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ABSTRACT

Hard examples are the performance bottleneck of machine learning models, and
therefore efficient identification and correct classification of them can significantly
improve the model performance. However, most hard example mining schemes
search for hard examples in randomly selected mini-batches at each epoch, which
often result in local hardest examples and thus sub-optimal performances. Be-
sides, the Triplet Loss is commonly adopted to explore the mined hard examples
by pulling the hard positives close to and pushing the negatives away from the
anchor. However, when the anchor in a triplet is an outlier at or close to the
cluster boundary, the positive example will be pulled away from the centroid of
the cluster, which would result in a incompact cluster, thus inferior performance.
To address the above challenges, we propose a global hardest example mining
with prototype-based Triplet Loss, which is composed of two major componets,
namely Prototype-based Global Hardest Example Miner (GHEM) and Prototype-
based Triplet Loss (pTriplet). First, a global hardest example miner (GHEM) is
present to mine the global hardest classes on the prototype-based nearest neighbor
graph of classes, and then the global hardest examples by searching for exam-
ples at the intersection between clusters. Second, a prototype-based Triplet Loss
(pTriplet) is developed, which replaces the outlier anchor with a anchor-fused pro-
totype to alleviate the influence of the outlier anchor and provides a normal anchor
for Triplet Loss. Extensive experiments on typical Computer Vision (CV) and
Natural Language Processing (NLP) tasks, namely person re-identification and
few-shot relation extraction, demonstrated the effectiveness and generalizability
of the proposed scheme, which consistently outperforms the-state-of-the-art mod-
els. We will publish all source codes of this work on GitHub for further research
explorations.

1 INTRODUCTION

In machine learning, we generally refer to the examples in the training set that the model is prone to
misclassify as hard examples (Sung, 1996; Dalal & Triggs, 2005), which is usually the bottleneck of
model performance. To address this problem, hard example mining (HEM) algorithms specialize in
mining hard examples that are most difficult to classify correctly from training examples and then let
the model focus on learning them. These studies (Wen et al., 2016; Liu et al., 2017; Deng et al., 2019)
shows that HEM can improve the performance of the model by refining the classification surface and
has been applied to various tasks as person ReID Liao & Shao (2022), face recognition Smirnov et al.
(2017; 2018); Qian et al. (2022) in CV, and few-shot relation extraction Ren et al. (2020), few-shot
text classification Wei et al. (2021), text clustering Dor et al. (2018), sentence embedding Reimers
& Gurevych (2019) in NLP.

Existing hard example mining schemes can be roughly classified into two categories, namely hard
negative mining (HNM) schemes (Dollár et al., 2009; Felzenszwalb et al., 2010; Canévet & Fleuret,
2016; Jin et al., 2018) and online triplet mining schemes (Schroff et al., 2015; Shrivastava et al.,
2016; Ge, 2018; Vasudeva et al., 2021), which will be introduced in detail below.

The HNM schemes generally use the updated model to mine informative hard examples from the
whole training set and then use them to re-train the model. The research works of HEM in recent
years usually first obtain hard classes by building the nearest neighbor graph on the training set (Suh
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et al., 2019; Liao & Shao, 2022), and then randomly sample from hard classes as hard examples.
Although these methods are effective, there are still the following problems: (1) the hard class may
be the local hardest classes Sheng et al. (2020). (2) the hard examples randomly sampled from hard
classes may be the local hardest examples. Specifically, an example is picked from the class cluster
to represent the entire class, and then the nearest neighbor graph (NNG) is built by calculating the
similarity between classes with them. However, when a class contains a large number of examples,
the randomly selected examples may not necessarily represent the example distribution of the whole
class, so obtaining the nearest neighbors may be the local hardest class. Second, the examples
that are the most difficult to classify for the model are located at the intersection between clusters.
In this scenario, they can be analogized to “support vectors” Li et al. (2018), and we name these
examples as the global hardest examples. Hence, randomly sampling hard examples from clusters
containing many examples may not necessarily be the global hardest examples. However, compared
to instance-level, class prototypes can better represent the distribution of examples of the entire class,
so the NNG built with prototypes can more accurately model the similarity between classes on the
training set. Therefore, we urgently need to explore how to build the NNG based on the prototype
to obtain the global hardest class and mine the global hardest examples at the intersection between
clusters of the global hardest class.

