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ABSTRACT

Translating the relevance of preclinical models (in vitro, animal models, or
organoids) to their relevance in humans presents an important challenge during
drug development. The rising abundance of single-cell genomic data from hu-
man tumors and tissue offers a new opportunity to optimize model systems by
their similarity to targeted human cell types in disease. In this work, we introduce
SystemMatch to assess the fit of preclinical model systems to an in sapiens tar-
get population and to recommend experimental changes to further optimize these
systems. We demonstrate this through an application to developing in vitro sys-
tems to model human tumor-derived suppressive macrophages. We show with
held-out in vivo controls that our pipeline successfully ranks macrophage sub-
populations by their biological similarity to the target population, and apply this
analysis to rank a series of 18 in vitro macrophage systems perturbed with a vari-
ety of cytokine stimulations. We extend this analysis to predict the behavior of 66
in silico model systems generated using a perturbational autoencoder and apply
a k-medoids approach to recommend a subset of these model systems for further
experimental development in order to fully explore the space of possible perturba-
tions. Through this use case, we demonstrate a novel approach to model system
development to generate a system more similar to human biology.

1 INTRODUCTION

Among most therapeutic areas, failures in clinical trials are common and costly. Failure rates of
drugs entering Phase I trials have hit 90% across most therapeutic areas (Mullard, 2016). Oncology
in particular has one of the highest rates of clinical trial failures, with only 4% (Mullard, 2016) of
therapies entering phase 1 FDA clinical trials ultimately being approved, despite having the most ac-
tive clinical trials, with approximately 32% of Phase I FDA clinical trials being in oncology (Thomas
et al., 2016). In part due to the desire to accelerate new medicines into the clinic to address unmet
medical need, but also driven by competition in the industry, drug development organizations do
not devote adequate time and resources to improve preclinical model systems that might be more
predictive of clinical results (Honkala et al., [2021)). Instead, the standard approach adopted by most
of the industry relies on in vitro and in vivo tumor model systems that are poorly predictive of ac-
tivity in patients due to the reductionist nature of the systems and inadequate attention devoted to
understanding the molecular similarities and differences between preclinical and clinical data.

In this work, we describe an end-to-end machine learning pipeline, SystemMatch, that optimizes a
preclinical model to best approximate the behavior of a target in sapiens population to enable drug
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developers to quickly optimize preclinical models and identify those with the greatest predictive
power for therapeutic priorities. SystemMatch uses single-cell genomic data from many preclinical
models and evaluates them against a multi-study atlas of single-cell genomics data from the tumor
or tissue of interest, helping decide which of these models is most likely to provide clinically mean-
ingful predictions. Furthermore, SystemMatch utilizes a Compositional Perturbational Autoencoder
(CPA) (Lotfollahi et al., |2021) to predict the behavior of single cells in previously untested combi-
nations of experimental conditions. We use these predictions to recommend experimental changes
to the preclinical models to enhance their similarity to the target population.

We demonstrate SystemMatch on a large multi-condition perturbational dataset of in vitro differen-
tiating macrophages at the single-cell level, and we compare these model systems’ proximity to a
target population of human tumor suppressive macrophages obtained from a multi-study single-cell
macrophage atlas we collated, integrated, and annotated for this purpose. We demonstrate that Sys-
temMatch produces systems that contradict the standard dogma for generating in vitro suppressive
macrophages, and we recommend further optimizations of our model system to generate systems
with more predictive power for this purpose. This is, to our knowledge, the first computational
pipeline for assessing and optimizing the fitness of preclinical models to an in sapiens target popu-
lation.

