
FuzzAug: Data Augmentation by Coverage-guided Fuzzing
for Neural Test Generation

Anonymous ACL submission

Abstract001

Testing is essential to modern software en-002
gineering for building reliable software.003
Given the high costs of manually creat-004
ing test cases, automated test case genera-005
tion, particularly methods utilizing large006
language models, has become increasingly007
popular. These neural approaches generate008
semantically meaningful tests that are more009
maintainable compared with traditional au-010
tomatic testing methods like fuzzing. How-011
ever, the diversity and volume of unit tests012
in current datasets are limited, especially013
for newer but important languages. In014
this paper, we present a novel data aug-015
mentation technique, FuzzAug, that intro-016
duces the benefits of fuzzing to large lan-017
guage models by introducing valid testing018
semantics and providing diverse coverage-019
guided inputs. Doubling the size of train-020
ing datasets, FuzzAug improves the per-021
formances from the baselines significantly.022
This technique demonstrates the potential023
of introducing prior knowledge from dy-024
namic software analysis to improve neu-025
ral test generation, offering significant en-026
hancements in neural test generation.027

1 Introduction028

Testing is one of the most important processes029

in software engineering, ensuring the quality030

and reliability of large software applications.031

Unit tests are example-based self-assessment032

tests written and executed by the developer to033

demonstrate that the software works correctly034

as described in the design specification (Rune-035

son, 2006). However, despite its importance,036

developers do not always contribute new tests037

due to the difficulty of identifying which code038

to test, isolating them as fine-grained units,039

and finding relevant inputs (Daka and Fraser,040

2014). Heuristic-based automatic unit test gen-041

eration (Pacheco and Ernst, 2007; Fraser and042

Arcuri, 2011) is one solution to these issues, 043

but the resulting tests are unsatisfactory in 044

readability, correctness, and diversity of rele- 045

vant input-output pairs (Panichella et al., 2020). 046

Other popular automatic randomized testing 047

methods, e.g. fuzzing (Serebryany, 2016), often 048

ignores readability and focuses only on gener- 049

ating inputs to find new program behaviors, 050

i.e. new coverage or crashes. However, these 051

randomized testing methods only provide the 052

input that triggers the bug with no valid seman- 053

tics. These reported input seeds are usually 054

not as informative as unit test functions in prac- 055

tice (Goldstein et al., 2024). Therefore, finding 056

semantic meaningful test cases correctly and 057

effectively remains an unsolved problem. 058

More recently, people have attempted to 059

overcome these issues by leveraging the power 060

of generative language models (Nie et al., 2023; 061

Rao et al., 2024; He et al., 2024). Large lan- 062

guage models (LLMs) trained on large code 063

corpora can write meaningful programs given 064

text descriptions (Bai et al., 2023; Rozière et al., 065

2023; Lozhkov et al., 2024). Therefore, with 066

sufficiently large code and test datasets, we 067

expect that LLMs could generate high-quality 068

unit tests to assist human software engineers. 069

However, testing functions typically occupy 070

a minor fraction of a software repository, com- 071

pared with regular functions for software fea- 072

tures. Rao et al. (2024) found that in popular 073

Python and Java repositories, test files com- 074

prise fewer than 20% of all code files. This de- 075

ficiency in training data hampers the ability of 076

LLMs to generate practical tests for production 077

environments for two reasons: 1. the imbal- 078

ance in training data causes the model to miss 079

critical details in the units under test. 2. the 080

insufficient amount of testing code presents 081

a significant challenge in learning the repre- 082

sentations of unit tests adequately. Previous 083

1

work addressed the imbalance issue by align-084

ing code and tests into pairs (Rao et al., 2024;085

He et al., 2024). However, the second issue086

remains unsolved, and is further amplified087

by the trend of switching to newer program-088

ming languages for better maintainability and089

reliability, e.g. redesigning software in Rust.090

A promising strategy to further enhance the091

existing state-of-the-art unit test datasets is de-092

signing a new specialized data augmentation093

(DA) method for LLM-based test generation. In094

computer vision, data augmentation typically095

involves applying randomized geometric or096

color transformations or injecting random noise097

to images in the training set. However, these098

methods are unsuitable for programming lan-099

guages (PLs) due to their formal grammar and100

strict semantics. Limited research (Yu et al.,101

2022) on DA for PL is not suitable for test gen-102

eration, as they do not introduce new test cases103

that explore the behavior of the program. Unit104

test functions provide correct setups to invoke105

the functions under test (focal functions), and106

test inputs are fed to the focal functions to107

explore their functionality at run-time. Conse-108

quently, a valid data augmentation method for109

test generation must incorporate semantically110

meaningful unit test functions, coupled with111

randomized yet valid testing inputs tailored to112

the specific functions under test.113

To address these challenges, we propose114

FuzzAug. FuzzAug, as depicted in Figure 1,115

is a direct and effective data augmentation116

technique utilizing fuzzing data to enhance117

test generation with LLMs. Fuzzing identi-118

fies vulnerabilities in software by randomly119

generating inputs to trigger new execution120

paths in software. These inputs capture the121

program’s runtime behavior and thus can en-122

hance the code understanding capabilities of123

LLMs (Zhao et al., 2023; Huang et al., 2024). For124

implementing fuzzing data as a form of data125

augmentation, we perform code transforma-126

tions on fuzz targets in libFuzzer (Serebryany,127

2016) to create new unit test functions. Fuz-128

zAug nearly doubles the limited amount of129

testing code in training datasets and provides130

a richer diversity of accurate and executable131

inputs for the focal functions. Training LLM-132

based test generation models with FuzzAug133

addresses the aforementioned issues by auto-134

matically providing unit test functions with135

high-quality test inputs. Thus, FuzzAug is 136

a novel approach in training practical LLM- 137

based unit test assistance, enhancing software 138

robustness and maintaining test readability. 139

To assess the effectiveness of FuzzAug, we 140

conducted experiments with three different 141

state-of-the-art 7B open-source code genera- 142

tion models. Each model was trained on two 143

datasets: on the original UniTSyn (He et al., 144

2024) dataset and its FuzzAug-augmented 145

counterpart. All three models trained with 146

FuzzAug consistently outperformed their 147

counterparts trained on only UniTSyn, and out- 148

performed the pre-trained/instruction-tuned 149

baseline significantly. They demonstrated sig- 150

nificant improvements in generating accurate 151

test cases (assertions) and useful test functions 152

that achieved higher code coverage. 153

Our contributions. 1. We introduce Fuz- 154

zAug, a novel data augmentation method 155

specifically designed for neural test generation 156

LLMs to address the limitations of existing 157

training datasets. 2. We build and release the 158

Rust version of UniTSyn, aiming at training test 159

generation models for Rust programs. Further- 160

more, we apply FuzzAug to this dataset and 161

release the resulting augmented dataset, en- 162

hancing its utility for advanced model training. 163

3. We validate the efficacy of FuzzAug by train- 164

ing generative LLMs on the UniTSyn dataset 165

augmented by it. The notable improvement 166

underscores the necessity and advantages of 167

incorporating fuzzing-augmented testing func- 168

tions into the training corpus, demonstrating 169

the practical benefits of our approach. 170

2 Design of FuzzAug 171

2.1 Challenges 172

Generating meaningful test functions as train- 173

ing data for neural test generation models is 174

a complex and critical challenge. To intro- 175

duce high-quality random data for training 176

test generation models, a data augmentation 177

method should satisfy the following require- 178

ments: 1. The randomly generated data must 179

be meaningful and valid to the software test- 180

ing context, i.e., the random data should be 181

able to explore the program’s behavior space. 182

2. The augmentation modification must pro- 183

vide valid testing semantics in the unit test 184

2

Figure 1: Data Augmentation by fuzzing for neural test generation. To construct the augmented dataset,

we first extract unit test functions (Listing 1) and fuzzing targets (Listing 2). We instrument each fuzz

target with a reporter (Listing 3) to collect fuzzing seeds. We transform each fuzz target into a unit test

template (Listing 4). Finally, we instantiate the templates with valid test inputs to create the augmented

training dataset (Listing 5). Please refer to Figure 2 for examples of each step.

