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Abstract

Continual Learning (CL) sequentially learns new tasks like human beings, with
the goal to achieve better Stability (S, remembering past tasks) and Plasticity (P,
adapting to new tasks). Due to the fact that past training data is not available, it is
valuable to explore the influence difference on S and P among training examples,
which may improve the learning pattern towards better SP. Inspired by Influence
Function (IF), we first study example influence via adding perturbation to example
weight and computing the influence derivation. To avoid the storage and calculation
burden of Hessian inverse in neural networks, we propose a simple yet effective
MetaSP algorithm to simulate the two key steps in the computation of IF and obtain
the S- and P-aware example influence. Moreover, we propose to fuse two kinds of
example influence by solving a dual-objective optimization problem, and obtain
a fused influence towards SP Pareto optimality. The fused influence can be used
to control the update of model and optimize the storage of rehearsal. Empirical
results show that our algorithm significantly outperforms state-of-the-art methods
on both task- and class-incremental benchmark CL datasets.

1 Introduction

By mimicking human-like learning, Continual Learning (CL) aims to enable a model to continuously
learn from novel knowledge (new tasks, new classes, etc.) in a sequential order. The major challenge
in CL is to harness catastrophic forgetting and knowledge transition, namely the Stability-Plasticity
dilemma, with Stability (S) showing the ability to prevent performance drops for old tasks and
Plasticity (P) referring if the new task can be learned rapidly and unimpededly. Intuitively speaking,
a robust CL system should achieve outstanding S and P through sequential learning.

The sequential paradigm means CL does not access past training data. Comparing to traditional
machine learning, the training data in CL is thus more precious. It is valuable to explore the influence
difference on S and P among training examples. Following the accredited influence chain “Data-
Model-Performance”, exploring this difference is equivalent to tracing from performance back to
example difference. With appropriate control, this may improve the learning pattern towards better
SP. On top of this, the goal of this paper is to explore the reasonable influence from each training
example to SP, and apply the example influence to CL training.

To understand example influence, one classic successful technique is the Influence Function (IF) [20],
which leverages the derivation chain rule from a test objective to training examples. However, directly
applying the chain rule leads to computing the inverse of Hessian with the complexity of O(nq2+ q3)
(n is the number of examples and q is parameter size), which is computationally intensive and may run
out-of-memory in neural networks. In this paper, we propose a novel meta-learning algorithm, called
MetaSP, to compute example influence via simulating IF. We design based on the rehearsal-based
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Figure 1: Training examples have different influences on Stability and Plasticity. Given an old task
with classes “cat” and “dog” and a new task with classes “Bird” and “Fish”, we compute the influence
on S and P for each example. Then, we fuse the two kinds of influence towards SP Pareto front. We
also show that example influence can be used to adjust model update and optimize rehearsal selection.

CL framework, which avoids forgetting via retraining a part of old data. First, a pseudo update is
held with example-level perturbations. Then, two validation sets sampled from seen data are used to
compute the gradients on example perturbations. The gradients are regarded as the example influence
on S and P. As shown in Fig. 1(a), examples can be distinguished by the value of influence on S and P.

To leverage the two independent kinds of influence in CL, we need to take full account of the influence
on both S and P. However, the influence on S and P may interfere with each other, which leads us
to make a trade-off. This can be seen as a Dual-Objective Optimization (DOO) problem, which
aims to find solutions not dominated (no other better solution) by any other one, i.e. Pareto optimal
solutions [8]. We say the solutions as the example influence on SP. Following the gradient-based
MGDA algorithm [12], we obtain the fused example influence on SP by meeting the Karush-Kuhn-
Tucker (KKT) condition, as illustrated in Figure 1(b).

Finally, we show that the fused influence can be used to control the update of model and optimize the
storage of rehearsal in Figure 1(c). On one hand, the fused influence can be directly used to control
the magnitude of training loss for each example. On the other hand, under a fixed memory budget,
the fused influence can be used to select appropriate examples storing and dropping, which keeps the
rehearsal memory always have larger positive influence on SP.

In summary, our contributions are four-fold: 1) Inspired by the influence function, we study CL from
the perspective of example difference and propose MetaSP to compute the example influence on
S and P. 2) We propose to trade off S and P influence via solving a DOO problem and fuse them
towards SP Pareto optimal. 3) We leverage the fused influence to control model update and optimize
the storage of rehearsal. 4) The verification contribution: by considering the example influence, in
our experiments on both task- and class-incremental CL, better S and more stable P can be observed.

