
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NUMERICAL PITFALLS IN POLICY GRADIENT UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerical instability, such as gradient explosion, is a fundamental problem in
practical deep reinforcement learning (DRL) algorithms. Beyond anecdotal de-
bugging heuristics, there is a lack of systematic understanding of the causes for
numerical sensitivity that leads to exploding gradient failures in practice. In this
work, we demonstrate that the issue arises from the ill-conditioned density ratio
in the surrogate objective that comes from importance sampling, which can take
excessively large values during training. Perhaps surprisingly, while various policy
optimization methods such as TRPO and PPO prevent excessively large policy
updates, their optimization constraints on KL divergence and probability ratio
cannot guarantee numerical stability. This also explains why gradient explosion
often occurs during DRL training, even with code-level optimizations. To address
this issue, we propose the Vanilla Policy Gradient with Clipping algorithm, which
replaces the importance sampling ratio with its logarithm. This approach effectively
prevents gradient explosion while achieving performance comparable to PPO.

1 INTRODUCTION

Deep reinforcement learning (DRL) has demonstrated its effectiveness in various domains (Mnih
et al., 2015; Silver et al., 2017; Vinyals et al., 2019; Ouyang et al., 2022). Despite these successes,
the reliability and numerical stability of DRL algorithms remain fundamental limitations that hinder
their application in real-world environments. In particular, DRL algorithms are often observed to
have numerical instability issues, such as exhibiting the major problem of gradient explosion that
destroys the learning progress. Existing work on the brittleness of DRL methods attributes this to
either the high variance in actions (Fujita & Maeda, 2018), the gradient estimator (Liu et al., 2020),
or the sensitivity to hyperparameters (Henderson et al., 2018).

In this paper, we perform a rigorous analysis of the root cause of numerical instability in policy
optimization algorithms such as Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO) (Schulman et al., 2015a; 2017). Gradient explosion is a consequence of overflows
caused by computations involving excessively large numbers that exceed the limits of floating-point
arithmetic. We show that the long horizons and large value variance are not the core reason for
overflow, especially under action clipping as commonly used in standard DRL implementations (Duan
et al., 2016; Raffin et al., 2021; Bou et al., 2024). Another popular explanation is that the covariance
matrix of the stochastic policy can become singular during training, leading to gradient explosion.
However, our experiments in Appendix B show that arithmetic overflows can occur even when the
standard deviations are lower-bounded. Instead, our analysis indicates that the root cause is the
importance sampling steps in TRPO and PPO (Schulman et al., 2015a; 2017), where the probability
ratio can take exponentially large values, especially in the case of Gaussian distributions. Specifically,
we analyze the condition number of the probability ratio, and demonstrate that the probability ratio is
exponential with respect to a line integral in the policy space, which can lead to arithmetic overflows
and cause gradient explosion.

In particular, we demonstrate that optimization constraints proposed in TRPO/PPO, such as limiting
the KL-divergence and clipping, do not prevent numerical instability. We show that the probability
ratio in importance sampling can grow exponentially fast, ultimately causing arithmetic overflows,
even while the KL divergence remains small. This indicates that various policy optimization methods
that prevent excessively large policy updates do not prevent numerical problems. Indeed, the
probability ratios are not guaranteed to stay small, especially when the policy network’s output is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

further clipped in the action space, leading to excessively small values in the probability density
functions and large condition numbers in the density ratio.

Given that importance sampling is the root cause of the exploding gradient issue, we propose an
algorithm called Vanilla Policy Gradient with Clipping, a modified version of the PPO algorithm
in which the importance sampling ratio is replaced with its logarithm. We conduct experiments on
continuous-control benchmarks to evaluate its effectiveness. Specifically, we find that this algorithm
performs comparably to PPO on small policy networks where no gradient explosion occurs and
maintains good performance on large policy networks where PPO encounters numerical issues.
Additionally, the influence of other code-level techniques, such as reward scaling and learning rates,
is discussed in Appendix B.

Overall, our findings suggest that the TRPO/PPO loss is inherently ill-conditioned due to importance
sampling and action clipping, which directly contribute to the numerical instability of deep policy
gradient methods. This issue should not be viewed merely as a hyperparameter tuning problem but as
a fundamental limitation of DRL algorithms that requires more attention.

2 RELATED WORK

Deep policy gradients in practice. It has been reported that implementation details and code-level
optimizations fundamentally impact the performance of deep policy gradient algorithms such as
TRPO and PPO (Henderson et al., 2018; Engstrom et al., 2020; Andrychowicz et al., 2021). In
particular, empirical studies have shown that the most significant discrepancies between theory and
implementation arise in gradient estimation, value prediction, and optimization landscapes (Ilyas
et al., 2020). These findings were later supported by theoretical studies, which indicated that they
stem from the fractal structures present in both value and policy landscapes (Wang et al., 2023). Our
work contributes to this line of research by providing an in-depth study on the numerical stability of
deep policy gradient methods.

Exploding gradients in deep learning. Many neural network architectures have been reported to
suffer from the gradient explosion issue, including deep multi-layer networks (Bengio et al., 1994;
Glorot & Bengio, 2010) and residual neural networks (RNNs) (Pascanu et al., 2013). This problem
is closely linked to the depth of the network architecture (Philipp et al., 2017; Schoenholz et al.,
2017), which can result in a long chain of Jacobian multiplications. In the context of reinforcement
learning (RL), Liu et al. (2018) points out that the product of density ratios over a long horizon can
grow exponentially, leading to exploding variance in off-policy estimation. Also, Khorasani et al.
(2023) proposes to use second-order information in the form of Hessian vector products to bypass
importance sampling weights in policy gradient. In this work, we demonstrate that even a single
density ratio can take excessively large values and cause numerical overflow, and propose an algorithm
that drops the importance sampling from PPO objective while achieving comparable performance.
Wang et al. (2024) investigates gradient explosion in the context of generative adversarial imitation
learning (GAIL), suggesting that a large reward function can cause exploding gradients. However,
our empirical results in Section B indicate that this does not fully explain gradient explosion in policy
gradient algorithms, as scaling down the reward does not completely overcome the issue.

3 NUMERICAL INSTABILITY CAUSED BY IMPORTANCE SAMPLING

TRPO and PPO objective. The original policy gradient estimator has the form

∇J (θ) = E(st,at)∼πθ

[
∇θ log πθ(at|st) Qπ(st, at)

]
, (1)

where Qπ is the Q-function of the current policy πθ (Sutton et al., 1999). One difficulty of directly
optimizing equation 1 is due to the complex dependency of sampled data on πθ (Schulman et al.,
2015a). To address it, TRPO proposes a surrogate objective that incorporates importance sampling:

max
θ

Ê(st,at)∼π

[πθ(at|st)
π(at|st)

Âπ(st, at)
]
, (2)

where Ê(st,at)∼π[·] denotes the estimated expectation over sampled trajectories and Âπ(st, at) the
estimated advantage function at (st, at) which is usually obtained through Generalized Advantage

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Estimation (GAE, Schulman et al. (2015b)). Let L(θ) denote the surrogate objective in equation 2. It
has been proved that the gradients of equation 1 and equation 2 coincide at π = πθ. Additionally,
both TRPO and PPO suggest that the current policy πθ should not deviate too much from the old
policy π, leading to various optimization constraints which will be discussed in Section 5.