functions. As stated by Pacheco and Ernst185

(2007), unit test functions must correctly parse186

the random input, set up the state by invoking187

the focal function, and assert the result of the188

final call is desired when possible.189

Therefore, designing data augmentation to190

train test generation models involves creating191

a sophisticated balance. On the one hand,192

introducing sufficient variability to train the193

models under diverse conditions is essential to194

generate high-quantity test cases. On the other195

hand, maintaining the semantic integrity of196

augmented test functions is crucial to ensure197

the validity of training data. This makes the198

development of FuzzAug not only challenging199

but also vital for advancing the capabilities of200

neural test generation with language models.201

2.2 Fuzzing for Random Input202

The first requirement ensures that the ran-203

domly generated data is beneficial to model204

training. High-quality test cases are expected205

to reflect the behavior of the programs, which206

is hard to achieve by data augmentation for207

natural language data. To improve the model’s208

ability to generate useful test cases, the data209

augmentation method needs to be aware of210

the program’s structure and behavior.211

Fuzzing. Fuzzing is a widely used software212

testing method that generates inputs randomly213

to explore unseen program behaviors (Zeller214

et al., 2019). Coverage-guided fuzzing can be215

summarized as a four-stage loop consisting of216

input generation, program execution, behavior217

monitoring, and input ranking. First, the pro-218

gram is executed with a given input. During 219

execution, the program’s dynamic behavior, 220

particularly branch coverage, is monitored to 221

collect coverage information. If a new behavior 222

is observed, the triggering input is saved in a 223

seed queue and prioritized for next round of 224

mutation; otherwise, it is discarded. Finally, 225

the mutator modifies the input for the next 226

cycle to explore new behaviors. Various mu- 227

tation, behavior monitoring, seed scheduling 228

strategies have been studied to enhance the 229

quality of input seeds during fuzzing (Böhme 230

et al., 2016, 2017; Chen and Chen, 2018; She 231

et al., 2019), and are integrated to the modern 232

fuzzers like LibFuzzer (Serebryany, 2016). 233

Fuzzers select input seeds by executing the 234

programs, these inputs embed the program’s 235

dynamic behavior and are thus able to discover 236

bugs and vulnerabilities in the program. Pre- 237

vious studies (Zhao et al., 2023; Huang et al., 238

2024) show that fuzzing input-output pairs 239

are helpful for language models to understand 240

programs. Therefore, we argue that random 241

inputs generated by fuzzers are also suitable to 242

contribute to randomized mutation for testing 243

function data augmentation. Thus, this first 244

requirement is satisfied by engaging fuzzing 245

in the data augmentation process. 246

LibFuzzer (Serebryany, 2016) allows users to 247

define custom fuzz targets to specify the most 248

important functions as entry points for test- 249

ing. We select libFuzzer for its function-level 250

fuzzing feature to ensure syntax correctness 251

when invoking the corresponding focal func- 252

tion. If we can compile and run the fuzz target 253

3

1 #[test]
2 fn encode_all_bytes_url () {
3 let bytes: Vec <u8> = (0..=255).collect ();
4 assert_eq!(
5 "...", // expected result
6 &engine :: GeneralPurpose ::new(&URL_SAFE ,

PAD).encode(bytes)
7);
8 }

Listing (1) Unit test function extracted from repository

1 #![no_main]
2 #[macro_use] extern crate libfuzzer_sys;
3 extern crate base64;
4 use base64 ::*;
5 mod utils;
6 fuzz_target! (|data: &[u8]| {
7 let engine = utils:: random_engine(data);
8 let _ = engine.decode(data);
9 });

Listing (2) Fuzz target extracted from repository

1 fuzz_target! (|data: &[u8]| {
2 report(data); // example reporter
3 let engine = utils:: random_engine(data);
4 let _ = engine.decode(data);
5 });

Listing (3) Fuzz target instrumented with reporter

1 #[test]
2 fn test_template () {
3 let data = []; // example template
4 let engine = utils:: random_engine(data);
5 let _ = engine.decode(data); }

Listing (4) Test template transformed from fuzz target

1 #[test]
2 fn test_1 () {
3 let data = [3,44,12,3,21,2,255,12,4,34,12,4,12,3]; // example recorded test input
4 let engine = utils:: random_engine(data);
5 let _ = engine.decode(data); }

Listing (5) Unit test function instantiated from test template with a seed generated by fuzzing

Figure 2: Simplified examples from base64 (Pierce, 2024) in our collected Rust dataset. Each example

listing corresponds to one step in Figure 1. Please refer to Section A.2 for details of unit testing in Rust.

successfully, we are confident that the testing254

code is valid training data for the language255

model. Therefore, the validity of FuzzAug is256

guaranteed. To collect inputs with the pro-257

gram’s dynamic behavior from the fuzzing258

loop, we instrument a reporter to each fuzz259

target as shown in Figure 1. After all the fuzz260

targets in the project are instrumented, we261

start the fuzzing loop for each target and save262

the reported inputs as a randomly generated263

portion of our data augmentation process.264

2.3 Unifying Code Representation265

For code generation with causal language mod-266

eling, valid and complete training data with267

appropriate semantics within the tokens is268

beneficial. Therefore, to avoid any distribu-269

tion shift between unit test functions and data270

augmentation, we cannot append inputs gen-271

erated by fuzzing to training data directly due272

to the distinct representations between raw273

fuzzing inputs and meaningful unit test func-274

tions. Fuzzers treat all inputs as bytes and275

apply byte-level random mutations, for exam-276

ple, bit-flip. Previous work on using fuzzing277

data for code understanding tasks decodes the278

raw inputs into strings and append the inputs279

to the program (Zhao et al., 2023) or uses differ-280

ent language modeling loss functions for two281

kinds of data (Huang et al., 2024). However,282

these approaches do not apply to generative 283

models, so we need to design a different repre- 284

sentation for fuzzing data. 285

We implement a syntax transformation in 286

the compiler frontend to obtain valid new test 287

functions to keep testing semantics. We com- 288

piled these candidates (Listing 2) into Abstract 289

Syntax Trees (ASTs) and extracted the function 290

bodies from each AST using proc_macro (David 291

Tolnay and Alex Crichton, 2024) and syn (David 292

Tolnay, 2024). Then we rewrite the macro for 293

fuzz targets into valid function definitions with 294

the #[test] attribute on top to help test discov- 295

ery (Listing 4). We call the result of syntax 296

transformation test template. We demonstrate a 297

fuzz target and its transformed test template 298

in Figure 1. These test templates are stored for 299

actual data augmentation at a later stage. 300

2.4 Fuzz Augmentation 301

To ensure the quality of the augmented data, 302

we employed an input selection algorithm as 303

shown in Algorithm 1. Raw inputs collected 304

from fuzzing have two drawbacks. First, there 305

will be repeated or overlapping inputs col- 306

lected from fuzzing. Fuzzing applies mutation 307

on inputs that explore new paths in the pro- 308

gram. Therefore, consecutive inputs differ only 309

in small parts, which should be avoided. 310

Second, since the input data are generated 311

4

Algorithm 1 Fuzzing as Data Augmentation

1: function FuzzAug(repo, N , L, timeout)
2: ▷ repo = repository to apply FuzzAug

3: ▷ N = number of training examples to generate

4: ▷ L = maximum input length for collection

5: ▷ timeout = maximum allowed fuzzing time

6: datasetaug ← []

7: for all t ∈ GetFuzzTarget(repo) do
8: t′ ← ReporterInstrumentation(t)
9: inputs← Fuzz(t′, timeout)