2 Related Work

Continual Learning. Due to many researchers’ efforts, lots of methods for CL have been proposed,
which can be classified into three categories. The regularization-based methods [19, 11, 10] are
based on regularizing the parameters corresponding to the old tasks and penalizing the feature drift.
The parameter isolation based methods [14, 26] generate task-specific parameter expansion or sub-
branch. Rehearsal-based methods [29, 7, 22, 6, 1, 2, 28, 3, 25] tackle the challenge of SP dilemma
by retaining a subset of old tasks in a stored memory buffer with bounded resources. Although
the existing methods apply themselves to achieve better SP, they fail to explore what contributes
to the Stability and Plasticity inside the training data. In this work, we explore the problem in the
perspective of example difference, where we argue that each example contributes differently to the
SP. We focus our work on the rehearsal-based CL framework in order to omit the divergence between
models, while evaluating the old data’s influence simultaneously.

Example Influence. In recent years, as the impressive Interpretable Machine Learning (IML) [27]
develops, people realize the importance of exploring the nature of data-driven machine learning.
Examples are different, even they belong to the same distribution. Because of such difference, the
example contributes differently to the learning pattern. In other words, the influence acquired in
advance from different training examples can significantly improve the CL training. Some studies
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propose a similar idea and use the influences to reweight or dropout the training data [31, 13, 36]. In
contrast to complicated model design, a model-agnostic algorithm estimates the training example
influence via computing the derivation from a test loss to a training data weight. One typical example
method is the Influence Function [20], which leverages a pure second-order derivation (Hessian) with
the chain rule. In this paper, to avoid the expensive computation of Hessian inverse, we design a meta
learning [18] based method, which can be used to control the training.

3 Demystifying Example Influence on SP

3.1 Preliminary: Rehearsal-based CL

Given T different tasks w.r.t. datasets {D1, · · · ,DT }, Continual Learning (CL) seeks to learn them in
sequence. For the t-th dataset (task), Dt = {(x(n)t , y

(n)
t )}Nt

n=1 is split into a training setDtrn
t and a test

setDtst
t , whereNt is the number of examples. At any time, CL aims at learning a multi-task/multi-class

predictor to predict tasks/classes that have been learned (say task-incremental and class-incremental
CL). To suppress the catastrophic forgetting, the rehearsal-based CL [30, 22, 32, 6, 16] builds a
small size memory bufferMt sampled from Dtrn

t for each task (i.e., |Mt| � |Dtrn
t |). At training

phase, the data in the whole memoryM = ∪k<tMk will be retrained together with the current tasks.
Accordingly, a mini-batch training step of task t in rehearsal-based CL is denoted as

min
θt

`(Bold ∪ Bnew,θt), Bold ⊂M and Bnew ⊂ Dtrn
t , (1)

where ` is the empirical loss. θt is the trainable parameters at task t and is updated from scratch.

3.2 Example Influence on Stability and Plasticity

Definition 1 (Stability and Plasticity) Suppose the parameter of a model is initialized to θ0. At the
training on the t-th task, given test sets of an old task Dtst

k (k < t) and the current task Dtst
t , the

Stability Skt and Plasticity Pt can be evaluated by:

Skt = p(Dtst
k |θt−1,Dtrn

t )− p(Dtst
k |θk), Pt = p(Dtst

t |θt−1,Dtrn
t )− p(Dtst

t |θt−1),

where p(D1|θ,D2) represents the performance (accuracy in classification) of D1 conditioned to the
model θ training on D2. p(D|θ) denotes the performance of D tested on the model θ.

The S of a task is evaluated by the performance difference on the test set after training on any later
tasks, which is also known as Forgetting [6]. The P of a task is defined as the ability to integrate new
knowledge, which is regarded as the test performance of this task. As many existing CL methods
demonstrate, the SP inevitably interferes mutually.

Definition 2 (Example Influence on SP) At the training on the t-th task, with a sampled example
xtrn ∈ Dtrn

t , the example influence from xtrn to Stability Skt and Plasticity Pt for k < t can be
evaluated by the gap from deleting it then retraining the model:

IS(Dtst
k , xtrn) = p(Dtst

k |θt−1,Dtrn
t )− p(Dtst

k |θt−1,Dtrn
t /xtrn),

IP (Dtst
t , xtrn) = p(Dtst

t |θt−1,Dtrn
t )− p(Dtst

t |θt−1,Dtrn
t /xtrn),

where Dtrn
t /xtrn denotes the dataset Dtrn

t without the training example xtrn.