Condition number and numerical stability. We now briefly introduce the concept of the condition
number from numerical analysis, which measures how much the output of an algorithm changes in
response to a small change in its input:

Definition 3.1. (Condition number) Given a function f and an input x, let δx be the error in x and
δf(x) = f(x+ δx)− f(x) be the corresponding error resulted in the output. We define the absolute
condition number of f at x as

κ = lim
δ→0

sup
|δx|≤δ

|δf(x)|
|δx|

. (3)

In particular, when the function f is differentiable, it further has

κ = ∥Jf (x)∥,

where Jf (x) is the Jacobian of f at x.

A detailed study can be found in Trefethen & Bau (1997). The following concept of machine precision
defines the threshold of numerical overflows:

Definition 3.2. (Machine precision) Let e > 0 denote the machine precision throughout this paper,
any quantity with its absolute value smaller than e will be considered zero.

Importance sampling with clipped actions. Consider the probability ratio pθ(a|s) = πθ(a|s)
π(a|s) in

the loss function. This ratio might become ill-conditioned when π(a|s) is very small. However, it
is rarely reported in practice that importance sampling itself causes any numerical issues. This is
because, when importance sampling is applied to modify a probabilistic distribution, the probability
ratio pθ(a|s) is only evaluated at data points sampled from the distribution π(·|s). This means that
the probability of obtaining an action a where π(a|s) ≪ 1 is also very small, thereby rarely causing
numerical instability. For example, let a ∼ N (µ0(s),Σ0) be m-dimensional Gaussian random
variable with probability density function π(a|s), then we have

P (π(a|s) < e) ≤ 2
√
2πm(e

√
detΣ0)

1
m , (4)

where e ≪ 1 is the machine precision.

Although it is unlikely for π(a|s) to take extremely small values if a is directly sampled from π itself,
as shown in equation 4, it is important to note that the actual action space usually has a bounded range
due to physical or environmental constraints. Therefore, a common practice in DRL is to clip the
sampled actions before feeding them into the simulator. Without loss of generality, we assume that
the action space is of the box form A = [−β, β]m for some positive β, and write the action-clipping
operation as ϕ : Rm → [−β, β]m. Namely, for any a = (a1, ..., am) ∈ Rm, ϕ(a) = (a′1, ..., a

′
m)

where a′i = max(−β,min(ai, β)).

Note that the probability ratio is evaluated after action clipping (Raffin et al., 2021).That is, pθ(ϕ(a)|s)
is used instead of pθ(a|s) when computing the objective in equation 2. Consequently, the distance
between the mean µ(s) and the clipped action ϕ(a) is no longer guaranteed to be small with high
probability as suggested in equation 4, especially when µ(s) lies outside the action space A:

Theorem 3.1. Let a ∼ N (µ(s),Σ) be m-dimensional Gaussian random variable with probability
density function π(·|s), and A = [−β, β]m with β > 0. Let ϕ : Rm → A be the action-clipping
transformation, then

1. Suppose that µ(s) ∈ A, then for any a ∈ Rm,

P (π(ϕ(a)|s) < e) ≤ 2
√
2πm(e

√
detΣ0)

1
m ,

where e is the machine precision;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. If µ(s) /∈ A, then for any a ∈ Rm it has

π(ϕ(a)|s) ≤ 1

(2π)
m
2

√
detΣ

exp(− d2

2λmax
),

where d = dist(µ(s),A) be the distance between µ(s) and the action space A, λmax is the
largest eigenvalue of Σ.

Therefore, π(ϕ(a)|s) may fall below machine precision e when µ(s) is far from the action space A
or when the standard deviations of π(·|s) are sufficiently small. In either case, π(ϕ(a)|s) becomes
equal to 0 on the machine, and dividing by it can cause numerical issues.

Tanh-Gaussian transformation. It is worth mentioning that we can also bound the action by
applying an invertible squashing function, such as tanh, to the Gaussian samples (Haarnoja et al.,
2018). However, this approach still suffers from the ill-conditioned nature of importance sampling.
For instance, consider the modified probability density function in the one-dimensional case, given by

π′(a|s) = π(u|s)(1− tanh2(u))−1 (5)

where u ∼ π is a Gaussian random variable and a = tanh(u). Note that when the mean of π is too
large, it is likely that the random variable u will take on extreme values, resulting in an excessively
small value for the term 1− tanh2(u) and causing numerical overflow in subsequent steps.

Ill-conditioned probability ratios. We have seen that the action-clipping transformation in deep
policy gradients can significantly affect the numerical stability of importance sampling. However, one
might argue that small values in π(a|s) can be counterbalanced by small values in πθ(a|s) assuming
that the current policy πθ is constrained to remain within a neighborhood of π. This is particularly true
in the first optimization step of each epoch, where πθ is reset to π and all probability ratios are equal
to 1. We will show that when action clipping is applied, the condition number of the probability ratio
can become very large, causing pθ(ϕ(a)|s) to grow exponentially fast and leading to instability as πθ

deviates from π. Let us again consider a Gaussian policy πθ(·|s) = N (µ(s; θ),Σ(θ)), where µ(s) is
typically parameterized by a neural network and Σ(θ) is positive-definite and state-independent. Let
π(·|s) = N (µ(s; θ0),Σ(θ0))), the probability ratio is calculated as

pθ(ϕ(a)|s) =
πθ(ϕ(a)|s)
π(ϕ(a)|s)

=

√
detΣ(θ0)

detΣ(θ)

exp
(
− 1

2 (ϕ(a)− µ(s; θ))TΣ(θ)−1(ϕ(a)− µ(s; θ))
)

exp
(
− 1

2 (ϕ(a)− µ(s; θ0))TΣ(θ0)−1(ϕ(a)− µ(s; θ0)))
) .

To better illustrate how the action-clipping transformation ϕ affects the condition number of pθ, we
further assume that Σ(θ) ≡ constant. The general case with parameterized standard deviations is
discussed in Appendix C. Then, the gradient of the probability ratio is given by

∇θ pθ(ϕ(a)|s) = pθ(ϕ(a)|s)(ϕ(a)− µ(s; θ))TΣ(θ)−1 ∂µ(s; θ)

∂θ
, (6)

where ∂µ(s;θ)
∂θ is the Jacobian of µ with respect to its parameters. Note that equation 6 is equivalent to

∇θ log
(
pθ(ϕ(a)|s)

)
= (ϕ(a)− µ(s; θ))TΣ(θ)−1 ∂µ(s; θ)

∂θ
, pθ0(ϕ(a)|s) = 1,

which describes the gradient flow of pθ in the policy space. Let C be the trajectory of policy parameters
generated by PPO in the policy space, starting at θ0 and ending at θ1. Applying the gradient theorem
yields

pθ1(ϕ(a)|s) = exp
(∫

C
(ϕ(a)− µ(s; θ))TΣ(θ)−1 ∂µ(s; θ)

∂θ
· dr

)
(7)

where the term in the exponent is the line integral along C. Therefore, the condition number
κθ = ∥∇θ pθ(ϕ(a)|s)∥ can be extremely large as illustrated in Figure 1, implying that the probability
ratio may overflow when

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• The standard deviations of π are small so that the matrix Σ(θ)−1 has large eigenvalues;

• The action is clipped and the mean µ(s) lies outside A so that |ϕ(a) − µ(s; θ)| is large
(illustrated in Figure 1 (c));

• The policy parameterization µ(·; θ) is complex (e.g. large policy networks) so that a small
change in the parameter can lead to a dramatic difference in the output.