2 BACKGROUND

2.1 SINGLE-CELL OMICS

Single cell omics refers to the quantitative characterization of biological phenotype at the cellular
level. Early work in single-cell omics focused on the development of single-cell RNA sequencing
technology (Kolodziejczyk et al.,|2015), in which the quantity of gene transcripts (or mRNA) in each
cell is counted through complex microfluidic assays. Further work has expanded this technology to
the measurement of many modalities, including genes, proteins, metabolites, transcripts, lipids and
more (Chen et al., [2020), as well as multimodal data such as CITE-seq, which measures both RNA
expression and protein abundance in the same assay (Stoeckius et al., 2017). As the quality and
quantity of single-cell omics data rise, it is increasingly straightforward to precisely define rare cell
types and hitherto poorly understood cellular heterogeneity (see, e.g.,Jaitin et al.|(2014)); Zeisel et al.
(2015))). Bulk RNA sequencing, on the other hand, refers to the sequencing of transcripts present
in a large number of cells at the resolution of a cell type or tissue. Most large bulk datasets are not
cell type specific, which makes it impractical to understand the phenotypic profile of specific cell
subpopulations. For example, with bulk RNAseq data obtained from solid tumors, it is typically not
possible to accurately understand the transcriptomic profile of specific immune subpopulations, like
CD8 memory T-cells or immunosuppressive macrophages, despite recent work to deconvolve bulk
data to cell type resolution (Newman et al., 2015} [Finotello et al., [2019).

2.2 PRECLINICAL MODEL SYSTEMS

Due to both the cost and ethical implications of testing novel drugs in humans, most or all drugs
are first tested in preclinical models, which range from microorganisms, to cell- and tissue-based
models, to animal models including mice and non-human primates. Preclinical data are typically
required for FDA approval to test a drug in humans (McElvany, |2009) and are additionally used to
prioritize selection of drugs to advance to clinical trial (Denayer et al., |2014). However, failures
to translate success in preclinical models to humans have cast doubt on the predictive power of
these models, prompting some to question their utility in drug prioritization (see, e.g., Schnabel
(2008)); Suckling| (2008)), with some even going as far as to recommend forgoing animal models
altogether and testing drugs directly in humans (Shanks et al.l 2009). On the other hand, reverse
translational approaches seek to inform the development of preclinical models through the study of
clinical success, creating an iterative process between preclinical and clinical studies to optimize
later generations of drugs, the success of which can be seen, for example, in the development of
EGFR tyrosine kinase inhibitors for the treatment of non-small cell lung carcinoma (Honkala et al.,
2021).
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2.3 PERTURBATION PREDICTION

Predicting cellular responses to perturbations is an important goal in computational biology. Ji et al.
(2021) detail several uses for modeling perturbational single-cell data, including perturbation re-
sponse prediction, target and mechanism prediction, perturbation interaction prediction, and chemi-
cal property prediction. Here, we introduce a new use case for perturbational modeling, which is to
predict perturbations that will generate an optimal model system. We generate in silico predictions
for a wide variety of possible perturbations, then select those closest to our target model system. In
this way, we can more rapidly converge on an ideal model system.

3 RELATED WORK

3.1 PRECLINICAL MODEL SYSTEM DEVELOPMENT

Classical protocols of preclinical model system design use direct measurement of the preclinical
system’s phenotype to evaluate the quality of the system. For example, Mia et al.| (2014) select
among a set of possible protocols to generate in vitro immunosuppressive macrophages by measur-
ing a) secreted proteins known to be markers of immunosuppression and b) in vitro suppression of
T cells, finding that M-CSF + IL-4 + IL-10 + TGF3 generates the most suppressive macrophages.
Fogg et al.|(2020) take a different approach, culturing monocytes with ovarian cancer cell lines in
order to understand the pathways activated by the cancer cells, finding an alternative pathway to
macrophage polarization through 7GFa. Reverse translational medicine, on the other hand, uses
deep characterization of clinical response to existing drugs to understand the mechanisms of action
of these drugs in order to design preclinical models that replicate the drug resistance mechanisms in
humans (Honkala et al., 2021). However, to our knowledge, no prior work has been done to opti-
mize a preclinical model’s phenotype in the high-dimensional space made visible through single-cell
genomics.