However, deleting every example to compute full influences is impractical due to the highly computa-
tional cost. Instead, the performance change can be indicated by the loss change, which leads to a
derivable way to approximate the influence:

IS(Dtst
k , xtrn)

def
=
∂`(Dtst

k )

∂ε
, IP (Dtst

t , xtrn)
def
=
∂`(Dtst

t )

∂ε
, (2)

where ε is the weight perturbation to the training example and def
= means define. This influence can be

computed by the Influence Function [20] that will be introduced in the next section.
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Figure 2: Evaluating and making use of example influence in mini-batch Continual Learning. (a) At
each iteration in CL training, MetaSP updates in pseudo and use two validation sets representing old
tasks and new task to obtain the example influence on S and P. The two kinds of influence are fused
towards a Pareto optimal. (b) The computed influence can be directly used to update CL model and
(c) select examples for rehearsal storing and dropping.

4 Meta Learning on Stability and Plasticity

4.1 Influence Function for SP

A mini-batch, B, from the training data is sampled, and the normal model update is

θ̂ = argmin
θ
` (B,θ) . (3)

In Influence Function (IF) [20], a small weight perturbation ε is added to the training example xtrn ∈ B

θ̂ε,x = argmin
θ
` (B,θ) + ε`(xtrn,θ), xtrn ∈ B. (4)

We can easily promote this to the mini-batch

θ̂E,B = argmin
θ
` (B,θ) +E>L(B,θ), (5)

where L denotes the loss vector for a mini-batch and E ∈ R|B|×1 denotes the perturbation on each
example in it. It is easy to know that the example influence I(Dtst,B) is reflected in the derivative
∇E`(Dtst, θ̂E,x)

∣∣
E=0

. By the chain rule, the example influence in IF can be computed by

I(Dtst,B) def
= ∇E`(Dtst, θ̂E,x)

∣∣
E=0

= −∇θ`(Dtst, θ̂)H−1∇>θ L(B, θ̂), (6)

where H = ∇2
θ`(B, θ̂) is a Hessian. Unfortunately, the inverse of Hessian requires the complexity

O(|B|q2 + q3) and huge storage for neural networks (maybe out-of-memory), which is challenging
for efficient training.

In Eq. (6), we have I(Dtst,B) = [I(Dtst, xtrn)|xtrn ∈ B] and find the loss will get larger if
I(Dtst, xtrn) > 0, which means the negative influence on the test setDtst. Similarly, I(Dtst, xtrn) < 0
means the positive influence on the test set Dtst. Fortunately, the second-order derivation in IF
is not necessary under the popular meta learning paradigm such as [18], instead we can easily
get the derivation like IF through a one-step pseudo update. In the following, we will introduce a
simple yet effective meta-based method, named MetaSP, to simulate IF at each step with a two-level
optimization to avoid computing Hessian inverse.

4.2 Simulating IF for SP

Based on the meta learning paradigm, we transform the example influence computation into solving
a meta gradient descent problem, named MetaSP. For each training step in a rehearsal-based CL,
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Algorithm 1: Computation of Example Influence (MetaSP)
Input: Bold, Bnew, Vold, Vnew ; // Training batches, Validation batches
Output: I∗ ; // Pareto example influence on SP

1 θ̂E,B = argminθ `(Bold ∪ Bnew,θ) +E>L(Bold ∪ Bnew,θ) ; // Pseudo update
2 I(Vold,B) = ∇E`(Vold, θ̂E,B) ; // Gradient from old val loss
3 I(Vnew,B) = ∇E`(Vnew, θ̂E,B); // Gradient from new val loss
4 γ∗ ← Eq. (11); // Optimal fusion hyper-parameter
5 I∗ = γ∗ · I(Vold,B) + (1− γ∗) · I(Vnew,B); // Influence fusion

we have two mini-batches data Bold and Bnew in respect to old and new tasks. Our goal is to obtain
the influence on S and P from every example in Bold ∪ Bnew. Note that both S-aware and P-aware
influence are applied to every example regardless of old or new tasks. That is, the contribution of an
example is not deterministic. Data of old tasks may also affect the new task in positive, and vice-versa.
In rehearsal-based CL, we turn to computing the derivations∇E`(Vold, θ̂)|E=0 for example influence.