10: inputs′ ← Filter(λx : len(x) < L, inputs)

11: selected← Sample(N , inputs′)
12: templates← SyntaxTransformation(t)
13: aug ← Instantiate(templates[: N], selected)

14: datasetaug ← datasetaug + aug

15: return datasetaug

Dataset # Repo # Focal # Pairs # Tokens

Unit tests 249 14 633 7881 2.5M

Fuzz 179 14 790 6811 2.2M

All 249 29 423 14 692 4.7M

Table 1: Dataset statistics. Unit tests: the base

dataset we collected from code repositories using

UniTSyn (He et al., 2024). Fuzz: the dataset we

transformed from fuzz targets using Algorithm 1,

where N = 40. Augmented dataset: the combina-

tion of unit tests and fuzz.

randomly by libFuzzer (Serebryany, 2016), the312

token length for those inputs can be exces-313

sively long. This behavior happens especially314

commonly when the input type is a vector or315

long number (i64, f64, etc) since the length of316

the vectors or numbers is not a problem for317

fuzzing. However, for generative models, the318

acceptable token length is much smaller, so319

such long inputs will harm the performance of320

the model. To overcome the aforementioned321

issues, we designed our selection algorithm322

to first shuffle the inputs and then sample the323

desired inputs within a given length. Our algo-324

rithm samplesN fuzzing inputs that satisfy the325

requirements to instantiate the test templates326

for unique data augmentation (Listing 5).327

3 Experimental Setup328

3.1 Data Collection329

We chose Rust language to conduct this re-330

search for three reasons. First, Rust projects331

are highly structured with src/, tests/, and332

fuzz/ directories on the top level. With the333

cargo package manager, we can build and run334

the project without solving dependency issues.335

Second, the Rust compiler has built-in sup- 336

port for unit testing and fuzzing, so collecting 337

unit tests and fuzzing data is straightforward. 338

Third, Rust’s syntax for libFuzzer passes a clo- 339

sure to a predefined macro, so we can apply 340

syntax transformation described in Section 2.3 341

to the fuzz targets. Rust is one of the most pop- 342

ular languages for security-critical software, 343

and yet is new compared to older languages 344

like C/C++, further lighting the necessary for 345

effective data augmentation. We follow UniT- 346

Syn (He et al., 2024) to collect the training data 347

from open-source repositories on GitHub. 348

Unit test collection. Different from previous 349

work training on file-level code-test pairs (Rao 350

et al., 2024), we follow previous work (Nie et al., 351

2023; He et al., 2024) to collect our training data 352

as function-level code-test pairs since it suits 353

our data augmentation method. We imple- 354

ment the Rust hook for the UniTSyn (He et al., 355

2024) based on the #[test] attribute on top of 356

the Rust unit test functions. To find the call to 357

the focal function, since assertion in Rust is a 358

macro instead of a keyword or function as in 359

UniTSyn, we extend the framework to handle 360

this marco special case. From the downloaded 361

repositories, we found 14 633 calls to the focal 362

functions in the unit tests, and collected 7881 363

focal-test pairs as training data. 364

Augmented test collection. We chose LLVM 365

libFuzzer (Serebryany, 2016) to utilize the pre- 366

defined fuzz targets in the code repositories. 367

For Rust, libFuzzer is supported as cargo-fuzz. 368

We instrumented each fuzz target in the repos- 369

itory to report the input fuzzing data. We 370

transform the body of the fuzz target macro to 371

an equivalent unit test template, as described in 372

Figure 1. We fuzzed all targets for one minute 373

following previous work (Zhao et al., 2023; 374

Huang et al., 2024) on fuzzing for code under- 375

standing. All fuzzing processes are performed 376

on a server with dual 20-core, 40-thread x86_64 377

CPUs and 692 GB of RAM. Out of the 249 378

repositories we downloaded, 179 of them can 379

be compiled successfully for fuzzing. For the 380

main experiments, we set N = 40 so that the 381

augmented data is at the same scale as the orig- 382

inal unit test dataset, and explore the effects of 383

scaling N later in Section 4.4. We collected in 384

total of 6811 additional code-test pairs gener- 385

ated by FuzzAug. The statistics of the collected 386

5

Base Model

Method StarCoder2 CodeQwen1.5 CodeLlama

UniTSyn UnitCoder UnitQwen UnitLlama

FuzzAug FuzzCoder FuzzQwen FuzzLlama

Table 2: Our model selection for evaluation.

Base Model: names of the baseline models used

for applying the fine-tuning methods.

unit test dataset and data augmentation are387

summarized in Table 1.388

3.2 Baseline Models389

We select three baselines to evaluate FuzzAug.390

StarCoder2 (Lozhkov et al., 2024) is the succes-391

sor of UniTSyn’s base model SantaCoder (Allal392

et al., 2023). We follow EvalPlus (Liu et al.,393

2023) to select the best-performing 7B code gen-394

eration model CodeQwen1.5 (Bai et al., 2023).395

Finally, we experiment on CodeLlama (Rozière396

et al., 2023) to compare against its instruction-397

tuned baseline. The complete model selection398

and naming are in Table 2. Our training details399

are in Section A.1.400

3.3 Research Questions401

To evaluate FuzzAug, we structure our experi-402

ments around the following research questions403

on the quality of generated unit tests:404

RQ.1. Can FuzzAug improve the accuracy of405

generated test cases? Software testing aims406

to discover hidden bugs in the code. The pre-407

requisite of this aim is to have accurate test cases,408

where the generated input and output to the409

focal function match with the ground truth.410

Therefore, accuracy of generated test cases is411

an essential metric for software testing. Gener-412

ating accurate test cases requires the model to413

learn both the semantics and runtime behavior414

of the focal function, which is challenging for415

language models (Gu et al., 2024). We follow416

previous work (Chen et al., 2023a; He et al.,417

2024) to extract the first 10 generated test cases418

to examine their standalone correctness. We419

compile and execute these test cases against420

the ground truth focal function independently.421

RQ.2. Can FuzzAug improve the validity and422

completeness of generated unit tests? Ac-423

curate assertions are essential for unit testing,424

while completeness and validity are necessary425

for generated test functions to be practical. A426

generated test function is valid if it can be com- 427

piled and executed. On the other hand, a test 428

function is complete if it can cover all of the 429

branches of the focal function. Therefore, we 430

follow UniTSyn to use the compile rate of the 431

whole generated unit test functions and branch 432

coverage on the focal functions to check the va- 433

lidity and completeness of the generated unit 434

test functions. We use grcov (Marco Castelluc- 435

cio, 2024) to measure the branch coverage. 436

RQ.3. Can FuzzAug generalize to other mod- 437

els? Data augmentation is a training-time 438

technique that should improve the perfor- 439

mance of all models in the same task. 440

RQ.4. The effect of further scaling FuzzAug. 441

It is possible to further scale-up FuzzAug, so 442

we explore the effects of hyperparameter N . 443

3.4 Evaluation Setup 444

Benchmark dataset. We follow UniTSyn to 445

evaluate the models on HumanEval-X (Zheng 446

et al., 2023), a hand-crafted benchmark for 447

code generation tasks that contains Rust. 448

HumanEval-X has 164 different problems, 449

where each of them is composed of description 450

prompt in natural language, function declara- 451

tion (header), canonical solution (ground truth 452

implementation), and unit test function. We 453

follow UniTSyn to use the canonical solution as 454

the focal function, and let the model generate 455

the corresponding test function. 456

Prompts. We follow Chen et al. (2023a) to 457

guide the language models in generating as- 458

sertions (Listing 6). We use natural language 459

“Check the correctness of `function_name`” in 460

comments to instruct the model to complete 461

the test function. We guide the generation of 462

assertions by providing the language-specific 463

assert keyword and the incomplete invocation 464

of the focal function. We allow the model to 465

predict at most 1024 new tokens for the syn- 466

thesized assertions for all models. We set the 467

generation temperature to 1 for all the models 468

to encourage output diversity. We concatenate 469

the import statements, the focal function im- 470

plementation, the natural language instruction 471

in the comment, and the test header together 472

as the import prompt to the language model. 473

Post-processing. We avoid overly intricate 474

processing of the generated test functions to 475

6

1 fn has_close_elements(numbers: Vec <f32 >,
threshold: f32) -> bool { ... }

2 // Check the correctness of `
has_close_elements `

3 #[cfg(test)]
4 mod tests {
5 use super ::*;
6 #[test]
7 fn test_has_close_elements () {
8 assert_eq!(has_close_elements(

Listing 6: Example prompt used for test generation.