3.2 PERTURBATION RESPONSE PREDICTION

Machine learning models have been used in a number of different ways to predict cellular perturba-
tion response [Ji et al.| (2021). A common setting is causal imputation Squires et al.| (2020), where
a model is required to predict a response to an intervention in a particular context after having been
trained on related interventions and contexts. For example, |Squires et al.| (2020) predict genomic
response data by training on perturbations in some cell types and predicting response in other cell
types. [Lotfollahi et al.|(2019)) introduces scGen for causal imputation on single-cell gene expression
data, which uses a variational autoencoder to represent interventions in latent space and then adds the
interventions in latent space to an unperturbed representation to obtain the perturbational response.
In our setting, where we wish to predict perturbations that generate gene expression corresponding
to an in vivo model system, combinations of treatments are also important to consider. Recently, the
Compositional Perturbational Autoencoder [Lotfollahi et al.| (2021)) was demonstrated to be able to
predict combinations of gene knockouts from being trained on each knockout individually.

4 SYSTEMMATCH

Here, we introduce our iterative preclinical model optimization pipeline, SystemMatch. Fig.[T|shows
a schematic representation of the SystemMatch process. First, in order to define the farget popula-
tion, we collect an atlas of single-cell data from relevant clinical cohorts giving a robust universal
representation of the cell type of interest across multiple disease states. We apply a simple reference-
based cell type annotation (see, e.g., [Hao et al.| (2021); Lopez et al.|(2018))) to only retain the cells
associated with the target population (e.g., all macrophages). Next, we integrate this single-cell atlas
using a fixed gene list derived from expert domain knowledge to capture only the biology relevant
to the system at hand and use this as input to a batch correction algorithm (see, e.g., [Korsunsky
et al.|(2019); Hao et al.| (2021)); Haghverdi et al.|(2018))). Within this integrated single-cell cell type—
specific atlas, we annotate subtypes using a combination of graph-based clustering (Traag et al.,
2019) and expert domain knowledge. We choose the target population from these subtypes as the
subtype that most closely recapitulates the phenotype of the target population as described in the
literature (e.g., macrophages that express known markers of immunosuppression).
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Figure 1: Schematic of the iterative SystemMatch pipeline.

Second, we collect the guery model systems. We generate this data by developing many different
model systems in parallel experiments (here, in vitro macrophage differentiation and polarization)
with multiple experimental conditions (here, stimulation with different cytokines and combinations
thereof) selected from prior domain knowledge to generate a heterogeneous set of model systems.
We perform single-cell sequencing on the cells of interest from each model system and then perform
quality control on these datasets to remove low quality and outlier cells in order to obtain a clean
single-cell resolution representation of each model system, and project these datasets to a subspace
of the full gene expression matrix by retaining only those genes known to be related to the biological
function of interest.

Next, we compute the distances in this subspace between each query dataset and the target popu-
lation using some distance metric m. In the simplest case, m is simply the L2 distance between
the average (or “pseudobulked”) gene expression of the query X := {z; € R?} and the target
Y = {y; € R%}

nx .. ny
mra(X,Y) = sz i Li Y
nx ny

2

where nx := |X| and ny := |Y'|. However, other more complex distance metrics between single-
cell datasets could also be used, e.g. the Earth Mover’s Distance (EMD) or Wasserstein metric
(Kantorovich, [1960)

ny nx

mEMD(X, Y) = m;nzz Fi,jd(mi, CCj)

i=1 j=1

where F' is the nx X ny flow matrix with F; ; > 0 and d is a distance metric between cells, e.g. the
Euclidean distance. Then, using our choice of m, we rank all query datasets to produce an ordered
set of queries, with the query least distant from the target denoted the most representative model
system of those tested.