To compute the derivation, as shown in Fig. 2(a), our MetaSP has two key steps:

(1) Pseudo update. This step is to simulate Eq. (5) in IF via a pseudo update

θ̂E,B = argmin
θ

`(Bold ∪ Bnew,θ) +E>L(Bold ∪ Bnew,θ), (7)

where L denotes the loss vector for a mini-batch combining both old and new tasks.

(2) Compute example influence. This step computes example influence on S and P for all training
examples as simulating Eq. (6). Based on the pseudo updated model in Eq. (7), we compute S- and
P-aware example influence via two validation sets Vold and Vnew. Noteworthily, because the test set
Dtst is unavailable at training phase, we use two dynamic validation sets Vold and Vnew to act as the
alternative in the CL training process. One is sampled from the memory buffer (Vold) representing
the old tasks, and the other is from the seen training data representing the new task (Vnew). With E
initialized to 0, the two kinds of example influence are computed as

I(Vold,B) = ∇E`(Vold, θ̂E,B), I(Vnew,B) = ∇E`(Vnew, θ̂E,B). (8)

Generally, each elements in two influence vectors I(Vold,B) and I(Vnew,B) represents the example
influence on S and P. Similar to IF, elements with positive value mean negative influence while
elements with negative value mean positive influence.

5 Using Influence for Continual Learning

5.1 Before Using: Influence for SP Pareto Optimality

As shown in Eq. (8), the example influence is equal to the derivation from validation loss of old and
new tasks to the perturbations E. However, the two kinds of influence are independent and interfere
with each other. That is, using only one of them may fail the other performance. We prefer to find a
solution that makes a trade-off between the influence on both S and P. Thus, we integrate the two
influence I(Vold,B) and I(Vnew,B) into a DOO problem with two gradients from different objectives.

min
E

{
`(Vold, θ̂E,B), `(Vnew, θ̂E,B)

}
. (9)

The goal of Problem (9) is to obtain a fused way that satisfies the SP Pareto optimality.

Definition 3 (SP Pareto Optimality)

1. (Pareto Dominate) Let Ea, Eb be two solutions for Problem (9), Ea is said to dominate Eb (Ea ≺
Eb) if and only if `(V, θ̂Ea,B) ≤ `(V, θ̂Eb,B), ∀V ∈ {Vold,Vnew}, and `(V, θ̂Ea,B) < `(V, θ̂Eb,B),
∃V ∈ {Vold,Vnew} .
2. (SP Pareto Optimal) E is called SP Pareto optimal if no other solution can have better values in
`(Vold, θ̂E,B) and `(Vnew, θ̂E,B).
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Algorithm 2: Using Example Influence in Rehearsal-based Continual Learning.
Input: Initialized θ0, Learning rate α, Training set {Dtrn

1 , · · · ,Dtrn
T }, MemoryM

Output: θT ; // Final model
1 for task t = 1 : T do
2 θt= TrainNewTask(θt−1, Dtrn

t ,M) (Alg. 3)
3 C1, C2, · · · , C |M|

t
← K-Means(Dtrn

t );
4 Rank Ci with E(I∗(x)), x ∈ Ci;
5 RankM with E(I∗(x)), x ∈M;

6 for i = 1 : |M|t do
7 Pop the bottom ofM;
8 Push the top of Ci toM;
9 end

10 end

Inspired by the Multiple-Gradient Descent Algorithm (MGDA) [12], we transform Problem (9) to a
min-norm problem. Specifically, according to the KKT conditions [15], we have

γ∗= argmin
γ

∥∥γ∇E`(Vold, θ̂E,B) + (1− γ)∇E`(Vnew, θ̂E,B)
∥∥2
2
, s.t., 0 ≤ γ ≤ 1. (10)

Referring to the study from Sener et al. [34], the optimal γ∗ is easily computed as

γ∗ = min

(
max

(
(∇E`(Vnew, θ̂E,B)−∇E`(Vold, θ̂E,B))

>∇E`(Vnew, θ̂E,B)

‖∇E`(Vnew, θ̂E,B)−∇E`(Vold, θ̂E,B)‖22
, 0

)
, 1

)
. (11)

Thus, the SP Pareto influence of the training batch can be computed by

I∗ = γ∗ · I(Vold,B) + (1− γ∗) · I(Vnew,B). (12)

This process can be seen in Fig. 2(a). Different from the S-aware and P-aware influence, the integrated
influence consider the Pareto optimum to both S and P, i.e., reducing the negative influence on S or P
and keeping the positive influence on both S and P. Then we will introduce how to leverage example
influence in CL training, our algorithm can be seen in Alg. 1.