Import statements are removed for simplicity.

keep our evaluation results faithful. We first476

count the number of the curly brackets. If the477

numbers do not match, we check if the last478

generated line ended with a semicolon to see if479

the last line is complete. If not, we remove that480

line. Then we add the missing closing curly481

brackets to complete the generated test.482

4 Evaluation Results483

We report our experimental results on the per-484

formance of neural test generation in this sec-485

tion. We categorize the models into three486

groups: pre-trained (PT), instruction-tuned487

(IT), and fine-tuned (FT) models. PT and IT488

models are the baselines, while FT models are489

further trained with UniTSyn and FuzzAug.490

4.1 Test Case Correctness491

We follow CodeT (Chen et al., 2023a) to guide492

the language models in generating indepen-493

dent test cases (assertions). Since the asser-494

tions are independent, we can parse them and495

evaluate each one of them individually. We496

present the evaluation results in Table 3. No-497

tably, CodeQwen1.5 is the strongest model in498

this assertion compile rate evaluation, where499

we observe an increase of +14.38% over Cod-500

eQwen1.5 and +7.37% over UnitQwen. For501

assertion accuracy, We observe a +10.49% in-502

crease over CodeQwen1.5 and a +6.16% in-503

crease over UnitQwen.504

4.2 Test Validity and Completeness505

To evaluate if FuzzAug can help the model gen-506

erate valid unit test functions, we evaluate the507

generated unit test functions without extract-508

ing the individual assertions. Results for this509

experiment are shown in Table 4. For whole510

test function compile rate, FuzzAug also shows511

stable improvements on all models. On the512

strongest model, CodeQwen1.5, we observe513

an increase of +4.88% over CodeQwen1.5 and514

Model Type Assert. CR Acc

StarCoder2 PT 64.09 31.83

UnitCoder FT 65.73 32.99

FuzzCoder FT 70.98 35.50

CodeLlama IT 64.57 32.13

UnitLlama FT 70.79 34.70

FuzzLlama FT 75.67 37.07

CodeQwen1.5 PT 66.52 41.71

UnitQwen FT 73.54 46.04

FuzzQwen FT 80.91 52.20

Table 3: Accuracy of tests generated by LLMs. The

best results are highlighted in bold. Assert. CR:

the compile rate of the individual assertions. Acc:

accuracy of individual assertions.

Model Type Func. CR Cov

StarCoder2 PT 45.73 9.88

UnitCoder FT 48.17 11.92

FuzzCoder FT 59.56 17.09

CodeLlama IT 54.88 15.75

UnitLlama FT 64.02 16.23

FuzzLlama FT 71.95 19.52

CodeQwen PT 68.29 20.90

UnitQwen FT 60.37 20.76

FuzzQwen FT 73.17 24.63

Table 4: Evaluations of usefulness of generated unit

tests. Func. CR: the compile rate of generated unit

test functions. Cov: the average branch coverage of

generated unit test functions on the focal functions.

