capture the token embeddings that 418

determine the degree to which a sentence contains 419

textual attacks. We set all weights to zero in the 420

experiment in Table 3, however, in this experiment, 421

we assigned distinct weights to all layers. 422

We assigned relatively high weights to the layers 423

close to the last and first layers, while assigning 424

low weights to the middle layers. This strategy is 425

referred to as down-up pooling, as its graph moves 426

down then up. In contrast, we assigned relatively 427

low weights to the layers close to the last and first 428

layers, while assigning high weights to the mid- 429

dle layers. This strategy is referred to as up-down 430

pooling, as its graph moves up then down. 431

The weights for the down-up and up-down pool- 432

ings are shown in Figure 3. The green line at the 433

cosine function within the range [0, 2π] represents 434

the initial weights for down-up pooling, whereas 435

the pink line at the cosine function within the range 436

[π, 3π] represents that of the up-down pooling. 437

The performances of the models for the distinct 438

layer weights are presented in Table 5. Down-up 439

pooling outperformed for all attack rates than the 440

up-down pooling and exhibited robustness for per- 441

formance degradation. This demonstrates that it is 442

Model
Original 30% Attacked 60% Attacked 90% Attacked

P R F1 P R F1 ∆atk P R F1 ∆atk P R F1 ∆atk

BERTclean 79.81 77.79 78.64 79.51 73.35 75.19 -4.38% 77.74 66.38 67.96 -13.58% 76.14 62.01 62.44 -20.60%
BERTclean + down− up 79.80 77.64 78.55 80.02 73.05 75.02 -4.49% 77.20 65.70 67.15 -14.51% 76.61 61.84 62.19 -20.82%
BERTclean + up− down 80.35 77.10 78.36 79.95 71.67 73.73 -5.90% 78.59 65.28 66.67 -14.91% 76.81 60.87 60.81 -22.39%
BERTclean + first 79.05 79.37 79.21 78.89 75.85 77.02 -2.76% 77.58 69.38 71.21 -10.09% 76.08 64.33 65.49 -17.32%

Table 5: Experimental results of offensive language detection when using down-up and up-down pooling strategies.
They are initialized along with the cosine function, assigning distinct weights to the layers depending on whether
they focus more on offensiveness and token embeddings.
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Model
Original 30% Attacked 60% Attacked 90% Attacked

P R F1 P R F1 ∆atk P R F1 ∆atk P R F1 ∆atk

BERTclean 79.81 77.79 78.64 79.51 73.35 75.19 -4.38% 77.74 66.38 67.96 -13.58% 76.14 62.01 62.44 -20.60%
BERTclean +mean 78.57 79.06 79.01 79.41 73.97 75.70 -4.18% 77.15 66.97 68.62 -13.15% 74.90 62.45 63.09 -20.14%
BERTclean +max 78.51 78.81 78.65 78.47 74.03 75.54 -3.95% 77.80 66.66 68.29 -13.17% 76.79 61.51 61.72 -21.52%
BERTclean + weighted 79.93 78.50 79.14 79.19 73.70 75.43 -4.68% 77.14 67.62 69.33 -12.39% 75.44 63.66 64.85 -18.05%
BERTclean + first 79.05 79.37 79.21 78.89 75.85 77.02 -2.76% 77.58 69.38 71.21 -10.09% 76.08 64.33 65.49 -17.32%
BERTnoise 80.64 78.88 79.64 80.67 75.42 77.17 -3.10% 78.44 69.42 71.33 -10.43% 76.46 65.55 66.96 -15.92%
BERTnoise +mean 81.59 77.73 79.18 80.81 73.79 75.82 -4.24% 78.35 68.32 70.17 -11.37% 75.89 65.54 66.94 -15.45%
BERTnoise +max 80.72 79.81 80.23 79.68 76.29 77.57 -3.31% 77.46 72.00 73.64 -8.21% 74.82 69.60 71.06 -11.42%
BERTnoise + weighted 81.31 78.06 79.34 80.71 75.10 76.91 -3.06% 77.73 69.73 71.57 -9.79% 75.13 66.77 68.29 -13.92%
BERTnoise + first 81.62 77.63 79.12 80.36 75.04 76.79 -2.94% 78.04 71.48 73.28 -7.38% 74.87 69.15 70.66 -10.69%

Table 6: Experimental results of offensive language detection when using layer-wise pooling strategies to the
BERTclean and BERTnoise. The two models differ in whether the texts used for pre-training have been preprocessed.