The online triplet mining schemes generally pick hard examples from the mini-batch with a large
gain to backpropagation at each iteration based on the loss value of the examples and then only
use them to update the model. However, online triplet mining schemes pick hard examples in a
mini-batch with limited information, so it is difficult to mine the hardest examples. But, while
HEMs mine hard examples over the whole training set, so existing Triplet Loss (Schroff et al., 2015;
Hermans et al., 2017) schemes work together with HNM, e.g., GS Liao & Shao (2022). Triplet Loss
performs online hard example mining on mini-batch while updating the model at each step. It takes
the positive examples farthest from the anchor as hard positive examples, both of which have the
same identity. The negative examples, which are not the same ID as the anchor, closest to the anchor
are regarded as hard negative examples. It minimizes the distance between anchors and hard positive
examples and maximizes the distance between anchors and hard negative examples. But, when the
anchor is an outlier (we call it the outlier anchor), the outlier anchor will lead to an excessively
incompact cluster. Specifically, when the hard positive example is close to the outlier anchor, it may
be far away from the cluster center and form the sub-cluster center centered on this outlier, eventually
resulting in the excessively incompact cluster. When the hard negative examples are far away from
outlier anchors rather than cluster centers, the above situation will also occur and cause the clusters
of negative class to be excessively incompact. Finally, an excessively incompact cluster may lead to
the intersection of clusters, which is difficult for the model to distinguish these clusters. Since the
prototype is the cluster center, if outlier anchors fuse with the prototype to generate a new normal
anchor near the cluster center, the above problem can be solved. However, in the training process,
there are normal anchors and outlier anchors. So we need an adaptive anchor update strategy to
identify outlier anchors and then correct them.

Based on the above analysis, we propose a global hardest example mining with prototype-based
Triplet Loss. Firstly, the Prototype-based Global Hardest Example Miner (GHEM) finds global
hardest classes by using the prototype to build the NNG, and its localization search strategy can
mine the global hard example at the cluster intersection of global hardest classes. Secondly, the
adaptive anchor correction strategy of Prototype-based Triplet Loss (pTriplet) fuses outlier anchors
and prototypes to generate a normal anchor close to the cluster center, thus alleviating the excessively
incompact cluster caused by the outlier anchor. We demonstrate the effectiveness and generalization
of our schemes through experiments based on person re-identification (ReID) and few-shot relation
extraction (FSRE) on typical tasks in CV and NLP, respectively.

2 RELATED WORK

Hard example mining is one of the most important tasks in machine learning. Many efforts have
been invested in hard example mining. Sung (1996) first proposed the Bootstrapping (hard negative
mining) strategy, and Dalal & Triggs (2005) regarded false positives as hard examples, Shrivastava
et al. (2016) formally proposed hard example mining. Existing hard example mining schemes are
mainly divided into HNM Felzenszwalb et al. (2010); Jin et al. (2018); Dollár et al. (2009); Sun et al.
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(2020); Qian et al. (2022) and Online Triplet Mining (Schroff et al., 2015; Hermans et al., 2017), as
detailed below.

Hard Negative Mining. It freezes the deep neural network after a few iterations or each epoch and
then uses the updated model to find hard examples on the whole training set. Bootstrapping Sung
(1996) uses the updated model every few iterations to find hard examples on the training set when
training deep neural networks, which will dramatically slow down the training progress. To speed
up the training progress, Recent work is adapting training strategies. SmartMining Harwood et al.
(2017) establishes an approximate NNG based on the instance-to-instance distance at the beginning
of each training epoch. However, the build instance-level NNG is costly since all examples are
considered. Wang et al. (2017) Randomly sample hard examples from hard classes obtained by
K-means clustering. However, k-means is easy to converge to the local optimal solution Bottou &
Bengio (1994), so the obtained hard class is not necessarily the global hardest class. Suh et al. (2019)
get hard classes from NNG constructed based on instance-to-class distances, and then the hard ex-
ample is obtained by random sampling from the hard class. Since this operation is performed at
each iteration, it will bring huge computational costs. To alleviate these shortcomings, Liao &
Shao (2022) randomly samples one example per class for NNG constructing based on instance-to-
instance distance. Though effective, there are some shortcomings. Firstly, when a class contains
tens of thousands of training examples, an example, which is randomly selected, may hard to rep-
resent this class. Besides, the selected hard examples, which are randomly sampled from the hard
classes, may not locate at the intersection between clusters as mentioned in Introduction 1. There-
fore, the hard examples obtained by such methods are the local hardest example. Different from
the above methods, our proposed GHEM builds the NNG based on the prototype (i.e., class-to-class
distance) to find the global hardest classes on the whole training dataset and then picks examples at
the intersection between clusters, thereby efficiently mining the global hard example.