However, this still leaves an open question: can we further improve the models beyond the original
set of tested systems? To assist with this question, we employ generative deep neural networks to
generate all possible combinations of conditions tested in the experimental queries to generate com-
binatorially many in silico model systems. Then, in order to avoid over-reliance on the accuracy of
these predictions, we leverage the in silico queries to generate a search space of possible experimen-
tal conditions that are substantially different from the systems already tested. We use a modified
form of the k-medoids algorithm (Kaufman & Rousseeuw, 2009) applied to the pseudo-bulked in
silico queries. Briefly, k-medoids selects k equidistant model centroids as in k-means but requires
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Figure 2: Characterization of human tumor macrophage atlas and in vitro stimulated macrophages.
a) Human tumor macrophage atlas UMAP shows seven major clusters; b) in vitro macrophage
UMAP shows in vitro conditions separate into three major groups; ¢) heatmap of major macrophage
function genes in human macrophages (left) and in vitro macrophages (right) shows the gene36-
gene46+ cluster is most strongly associated with known suppressive response genes gene20 and
gene46, while this combination is absent in vitro.

that these centroids be selected from the existing data points. We extend this algorithm to enforce
that all selected medoids are also equidistant from all existing experimentally tested queries, which
leaves us with the smallest possible subset of experiments to run in the next iteration while ensuring
that we do not leave any region of the search space untested. We can further combine these rec-
ommendations with expert knowledge by examining the genes driving the difference between our
best-ranked query and the target population to propose additional experimental conditions.

Finally, we use the outputs of this pipeline to re-run the model system generation experiment, and
we iterate upon this process until the generated model system is either sufficiently similar to the
target population, or further iterations fail to improve upon the existing queries.

4.1 GENERATING in silico QUERIES

Since the space of possible model systems is extremely large and diverse, we are unable to test all
possible experimental conditions in vitro. Hence, to better explore the space of untested systems
that could best emulate the target population, we predict the gene expression of combinations of the
cytokine stimulations in our in vitro experiment. We use CPA [Lotfollahi et al.|[(2021) to generate
in silico perturbed cells for 66 additional conditions. Briefly, CPA is an autoencoder trained to
decompose the data into disentangled latent representations for three key attributes of each cell: the
cell’s ’basal state”, the perturbation effect, and the covariate effect. These latent representations
are combined in the decoder and trained via a reconstruction loss. To enforce independence of the
latent representations, CPA is trained using a discriminator network and adversarial loss such that no
signal from the observed perturbation or covariates is captured in the cellular basal state embedding.
As the latent representations are combined by summation, CPA can combine multiple perturbations,
allowing us to generate in silico samples for combinations of cytokine stimulations. We further
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Figure 3: SystemMatch-produced ranking of in vitro conditions based on their computed similarity
to the target condition.

modify CPA to allow the incorporation of multiple covariates in order to account for experimental
batch covariates included in our in vitro dataset.

4.2 SELECTING NEW QUERIES FOR EXPERIMENTAL ITERATION

To select a subset of the generated in silico perturbations for experimental validation, we devise
a scheme based on k-medoids (Kaufman & Rousseeuwl, 2009) which ensures that the conditions
selected for experimental validation are a) sufficiently different from the conditions already tested;
and b) sufficiently heterogeneous to cover the space of possible perturbations. Briefly, we run the
regular k-medoids algorithm, but at the medoid-update step of the algorithm, we consider each of
the existing in vitro perturbations as fixed medoids; this way, the k-medoids algorithm selects k new
perturbations for testing which are both heterogeneous and far from any of the previously tested
conditions.

5 RESULTS

5.1 CHARACTERIZING in vitro AND in vivo TUMOR ASSOCIATED MACROPHAGES

We collated public and proprietary data from tumour-infiltrating immune cells from one study we
generated internally and four public studies (Zhang et al,[2021} Bassez et al.,[2021}; [Yost et al., 2019}
2020), comprising of 125 patients across five tumor types. We filtered these data to just

retain the macrophage populations using reference-based mapping 2021). We then fil-
tered low-quality cells (defined as having fewer than 1500 genes with non-zero counts) and run batch

integration across all 125 patients using Harmony (Korsunsky et al.,|2019) in a curated subspace of
319 macrophage function genes. We then ran Leiden clustering (Traag et al [2019) and charac-
terized each population independently according to expression of important marker genes. Finally,
we selected the gene36-gene46+ population as our target population, as it expressed known mark-
ers associated with suppressive macrophages and correlated with poor clinical response to common
immunotherapies.