more important to weigh the layers close to the last443

and first layers than those of the middle for offen-444

sive languages, including user-intended adversarial445

attacks. In summary, the strategy that focuses on446

layers capable of capturing offensiveness and token447

embeddings yields a better performance.448

Nevertheless, neither of these pooling strategies449

performed as well as the BERTclean or the model450

that utilized the first pooling. This indicates that451

while information close to the last and first lay-452

ers can be beneficial, there are some layers among453

them that hinder the performance of the model, re-454

vealing that only the last and first layers are the455

most helpful layers when detecting offensive lan-456

guage with user-intended adversarial attacks.457

5.4 Beyond the Limits:458

Layer-Wise Pooling Strategies459

with Pre-trained Models on Noisy Texts460

We showed that the application of layer-wise pool-461

ing strategies to the model without training on noisy462

texts allows us to achieve a performance close to463

that of the model pre-trained on noisy texts. We also464

conducted experiments to assess how robust the465

model pre-trained on noisy texts is when layer-wise466

pooling strategies are applied to defend against the467

proposed attacks.468

The performances of the layer-wise pooling469

strategies for both BERTclean and BERTnoise are470

presented in Table 6. When compared under the471

same pooling, the scores from the model pre-472

trained on noisy texts always performed better. In473

BERTclean, the first pooling, which incorporates474

information from the first layer, performed well on475

the detection metrics and was robust against per-476

formance degradation. Conversely, in BERTnoise,477

first pooling only performed well on the detection478

metrics, but the strategy exhibiting more robustness479

to performance degradation was max pooling.480

In the case of BERTclean, because it did not 481

directly utilize noisy texts during the training 482

stage, first pooling performed well, which focuses 483

most on offensiveness and token embeddings from 484

the sentence. However, in the case of BERTnoise, 485

where noisy texts were pre-trained into the model 486

weights before the application of pooling strate- 487

gies, max pooling proved to be the most effective 488

on detection metrics by selecting prominent fea- 489

tures among the information to predict the labels 490

invariant to small changes or disturbances. 491

The average performances using max pooling 492

and first pooling, which had the most impact on 493

each model are presented in Table 7. For the model 494

BERTclean pre-trained on clean texts, first pool- 495

ing improved the f1-score by 2.72 and prevented 496

a performance degradation of 2.8%. In contrast, 497

the model BERTnoise pre-trained on noisy texts 498

improved its f1-score by 2.62 with max pooling, 499

reaching a relatively high score of 74.08. The per- 500

formances of these pooling strategies are remark- 501

able considering that they do not require additional 502

parameters or training on noisy texts. 503

Model Average
F1 ∆atk

BERTclean 68.52 -12.85%
BERTclean +max 68.51 -12.88%
BERTclean + first 71.24 -10.05%
BERTnoise 71.82 -9.81%
BERTnoise +max 74.08 -7.64%
BERTnoise + first 73.57 -7.00%
Ensemblehard
(BERTclean + BERTnoise) 70.99 -11.64%

Ensemblesoft
(BERTclean + BERTnoise) 71.23 -11.37%

Table 7: Average from the experimental results of offen-
sive language detection when using max pooling and
first pooling to the BERTclean and BERTnoise in com-
parison to other models which exhibited the high scores.
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6 Conclusion504

We propose user-intended adversarial attacks that505

occur frequently in offensive languages online from506

the perspective of malicious users. We categorize507

them into three types: INSERT, COPY, and DE-508

COMPOSE, which add special symbols or exploit509

the distinct features of the Korean language. The510

involvement of attacks significantly affects the tok-511

enization results from the original text.512

To address the proposed attacks, we extend the513

pooling strategies in a layer-wise manner. This514

extension utilizes not only the last layer, which515

focuses on offensiveness, but also the preceding516

layers, which focus more on token embeddings.517

We test these pooling strategies for the proposed518

attacks to various attack rates. The experimental519

results indicate that first pooling is robust to the520

proposed attacks and can even achieve a perfor-521

mance comparable to that of models pre-trained522

on noisy texts when applied to models pre-trained523

on clean texts. We experimentally demonstrate that524

the last and first layers, rather than the middle lay-525

ers, can be effectively employed to detect offensive526

languages that reflect the proposed attacks.527

Furthermore, we test the extent to which the528

introduced pooling strategies could handle the pro-529

posed attacks. We observe that the first pooling and530

max pooling are the most robust, depending on the531

nature of the texts used for pre-training. It is note-532

worthy that these strategies, without the explicit533

training of additional parameters or noisy texts, can534

effectively defend against user-intended adversarial535

attacks.536

Limitations537

Despite our efforts to define diverse types of adver-538

sarial attacks, there is room for undefined attacks539

from real-world situations, which may have an un-540

expected impact on the model performance. Addi-541

tionally, although we used language-independent542

attacks such as inserting special symbols, most of543

the proposed attacks were based on the charac-544

teristics of the Korean language. Therefore, it is545

necessary to determine whether layer-wise pool-546

ing strategies can effectively handle offensive ex-547

pressions written in other languages for broader548

applications.549

Ethics Statement550

Given our use of offensive representations to de-551

scribe the proposed attacks, we have included a552

disclaimer at the beginning of this paper. From the 553

existing offensive language datasets, potential bi- 554

ases regarding race, gender, political issues, and 555

other factors might have been inherent in our exper- 556

iments. This should be considered when developing 557

our research or expanding it to other languages. 558
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A The Proposed Attacks Details734