Some DRL libraries further transform the standard deviations to prevent low variances. However,
gradient explosion still occurs with those code-level techniques, indicating that the ill-conditioned
probability ratio is the primary cause of the issue.

0 1.0
0.5

0.0
0.5

1.0

0

10
20

30
40

50

lo
g 1

0

15
10
5

0
5
10
15
20
25

(a)

0.0
0.2

0.4
0.6

0.8
1.0

0
10

20
30

40
50

lo
g 1

0

25
50
75
100
125
150
175
200

(b) (c)

Figure 1: (a) When µ0 (the mean of π0) is large, the condition number κθ of the probability ratio pθ
changes exponentially when µ (the mean of π) deviates from µ0; (b) κθ can become extremely large
when the variance Σ is small, particularly in cases of large means; (c) The action with the largest
norm in each mini-batch grows outside the boundary during PPO training.

4 EMPIRICAL ANALYSIS OF GRADIENT EXPLOSION

In the previous section, we theoretically demonstrated the ill-conditioned nature of importance
sampling in TRPO/PPO methods. In this section, we present experimental evidence to support the
theory. The experimental setup follows that described in Appendix A.

Gradient explosion is always accompanied by excessively large probability ratios. We run the
Humanoid-v4 environment on five random seeds, all of which fail due to arithmetic overflow. In
Figure 2, we observe that the maximum of probability ratio maxt log10

(
pθ(at|st)

)
takes excessively

large values across all five random seeds. A widely accepted explanation for gradient explosion
is that the standard deviations of the Gaussian policy can become very small, leading to potential
singularity issues in the covariance matrix Σ. While this can indeed cause numerical instability, it is
not the only reason for gradient explosion. In Figure 6, we observe that the gradient explodes even
before the standard deviations become small.

Large mean causes gradient explosion. We have mentioned that large outputs generated by the
policy network are one of the primary causes of gradient explosion. To verify this analysis, we apply
an additional transformation g(·) to the mean µ(s) to prevent it from leaving the action space A.
The new Gaussian policy is defined as a ∼ N (g(µ(s)),Σ(s)), where g(µ(s)) ∈ A. In Table 1, we
consider two transformations: the action-clipping function g = ϕ, defined in Section 3, and the
hyperbolic tangent activation function g = tanh. We observe that both transformations effectively
prevent the exploding gradient issue across three MuJoCo environments, indicating that having
deviated means is indeed one of the main causes of numerical instability. Meanwhile, we also observe
that the final returns are significantly lower than the benchmark (Raffin et al., 2021). This may be
attributed to the fact that when the mean µ(st) goes outside A for some state st, the gradient norm

∇θ g(µ(st; θ)) =
dg(µ)

dµ

∣∣∣∣∣
µ=µ(st)

∂µ(st; θ)

∂θ
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2500 5000 7500 10000 12500 15000 17500 20000
Optimization steps

0

5

10
15
20
25
30

Lo
g

sc
al

e

RATIO MAX

(a)

2000 4000 6000 8000 10000 12000 14000
Optimization steps

0

5

10

15

20

Lo
g

sc
al

e

RATIO MAX

(b)

2000 4000 6000 8000
Optimization steps

0

5

10

15

20
25

Lo
g

sc
al

e

RATIO MAX

(c)

2000 4000 6000 8000 10000
Optimization steps

0

2

4
6
8

10
12

Lo
g

sc
al

e

RATIO MAX

(d)

2500 5000 7500 10000 12500 15000 17500 20000
Optimization steps

0

2
4
6
8

10
12
14

Lo
g

sc
al

e

RATIO MAX

(e)

Figure 2: The maximum of probability ratio after clipping takes exponentially large values when the
gradient explodes in five individual runs.

ENVIRONMENT TRANSFORMATION FINAL RETURN EXPLOSION RATE

HOPPER-V4 CLIPPING 332± 129 0%
HOPPER-V4 tanh 234± 106 0%
HOPPER-V4 NONE N/A 100%
WALKER2D-V4 CLIPPING 692± 346 0%
WALKER2D-V4 tanh 434± 60 0%
WALKER2D-V4 NONE N/A 100%
HUMANOID-V4 CLIPPING 586± 102 0%
HUMANOID-V4 tanh 530± 72 0%
HUMANOID-V4 NONE N/A 100%

Table 1: Performance of mean transformation via clipping function or tanh function in three MuJoCo
environments. For Hopper-v4 and Walker2d-v4, we directly apply tanh as their action input range
is between −1 and 1. For the Humanoid-v4 task, we rescale the mapping to g = 0.4 ∗ tanh, as the
action inputs are bounded between −0.4 and 0.4.

becomes exponentially small or even equal to zero, depending on the transformation g. Notably,
we may have |dg(µ)dµ |2 ≃ 0 due to the vanishing gradient property of the transformation g when
µ(st) /∈ A. As a result, policy gradient algorithms are more likely to converge towards sub-optimal
regions in this case.

5 OPTIMIZATION CONSTRAINTS CANNOT GUARANTEE NUMERICAL
STABILITY

In previous sections, we demonstrated that importance sampling can be numerically unstable when
the probability ratio is evaluated at transformed sample points. This is particularly problematic
in deep policy gradient methods like TRPO and PPO, which incorporate the probability ratio into
their surrogate objective functions. This integration is the fundamental reason for the numerical
instability of these algorithms. However, it should be noted that both TRPO and PPO also apply
certain constraints to the original optimization problem, such as KL divergence and probability ratio
clipping. In this section, we will explain why these optimization constraints are insufficient to resolve
the numerical issues as they are supposed to.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

KL divergence. In TRPO algorithm (Schulman et al., 2015a), it proposes to use the KL divergence
between the current and old policy as a constraint to prevent large updates during policy improvement.
Specifically, the KL divergence of two continuous probability distributions P and Q is defined as

DKL(P ∥ Q) =

∫
Ω

p(x) log
p(x)

q(x)
dx, (8)

where p and q are the probability density functions of P and Q, respectively. When optimizing
the objective equation 2, TRPO applies the following hard constraint to the KL distance between
successive policies

Ês∼π

[
DKL(πθ(·|s) ∥ π(·|s))

]
≤ δ, (9)

where δ > 0 is a small quantity called the KL stepsize. Note that for many commonly used
distributions, including Gaussian, the KL divergence between πθ and π can be analytically calculated
via a closed-form formula. For instance, consider two multivariate Gaussian policies πθ(·|s) ∼
N (µ(s),Σ0) and π(·|s) ∼ N (µ0(s),Σ0) with identical covariance matrices. The KL divergence is