Fig. Ph shows the UMAP (Mclnnes et al) 2018) dimensionality reduction of the integrated
macrophage atlas annotated by its marker genes. We identify inflammatory, suppressive, prolif-
erating, and co-suppressive/inflammatory cell subsets, the last of which is not typically described in
reviews of macrophage biology. For the purposes of this study, we target the suppressive population
for in vitro system optimization.

To study the heterogeneity of macrophage development systems, we differentiated monocytes in
vitro with either M-CSF or GM-CSF for 6 days and then stimulated these macrophages for an ad-
ditional 4 days with one of nine combinations of cytokines typically understood to play a role in
regulatory macrophage phenotype. Fig.2b shows the UMAP dimensionality reduction of the in
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Figure 4: Quantitative evaluation of distance metrics for ranking data with known ground truth.
UMAP (left) shows the annotated held-out, ground truth macrophage data; computed distances
(middle) between the held-out macrophage populations and the target population for each method;
evaluation scores (right) of each distance metric relative to the known ground truth.

vitro systems. We see that these systems primarily separate into three distinct groups, which can be
described as pro-inflammatory, pro-suppressive, and basal.

Finally, to compare the in vitro cells to our human tumor macrophage atlas, we show a heatmap of
selected marker genes for both datasets (Fig. [2k). We observe qualitatively that not one of the in
vitro systems fully recapitulates the gene expression of the suppressive gene36-gene46+ population.
This is further recapitulated by the similarity ranking of the in vitro systems to the target population
(Fig.[3), in which a) the best-ranked system using M-CSF, which serves as the basis for all systems
most commonly used to generate suppressive macrophages (Mia et al.| 2014; [Fogg et al., 2020) is
ranked 7th; and b) the closest system only reduces the distance to the target by 20% from the least
common system, which is well known to produce a pro-inflammatory response.

5.2 EVALUATING SIMILARITY RANKING METHODS

To validate the effectiveness of SystemMatch, we compare held-out ground truth macrophage data
from Tang-Huau et al.|(2018) to our human tumor macrophage atlas. We preprocessed the held-out
data by filtering out low-quality cells and annotated cells in the dataset using the same gene set and
protocol as for the atlas, marking the macrophages as highly suppressive, moderately suppressive,
or nonsuppressive. FigH] (left) shows the UMAP of the final annotated clusters of the ground truth
macrophage dataset.

Because our target cells are suppressive macrophages, we expected the ranking of the ground truth
cells regarding their proximity to the target suppressive cells to be from most suppressive (gene36-
gene46+) to least suppressive (gene36+gene46-). The following distance metrics were considered
(see Methods): 1) L2 distance on log-normalized pseudobulked gene expression; 2) L2 distance
on z-scored, log-normalized pseudobulked gene expression; 3) Earth Mover’s Distance on log-
normalized single cell gene expression; 4) Earth Mover’s Distance on z-scored, log-normalized
single cell gene expression. On the full dataset, all four distance metrics correctly ranked the three
datasets (Fig. E| (middle)), so we define the following score to quantitatively evaluate a) how well
it correctly ranked the held-out conditions and b) the separation of the most suppressive condition
from the least suppressive condition.

For a given distance metric m, query subsets {X; | i € {gene36-gene46+, genel0, gene36+gene46-}
and target population Y, we compute distances between the conditions in the held-out dataset to the
target condition giving a distance vector

dm = (m(Xgetw36-gene46+u Y)v m(Xgene]m Y)7 m(Xgenej’6+gene46-7 Y))

with corresponding rank vector ", where the expected rank vector v = (1,2, 3). For a ranking
rm of length n, we define the score

n m __ .true m _gm
Score(m) _ Zi I(’I"z =T ) + dgene36+ge7::46— dgene36—gene46+ /2
n dgen636+gene46—
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Figure 5: Sample output of the experiment recommender system. UMAP embedding of in vitro and
in silico single cells (left), with in silico predictions shown in grey; heatmap of normalized distances
from predicted triplets to held-out triplets (middle); UMAP embedding of average expression per
condition (right), with k-medoids-recommended perturbations highlighted in orange.