A.1 INSERT735

We employed three INSERT types by inserting spe-736

cial symbols that are not complete characters. The737

detailed methods and examples are as follows:738

• INSERT_zz: We randomly added between 2~5739

sounds of ‘ㅋ’ to the word, which means the740

equivalent of ‘LOL’ in English (on the key-741

board, the sound ‘ㅋ’ corresponds to the alpha-742

bet ‘z’). This is a commonly used expression743

in online communities, conveying a meaning-744

less and somewhat frivolous tone. We placed745

it not only between characters but also in in-746

stances where the final sound of a specific747

character was empty.748

• INSERT_space: We randomly added a single749

space to the word. We expected the same im-750

pact as the intentions of malicious users.751

• INSERT_special: We randomly added a spe-752

cial character to the word: one of ‘~’, ‘!’, ‘@’,753

‘1’, or ‘2’. We also expected the same impact754

as the intentions of malicious users.755

A.2 COPY756

We employed three COPY types based on the dis-757

tinctive characteristics of the Korean language. The758

detailed methods and examples are as follows:759

INSERT Attacks Text Examples
original text 틀딱이냐? (Are you a stupid boomer?)

기레기여기있었네! (Here was the presstitute!)
INSERT_zz 틀ㅋㅋ딱이냐?

기렠ㅋㅋㅋ기여기있었네!
INSERT_space 틀딱이냐?

기레기여기있었네!
INSERT_special 틀@딱이냐?

기2레기여기있었네!

Table 8: Text examples of user-intended adversarial at-
tacks with the types of INSERT.

• COPY_initial: We copied the initial sound of 760

the character to the final sound of the preced- 761

ing character. For example, if the character 762

‘기’ is chosen from the word ‘기레기’, the ini- 763

tial sound ‘ㄱ’ would be copied as the final 764

sound to the preceding character ‘레’, trans- 765

forming it to ‘렉’. Thus, the attacked expres- 766

sion will be ‘기렉기’. 767

• COPY_middle: We copied the middle sound 768

of the character, onto the newly added charac- 769

ter. If the selected character had a final sound, 770

it was also included. For example, if the char- 771

acter ‘딱’ is chosen from the word ‘틀딱’, the 772

middle sound ‘ㅏ’ would be copied as the 773

following character with the final sound ‘ㄱ’, 774

adding it as ‘악’. Thus, the attacked expres- 775

sion will be ‘틀따악’. 776

• COPY_final: We copied the final sound of the 777

character to the initial sound of the follow- 778

ing character. For example, if the character 779

‘있’ is chosen from the word ‘있었네’, the fi- 780

nal sound ‘ㅆ’ would be copied as the initial 781

sound to the following character ‘었’, trans- 782

forming it to ‘썼’. Thus, the attacked expres- 783

sion will be ‘이썼네’. 784

A.3 DECOMPOSE 785

We employed two DECOMPOSE types based on the 786

distinctive characteristics of the Korean language. 787

The detailed methods and examples are as follows: 788

COPY Attacks Text Examples
original text 틀딱이냐? (Are you a stupid boomer?)

기레기여기있었네! (Here was the presstitute!)
COPY_initial 틀딱인냐?

기렉기여기있었네!
COPY_middle 틀따악이냐?

기레기여기이있었네!
COPY_final 틀딱기냐?

기레기여기이썼네!

Table 9: Text examples of user-intended adversarial at-
tacks with the types of COPY.

10

https://arxiv.org/pdf/2002.11768.pdf
https://arxiv.org/pdf/2002.11768.pdf
https://arxiv.org/pdf/2002.11768.pdf
https://doi.org/10.18653/v1/W18-5119
https://doi.org/10.18653/v1/W18-5119
https://doi.org/10.18653/v1/W18-5119
https://www.reuters.com/article/us-southkorea-kpop/cyber-bullying-star-suicides-the-dark-side-of-south-koreas-k-pop-world-idUSKBN1Y20U4/
https://www.reuters.com/article/us-southkorea-kpop/cyber-bullying-star-suicides-the-dark-side-of-south-koreas-k-pop-world-idUSKBN1Y20U4/
https://www.reuters.com/article/us-southkorea-kpop/cyber-bullying-star-suicides-the-dark-side-of-south-koreas-k-pop-world-idUSKBN1Y20U4/
https://www.reuters.com/article/us-southkorea-kpop/cyber-bullying-star-suicides-the-dark-side-of-south-koreas-k-pop-world-idUSKBN1Y20U4/
https://www.reuters.com/article/us-southkorea-kpop/cyber-bullying-star-suicides-the-dark-side-of-south-koreas-k-pop-world-idUSKBN1Y20U4/
https://doi.org/10.18653/v1/N19-1144
https://doi.org/10.18653/v1/N19-1144
https://doi.org/10.18653/v1/N19-1144