5.2 Model Update Using Example Influence

Algorithm 3: Training New Task
Input: Initialized θt, Training set Dtrn

t ,
MemoryM, Learning rate α

Output: Trained θt
1 for i = 1 :ITER_NUM do
2 Bnew ∼ Dtrn

t ;
3 if t = 1 then
4 θt = θt − α · ∇θ`(Bnew,θt);
5 else
6 Bold ∼M, Vold ∼M, Vnew ∼ Dtrn

t ;
7 I∗ ←METASP(Bold, Bnew, Vold, Vnew);
8 θt = θt − α · ∇θ(`(Bold ∪ Bnew,θt)

9 +(−I∗)>L(Bold ∪ Bnew,θt));
10 end
11 end

With the computed example influence in each
mini-batch, we can easily control the model
update of this mini-batch to adjust the training
towards an ensemble positive direction. Given
parameter θ from the previous iteration the step
size α, the model can be updated in traditional
SGD as θ∗ = θ − α · ∇θ (`(B,θ)), where
B = Bold ∪ Bnew. By regularizing the update
with the example influence I∗ , we have

θ∗ = θ−α ·∇θ

(
`(B,θ) + (−I∗)>L(B,θ)

)
.

(13)
MetaSP offers regularized updates at every step
for rehearsal-based CL, which leads the CL
training to better SP but with only the complex-
ity of O(|B|q + vq) (v denotes the validation
size) compared with that of IF, O(|B|q2 + q3).

We show this application in Fig. 2(b). By updating like the above equation, we can make use of the
influence of each example to a large extent. In this way, some useless examples are restrained and
some positive examples are emphasized, which may improve the acquisition of new knowledge and
the maintenance of old knowledge simultaneously.

5.3 Rehearsal Selection Using Example Influence

Rehearsal in fixed budget needs to consider storing and dropping to keep the memoryM having
the core set of all old tasks. In tradition, storing and dropping are both based on randomly example

6



selection, which ignores the influence difference on SP from each example. Given influence I∗(x)
representing contributions from example x to SP, we further design to use it to improve the rehearsal
strategy under fixed memory budget. The above example influence on S and P is computed in
mini-batch level, we can promote it to the whole dataset according to the law of large numbers, and
the influence value for the example x is the value of expectation over batches, i.e., E(I∗(x)).
The fixed-size memory is divided averagely by the seen task number. After task t finishes its training,
we conduct our influence-aware rehearsal selection strategy as shown in Fig. 2(c). For storing, we
first cluster all training data into |M|t groups using K-means to diversify the store data. Each group
is ranked by its SP influence value, and the most positive influence on both SP will be selected to
store. For dropping, we rank again on the memory buffer via their influence value, and drop the most
negative |M|t example. In this way,M always stores diverse examples with positive SP influence.

6 Experiments

6.1 Datasets and implementation details

We use three commonly used benchmarks for evaluation: 1) Split CIFAR-10 [37] consists of 5 tasks,
with 2 distinct classes each and 5000 exemplars per class, deriving from the CIFAR-10 dataset; 2)
Split CIFAR-100 [37] splits the original CIFAR-100 dataset into 10 disjoint subsets, each of which is
considered as a separate task with 10 classes; 3) Split Mini-Imagenet [35] is a subset of 100 classes
from ImageNet [9], rescaled to 32 × 32. Each class has 600 samples, randomly subdivided into
training (80%) and test sets (20%). Mini-Imagenet dataset is equally divided into 5 disjoint tasks.

We employ ResNet-18 [17] as the backbone which is trained from scratch. We use Stochastic Gradient
Descent (SGD) optimizer and set the batch size 32 unchanged in order to guarantee an equal number
of updates. Also, the rehearsal batch sampled from memory buffer is set to 32. We construct the SP
validation sets in MetaSP by randomly sampling 10% of the seen data and 10% of the memory buffer
at each training step. We set other hyper-settings following ER tricks [4], including 50 total epochs
and hyper-parameters. All results are averaged over 5 fixed seeds for fairness.