Online Triplet Mining. Schroff et al. (2015) proposed online triplet mining, which mines hard
positives and hard negatives in each mini-batch based on the loss value to form a triplet (anchor,
hard positive, hard negative) and then uses them to update the model. The remaining large number
of triplets do not participate in the model update process, which greatly speeds up the convergence
rate of the model. In order to solve the problem that Triplet Loss mining hard examples in mini-
batch may cause local optimal solutions, Ge (2018) proposed to build a hierarchical class tree for all
classes in the training set based on the similarity between classes. Cai et al. (2019) proposed Hard
Exemplar Reweighting Triplet Loss, which weights the triplet according to their difficulty level.
Vasudeva et al. (2021) proposed LoOp, which can be used to alleviate the biased embedding caused
by Triplet Loss. To the best of our knowledge, existing research has not paid attention to the problem
of the excessively incompact cluster caused by anchors being outliers. We propose pTriplet, which
fuses outlier anchors and prototypes to generate a normal anchor close to the cluster center, thus
alleviating this challenge

3 METHODOLOGY

Figure1 shows the architecture of our method, and we will detail our proposed methods, including
global hardest example miner and prototype-based triplet loss, in this section. The first step is to
mine the global hard example, as shown in Figure 1.A. First, use the model updated with the last
epoch to get the prototype representation of each class on the training set, and then build the NNG
based on the prototype to get the global hardest classes. Second, the global hardest examples are
mined from the cluster intersection of these global hardest classes using our designed localization
search strategy, which are used to construct the mini-batch. The second step is to correct the anchor,
as shown in Figure 1.B. For the current epoch, the input mini-batch passes through the backbone to
obtain the feature vector of the example, and then pTriplet corrects the outlier anchor to obtain the
normal anchor. Then, pTriplet combines other losses (e.g., cross-entropy loss function) for back-
propagation. After the current epoch training is completed, this process is repeated until the model
converges.

Formally, given a training set T = {x1, x2, x3, ..., xn}, the training set has C categories, from
which we pick the global hardest example set H = {h1, h2, h3, ..., hm}. GHEM mines the global
hard example set H on the training set T before each epoch starts training and then uses them to
construct the mini-batch for the model to train. In order to prevent the model from over-fitting
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Figure 1: An overview of our scheme. Where the squares are normal examples, geometries with a
cross are outliers, and different colors represent different classes. For the convenience of presenta-
tion, taking the person re-identification task as an example, we only construct the NNG of the class
Person1 in Figure 1.A. The clusters connected by solid lines are nearest neighbor classes in the
training datasets that are the most similar appearance to the target class Person1, and the remaining
dissimilar classes that are not linked.

hard examples and to mine the latest hard examples with pTriplet as described above, the mini-
batch contains randomly sampled examples in addition to H , which contains P categories and K
examples in each category. In addition, given anchor A and prototype P , pTriplet fuses A and P to
obtain a new normal anchor U . Our method consists of the following two parts:

1. GHEM. Given a training set T , the similarity between classes is modeled based on the
NNG to obtain global hardest classes. Then, the location search strategy designed by us is
used to mine the global hard example at the intersection between clusters of these global
hardest classes.

2. pTriplet. Given the anchor A, the adaptive anchor correction strategy identifies the outlier
anchor and then corrects it, thus generating a normal anchor U near the cluster center.

3.1 GLOBAL HARDEST EXAMPLE MINER

Because the examples that are the most difficult for the model to distinguish are located at the
intersection between clusters as mentioned in Introduction 1. So our scheme aims to first find the
corresponding classes of these clusters, that is, global hardest classes, and then mines the hard
examples located at the intersection between clusters.

Constructing NNG for getting global hardest classes. As shown in Eq. 1, we obtain the prototype
by averaging the example feature vectors in each class:

Pi =

∑k
j=1 f(xi,j)

k
, i ∈ [1, C] (1)

where f is backbone, i is the i-th class, and f(xi,j) is the feature vector of the j-th example in the
i-th class, Pi denotes the prototype of i-th class.