+12.80% over UnitQwen. 515

FuzzAug also improves the average branch 516

coverage consistently. For CodeQwen1.5, we 517

observe an increase of +3.73% over Code- 518

Qwen1.5 and +3.87% over UnitQwen. Achiev- 519

ing high branch coverage is a hard task for 520

LLMs, as it requires deep understanding and 521

reasoning ability over the function’s control 522

flow. For reference, even with known overfit- 523

ting issues (Jain et al., 2024), GPT-4 can only 524

achieve an average branch coverage of 47.94%. 525

4.3 Generalizability of FuzzAug 526

Useful data augmentation methods should 527

work on different models. We fine-tune three 528

different models with FuzzAug and evaluate 529

their performance, where all models trained 530

7

with FuzzAug show improvements over the531

baseline pre-trained models and UniTSyn.532

4.4 Scaling FuzzAug533

We explore the effects of scaling FuzzAug to534

construct larger training datasets. To assess535

the impact of varying amounts of fuzzing in-536

puts, we train models with N = 40, 60, 80, 100537

fuzzing samples for this experiment.538

As shown in Appendix Figure 5, the impact539

of scaling FuzzAug is not consistent across540

models. In particular, for the stronger base541

model CodeQwen1.5, increasing N does not542

lead to significant changes. Conversely, for543

weaker base models, scaling N improves both544

assertion accuracy and compile rate. When545

evaluating the test function compile rate, both546

FuzzLlama and FuzzCoder exhibit a positive547

correlation with increasing N . Additionally,548

FuzzLlama’s accuracy improves with larger N ,549

while other metrics show no clear trend.550

The results suggest that dataset size alone551

is not the primary factor influencing model552

performance. Instead, the quality of data aug-553

mentation, driven by the test semantics of the554

fuzz targets and coverage-guided inputs, plays555

a more crucial role. Therefore, we recommend556

selecting N at a scale comparable to the origi-557

nal training dataset, which should be enough.558

5 Related Work559

5.1 Fuzzing560

Fuzz testing (Zeller et al., 2019), or fuzzing,561

is a popular execution-based dynamic testing562

technique with randomized inputs in various563

software domains (Rong et al., 2020; Chen564

et al., 2023b; Rong et al.). Fuzzing aims to565

generate a set of inputs based on the provided566

set of seeds to achieve high code coverage. The567

fuzzer uses behavior monitoring to find inputs568

with high branch coverage and favors those569

inputs for future input generation (Chen and570

Chen, 2018; She et al., 2019; Rong et al., 2024).571

LibFuzzer (Serebryany, 2016) is integrated into572

the LLVM compiler infrastructure (Lattner and573

Adve, 2004), and can also be used in other main-574

stream languages (Intelligence, 2024; Google).575

Fuzzing for machine learning. Inputs gener-576

ated by coverage-guided fuzzing can benefit577

language models in understanding programs,578

as they contain information about the pro- 579

gram’s dynamic behavior (Zhao et al., 2023; 580

Huang et al., 2024). Fuzzing was also adopted 581

as a data augmentation tool to improve the ro- 582

bustness of neural networks (Gao et al., 2020). 583

5.2 Test Generation via LLMs 584

Using especially LLMs to generate test cases 585

is a new trend in automatic software testing. 586

This method is referred to as neural test gener- 587

ation. The direct approach toward neural test 588

generation is to instruct pre-trained code gener- 589

ation LLMs (Rozière et al., 2023; Lozhkov et al., 590

2024), or foundation models (Achiam et al., 591

2023; Schäfer et al., 2024; Tang et al., 2024). The 592

other approach is to train test-specific models 593

that are specialized in generating test cases or 594

test functions (Watson et al., 2020; Tufano et al., 595

2021; Dinella et al., 2022; Alagarsamy et al., 596

2023). The more recent work (Nie et al., 2023; 597

Rao et al., 2024; He et al., 2024) proposed to 598

train the test generation model on aligned data 599

that includes the correspondence between the 600

unit test and the function under test (focal). 601

6 Conclusion 602

We developed FuzzAug, a data augmentation 603

method for unit test function generation. Fuz- 604

zAug combines the advantages of coverage- 605

guided fuzzing and generative large language 606

models to generate tests that are not only se- 607

mantically meaningful but also strategically 608

comprehensive. We applied FuzzAug to fine- 609

tune three state-of-the-art 7B open-source code 610

generation models to demonstrate the effective- 611

ness of FuzzAug. We collect our experimental 612

dataset on Rust crates that have pre-defined 613

fuzzers as a Rust extension to UniTSyn. Our 614

method can be generalized to all languages 615

that OSS-Fuzz supports with slight modifica- 616

tions. Our results show the effectiveness of 617

employing dynamic program analysis to gen- 618

erate high-quality inputs to augment the code 619

corpus in training language models. We be- 620

lieve FuzzAug can spur the development of 621

unit test generation by large language models 622

and contribute to the field of AI for software 623

engineering and testing. Our code and arti- 624

facts are available anonymous (link), and will 625

be publicly available after publication. 626

8

https://doi.org/10.5281/zenodo.14873588

Limitations and Future Work627

In this section, we discuss the potential con-628

cerns of our design and limitations. We struc-629

ture each concern we foresaw and the discus-630

sion of them as subsections.631

Applying to Different Languages632

On the high level, fuzzing is a programming633

language agnostic testing approach. LibFuzzer634

is part of the LLVM (Lattner and Adve, 2004),635

which supports any language that can be com-636

piled to LLVM intermediate representation.637

Currently, OSS-Fuzz (Serebryany, 2017) sup-638

ports C/C++, Rust, Go, Python, and Java/JVM639

code, and other LLVM-supported languages.640

Syntax transformation from fuzz targets to641

unit test templates differs for languages. How-642

ever, the general framework can be defined in a643

language-agnostic manner. UniTSyn (He et al.,644

2024) is a multi-lingual framework to collect645

unit test functions based on tree-sitter, which646

can be extended to syntax transformation.647

We choose Rust (Matsakis and Klock, 2014)648

to conduct our study to take advantage of its649

powerful build tool cargo1
. Cargo-fuzz2

allows650

software developers to define their fuzz tar-651

gets inside the repository, making it easier for652

us to execute the fuzz targets and apply our653

data augmentation. In principle, our method654

can be generalized to all libFuzzer-supported655

languages, and their corresponding fuzz tar-656

gets can be found in OSS-Fuzz (Serebryany,657

2017). To use FuzzAug in other languages,658

one could locate the fuzz targets in OSS-Fuzz.659

The current limitation of FuzzAug is that only660

languages supported by OSS-Fuzz can be used.661

Applying to Different Datasets662

We followed TeCo (Nie et al., 2023) and UniT-663

Syn (He et al., 2024) to construct our dataset on664

function-level code-test pairs. File-level pair-665

ing approach used in CAT-LM (Rao et al., 2024)666

offers additional benefits by providing more667

relevant context, which is particularly useful668

in less modular, tightly coupling, complex soft-669

ware systems. FuzzAug is applicable to both670

function-level and file-level data to accommo-671

date various types of datasets effectively. Lib-672

Fuzzer maintains separate fuzz targets in differ-673

1https://doc.rust-lang.org/cargo/
2https://github.com/rust-fuzz/cargo-fuzz

ent files. After syntax transformation and fuzz 674

data collection, FuzzAug can insert augmented 675

unit test functions into their original files and 676

adopt CAT-LM’s pairing strategy. This versa- 677

tility enhances FuzzAug’s ability to augment 678

and improve various types of unit test datasets 679

effectively. However, FuzzAug requires the 680

software repositories to compile successfully. 681

Evaluation on Real-World Projects 682

In our experiments, we follow UniTSyn to as- 683

sess the validity and completeness of generated 684

unit test functions using HumanEval-X (Zheng 685

et al., 2023). We did not use real-world Rust 686

projects due to a few challenges. First, as 687

discussed in UniTSyn, it is hard to eliminate 688

data leakage when evaluating on open-source 689

projects. He et al. (2024) conducted a detailed 690

analysis of the data leakage issue, and conclude 691

that user their dataset construction method, 692

there will be no data leakage on HumanEval-X 693

in the training process. 694

Second, we want to minimize the negative 695

impacts of incorrect project setup. Generating 696

unit tests in large open-source software (OSS) 697

requires special setups for each project. These 698

setups for defect testing are hard to construct 699

and require human domain knowledge (Zhu 700

and Rubio-González, 2023). Therefore, choos- 701

ing to evaluate test generation on OSS intro- 702

duces additional bias in the results, which is 703

another thing we want to eliminate. 704

Finally, a hand-crafted and expert-verified 705

benchmark like HumanEval-X offers an oracle 706

implementation of the focal functions. If we 707

use real-world projects to evaluate LLM-based 708

unit test generation and an assertion failed, we 709

have no directly way to distinguish whether the 710

generated unit test is incorrect or there is an ac- 711

tual defect. Previous work (Pacheco and Ernst, 712

2007) in automated unit test generation uses 713

very simple assertions as oracles, such as assert 714

o.equals(o), aimed at finding bugs in code- 715

bases. Our goal is to evaluate the completeness 716

and correctness of the generated unit test func- 717

tions, so we need a benchmark that can provide 718

the oracle implementation of the focal func- 719

tions. One interesting future work direction 720

is to construct a ground-truth benchmark on 721

selected real-world projects for neural test gen- 722

eration, where all the bugs are known and the 723

oracle implementation is available. Examples 724

9

https://doc.rust-lang.org/cargo/
https://github.com/rust-fuzz/cargo-fuzz

in this direction include BugSwarm (Tomassi725

et al., 2019) and Magma (Hazimeh et al., 2020).726

References727

Josh Achiam, Steven Adler, Sandhini Agarwal,728
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-729
man, Diogo Almeida, Janko Altenschmidt, Sam730
Altman, Shyamal Anadkat, et al. 2023. Gpt-4731
technical report. arXiv preprint arXiv:2303.08774.732

Saranya Alagarsamy, Chakkrit Tantithamthavorn,733
and Aldeida Aleti. 2023. A3test: Assertion-734
augmented automated test case generation.735
arXiv preprint arXiv:2302.10352.736

Loubna Ben Allal, Raymond Li, Denis Ko-737
cetkov, Chenghao Mou, Christopher Akiki,738
Carlos Munoz Ferrandis, Niklas Muennighoff,739
Mayank Mishra, Alex Gu, Manan Dey, Lo-740
gesh Kumar Umapathi, Carolyn Jane Ander-741
son, Yangtian Zi, Joel Lamy Poirier, Hailey742
Schoelkopf, Sergey Troshin, Dmitry Abulkhanov,743
Manuel Romero, Michael Lappert, Francesco De744
Toni, Bernardo García del Río, Qian Liu, Shamik745
Bose, Urvashi Bhattacharyya, Terry Yue Zhuo,746
Ian Yu, Paulo Villegas, Marco Zocca, Sourab747
Mangrulkar, David Lansky, Huu Nguyen, Dan-748
ish Contractor, Luis Villa, Jia Li, Dzmitry Bah-749
danau, Yacine Jernite, Sean Hughes, Daniel Fried,750
Arjun Guha, Harm de Vries, and Leandro von751
Werra. 2023. Santacoder: don’t reach for the752
stars! Preprint, arXiv:2301.03988.753

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai754
Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,755
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei756
Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao757
Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui758
Men, Xingzhang Ren, Xuancheng Ren, Chuanqi759
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shĳie760
Wang, Wei Wang, Shengguang Wu, Benfeng Xu,761
Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng762
Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng763
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang764
Zhang, Zhenru Zhang, Chang Zhou, Jingren765
Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.766
Qwen technical report.767