DKL(πθ(·|s) ∥ π(·|s)) = 1

2
(µ(s)− µ0(s))

TΣ−1
0 (µ(s)− µ0(s)). (10)

While the above constraint can effectively prohibit πθ from making large updates steps in the distri-
bution space, it may not be able to prevent the probability ratio pθ(a|s) from taking extremely large
values at some state-action pair (s, a) for two reasons: First, the KL divergence DKL(πθ(·|s) ∥ π(·|s))
measures the averaged distance between two distributions over the entire space Rm, while pθ(a|s) is
determined at a specific point a ∈ Rm, which means that we can find some a ∈ Rm such that the
probability ratio pθ(a|s) takes a large value even if the KL distance DKL(πθ(·|s) is small. Second,
the absolute value of KL divergence |DKL(πθ(·|s) ∥ π(·|s))| is quadratic with respect to the policy
update |µ(s)− µ0(s)|, while the probability ratio πθ(a|s) grows exponentially with |µ(s)− µ0(s)|
especially for excessively small π(a|s).

Probability ratio clipping. While TRPO involves second-order computations that are usually
expensive in practice, PPO (Schulman et al., 2017) proposes a clipped surrogate objective

LCLIP (θ) = Ê(st,at)∼π

[
min

(
pθÂ

π(st, at), clip(pθ, 1− ϵ, 1 + ϵ)Âπ(st, at))
)]

(11)

where ϵ ∈ (0, 1) is the clipping parameter. The clipped loss equation 11 is expected to block large
updates in the policy that can improve the objective (i.e., Âπ(st, at) > 0), and allow them if they
make the objective worse (Âπ(st, at) < 0). This property, however, makes it possible that some
ill-conditioned probability ratios are evaluated when computing LCLIP (θ).

In particular, consider a given state-action pair (s, a) and the estimated advantage Âπ(s, a):

• If Âπ(s, a) ≥ 0, it has

min
(
pθÂ

π(s, a), clip(pθ, 1− ϵ, 1 + ϵ)Âπ(s, a))
)
= (1 + ϵ)Âπ(s, a),

whenever pθ ≥ 1 + ϵ. Thus, it automatically blocks extremely large values in pθ when
evaluating LCLIP (θ);

• If Âπ(s, a) < 0, it is possible that the machine directly evaluates large probability ratios,
since

Integrand in equation 11 = min
(
pθÂ

π(s, a), clip(pθ, 1− ϵ, 1 + ϵ)Âπ(s, a))
)

= Âπ(s, a)max
(
pθ, clip(pθ, 1− ϵ, 1 + ϵ)

)
= Âπ(s, a)max

(
pθ, 1− ϵ

)
= pθ Â

π(s, a)

when pθ ≥ 1− ϵ, which then may lead to numerical overflows.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In practice, the expectation in equation 11 is estimated by the average over sampled trajectories

LCLIP (θ) ≃ 1

T

T−1∑
t=0

min
(
pθÂ

π(st, at), clip(pθ, 1− ϵ, 1 + ϵ)Âπ(st, at))
)
.

Therefore, numerical errors may occur if there exists any pair (st, at) with negative advantage
Âπ(st, at) < 0 and large probability ratio pθ(at|st) ≫ 1.

Empirical results. We perform experiments to validate aforementioned theoretical analysis. In
Figure 3 (a), we see that the KL divergence DKL(πθ(·|s) ∥ π(·|s)) remains small even when the
probability ratio pθ(a|s) takes very large values, indicating that DKL(πθ(·|s) ∥ π(·|s)) cannot ensure
numerical stability. We also test the following KL-penalized objective

LKLPEN (θ) = Êt

[
pθ(at|st)Âπ(st, at)− bDKL(πθ(·|st) ∥ π(·|st))

]
(12)

which is also proposed in Schulman et al. (2017). In Figure 3 (b), we can observe that optimizing
equation 12 still fails to prevent the probability ratio growing exponentially. While probability ratio
clipping has proven insufficient to overcome numerical instability, it is worth noting that the PPO
algorithm becomes even more unstable without clipping, as shown in Figure 3 (c) where the gradient
explodes within 4 steps. When plotting maxt log10

(
pθ(at|st)

)
, it is calculated after clipping. For

example, a large pθ(at|st) with positive advantage Âπ(st, at) is clipped and equal to 1 + ϵ.

25 50 75 100 125 150 175 200
Optimization steps

5

0
5

10
15
20
25
30

Lo
g

sc
al

e

KL Divergence
Max Ratio

(a)

20 40 60 80 100 120 140
Optimization steps

5

0
5

10
15
20
25
30

Lo
g

sc
al

e

KL Divergence
Max Ratio

(b)

1 2 3 4
Optimization steps

5

0

5
10
15
20
25

Lo
g

sc
al

e

KL Divergence
Max Ratio

(c)

Figure 3: The logarithm of KL divergence log10
(
DKL(πθ(·|s) ∥ π(·|s))

)
and the maximum of prob-

ability ratio maxt log10

(
pθ(at|st)

)
at each optimization step is plotted with different optimization

constraints, where environment is MuJoCo Humanoid-v4. In each plot, we apply (a) probability ratio
clipping; (b) KL-penalty; (c) no constraints.

6 BYPASSING IMPORTANCE SAMPLING IN PPO

In previous sections, we demonstrated that the TRPO/PPO objective is potentially ill-conditioned and
that the built-in optimization constraints cannot effectively alleviate its numerical instability. In this
section, we examine the numerical stability of the vanilla policy gradient algorithm and propose a
new algorithm based on it.

Numerical stability of vanilla policy gradient. We have discussed why importance sampling in
TRPO/PPO is the primary cause of gradient explosion. It is also worth stepping back to revisit the
vanilla policy gradient, whose objective does not involve any density ratio. In this case, we optimize
the following objective

LV ANILLA(θ) = Ê(st,at)∼πθ

[
log πθ(at|st) Âπ(st, at)

]
, (13)

where we replace Qπ(st, at) with Âπ(st, at) to reduce the variance. The logarithm of the Gaussian
probability density function is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ENVIRONMENT FINAL RETURN EXPLOSION RATE

HOPPER-V4 536± 254 0%
WALKER2D-V4 195± 135 0%
HUMANOID-V4 355± 191 0%

Table 2: Empirical results of vanilla policy gradient in three MuJoCo environments. Despite
its poor performance, vanilla policy gradient does not suffer from the exploding gradient issue.
Hyperparameters are specified in Appendix A.

log πθ(at|st) = −1

2

m∑
i=1

(at − µ)2i
σ2
i

− m

2
log(2π)−

m∑
i=1

log σi, (14)

which is less likely to take extreme values where (at − µ)i denotes the i-th element in (at − µ) and
Σ = diag(σ2

1 , ..., σ
2
m). While the only problematic thing is that Σ might have small eigenvalues,

some DRL libraries employ a lower bound to the standard deviation of the policy to avoid singularity
issues as shown in Table 5. Furthermore, the numerical stability of vanilla policy gradient is not very
sensitive to the dimension of the action space: in equation 14, the magnitude of | log πθ(at|st)| is
roughly linear to the dimension m. Similarly, the magnitude of the integrand L in equation 17 is also
approximately linear to the dimension of A, implying that the probability ratio pθ is approximately
exponential to the dimension of A and thus much easier to explode as m increases.