To better evaluate the CL process, we suggest evaluating SP with four metrics as follows. We use the
sign function 1(·) to represent if the prediction of model is equal to the ground truth. 1) First Accu-
racy (A1 = 1

T

∑
t

∑
xi∈Dtst

t
1(yi,θt(xi))): For each task, when it is first trained done, we evaluate

its testing performance immediately, which indicates the Plasticity, i.e., the capability of learning
new knowledge. 2) Final Accuracy (A∞ = 1

T

∑
t

∑
xi∈Dtst

t
1(yi,θT (xi))): This metric is the final

performance for each task, which indicates Stability, i.e., the capability of suppressing catastrophic for-
getting. 3) Mean Average Accuracy (Am = 1

T

∑
t

(
1
t

∑
k≤t

∑
xi∈Dtst

k
1(yi,θt(xi))

)
): This metric

computes along CL process, indicating the SP performance after each task trained done. 4) Backward
Transfer (BWT = 1

T−1
∑T−1
t=1

∑
(x,y)∈Dtst

t
(1(y, θT (x))− 1(y, θt(x))) =

T
T−1 (A∞ −A1)): This

metric is the performance drop from first to final accuracy of each task.

6.2 Main Comparison Results

We compare our method against 8 rehearsal-based methods (including GDUMB [28], GEM [22],
AGEM [6], HAL [5], GSS [2], MIR [1], GMED [33] and ER [7]). What’s more, we also provide a
lower bound that train new data directly without any forgetting avoidance strategy (Fine-tune) and an
upper bound that is given by all task data through joint training (Joint).

In Table 1, we show the quantitative results of all compared methods and the proposed MetaSP in
class-incremental and task-incremental settings. First of all, by controlling the training according
to the influence on SP, the proposed MetaSP outperforms other methods on all metrics. With the
memory buffer size growth, all the rehearsal-based CL get better performance, while the advantages
of MetaSP are more obvious. In terms of the First Accuracy A1, indicating the ability to learn new
tasks, our method outperforms most of the other methods with a little numerical advantage. In terms
of the Final Accuracy A∞, which is used to measure the forgetting, we have an obvious improvement
of an average of 3.17 for class-incremental setting and averagely 1.77 for task-incremental setting
w.r.t. the second best result. This shows MetaSP can significantly keep stable learning of the new
task while suppressing the catastrophic forgetting. It is because although the new tasks may have
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Table 1: Comparisons on three datasets, averaged across 5 runs (See std. in the Appendix). Red and
blue values mean the best in our methods and the compared methods. • indicates that our method is
significantly better than the compared method (paired t-tests at 95% significance level).

Method
CIFAR10 (Class increment) CIFAR10 (Task increment)

buffer size 300 buffer size 500 buffer size 300 buffer size 500
A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT

Finetune 19.66 Joint 91.79 Finetune 65.27 Joint 98.16
GDUMB [28] 36.92 44.27 73.22 78.06
GEM [22] 93.90• 37.51• 55.43• −70.48• 92.76• 36.95• 57.36• −69.76• 96.62• 89.34• 92.49• −9.09• 96.73• 90.42• 92.93• −7.88•
AGEM [6] 96.57• 20.02• 45.57• −95.68• 96.56• 20.01• 46.52• −95.69• 96.78• 85.52• 90.16• −14.07• 96.71• 86.45• 90.90• −12.83•
HAL [5] 91.30• 24.45• 46.34• −83.56• 91.96• 27.94• 49.05• −80.01• 91.41• 79.90• 83.78• −14.39• 92.03• 81.84• 84.19• −12.73•
MIR [1] 96.70• 38.53• 56.96• −72.72• 96.65• 42.65• 59.99• −67.50• 96.76• 88.50• 90.87• −10.33• 96.73• 90.63• 91.99• −7.62•
GSS [2] 96.53• 35.89• 54.33• −75.80• 96.55• 41.96• 58.16• −68.24• 96.56• 88.05• 90.60• −10.63• 96.57• 90.38• 92.19• −7.73•
GMED [33] 96.65• 38.12• 58.92• −73.16• 96.65• 43.68• 62.56• −66.21• 96.73• 88.91• 91.20• −9.76• 96.72• 89.72• 92.10• −8.75•
ER [7] 96.73• 34.19• 53.72• −78.18• 96.74• 40.45• 57.69• −70.36• 96.93• 88.97• 91.12• −9.95• 96.79• 90.60• 92.28• −7.74•
Ours 96.87• 42.42• 63.52• −68.05• 96.82• 49.16• 67.88• −59.57• 97.10• 89.40• 92.54• −9.62• 97.31• 90.91• 93.38• −7.99•
Ours+RehSel 96.85• 43.76• 63.69• -66.36• 96.81• 50.10• 68.28• -58.38• 97.11• 89.91• 92.66• -8.99• 97.30• 91.41• 93.28• -7.36•