Then we build the NNG for all classes on the training set based on the prototypes, so then modeling
the similar relationship between the classes. Firstly, for any class in the training set, we obtain
its nearest neighbor class by comparing the cosine distance between this class and the rest of the
classes. Since each class and its nearest neighbors are the closest in the feature vector space, we
treat them as a set of global hardest classes.

Hi = {n1, n2, .., nl}, i ∈ [1, C] (2)
where Hi represents the set of the global hardest classes consisting of the i-th class and its neighbors,
l is the size of the Hi, and ni represents the i-th global hardest class.
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Accordingly, NNG is constructed as shown in Eq 3.
G = (V,E),V = {v1, v2, ..., vC},E = {(vi, vj) | vi ∈ H(vj)}. (3)

where V refers to all classes on the training set, and E refers to the set of edges.

Location search strategy gets global hard example. To obtain the global hardest example, we
search among the clusters from the global hardest classes obtained above. For any two global hardest
classes that are the nearest neighbor to each other, we obtain the vector M of their midpoints based
on prototype P .

M =
(Pu + Pv)

2
, u, v ∈ Hi (4)

where u and v denote global hardest class.

We take the sphere with m as the center and radius δ as the region where the clusters of the intersec-
tion between clusters of global hardest classes. Then we calculate the cosine distance between M
and each example in global hardest classes, and then pick the example whose distance is less than δ
as the global hard example.

S = Su ∪ Sv
I = {s ∈ S | cos(f(xs),M) <= δ} (5)

where Si represents the example set corresponding to the i-th class.

3.2 PROTOTYPE-BASED TRIPLET LOSS

The purpose of pTrilet loss is to identify outlier anchors and then correct them. Inspired by the
historical gradient used in stochastic optimization to reduce the gradient oscillation Kingma & Ba
(2014), we use the exponentially weighted average formula to fuse the normal anchor in the current
step with the prototype of the previous epoch to update the prototype to obtain a more robust pro-
totype, and then fuse the outlier anchor and the updated prototype to generate a normal anchor near
the cluster center.

Identify Outlier Anchors. We calculate the distance d between each example in the cluster and the
prototype and take the example whose cosine distance d is greater than the threshold λ as outlier
anchors. Otherwise, it is a normal example.

d = 1− cos(pi, xj)
O = {o ∈ Si | d > lambda}
N = {n ∈ Si | d <= lambda}

(6)

where O and N are outlier anchors and normal example sets, respectively.
Update the Prototype. At each step in the model learning process, we fuse the normal examples
xn and prototype P in the mini-batch using the exponentially weighted average formula to update
the prototype vector.

P t
i = α× P t−1

i + (1− α)× f(xn
i,j), α ∈ [0, 1] (7)

where f is backbone, i refers to i-th class, j refers to j-th example, f(xa
i,j) is feature vector of the

normal examples xn
i,j . The P t

i is the prototype of the ith class that has been iterated for t times, and α

is the adjustment factor, which controls the proportion of P t−1
i in the updated prototype P t−1

i , so as
to prevent the proportion of prototype P t−1

i from being too large, which leads to over-compacting of
clusters and over-fitting. The prototype obtained by GHEM before each epoch is used as the initial
value of P for the current epoch.

Correct outlier anchors. The identified outlier anchors xo and updated prototypes P t are fused
with the exponentially weighted average formula to generate a new normal anchor U close to the
cluster center.

U = β × P t
i + (1− β)× f(xo

i,j), β ∈ [0, 1] (8)

4 EXPERIMENT

Due to space constraints, the details of the experiments (e.g., qualitative analysis) are included in
the appendix. To verify the effectiveness and generalization of our scheme, we conduct experiments
on typical CV and NLP tasks, namely person re-identification and few-shot relation extraction, the
task description is as follows.
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Table 1: Comparison of different hard example mining methods.

Method Training set MSMT17 Market1501 CUHK03-NP
R1 mAP R1 mAP R1 mAP

PK Market1501 43.6 15.7 - - 17.9 17.6
Cluster Wang et al. (2017) Market1501 44.0 15.8 - - 18.4 17.3
GS Liao & Shao (2022) Market1501 45.9 17.2 - - 19.1 18.1
Ours Market1501 48.4 18.3 - - 19.2 18.5
PK MSMT17 - - 75.9 45.3 16.4 17.0
Cluster Wang et al. (2017) MSMT17 - - 77.2 47.6 18.4 19.2
GS Liao & Shao (2022) MSMT17 - - 79.1 49.5 20.9 20.6
Ours MSMT17 - - 79.2 50.1 21.1 21.3
PK MSMT17 (all) - - 79.5 52.3 22.8 23.3
Cluster Wang et al. (2017) MSMT17 (all) - - 80.4 54.2 26.3 26.3
GS Liao & Shao (2022) MSMT17 (all) - - 82.4 56.9 27.6 28.0
Ours MSMT17 (all) - - 82.6 58.1 30.2 30.3
GS Liao & Shao (2022) CUHK03-NP 46.9 15.4 68.2 37.3 - -
Ours CUHK03-NP 48.4 16.3 69.8 38.2 - -