In Table 2, we observe that the vanilla policy gradient does not exhibit any numerical instability when
the standard deviations are lower-bounded, further supporting the claim that importance sampling is
the primary cause of gradient explosion in deep policy gradient methods. It should be noted that while
extremely small standard deviations can still affect numerical stability, this issue can be effectively
mitigated by setting a lower bound on the standard deviations, as is done in PPO (though it is not
entirely effective).

Vanilla Policy Gradient with Clipping. Based on the previous analysis, the vanilla policy gradient
algorithm is more stable than TRPO/PPO. Motivated by this observation, we propose an objective
that combines the strengths of both approaches. This modification results in the following objective:

LCPG(θ) = Ê(st,at)∼π

[
min

(
log pθ Â

π
t , clip(log pθ, log(1− ϵ), log(1 + ϵ))Âπ

t)
)]

(15)

where log pθ = log πθ − log π. Notably, the new objective can also be interpreted as a logarithmic
variant of the PPO loss in equation 11. As shown in Figure 5 and Table 2, this method achieves
performance comparable to PPO and outperforms the vanilla policy gradient. Also, when there is
no exploding gradient issue, our algorithm can achieve similar performance to PPO. To examine
the performance in the general case, we use smaller policy networks with width 64 which are less
affected by numerical issues based on our analysis in Section 3, and run both algorithms in three
benchmarks. As shown in Figure 4, both achieve similar performance across all three environments,
indicating that our algorithm serves as a numerically robust alternative to PPO.

(a) Hopper-v4 (b) Walker2d-v4 (c) Humanoid-v4

Figure 4: For smaller policy networks that are less affected by gradient explosion, the proposed
algorithm achieves performance comparable to PPO on three MuJoCo benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Hopper-v4 (b) Walker2d-v4 (c) Humanoid-v4

Figure 5: For larger policy networks, where PPO completely fails due to gradient explosion, our
algorithm avoids numerical issues and continues to produce reasonable results.

7 CONCLUDING REMARKS

In this work, we demonstrate that ill-conditioned density ratios in importance sampling are the
fundamental cause of numerical instability in deep policy gradient methods. While this issue cannot
be effectively addressed through optimization constraints alone, code-level techniques are necessary
to fully eliminate or mitigate its effects. To address this issue, we find that directly dropping
the importance sampling term yields the best performance, and we therefore advocate for further
investigation in this direction in future studies.

According to our analysis, larger neural networks make bigger updates in each optimization step,
resulting in larger density ratios in importance sampling and thus increasing the risk of gradient
explosion. Therefore, we question whether deep policy gradient methods are numerically stable and
robust when optimizing complex policy networks. This is particularly important for the scalability of
deep policy gradient methods. Although the experiments in this work focus on MuJoCo continuous-
control environments, the limitations discussed are inherent to the algorithms and may apply to other
scenarios as well. We believe that a better understanding of these issues can undoubtedly enhance the
effectiveness of deep reinforcement learning in real-world applications.

REFERENCES

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22(98):
1–76, 2021.

M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski, S. Gelly, and O. Bachem. What matters for on-policy deep actor-critic
methods? A large-scale study. In ICLR, 2021.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. De Fabritiis, and V. Moens.
TorchRL: A data-driven decision-making library for pytorch. In ICLR, 2024.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In ICML, 2016.

L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Implementation
matters in deep RL: A case study on PPO and TRPO. In ICLR, 2020.

Y. Fujita and S. Maeda. Clipped action policy gradient. In ICML, 2018.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In AISTATS, pp. 249–256, 2010.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. In NeurIPS, 2018.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In AAAI, pp. 3207–3214, 2018.

A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. A closer look
at deep policy gradients. In ICLR, 2020.

S. Khorasani, S. Salehkaleybar, N. Kiyavash, N. He, and M. Grossglauser. Efficiently escaping saddle
points for non-convex policy optimization. arXiv preprint arXiv:2311.08914, 2023.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Q. Liu, L. Li, Z. Tang, and D. Zhou. Breaking the curse of horizon: Infinite-horizon off-policy
estimation. In NeurIPS, 2018.

Y. Liu, K. Zhang, Tamer Ba¸sar, and W. Yin. An improved analysis of (variance-reduced) policy
gradient and natural policy gradient methods. In NeurIPS, pp. 7624–7636, 2020.

E. N. Lorenz. The Essence of Chaos. University of Washington Press, 1995.

V. Mnih, . Kavukcuoglu, D. Silver, A. A Rusu, J. Veness, M. G Bellemare, A. Graves, M. Riedmiller,
A. K Fidjeland, G. Ostrovski, and et al. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F
Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with human
feedback. In NeurIPS, pp. 27730–27744, 2022.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In
ICML, pp. 1310–1318, 2013.

G. Philipp, D. Song, and J. G. Carbonell. The exploding gradient problem demystified - definition,
prevalence, impact, origin, tradeoffs, and solutions. arXiv preprint arXiv:1712.05577, 2017.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-Baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021.

S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information propagation. In
ICLR, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
ICML, pp. 1889–1897, 2015a.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015b.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In ICML, pp. 387–395, 2014.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Driessche, T. Graepel, and D. Hassabis.
Mastering the game of Go without human knowledge. Nature, 550:354–359, 2017.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, pp. 1057–1063, 1999.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

O. Vinyals, I. Babuschkin, W.M. Czarnecki, and et al. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575:350–354, 2019.

T. Wang, S. Herbert, and S. Gao. Fractal landscapes in policy optimization. In NeurIPS, pp.
4277–4294, 2023.

W. Wang, Y. Zhu, Y. Zhou, C. Shen, J. Tang, Z. Xu, Y. Peng, and Y. Zhang. Exploring gradient
explosion in generative adversarial imitation learning: A probabilistic perspective. In AAAI, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETUP

A.1 DEFAULT HYPERPARAMETERS

Hopper-v4 Walker2d-v4 Humanoid-v4
Horizon 1000 1000 1000
Discount factor (γ) 0.99 0.99 0.99
Num. epochs 10 10 10
Minibatch size 64 64 64
GAE factor (λ) 0.95 0.95 0.95
Optimizer Adam Adam Adam
Learning rate 10−4 10−4 10−4

Clipping parameter ϵ 0.2 0.2 0.2
KL penalty coefficient b 0.01 0.01 0.01
Advantage normalization False False False
Policy network [1024] [1024, 1024] [1024, 1024]
Value network [64, 64] [64, 64] [64, 64]
Activation function tanh tanh tanh
Gradient clipping (l2 norm) 1.0 1.0 1.0

Table 3: Default PPO hyperparameters for all environments.