Method
CIFAR100 (Class increment) CIFAR100 (Task increment)

buffer size 500 buffer size 1000 buffer size 500 buffer size 1000
A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT

Finetune 9.14 Joint 71.25 Finetune 33.85 Joint 91.63
GDUMB [28] 11.11 15.75 36.40 43.25
GEM [22] 85.28• 15.91• 29.38• −77.07• 84.28• 22.79• 34.09• −68.32• 85.53• 68.68• 68.49• −18.72• 85.24• 73.71• 72.59• −12.81•
AGEM [6] 85.97• 9.31• 24.60• −85.18• 85.66• 9.27• 24.67• −84.88• 85.97• 55.28• 58.23• −34.10• 85.66• 55.95• 59.96• −33.01•
HAL [5] 67.33• 8.20• 22.72• −65.70• 68.06• 10.59• 24.74• −63.86• 67.64• 44.98• 50.79• −25.17• 68.62• 50.07• 54.01• −20.61•
MIR [1] 87.38• 13.49• 28.88• −82.09• 87.39• 17.56• 32.48• −77.59• 87.42• 66.18• 67.43• −23.60• 87.50• 71.20• 71.42• −18.10•
GSS [2] 86.03• 14.01• 28.00• −80.02• 86.31• 17.87• 31.82• −76.04• 86.10• 66.80• 66.55• −21.44• 86.44• 71.98• 71.00• −16.06•
GMED [33] 87.18• 14.56• 33.41• −80.68• 87.29• 18.67• 38.69• −76.23• 87.30• 68.82• 72.66• −20.53• 87.49• 73.91• 76.36• −15.10•
ER [7] 87.23• 13.75• 28.88• −81.64• 87.33• 17.56• 32.45• −77.52• 87.29• 66.82• 67.56• −22.73• 87.40• 71.74• 71.60• −17.40•
Ours 88.13• 18.96• 38.62• −76.85• 87.58• 24.78• 45.20• −69.76• 88.94• 70.03• 74.07• −21.01• 88.94• 75.32• 78.09• −15.14•
Ours+RehSel 87.81• 19.28• 39.23• -76.13• 87.55• 25.72• 45.48• -68.69• 88.58• 70.81• 74.24• -19.74• 89.03• 76.14• 78.27• -14.32•

Method
Mini-Imagenet (Class increment) Mini-Imagenet (Task increment)

buffer size 500 buffer size 1000 buffer size 500 buffer size 1000
A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT A1 A∞ Am BWT

Finetune 11.12 Joint 44.39 Finetune 23.46 Joint 62.30
GDUMB [28] 6.22 7.15 16.37 17.69
AGEM [6] 50.06• 10.69• 22.29• −49.22• 50.03• 10.69• 22.28• −49.16• 50.06• 18.34• 28.05• −39.65• 50.03• 18.78• 28.12• −39.05•
MIR [1] 51.44• 11.07• 23.65• −50.46• 51.25• 11.32• 24.09• −49.92• 51.47• 29.10• 35.20• −27.95• 51.31• 31.39• 37.24• −24.89•
GSS [2] 51.63• 11.09• 23.62• −50.66• 51.35• 11.42• 24.05• −49.91• 51.64• 28.67• 35.22• −28.71• 51.40• 31.75• 37.23• −24.56•
GMED [33] 51.21• 11.03• 24.47• −50.23• 50.87• 11.73• 25.50• −48.93• 51.29• 30.47• 37.64• −26.02• 51.00• 32.85• 39.66• −22.69•
ER [7] 51.68• 11.00• 23.71• −50.84• 51.41• 11.35• 24.08• −50.08• 51.70• 28.97• 35.30• −28.40• 51.55• 31.59• 37.36• −24.95•
Ours 51.76• 12.48• 26.50• −49.10• 50.91• 14.43• 28.47• −45.59• 52.44• 32.59• 39.38• −24.82• 52.27• 36.25• 41.59• −20.02•
Ours+RehSel 51.81• 12.74• 26.43• -48.84• 50.96• 14.54• 28.44• -45.52• 51.73• 34.36• 40.48• -21.70• 51.47• 37.20• 42.19• -17.83•
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Figure 3: Top: Statistics of examples with positive and negative influence on S, P, and SP. Bottom:
We divide all example influences equally into 5 groups, and count the number in each range.