We compute this score for different levels of dataset corruption, which we implement by subsam-
pling genes to remove information. We repeat this subsampling up to 200 times, or until the score
converges. Fig. ] (right) shows the scores for the four metrics; EMD with log-normalized genes
performs best with the full gene set, but pseudo-bulked L2 distance is most robust to corruption.

5.3 RECOMMENDING FUTURE EXPERIMENTS

In order to leverage the recommendations of SystemMatch to further improve the in vitro systems
beyond those initially tested, we combine compositional perturbational autoencoders with a modi-
fied k-medoids algorithm to select a subset of possible combinations of the initially tested cytokines
to test in the next experimental iterations. First, we use a modified form of CPA (Lotfollahi et al.,
2021) to generate all possible double- and triple-combinations of cytokines (Fig. 5| (left)). We see
that M/GM-CSF and CKD drive the most significant differences in the predicted cells, which is
consistent with our understanding of these cytokines. Further, we see as expected that the double-
combinations of cytokines are generally more similar to the in vitro single cytokine perturbations.

To validate the accuracy of our in silico predictions, we compared the similarity of the held-out in
vitro triplet perturbations to the corresponding in silico perturbations. Fig. 5] (middle) shows the
distance (using the L2 pseudobulk distance normalized to a range of [0, 1]) from each of the held-
out triplets to the corresponding predicted triplets. All of the four are closest to the corresponding
prediction. Equivalent heatmaps for the other distance metrics are shown in Fig.

Next, we run our modified k-medoids algorithm on the average expression on each condition to
select a subset of these double- and triple-combinations to test experimentally in future work to
maximize the heterogeneity of all tested perturbations. Alternatively, we can use SystemMatch to
test the proximity of the generated conditions; this will produce a less heterogeneous set of combi-
nations for further testing but will optimize more directly towards the target condition. The result
of this comparison is shown in Tab. [0} interestingly, the top predicted condition uses M-CSF, even
though none of the top six in vitro conditions did. The in silico preference (however mild) for M-
CSF over GM-CSF is consistent with commonly used models of suppressive macrophages (Mia
et al.| 2014} [Fogg et al.|, [2020), giving confidence in our recommendations.

6 DISCUSSION

In this work we provide an end-to-end ML pipeline for assessing the fitness of and optimizing
preclinical models to maximize their predictive power of clinical results. We do this through an iter-
ative process of comparing model systems to the target in sapiens population, applying perturbation
prediction to suggest experimental changes, and iterating upon this process to produce preclinical
models that are more representative of the relevant tumor or tissue data. We demonstrate our pipeline
through a use case of developing an in vitro system optimized to produce macrophages most similar
to human tumor-derived suppressive macrophages, and we recommend a set of further experiments
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to fully explore the space of possible perturbations and ultimately generate a system more suited to
developing drugs targeting these cells than those systems currently used in the literature.

We validate our pipeline’s performance through a series of tests using ground truth data with a held-
out in sapiens public dataset in which we manually annotate cells known to be close and far from
the target population. We show that a) our pipeline is largely robust to the choice of distance metric;
b) distance metrics computed on average expression are generally most robust to data corruption;
and c) in the limit of low data corruption, single-cell optimal transport metrics may outperform
these “pseudobulk” methods. We then validate our perturbation prediction using experimentally
generated in vitro controls of cytokine combinations, through which we show that the in silico
generated combinations are most similar to the corresponding matching in vitro populations.

We note that the robustness to the use of average expression (compared to single-cell) indicates that
bulk RNA-seq could suffice in some cases for the query datasets; however, this would preclude the
use of CPA, and the resulting lower-resolution data would provide less predictive power to generate
in silico samples. Additionally, in the case of heterogeneous model systems (e.g. in systems with
developmental trajectories or large numbers of cycling cells), single-cell metrics may score more
highly. We also note that the use of in silico generated combinations of experimental conditions
explores only a subset of possible model systems; systems generated with conditions not included
in the initial experiment cannot be discovered in this way, and must instead be added to the iterative
process by manual expert review.