Marcel Böhme, Van-Thuan Pham, Manh-Dung768
Nguyen, and Abhik Roychoudhury. 2017. Di-769
rected greybox fuzzing. In Proceedings of the 2017770
ACM SIGSAC Conference on Computer and Com-771
munications Security, CCS ’17, page 2329–2344,772
New York, NY, USA. Association for Computing773
Machinery.774

Marcel Böhme, Van-Thuan Pham, and Abhik775
Roychoudhury. 2016. Coverage-based grey-776
box fuzzing as markov chain. In Proceedings777
of the 2016 ACM SIGSAC Conference on Com-778
puter and Communications Security, CCS ’16, page779
1032–1043, New York, NY, USA. Association for780
Computing Machinery.781

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang 782
Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu 783
Chen. 2023a. Codet: Code generation with gen- 784
erated tests. In The Eleventh International Confer- 785
ence on Learning Representations. 786

Peng Chen and Hao Chen. 2018. Angora: Effi- 787
cient fuzzing by principled search. In 2018 IEEE 788
Symposium on Security and Privacy (SP), pages 789
711–725. 790

Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao 791
Wang, and Hao Chen. 2023b. Hopper: Inter- 792
pretative fuzzing for libraries. In Proceedings of 793
the 2023 ACM SIGSAC Conference on Computer and 794
Communications Security, CCS ’23, pages 1600– 795
1614, New York, NY, USA. Association for Com- 796
puting Machinery. 797

Ermira Daka and Gordon Fraser. 2014. A survey on 798
unit testing practices and problems. In Proceed- 799
ings of the 2014 IEEE 25th International Symposium 800
on Software Reliability Engineering, ISSRE ’14, page 801
201–211, USA. IEEE Computer Society. 802

David Tolnay. 2024. syn: Parser for Rust source 803
code. 804

David Tolnay and Alex Crichton. 2024. proc- 805
macro2: A substitute implementation of the 806
compiler’s ‘proc_macro‘ API to decouple token- 807
based libraries from the procedural macro use 808
case. 809

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, 810
and Shuvendu K. Lahiri. 2022. Toga: A neural 811
method for test oracle generation. In Proceedings 812
of the 44th International Conference on Software 813
Engineering, ICSE ’22, page 2130–2141, New York, 814
NY, USA. Association for Computing Machinery. 815

Gordon Fraser and Andrea Arcuri. 2011. Evo- 816
suite: automatic test suite generation for object- 817
oriented software. In Proceedings of the 19th ACM 818
SIGSOFT Symposium and the 13th European Con- 819
ference on Foundations of Software Engineering, ES- 820
EC/FSE ’11, page 416–419, New York, NY, USA. 821
Association for Computing Machinery. 822

Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and 823
Abhik Roychoudhury. 2020. Fuzz testing based 824
data augmentation to improve robustness of 825
deep neural networks. In Proceedings of the 826
ACM/IEEE 42nd International Conference on Soft- 827
ware Engineering, ICSE ’20, page 1147–1158, New 828
York, NY, USA. Association for Computing Ma- 829
chinery. 830

Harrison Goldstein, Joseph W. Cutler, Daniel Dick- 831
stein, Benjamin C. Pierce, and Andrew Head. 832
2024. Property-based testing in practice. In 833
Proceedings of the IEEE/ACM 46th International 834
Conference on Software Engineering, ICSE ’24, New 835
York, NY, USA. Association for Computing Ma- 836
chinery. 837

10

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
arXiv preprint arXiv:2309.16609
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://github.com/dtolnay/syn
https://github.com/dtolnay/syn
https://github.com/dtolnay/syn
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3597503.3639581

Google. Atheris: A coverage-guided, native python838
fuzzer. https://github.com/google/atheris.839

Alex Gu, Baptiste Roziere, Hugh James Leather,840
Armando Solar-Lezama, Gabriel Synnaeve, and841
Sida Wang. 2024. CRUXEval: A benchmark for842
code reasoning, understanding and execution.843
In Proceedings of the 41st International Conference844
on Machine Learning, volume 235 of Proceedings845
of Machine Learning Research, pages 16568–16621.846
PMLR.847

Ahmad Hazimeh, Adrian Herrera, and Mathias848
Payer. 2020. Magma: A ground-truth fuzzing849
benchmark. Proc. ACM Meas. Anal. Comput. Syst.,850
4(3).851

Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo,852
Ethan Wang, and Hao Chen. 2024. Unitsyn:853
A large-scale dataset capable of enhancing the854
prowess of large language models for program855
testing. In International Symposium on Software856
Testing and Analysis (ISSTA), Vienna, Austria.857

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan858
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,859
and Weizhu Chen. 2022. LoRA: Low-rank adap-860
tation of large language models. In International861
Conference on Learning Representations.862

Jiabo Huang, Jianyu Zhao, Yuyang Rong, Yiwen863
Guo, Yifeng He, and Hao Chen. 2024. Code864
representation pre-training with complements865
from program executions. In Proceedings of the866
2024 Conference on Empirical Methods in Natural867
Language Processing: Industry Track (EMNLP),868
pages 267–278, Miami, Florida, US. Association869
for Computational Linguistics.870

Code Intelligence. 2024. jazzer: About coverage-871
guided, in-process fuzzing for the jvm. https:872
//github.com/CodeIntelligenceTesting/jazzer.873

Naman Jain, King Han, Alex Gu, Wen-Ding Li,874
Fanjia Yan, Tianjun Zhang, Sida Wang, Armando875
Solar-Lezama, Koushik Sen, and Ion Stoica. 2024.876
Livecodebench: Holistic and contamination free877
evaluation of large language models for code.878
Preprint, arXiv:2403.07974.879

Vladimir Khorikov. 2020. Unit Testing Principles,880
Practices, and Patterns. Simon and Schuster.881

James Kirkpatrick, Razvan Pascanu, Neil Ra-882
binowitz, Joel Veness, Guillaume Desjardins,883
Andrei A. Rusu, Kieran Milan, John Quan,884
Tiago Ramalho, Agnieszka Grabska-Barwinska,885
Demis Hassabis, Claudia Clopath, Dharshan886
Kumaran, and Raia Hadsell. 2017. Overcom-887
ing catastrophic forgetting in neural networks.888
Proceedings of the National Academy of Sciences,889
114(13):3521–3526.890

Chris Lattner and Vikram Adve. 2004. Llvm: A891
compilation framework for lifelong program892

analysis & transformation. In International sym- 893
posium on code generation and optimization, 2004. 894
CGO 2004., pages 75–86. IEEE. 895

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and 896
Lingming Zhang. 2023. Is your code generated 897
by chatgpt really correct? rigorous evaluation of 898
large language models for code generation. In 899
Proceedings of the 37th International Conference on 900
Neural Information Processing Systems, NIPS ’23, 901
Red Hook, NY, USA. Curran Associates Inc. 902

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: 903
Stochastic gradient descent with warm restarts. 904
arXiv preprint arXiv:1608.03983. 905

Anton Lozhkov, Raymond Li, Loubna Ben Al- 906
lal, Federico Cassano, Joel Lamy-Poirier, Noua- 907
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei 908
Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De- 909
nis Kocetkov, Arthur Zucker, Younes Belkada, 910
Zĳian Wang, Qian Liu, Dmitry Abulkhanov, In- 911
draneil Paul, Zhuang Li, Wen-Ding Li, Megan 912
Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Ev- 913
genii Zheltonozhskii, Nii Osae Osae Dade, Wen- 914
hao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 915
Xuanli He, Manan Dey, Edoardo Abati, Yekun 916
Chai, Niklas Muennighoff, Xiangru Tang, Muh- 917
tasham Oblokulov, Christopher Akiki, Marc 918
Marone, Chenghao Mou, Mayank Mishra, Alex 919
Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier 920
Dehaene, Nicolas Patry, Canwen Xu, Julian 921
McAuley, Han Hu, Torsten Scholak, Sebastien 922
Paquet, Jennifer Robinson, Carolyn Jane Ander- 923
son, Nicolas Chapados, Mostofa Patwary, Nima 924
Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferran- 925
dis, Lingming Zhang, Sean Hughes, Thomas 926
Wolf, Arjun Guha, Leandro von Werra, and 927
Harm de Vries. 2024. Starcoder 2 and the stack v2: 928
The next generation. Preprint, arXiv:2402.19173. 929