Hopper-v4 Walker2d-v4 Humanoid-v4
Horizon 1000 1000 1000
Discount factor (γ) 0.99 0.99 0.99
GAE factor (λ) 0.95 0.95 0.95
Optimizer Adam Adam Adam
Learning rate 10−4 10−4 10−4

Advantage normalization False False False
Policy network [1024] [1024, 1024] [1024, 1024]
Value network [64, 64] [64, 64] [64, 64]
Activation function tanh tanh tanh
Gradient clipping (l2 norm) 1.0 1.0 1.0

Table 4: Default vanilla policy gradient hyperparameters for all environments.

LIBRARY LOWER BOUND

STABLE BASELINES3 NOT APPLIED
RLLAB 10−6

TORCHRL 10−4

Table 5: Lower bounds for the standard deviation in different DRL libraries.

A.2 EXPERIMENTAL DESIGN IN SECTION 5

The initial policy π(·|s) = N (µ(s); Σ) where the covariance matrix Σ = I17×17 is the identity
matrix, its mean µ(s) is generated by

µ(s) = f(s; θ) + c

where f is a policy network and c = 100 is a large constant that shifts µ(s) out of the action space A
and makes the probability ratio easier to explode for the ease of illustration.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 STANDARD DEVIATION CLIPPING

To prevent the variance of the Gaussian policy π from getting too close to 0, the covariance matrix is
parameterized as

Σ = diag(l(σ1)
2, ..., l(σm)2),

where σi ∈ R are directly optimized through PPO and l(σi) = softplus(σi) + c0 where c0 = 0.1.

B ADDITIONAL EXPERIMENTS

2 4 6 8 10 12
Epoch

0.63

0.64

0.65

0.66

0.67

0.68

M
in

 S
TD

(a)

1 2 3 4 5 6 7 8
Epoch

0.645
0.650
0.655
0.660
0.665
0.670
0.675

M
in

 S
TD

(b)

1 2 3 4 5 6 7
Epoch

0.645
0.650
0.655
0.660
0.665
0.670
0.675

M
in

 S
TD

(c)

1 2 3 4 5 6 7
Epoch

0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680

M
in

 S
TD

(d)

2 4 6 8 10 12
Epoch

0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675

M
in

 S
TD

(e)

Figure 6: The corresponding minimum standard deviation of the Gaussian policy in the experiments
shown in Figure 2. Standard deviations σ = [σ1, ..., σm] are state-independent and the minimum
standard deviation is σmin = min(σ1, ..., σm).

Reward scaling. We will demonstrate that having high rewards is not the primary cause of gradient
explosion in DRL, in contrast to what is suggested in GAIL, as noted in Wang et al. (2024). The
results in Table 6 show that the explosion rate does not monotonically decrease with the scaling factor.
Specifically, the explosion rate for a scaling factor of 0.001 is even higher than that for a factor of 0.1,
suggesting that large reward values may not be the primary cause of exploding gradients, although
they may have a significant impact on the final return. The reason is that arithmetic overflows are
typically caused by exponentially large quantities, and most reward functions are not large enough to
trigger gradient explosion.

SCALING FACTOR FINAL RETURN MAXIMAL RETURN EXPLOSION RATE

100 N/A ± N/A 1057± 593 100%
10−1 2792± 792 2897± 759 20%
10−2 2366± 931 3167± 421 40%
10−3 2303± 0 2269± 933 80%

Table 6: Final return, maximal return and explosion rate are reported for each scaling factor in the
Hopper-v4 environment. ’N/A’ indicates that the algorithm fails to complete training due to gradient
explosion in all 5 individual runs. The final return is calculated only for successful runs, while the
maximum return is calculated for every trial, whether completed or not. The gradient is considered
exploded when the algorithm returns ’NaN’ and/or ’Inf’.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Learning rate and optimizer. According to equation 7, the growth in pθ(a|s) also depends on the
total distance traveled along the curve C.

pθ1(ϕ(a)|s) = exp
(∫

C
(ϕ(a)− µ(s; θ))TΣ(θ)−1 ∂µ(s; θ)

∂θ
· dr

)
≃ exp

(H∑
i=0

(ϕ(a)− µ(s; θi))
TΣ(θi)

−1 ∂µ(s; θi)

∂θ
· α

)
where α is the learning rate. It is clear that if we fix the number of epochs and training steps per epoch
(i.e., H is fixed), using a smaller α can reduce the likelihood of excessively large pθ and exploding
gradients. Nevertheless, it’s important to recall that a fundamental distinction between PPO and
the vanilla policy gradient method is that the sampling policy is updated after a full epoch, rather
than immediately after every optimization step, which may contribute to performance improvements.
Moreover, it has been proven in Schulman et al. (2015a) that

LV ANILLA(θ0) = L(θ0), ∇LV ANILLA(θ0) = ∇L(θ0),

This implies that PPO converges to the vanilla policy gradient as α → 0, with the number of
epochs and optimization steps kept constant,In Figure 7 (a), we observe that the performance of PPO
deteriorates as the learning rate decreases. Another issue is the use of the Adam optimizer, which can
cause large updates in the function space even with a small learning rate, particularly when the policy
network is large. To illustrate this, consider the first timestep in Adam (Kingma & Ba, 2015):

θ1 = θ0 + α
∇L(θ)√

∇L(θ)2 + ϵ0
, (16)

where all operations on vectors are element-wise and ϵ0 ≪ 1 is a small positive quantity, which is
approximately equivalent to

θ1 ≃ θ0 + α sgn(∇L(θ)),

meaning it does not directly bound the Euclidean distance between θ0 and θ1. The following example
shows why the choice of optimizer can affect the size of the updating steps:
Example B.1. Let η = [η1, ..., ηN] ∈ RN and D = [−1, 1], f1, ..., fN ∈ L2(D) are N functions
that satisfy: (i) ∥fi∥L2(D) = 1 for all i = 1, 2, ..., N ; (ii) ⟨fi, fj⟩L2(D) = 0 for all i, j = 1, 2, ..., N

and i ̸= j. Define the parameterization mapping Φ : RN → L2(D) such that Φ(η) =
∑N

i=1 ηifi.
Let η′ = [η′1, ..., η

′
N] ∈ RN be another parameter and we have

• if ∥η′ − η∥2 = α, the L2-distance in the function space ∥Φ(η′) − Φ(η)∥L2(D) =√∑N
i=1 |ηi − η′i|2 = α;

• if |η′i − ηi| = α for all i, the L2-distance in the function space ∥Φ(η′) − Φ(η)∥L2(D) =√∑N
i=1 |ηi − η′i|2 =

√
Nα;

where N is the dimension of the parameter space.

Therefore, the update in the function space made by Adam heavily depends on the dimension of the
policy space. In Figure 7 (b) and (c), we observe that as the network width increases, the growth rate
of the L2-distance between the current and initial network under the Adam optimizer grows faster
than with SGD. This implies that the update from π to πθ may not be as small as suggested by the
learning rate α, potentially leading to excessively large values in pθ.

C IMPORTANCE SAMPLING IN RL

Here we study the dynamics of the probability ratio pθ in the general case of parameterized standard
deviations.