In recent years, the utility of preclinical model data to evaluate the clinical relevance of a drug has
been questioned. We show here, through a combination of single-cell genomic data and machine
learning, a method by which these preclinical model systems can be optimized to enhance their
potential predictive power. While ML methods have generated a great deal of impact in target
discovery and validation, this is to our knowledge the first ML pipeline for actually establishing the
preclinical model systems in which those targets can be evaluated.
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A APPENDIX

A.1 CPA MODEL TRAINING DETAILS

The CPA model was trained, tested, and evaluated on the in vitro dataset, in which cells were treated
in eighteen separate conditions. Of these conditions, two were designated as control conditions
(GM-CSF and M-CSF), four were considered triplet combinations of perturbations (e.g., GM-CSF
+ CKC + CKA + CKB), and the other twelve were single cytokine perturbations (e.g., GM-CSF +
CKF). Since CPA is able to learn an independent transcriptional embedding per single perturbation
and then add these embeddings to predict multiplet perturbations, we chose to train and validate the
model on the control and singular cytokine perturbation conditions and evaluate its performance on
the triplet perturbation conditions. The training dataset consisted of 417 genes deemed relevant to
macrophage function by a combination of domain expertise and data-driven highly variable genes
(Yip et al.,[2018)) from our human tumor macrophage atlas.

We ran CPA with an autoencoder width of 512, batch size of 128, and embedding size of 128, and
we trained it for six hours over 1060 epochs on an NVIDIA Tesla A100 GPU. The reconstruction
loss and model performance on the held-out triplet conditions (OOD) are shown in Fig.[6] We used
this model to predict additional conditions, all of which were doublet or triplet cytokine conditions
that were not present in the in vitro assay, in order to investigate which would best match our target
model system.
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A.2 GENERATION OF in vitro MACROPHAGE MODEL SYSTEMS

Human CD14+ Monocytes were isolated from peripheral mononuclear blood cells (PBMCs) using
the EasySep™ Human Monocyte Isolation Kit (STEMCELL Technologies) following manufac-
turer’s instructions. Monocytes were plated at 1x10° cells per well in 6 well tissue culture treated
plates (Corning). Cells were plated in 2.5mL. RPMI media (Life Technologies) supplemented with
10% FBS (Life Technologies) and 1% Penicillin-Streptomycin (Thermo Fisher Scientific) and ei-
ther M-CSF (PeproTech) or GM-CSF (PeproTech), respectively, at 20ng/mL. At day 3, media was
aspirated and 2.5mL fresh M-CSF/GM-CSF media was added. At day 6, media was aspirated and
3mL M-CSF/GM-CSF media supplemented with additional differentiation cytokines was added to
respective wells. Cells were isolated at day 10 with cell scrapers (Fisher Scientific) and counted with
the Cellaca MX High-throughput Automated Cell Counter (Nexcelom) following manufacturer’s in-
structions prior to single cell processing.

mean
0.99 -
] 0.98 1 split
loss_reconstruction ¢ ~ training
—2001 5 9977 ~ test
0.96 1 W ood
—400 - W
0.95 1
0 1000 0 500 1000
epoch epoch
(a) (b)

Figure 6: Evaluation of model performance. (a) Reconstruction loss per training epoch of the CPA
model. (b) R-squared between mean predicted gene expression versus actual gene expression over
all 417 genes.
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Figure 7: Evaluation of held-out in vitro triplet controls’ proximity to predicted in silico triplets using
all four tested distance metrics. Distances are normalized by column to the range [0, 1]. (a) L2 dis-
tance on log-normalized; (b) L2 distance on z-scored log-normalized; (c) EMD on log-normalized;
(d) EMD on z-scored log-normalized.
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Figure 8: Detailed characterization of in silico and in vitro combined samples.
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Figure 9: SystemMatch-produced ranking of top 20 in silico conditions based on their computed
similarity to the target condition.
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