Marco Castelluccio. 2024. grcov: Rust tool to collect 930
and aggregate code coverage data for multiple 931
source files. 932

Nicholas D Matsakis and Felix S Klock. 2014. 933
The rust language. ACM SIGAda Ada Letters, 934
34(3):103–104. 935

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Ray- 936
mond J. Mooney, and Milos Gligoric. 2023. 937
Learning deep semantics for test completion. 938
In Proceedings of the 45th International Conference 939
on Software Engineering, ICSE ’23, page 2111–2123. 940
IEEE Press. 941

Carlos Pacheco and Michael D. Ernst. 2007. Ran- 942
doop: feedback-directed random testing for java. 943
In Companion to the 22nd ACM SIGPLAN Con- 944
ference on Object-Oriented Programming Systems 945
and Applications Companion, OOPSLA ’07, page 946
815–816, New York, NY, USA. Association for 947
Computing Machinery. 948

Annibale Panichella, Sebastiano Panichella, Gor- 949
don Fraser, Anand Ashok Sawant, and Vincent J 950

11

https://github.com/google/atheris
https://proceedings.mlr.press/v235/gu24c.html
https://proceedings.mlr.press/v235/gu24c.html
https://proceedings.mlr.press/v235/gu24c.html
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://doi.org/10.18653/v1/2024.emnlp-industry.21
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://github.com/mozilla/grcov
https://doi.org/10.1109/ICSE48619.2023.00178
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902

Hellendoorn. 2020. Revisiting test smells in au-951
tomatically generated tests: limitations, pitfalls,952
and opportunities. In 2020 IEEE international953
conference on software maintenance and evolution954
(ICSME), pages 523–533. IEEE.955

Marshall Pierce. 2024. base64: encodes and de-956
codes base64 as bytes or utf8.957

Alec Radford, Jeffrey Wu, Rewon Child, David958
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.959
Language models are unsupervised multitask960
learners. OpenAI blog, 1(8):9.961

Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues,962
and Vincent J. Hellendoorn. 2024. Cat-lm train-963
ing language models on aligned code and tests.964
In Proceedings of the 38th IEEE/ACM International965
Conference on Automated Software Engineering,966
ASE ’23, page 409–420. IEEE Press.967

Yuyang Rong, Peng Chen, and Hao Chen. 2020.968
Integrity: Finding integer errors by targeted969
fuzzing. In Security and Privacy in Communica-970
tion Networks: 16th EAI International Conference,971
SecureComm 2020, Washington, DC, USA, October972
21-23, 2020, Proceedings, Part I 16, pages 360–380.973
Springer.974

Yuyang Rong, Zhanghan Yu, Zhenkai Weng,975
Stephen Neuendorffer, and Hao Chen. Irfuzzer:976
Specialized fuzzing for llvm backend code gen-977
eration.978

Yuyang Rong, Chibin Zhang, Jianzhong Liu, and979
Hao Chen. 2024. Valkyrie: Improving fuzzing980
performance through deterministic techniques.981
J. Syst. Softw., 209(C).982

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,983
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi984
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,985
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-986
ton, Manish Bhatt, Cristian Canton Ferrer, Aaron987
Grattafiori, Wenhan Xiong, Alexandre Défos-988
sez, Jade Copet, Faisal Azhar, Hugo Touvron,989
Louis Martin, Nicolas Usunier, Thomas Scialom,990
and Gabriel Synnaeve. 2023. Code llama:991
Open foundation models for code. Preprint,992
arXiv:2308.12950.993

Per Runeson. 2006. A survey of unit testing prac-994
tices. IEEE software, 23(4):22–29.995

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank996
Tip. 2024. An empirical evaluation of using large997
language models for automated unit test genera-998
tion. IEEE Transactions on Software Engineering,999
50(1):85–105.1000

Kosta Serebryany. 2016. Continuous fuzzing with1001
libfuzzer and addresssanitizer. In 2016 IEEE1002
Cybersecurity Development (SecDev), pages 157–1003
157. IEEE.1004

Kostya Serebryany. 2017. OSS-Fuzz - google’s con- 1005
tinuous fuzzing service for open source software. 1006
Vancouver, BC. USENIX Association. 1007

Dongdong She, Kexin Pei, Dave Epstein, Junfeng 1008
Yang, Baishakhi Ray, and Suman Jana. 2019. 1009
Neuzz: Efficient fuzzing with neural program 1010
smoothing. In 2019 IEEE Symposium on Security 1011
and Privacy (SP), pages 803–817. 1012

Yutian Tang, Zhĳie Liu, Zhichao Zhou, and Xi- 1013
apu Luo. 2024. Chatgpt vs sbst: A comparative 1014
assessment of unit test suite generation. IEEE 1015
Trans. Softw. Eng., 50(6):1340–1359. 1016

David A. Tomassi, Naji Dmeiri, Yichen Wang, An- 1017
tara Bhowmick, Yen-Chuan Liu, Premkumar T. 1018
Devanbu, Bogdan Vasilescu, and Cindy Rubio- 1019
González. 2019. Bugswarm: mining and contin- 1020
uously growing a dataset of reproducible failures 1021
and fixes. In Proceedings of the 41st International 1022
Conference on Software Engineering, ICSE ’19, page 1023
339–349. IEEE Press. 1024

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, 1025
Shao Kun Deng, and Neel Sundaresan. 2021. 1026
Unit test case generation with transformers and 1027
focal context. Preprint, arXiv:2009.05617. 1028

Cody Watson, Michele Tufano, Kevin Moran, 1029
Gabriele Bavota, and Denys Poshyvanyk. 2020. 1030
On learning meaningful assert statements for 1031
unit test cases. In Proceedings of the ACM/IEEE 1032
42nd International Conference on Software Engineer- 1033
ing. ACM. 1034

Shiwen Yu, Ting Wang, and Ji Wang. 2022. Data 1035
augmentation by program transformation. Jour- 1036
nal of Systems and Software, 190:111304. 1037

Andreas Zeller, Rahul Gopinath, Marcel Böhme, 1038
Gordon Fraser, and Christian Holler. 2019. The 1039
fuzzing book. 1040

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, 1041
and Hao Chen. 2023. Understanding programs 1042
by exploiting (fuzzing) test cases. In Findings 1043
of the Association for Computational Linguistics: 1044
ACL 2023, pages 10667–10679, Toronto, Canada. 1045
Association for Computational Linguistics. 1046

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, 1047
Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, 1048
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and 1049
Jie Tang. 2023. Codegeex: A pre-trained model 1050
for code generation with multilingual bench- 1051
marking on humaneval-x. In Proceedings of the 1052
29th ACM SIGKDD Conference on Knowledge Dis- 1053
covery and Data Mining, KDD ’23, page 5673–5684, 1054
New York, NY, USA. Association for Computing 1055
Machinery. 1056

Hao-Nan Zhu and Cindy Rubio-González. 2023. 1057
On the reproducibility of software defect 1058
datasets. In Proceedings of the 45th International 1059
Conference on Software Engineering, ICSE ’23, 1060
pages 2324–2335. IEEE Press. 1061

12

https://github.com/marshallpierce/rust-base64
https://github.com/marshallpierce/rust-base64
https://github.com/marshallpierce/rust-base64
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1016/j.jss.2023.111886
https://doi.org/10.1016/j.jss.2023.111886
https://doi.org/10.1016/j.jss.2023.111886
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05617
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.1016/j.jss.2022.111304
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1109/ICSE48619.2023.00195
https://doi.org/10.1109/ICSE48619.2023.00195
https://doi.org/10.1109/ICSE48619.2023.00195