Assume that the covariance matrix Σ(θ) = diag(σ2
1 , ..., σ

2
m) and Σ(θ0) = diag(σ2

0,1, ..., σ
2
0,m). To

avoid ambiguity, we further write θ = [η, σ1, ..., σm] where η denotes the policy parameterization in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

5000 1e-4
1e-5
1e-6

(a)

0 20 40 60 80
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 D
ist

an
ce

Adam
w=1024
w=256
w=64
w=16
w=4

(b)

0 20 40 60 80
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2 D
ist

an
ce

SGD
w=1024
w=256
w=64
w=16
w=4

(c)

Figure 7: (a) Comparison of different learning rates on the Walker2d-v4 environment. (b) & (c) The
L2 distance between the current network f(·; θk) and initial network f(·; θ0) at step k is compared
for different widths w and optimizers.

the mean µ = µ(s; η). The probability ratio is given by

pθ(ϕ(a)|s) =
πθ(ϕ(a)|s)
π(ϕ(a)|s)

=

√
detΣ(θ0)

detΣ(θ)

exp
(
− 1

2 (ϕ(a)− µ(s; η))TΣ(θ)−1(ϕ(a)− µ(s; η))
)

exp
(
− 1

2 (ϕ(a)− µ(s; η0))TΣ(θ0)−1(ϕ(a)− µ(s; η0)))
) .

=
σ0,1...σ0,m

σ1...σm
exp

(1
2

m∑
i=1

σ−1
0,i (ϕ(a)i − µ(s; η0)i)

2 − 1

2

m∑
i=1

σ−1
i (ϕ(a)i − µ(s; η)i)

2
)

where we use subscriptions to denote the corresponding element in a vector. For instance, ϕ(a) =
[ϕ(a)1, ..., ϕ(a)m] has m elements and ϕ(a)i denotes the i-th term.

Similar to the constant variance case in the main text, the gradient of pθ with respect to the mean
parameterization is

∂

∂η
log pθ(ϕ(a)|s) = (ϕ(a)− µ(s; η))TΣ(θ)−1 ∂µ(s; η)

∂θ
,

which has the same dynamics described in Section 3. The gradient of pθ with respect to σi is given by
∂

∂σi
pθ(ϕ(a)|s) = − 1

σi
pθ(ϕ(a)|s) + pθ(ϕ(a)|s) ·

1

2σ2
i

(ϕ(a)i − µ(s; η)i)
2

= pθ(ϕ(a)|s)
(ϕ(a)i − µ(s; η)i)

2 − 2σi

σ2
i

Dividing pθ(ϕ(a)|s) both sides yields

∂

∂σi
log pθ(ϕ(a)|s) =

(ϕ(a)i − µ(s; η)i)
2 − 2σi

σ2
i

.

Therefore, the full dynamics of pθ along the training curve C is given by

pθ(ϕ(a)|s) = exp
(∫

C
L(s, ϕ(a); θ) · dr

)
, (17)

where L(s, ϕ(a); θ) is the full gradient whose elements are given pθ is still exponential to some line
integral in the general case, meaning that the discussions in the main text applies to common practice.

D THEORETICAL FOUNDATIONS OF POLICY GRADIENT METHODS

Policy Gradient Theorem. In its original formulation (Sutton et al., 1999), the theorem states that
the gradient of objective function L(θ) with respect to the policy parameter can be estimated through:

∇θL(θ) ∝
∫
S
ρπ(s)

∫
A
Qπ(s, a)∇θπθ(a|s) dads, (18)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In the integral form above, ρπ(·) is the discounted visitation density under π and Qπ is the Q-
function of π. A same theorem was established for deterministic policies under similar smoothness
assumptions on value function and policy parameterization (Silver et al., 2014; Lillicrap et al., 2015).

Failure of smoothness assumption. In the original proof of the policy gradient theorem, the
gradient estimator equation 18 is shown exact using the fact that γt∥∇θV

π(s)∥ → 0 uniformly for
all s ∈ S as t → ∞, which then leads to the vanishing tail term in the rollout. Actually, it implicitly
assumes that

• (Smoothness Assumption) ∇θV
π(s) exists and is continuous over S.

This assumption is proved valid in the case of finite state-space and stochastic policies (Agarwal et al.,
2021). However, we will show that it is not generally true.

Maximal Lyapunov Exponents. Consider the system

st+1 = F (st), s0 ∈ RN ,

and a small perturbation ∆Z0 to s0. The resulted divergence under ∆Z0 at time t is denoted by
∆Z(t). For chaotic systems, their dynamics are sensitive to initial conditions so that it has

∥∆Z(t)∥ ≃ eλt∥∆Z0∥

for some positive λ that is called the Lyapunov exponent Lorenz (1995). To make it precise, we
present the definition of maximal Lyapunov exponents (MLEs):

Definition D.1. (Maximal Lyapunov exponent) For the dynamical system st+1 = F (st), s0 ∈ Rn,
the maximal Lyapunov exponent λmax at s0 is defined as the largest value such that

λmax = lim sup
t→∞

lim sup
∥∆Z0∥→0

1

t
log

∥∆Z(t)∥
∥∆Z0∥

. (19)

The policy gradient theorem has been shown no longer true when the underlying dynamics is chaotic
as in many continuous-control environments:

Theorem D.1. (Fractal Landscapes in RL, Wang et al. (2023)) Assume that the dynamics, reward
function and policy are all Lipschitz continuous with respect to their input variables. Let πθ be a
deterministic policy and λ(θ) denote the maximal Lyapunov exponent of the dynamics. Suppose that
λ(θ) > − log γ, then

1. V πθ (s) is − log γ
λ(θ) -Hölder continuous in the state s ∈ S;

2. Qπθ (s, a) is − log γ
λ(θ) -Hölder continuous in the action a ∈ A;

3. L(θ) is − log γ
λ(θ) -Hölder continuous in the policy parameter θ ∈ RN .

Specifically, we say that a mapping f : RN → Rm is α-Hölder continuous at x = x0 if there exists
K, δ > 0 such that |f(x)− f(x0)| ≤ K|x− x0|α for all x ∈ RN with |x− x0| ≤ δ. It reduces to
Lipschitz continuity when α = 1.

E LOSS FUNCTIONS IN SUPERVISED LEARNING

Here we briefly discuss why supervised learning usually does not suffer from exploding gradient
issues. Consider a simple case where X = {x1, ..., xM} ⊂ Rp and Y = {y1, ..., yM} ∈ Rq are the
data and label sets, respectively. The mean-squared error (MSE) is given as

L(θ) =
1

M

M∑
i=1

|f(xi; θ)− yi|2, (20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where f(·; θ) is a neural network to fit and θ denotes its parameters. Suppose that all data points are
uniformly sampled from a compact set D ⊂ Rp, when the sample size is sufficiently large, we have

L(θ) =
1

M

M∑
i=1

|f(xi; θ)− yi|2 ≃
∫
D

|f(x; θ)− ϕ(x)|2 dx

where ϕ : Rp → Rq is the target mapping that generates the labels (assume it exists). Therefore, the
gradient of L(θ) converges to

∇L(θ) ≃ ∂

∂θ

∫
D

|f(x; θ)− ϕ(x)|2 dx.