larger gradient to dominant the update for all rehearsal-based CL, our method improves the example
with positive effective and restrain the negative-impact example. In terms of the Mean Average
Accuracy Am, which evaluates the SP throughout the whole CL process, our method shows its
significant superiority with an average improvement of over 4.44 and 1.24 w.r.t the second best results
in class-incremental and task-incremental settings. The complete results with std. can be viewed in
the Appendix. Moreover, with the proposed rehearsal selection strategy (Ours+RehSel), we have
our A∞ improved, which means the selected example according to their influence has a clear ability
for reducing catastrophic forgetting. With our Rehearsal Selection (RehSel) strategy, we have an
improvement of 0.77 on A∞, but A1 and Am have uncertain performance. This means better memory
may bring in worse task conflict.
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6.3 Analysis of Dataset Influence on SP

In Fig. 3, we count the example with positive/negative influences on old task (S), new task (P), and
total SP in Split-CIFAR-10. At each task after task 2, we have 500 fixed-size memory and 10,000
new task data. We first find that most data of old tasks has a positive influence on S and a negative
influence on P, while most data of new tasks has a positive influence on P and a negative influence on
S. Even so, some data in both new and old tasks has the opposite influence. Then, for the total SP
influence, most of memory data has positive influence. In contrast, examples of new tasks have near
equal number of positive and negative SP influence. Thus, by clustering and storing examples via
higher influence to rehearsal memory buffer, the old knowledge can be kept. By dividing all example
influences equally into 5 groups from the minimum to the maximum, we find that most examples
have mid-level influence, and server as the main part of the dataset. Also, the numbers of examples
with large positive and negative influence are small, which means unique examples are few in the
dataset. The observations suggest the example difference should be used to improve model training.

6.4 Analysis on SP Pareto Optimum

SP Pareto Front

Ours only P

Ours only S
Ours

AGEM

HAL

GEMER

GSS

MIR

GMED

A∞

A1

Figure 4: SP Pareto front.

In this paper, we propose to convert the S-aware and
P-aware influence fusion into a DOO problem and use
the MGDA to guarantee the fused solution is an SP
Pareto optimum. As shown in Fig. 4, we show the
comparison of the First Accuracy and Final Accuracy
coordinate visualization for all compared methods. We
also evaluate with only stability-aware (Ours only S)
and with only Plasticity-aware (Ours only P) influ-
ence. Obviously, with only one kind of influence, our
method can already get better SP than other methods.
The integration of two kinds of influence yield an even
more balanced SP. On the other hand, the existing
methods cannot approach the SP Pareto front well.

6.5 Training Time

Table 2: Comparison of training time [s] on CIFAR-10.
Method ER GSS AGEM HAL MIR GMED GEM MetaSP
One-Step 0.013 0.015 0.029 0.043 0.077 0.093 0.290 0.250

Total 2685 2672 3812 5029 7223 8565 24768 5898

We list the training time of one-step update
and total update overhead for all compared
methods for Split CIFAR-10 dataset. In
one-step update, we evaluate all methods
with a batch on one update. Our method takes more time than other methods except for GEM, because
of the pseudo update, backward on perturbation and influence fusion. To guarantee the efficiency,
we utilize our proposed method only in the last 5 epochs among the total, and the rest are naive
fine-tuning (See details in the Appendix). The results show the strategy is as fast as other light-weight
methods but achieve huge improvement on SP. We also use this setting for the comparison in Table 1.

7 Conclusion

In this paper, we proposed to explore the example influence on Stability-Plasticity (SP) dilemma in
rehearsal-based continual learning. To achieve that, we evaluated the example influence via small
perturbation instead of the computationally expensive Hessian-like influence function and proposed a
simple yet effective MetaSP algorithm. At each iteration in CL training, MetaSP builds a pseudo
update and obtains the S- and P-aware example influence in batch level. Then, the two kinds of
influence are combined via an SP Pareto optimal factor and can support the regular model update.
Moreover, the example influence can be used to optimize rehearsal selection. The experimental
results on three popular CL datasets verified the effectiveness of the proposed method. We list the
limitation of the proposed method. (1) The proposed method relies on rehearsal selection, which
may affect privacy and extra storage is needed. (2) The proposed method is not fast enough for online
continual learning. In most situations, however, we can leverage our training tricks to reduce the
time. (3) Our method is limited in the extremely small memory size. Large memory size means better
remembering and an accurate validation set. The proposed method does not perform well when the
memory size is extremely small.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] We use public dataset and open-

sourced code.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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