Hong Zhu, Patrick A. V. Hall, and John H. R. May.1062
1997. Software unit test coverage and adequacy.1063
ACM Comput. Surv., 29(4):366–427.1064

A Appendix 1065

A.1 Training Details 1066

We follow the previous work (Radford et al., 1067

2019; He et al., 2024) to use an autoregressive 1068

signal for continual training of the pre-trained 1069

base model. We follow UniTSyn for the ba- 1070

sic training configuration. Specifically, each 1071

training example is the concatenation of the 1072

focal function and the unit test function, joined 1073

by a \n new line symbol. Since most of the 1074

training data is around 250 tokens (see Fig- 1075

ure 3), we set the maximum sequence length 1076

to 512 for the tokenizer. We use a batch size 1077

of 128, with gradient accumulation at every 1078

32 steps. We use a 5e−5
learning rate for our 1079

training, with cosine annealing learning rate 1080

decay for each batch (Loshchilov and Hutter, 1081

2016). Following Kirkpatrick et al., we use 0.05 1082

weight decay to make the trained model robust 1083

to catastrophic forgetting. We apply LoRA (Hu 1084

et al., 2022) to the model with the rank r = 16, 1085

α = 16, and 0.05 dropout. We train all the 1086

models, except StarCoder2, for 100 steps (ap- 1087

proximately eight epochs) on four NVIDIA 1088

H100-80GB GPUs. StarCoder2 is trained for 1089

200 steps due to its slower convergence rate 1090

and poor performance.

0 250 500 750 1000 1250 1500 1750 2000
Number of Tokens

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

Figure 3: Token distribution of the dataset.

1091

A.2 Testing in Practice 1092

Unit testing is a software testing technique 1093

that focuses on assessing the correctness of 1094

basic software units (Zhu et al., 1997). In 1095

classical setups, unit tests contain three ma- 1096

jor stages: arrange, act, and assert (Khorikov, 1097

2020). The arrange stage sets up the input data 1098

in the correct format, the act stage invokes the 1099

code under test, and the assert stage checks 1100

the output of the code. If passed, these unit 1101

13

https://doi.org/10.1145/267580.267590

tests can be used as regression tests to ensure1102

the future correctness and security of the soft-1103

ware (Pacheco and Ernst, 2007). Unit tests in1104

software repositories are usually structured as1105

test functions, each encapsulating the semantics1106

of the aforementioned three components. Unit1107

test functions can be identified using language-1108

specific hooks (He et al., 2024).1109

Unit Testing in Rust. Unit testing in Rust is1110

no different from that in other programming1111

languages. Rust provides a built-in test frame-1112

work that allows developers to specify unit1113

test functions using the #[test] or #[cfg(test)]1114

attribute. The rustc compiler can automatically1115

identify these test functions at compile time1116

and includes them only in the test build. Rust1117

offers assertions through the assert! macro,1118

with variants such as assert_eq! and assert_ne!1119

for checking equality and inequality, respec-1120

tively. These assertion macros are used to1121

verify the expected behavior of the code when1122

the tests are executed. An example of a Rust1123

unit test function is shown in Listing 1, illus-1124

trating a simple arrangement on the first line,1125

followed by the action and assertion within1126

the assert_eq! macro on the next line.1127

Fuzzing in Rust. The cargo-fuzz tool pro-1128

vides fuzzing functionality for Rust using Lib-1129

Fuzzer (Serebryany, 2016). However, instead1130

of being defined as a test function, a fuzz tar-1131

get is specified using the fuzz_target! macro,1132

which takes a closure function as an argument.1133

The closure function provides the appropriate1134

testing semantics. Unlike unit test functions,1135

where programmers hardcode test inputs dur-1136

ing the arrange stage, fuzz targets supply ran-1137

domized input data of type &[u8] (a slice of1138

8-bit unsigned integers) to the closure func-1139

tion. The closure function is then responsible1140

for correctly parsing the input into the appro-1141

priate format for the arrange stage. After that,1142

the closure function follows the same seman-1143

tics as a unit test function: the act stage invokes1144

the code under test, and the assert stage ver-1145

ifies its output. As shown in the example in1146

Listing 2, the closure function performs the1147

arrange stage on line 7. This key design of1148

fuzz targets enables syntax transformation to1149

convert a fuzz target into a unit test function,1150

as described in Section 2.3.1151

A.3 Additional Results 1152

Model Type Assert. CR Acc

GPT-4 API 95.53 75.04

Table 5: Accuracy of tests generated by LLMs. The

best results are highlighted in bold. Assert. CR:

the compile rate of the individual assertions. Acc:

accuracy of individual assertions.

Model Type Func. CR Cov

GPT-4 API 93.90 47.94

Table 6: Evaluations of usefulness of generated unit

tests. Func. CR: the compile rate of generated unit

test functions. Cov: the average branch coverage of

generated unit test functions on the focal functions.

A.4 Additional Figures 1153

14

Algorithm 2 Fuzzing as Data Augmentation

1: function ReporterInstrumentation(fuzz_target)
2: AST ← Parse(fuzz_target)
3: entry ← GetBegin(AST) ▷ Pointer to the entry point

4: data← GetParameters(AST)[0]

5: AST ′ ← AddInstruction(AST , entry∗, Report(data)) ▷ Add reporter the entry of AST

6: fuzz_target′ ← Dump(AST ′
)

7: return fuzz_target′

8: function SyntaxTransformation(fuzz_target)
9: AST∗ ← Parse(fuzz_target)

10: body ← ExtractBodyNode(AST∗)
11: test_header ← ... ▷ Language-specific header

12: data_template← ... ▷ Declaring data variable

13: test_ending ← ... ▷ Closing this test definition

14: return test_header + data_template + body + test_ending

15: function FuzzAug(repo, N , L, timeout)
16: ▷ repo = repository to apply FuzzAug

17: ▷ N = number of training examples to generate

18: ▷ L = maximum input length for collection

19: ▷ timeout = maximum allowed fuzzing time

20: datasetaug ← []

21: for all t ∈ GetFuzzTarget(repo) do
22: t′ ← ReporterInstrumentation(t)
23: inputs← Fuzz(t′, timeout) ▷ Collect raw fuzzing inputs

24: inputs′ ← Filter(λx : len(x) < L, inputs)
25: selected← Sample(N , inputs′)
26: templates← Take(N , SyntaxTransformation(t))
27: datasetaug ← datasetaug + Instantiate(templates, selected)

28: return datasetaug

Figure 4: Fuzzing loop for dynamic program testing. This loop shows the process of the collection of

randomized generated data for augmentation.

15

40 60 80 100
N

75

80

As
se

rt.
 C

R

40 60 80 100
N

40

50
Ac

cu
ra

cy

40 60 80 100
N

60

70

Fu
nc

. C
R

40 60 80 100
N

17.5

20.0

22.5

25.0

Co
ve

ra
ge

FuzzQwen FuzzLlama FuzzCoder

Figure 5: The impact of scaling the number of sampled fuzzing inputs on test generation performance.

16

	Introduction
	Design of FuzzAug
	Challenges
	Fuzzing for Random Input
	Unifying Code Representation
	Fuzz Augmentation

	Experimental Setup
	Data Collection
	Baseline Models
	Research Questions
	Evaluation Setup

	Evaluation Results
	Test Case Correctness
	Test Validity and Completeness
	Generalizability of FuzzAug
	Scaling FuzzAug

	Related Work
	Fuzzing
	Test Generation via LLMs

	Conclusion
	Appendix
	Training Details
	Testing in Practice
	Additional Results
	Additional Figures