Using the fact that a neural network f(x; θ) satisfies

• For almost every x, ∂f(x;θ)
∂θ exists for all θ;

• ∥∂f(x;θ)
∂θ ∥ is bounded on any compact sets.

Note that we do not need any smoothness assumptions on ϕ beyond integrability. According to the
Leibniz integral rule, it allows to switch the integral and differentiation, i.e.,

∇L(θ) ≃ ∂

∂θ

∫
D

|f(x; θ)− ϕ(x)|2 dx =

∫
D

∂

∂θ
|f(x; θ)− ϕ(x)|2 dx,

which guarantees the convergence of the objective gradient ∇L(θ) as the sample size M → ∞.
Therefore, unlike reinforcement learning whose objective function may have fractal landscapes in
many robotics environments, supervised learning always has a differentiable objective which allows
gradient-based algorithms to optimize.

Inexact value and advantage estimations. It should be noted that the numerical instability caused
by the probability ratio can be avoided if both the value and advantage functions are estimated
precisely. Suppose that the value function V π(·) and the advantage estimate Aπ(·, ·) are exact for the
old policy π. For a given state s, assume that the mean µ(s) of π is sufficiently large so that nearly
all actions sampled from π(·|s) are clipped to the same action ā = ϕ(a). Note that the advantage

Aπ(s, ā) = r(s, ā) + γE(s,ā)→s′ [V
π(s′)]− Ea∼π[r(s, ϕ(a)) + γV π(s′′)]

= r(s, ā)− Ea∼π[r(s, ϕ(a))] + γ(E(s,ā)→s′ [V
π(s′)]− Ea∼π,(s,ϕ(a))→s′′ [V

π(s′′)]),

where P (ϕ(a) = ā |a ∼ π) ≃ 1 due to the large mean and action-clipping transformation, which
further implies Ea∼π[r(s, ϕ(a))] ≃ r(s, ā) and Ea∼π,(s,ϕ(a))→s′′ [V

π(s′′)] ≃ E(s,ā)→s′ [V
π(s′)].

Therefore, it yields

Aπ(s, ā) ≃ r(s, ā)− r(s, ā) + γ(E(s,ā)→s′ [V
π(s′)]− E(s,ā)→s′ [V

π(s′)]) = 0

which means that the advantage Aπ(s, ā) at state s should be very close to 0 when the old policy
already has a large mean µ(s). However, in practice, the error in advantage estimation can be
significant. Value approximation may also be poor, as the true value landscape in many continuous
control environments is often highly non-smooth and even fractal (Figure 8 (a)), whereas the value
function estimated by neural networks is usually smooth (Figure 8 (b)). To test the accuracy of
advantage estimation, we adopt the experimental setting from Section 5 and initialize the policy
network with a large positive constant added to its output, ensuring that the mean stays far from the
action space. In Figure 8 (c), it can be observed that the mean of the absolute values of the advantage
estimated by GAE, i.e., 1

T

∑T−1
t=0 |Âπ(st, at)|, remains around 1, even when the maximum of the

probability ratio, maxt log10

(
pθ(at|st)

)
, becomes very large.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

x 1
0.0

0.1
0.2

0.3
0.4

0.5

x2 0.00.10.20.30.40.5

V
(s)

200
225
250
275
300

325

350

(a)

x 1

0.0
0.1

0.2
0.3

0.4
0.5

x2 0.00.10.20.30.40.5

V
(s)

281
282
283
284

285

286

287

(b)

25 50 75 100 125 150 175 200
Optimization steps

0

5

10

15
20
25
30

Lo
g

sc
al

e

Advantage by GAE
Max Ratio

(c)

Figure 8: (a) An evident fractal structure in the true value landscape can be observed in the Hopper-v4
environment, resulting from the chaotic nature of the underlying dynamics. (b) The value function
approximated by a neural network, however, is smooth. (c) The advantage estimation obtained
from GAE does not decay to zero, even when the mean µ(s) is far from the action space A, and is
therefore unable to counterbalance the large values in the probability ratio. All values in Figure (c)
are presented on the log10 scale.

F PROOFS

F.1 DERIVATION OF EQUATION 4

Let Σ = σTσ be the decomposition and y = σ(a− µ0(s)), then we have y ∼ N (0, Im×m) as the
standard m-dimensional Gaussian variable and

P (π(a|s) < e) = P (
1√

(2π)m detΣ0

exp(−1

2
|y|2) < e)

= P (|y|2 > −2 log(e
√
(2π)m detΣ0))

= P (y21 + ...+ y2m > −2 log(e
√
(2π)m detΣ0))

where y = [y1, ..., ym]T and yi ∼ N (0, 1) for all i = 1, 2, ...,m. Let C = −2 log(e
√

(2π)m detΣ0)
and it further has

P (y21 + ...+ y2m > C) ≤
m∑
i=1

P (y2i >
C

m
)

= mP (y21 >
C

m
)

= 2mP (y1 >

√
C

m
).

Applying the tail bound P (y1 > t) ≤ exp(− t2

2) for standard Gaussian distribution yields

P (y1 >

√
C

m
) ≤ exp(− C

2m
)

=
√
2π(e

√
detΣ0)

1
m .

Substituting this into the previous equality yields

P (π(a|s) < e) ≤ 2
√
2πm(e

√
detΣ0)

1
m ,

and we complete the proof.

F.2 PROOF OF THEOREM 3.1

(I) µ(s) ∈ A: Note that the distance between clipped action ϕ(a) and the mean µ(s) is no more than
the original distance, i.e., |ϕ(a)−µ(s)| ≤ |a− s|. Applying equation 4 immediately yields the result.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(II) µ(s) /∈ A: We have

π(ϕ(a)|s) = 1

(2π)
m
2

√
detΣ

exp(− (µ(s)− ϕ(a))TΣ−1(µ(s)− ϕ(a))

2
)

≤ 1

(2π)
m
2

√
detΣ

exp(−|µ(s)− ϕ(a)|∥Σ−1∥2|µ(s)− ϕ(a)|
2

)

=
1

(2π)
m
2

√
detΣ

exp(−
1

λmax
|µ(s)− ϕ(a)|2

2
)

≤ 1

(2π)
m
2

√
detΣ

exp(− d2

2λmax
)

using the fact that ∥Σ−1∥2 = ∥Σ∥−1
2 = 1

λmax
and |µ(s)− ϕ(a)| ≥ miny∈A |µ(s)− y| = d.

20

	Introduction
	Related Work
	Numerical Instability Caused by Importance Sampling
	Empirical Analysis of Gradient Explosion
	Optimization Constraints Cannot Guarantee Numerical Stability
	Bypassing Importance Sampling in PPO
	Concluding Remarks
	Experimental Setup
	Default Hyperparameters
	Experimental Design in Section 5
	Standard deviation clipping

	Additional Experiments
	Importance Sampling in RL
	Theoretical Foundations of Policy Gradient Methods
	Loss Functions in Supervised Learning
	Proofs
	Derivation of equation 4
	Proof of Theorem 3.1