4.1 INTRODUCTION TO PERSON RE-IDENTIFICATION TASK

The ReID task is given a pedestrian image and then retrieve the pedestrian images across different
cameras. ReID task is divided into the training phase and testing phase. In the training phase, we
need to collect images of different pedestrians from the training set to form a mini-batch input into
the network and let the model learn to distinguish different pedestrians. In the testing phase, the task
of this phase is to retrieve images from the gallery with the same ID as the query and captured by
different cameras. The model is responsible for extracting the feature vectors of the images in the
query and gallery sets and then calculating the similarity between the images in the query and the
gallery, finally taking the images with the highest similarity as the retrieval result. In the ReID task,
we take pedestrians with similar appearances as hard examples. ReID faces many challenges such
as illumination, orientation, occlusion, and especially pedestrians with similar appearanceYe et al.
(2021). On the task of generalization person re-identification, (Deng et al., 2019; Liu et al., 2017;
Wen et al., 2016) show that the model can refine the classification surface by learning hard examples,
making the clusters more compact and more generalization. So we introduce the generalizable
person re-identification task to verify the performance of different hard example mining schemes.
Generalizable person re-identification generally refers to training on the source dataset and testing
on the target dataset.

4.2 INTRODUCTION TO FEW-SHOT RELATION EXTRACTION TASK

FSRE is defined as when training examples are insufficient, given a sentence and an entity pair,
the model needs to determine the relation that exists between entities, and represent it as an entity-
relation triplet, i.e. (head entity, relation, tail entity) Han et al. (2020). The essence of FSRE is
to do classification, that is, there are N categories of relations that need to be extracted, and the
model needs to classify the sentences with the relation to be extracted into the one with the highest
probability among the N categories. During the training phase, we mine sentences of different
categories and semantically similar as hard examples. Test phase, given a sentence and entity pair,
then the model predicts the relation that exists between the entities. This task tests whether the
model can accurately model the nearest neighbor graph between classes in the complex semantic
environment, and then mines the hard examples for the model to learn, finally improving the model’s
performance.

4.3 COMPARISON WITH SOTA HARD EXAMPLE MINING METHODS

Due to the small size of the CUHK03-NP and Market1501 test sets, the fluctuation of R1 by a few
percentage points can not accurately reflect the performance of the model. However, the mAP met-
ric is used to measure the overall retrieval performance, so we use mAP as the main metric on both
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Table 2: Comparison with SOTA person re-identification methods. TL refers to the Triplet Loss.
”+PK+TL” refers to using the PK sampler and Triplet Loss during training.

Backbone Method Size MSMT17 Market1501 DukeMTMC
mAP R1 mAP R1 mAP R1

CNN

CBN Zhuang et al. (2020) 256×128 42.9 72.8 77.3 91.3 67.3 82.5
OSNet Zhou et al. (2019) 256×128 52.9 78.7 84.9 94.8 73.5 88.6
MGN Wang et al. (2018) 384×128 52.1 76.9 86.9 95.7 78.4 88.7
RGA-SC Zhang et al. (2020) 256×128 57.5 80.3 88.4 96.1 - -
SAN Jin et al. (2020b) 256×128 55.7 79.2 88.0 96.1 75.7 87.9
SCSN Chen et al. (2020) 384×128 58.5 83.8 88.5 95.7 79.0 91.0
ABDNet Chen et al. (2019) 384×128 60.8 82.3 88.3 95.6 78.6 89.0
PGFA Miao et al. (2019) 256×128 - - 76.8 91.2 65.5 82.6
HOReID Wang et al. (2020) 256×128 - - 84.9 94.2 75.6 86.9
ISP Zhu et al. (2020) 256×128 - - 88.6 95.3 80.0 89.6