• DECOMPOSE_final: We decomposed the fi-789

nal sound of the character into the following790

newly added sound. For example, if the char-791

acter ‘딱’ is chosen from the word ‘틀딱’, the792

final sound ‘ㄱ’ would be decomposed as the793

following sound. Thus, the attacked expres-794

sion will be ‘틀따ㄱ’.795

• DECOMPOSE_all: We decomposed all the796

sounds of the character. For example, if the797

character ‘틀’ is chosen from the word ‘틀딱’,798

it would be decomposed as the initial, middle,799

and final sounds. Thus, the attacked expres-800

sion will be ‘ㅌㅡㄹ딱’.801

DECOMPOSE Attacks Text Examples
original text 틀딱이냐? (Are you a stupid boomer?)

기레기여기있었네! (Here was the presstitute!)
DECOMPOSE_final 틀따ㄱ이냐?

기레기여기이ㅆ었네!
DECOMPOSE_all ㅌㅡㄹ딱이냐?

기ㄹㅔ기여기있었네!

Table 10: Text examples of user-intended adversarial
attacks with the types of DECOMPOSE.

A.4 Experiments on Each Attack802

We further investigated the impact for each attack803

type. In the experiments in Table 3~7, we randomly804

selected one of all the proposed attacks. However,805

we selected one of the attacks from only INSERT,806

COPY, or DECOMPOSE with an attack rate of 60%.807

We chose BERTclean and the model that applied808

first pooling, which exhibited the best performance809

among the layer-wise pooling strategies.810

The performances according to the attack types811

are presented in Table 11. Even when applying812

each type of attack, the model with first pooling813

always showed better performance. It is notewor-814

thy that a high performance on a specific attack815

type indicates that it is easier to defend than others.816

INSERT alone proved to be easier than all attacks,817

with COPY alone only marginally harder than the818

INSERT. Both attack types exhibited a performance819

increase of about +1% to +3% compared with the820

application of all attacks. However, DECOMPOSE821

alone was more difficult than these two attacks, ex-822

hibiting a performance degradation of about -3%823

to -5% compared with the application of all attacks.824

Therefore, we revealed that adversarial attacks that825

reflect the characteristics of the Korean language826

are more challenging than those that simply add827

special symbols that could be adapted language828

independently.829

Models
All Attacks Only INSERT

P R F1 P R F1
BERTclean 77.74 66.38 67.96 78.12 68.80 70.66
BERTclean + first 77.58 69.38 71.21 77.51 70.76 72.54

Models
Only COPY Only DECOMPOSE

P R F1 P R F1
BERTclean 77.86 68.47 70.29 78.38 62.23 65.67
BERTclean + first 77.33 70.50 72.26 77.00 66.47 68.04

Table 11: Experimental results of offensive language
detection when the attack ratio is 60% for each type of
user-intended adversarial attacks.

B Experimental Details 830

B.1 Implementation Details 831

We used 6 layers with an embedding dimension 832

of 768 and a dropout ratio of 0.1 for the RNN- 833

based models containing BiLSTM and BiGRU. As 834

for the BERT-based models, containing BERTclean, 835

BERTnoise, and their ensembles, we fine-tuned 12 836

pre-trained layers with an embedding dimension of 837

768 and a dropout ratio of 0.2. 838

We used the AdamW optimizer with a learning 839

rate of 1e-5, trained the models for 1~5 epochs, and 840

considered the epoch with the lowest validation loss 841

or the last epoch. We set a batch size of 32 for all 842

the models. The models were implemented using 843

PyTorch and NVIDIA GeForce RTX 3090 GPU. 844

We also used the HuggingFace library to leverage 845

the weights of the pre-trained BERT models. 846

B.2 Metrics 847

We collected the datasets to train as many types of 848

offensive languages as possible. There is some la- 849

bel imbalance, therefore, we used macro precision, 850

recall, and f1-score to address this issue. 851

∆atk represents the performance degradation in 852

the f1-score. For example, denoting the existing f1- 853

score as F1original and the f1-score with the attacks 854

as F1attacked, it is computed as follows: 855

∆atk = (F1attacked − F1original)/F1original ∗ 100.
(5)

856
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