DeiT-B/16 DeiT Touvron et al. (2021)+PK+TL 256×128 61.4 81.9 86.6 94.4 78.9 89.3
TransReID He et al. (2021)+PK+TL 384×128 66.3 84.5 88.5 95.1 82.1 91.1

ViT-B/16 ViT Dosovitskiy et al. (2020)+PK+TL 256×128 61.0 81.8 86.8 94.7 79.3 88.8
TransReID He et al. (2021)+PK+TL 384×128 69.4 86.2 89.5 95.2 82.6 90.7

ViT-B/16 TransReID+GS Liao & Shao (2022)+TL 384×128 70.0 86.9 89.6 95.6 83.4 91.2
TransReID+Ours 384×128 70.7 87.8 90.0 95.5 83.6 91.5

datasets. By observing mAP, our method significantly outperforms all methods as shown in Table 1.
Specifically, the PK sampler performs the worst because it constructs mini-batches by random sam-
pling, which results in almost no hard examples to be mined. However, Cluster Wang et al. (2017)
and GS Liao & Shao (2022) achieve better performance. The P classes sampled when they construct
the mini-batch are not randomly sampled. Our scheme achieves respectively 2.5%/1.5% R1 and
1.1%/0.9% mAP gains over the SOTA GS on Market1501→MSMT17 /CUHK03-NP→MSMT17
(A→B means train on A’s training set and test on B’s test set) on the MSMT17 data set with a huge
test set. Our scheme outperforms all methods on mAP, and the possible reasons are as follows:
since mAP reflects the overall retrieval effect, the increase in mAP indicates that more clusters are
accurately classified by the classification surface. At this time, for clusters, there is a discrimina-
tive margin between different clusters, and the clusters are more compact, which indicates that our
proposed GHEM can mine the global hard example at the intersection between clusters, and the
model distinguishes them correctly. At the same time, it reduces the intersection between clusters.
Meanwhile, pTriplet corrects outliers to make clusters more compact and the classification surface
easier to classify. For further quantitative analysis of the superiority of our proposed scheme, readers
can refer to cases of hard example mining and distribution of the intra-class similarity provided by
section C.1 and C.2 respectively in the appendix.

4.4 PERFORMANCE COMPARISON ON PERSON RE-IDENTIFICATION

4.4.1 COMPARISON WITH SOTA MODELS ON PERSON RE-IDENTIFICATION TASKS

Table 2 shows the performance of models on the test set of different datasets. It can be observed
that our proposed scheme achieves the best performance compared to other schemes. Specifically, a
performance gain of 1.3% R1 and 1.6% mAP is registered as compared to TransReID on the msmt17
dataset, respectively. And compared with GS, our method gains 0.7% R1 and 0.9% mAP on the
msmt17 dataset, respectively. There may be two reasons why our method outperforms GS. First,
our method builds the NNG based on the prototype, while GS randomly selects an example from
the class and then uses this example to represent the class to build the NNG. The prototype is more
representative of the example distribution of the class than the selected example, so the obtained
nearest neighbors are the global hardest classes rather than the local hardest classes. Second, GHEM
focuses on the global hardest examples at the intersection between clusters ignored by GS. Relative
qualitative retrieving results in section C.3 of the appendix.
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4.4.2 PERFORMANCE COMPARISON OF THE MODEL ON THE GENERALIZATION PERSON
RE-IDENTIFICATION TASK OF BACKBONE USING RESNET

Table 3 shows the SOTA direct cross-dataset evaluation results, where each group is the model
trained on the training set of the source dataset and then tested on the test set of the target dataset.
It can be observed that our proposed scheme achieves the best performance compared to other
schemes. For example, with MSMT17(all)→CUHK03-NP, our proposed scheme achieves 2.6%
R1 and 2.3% mAP gains over the GS, respectively. The possible reason why our strategy outper-
forms GS is that our scheme fully takes into account global hardest examples at the intersection
between clusters. On the contrary, the examples are randomly sampled by GS from each cluster
as the hard examples are not necessarily the global hardest examples. The pTriplet corrects outlier
anchors when calculating loss, which will make the cluster converge more compactly, thus making
the classification surface of the model more distinguishable, and more generalizable on the general-
izable person re-identification task.

Table 3: Direct cross-dataset evaluation results. MSMT17 (all) means that the model uses both the
test set and the training set for training. M3L selects three datasets from CUHK03, Market1501,
DukeMTMC-reID, and MSMT17 for training and the remaining one for testing. TL refers to the
Triplet Loss. ”+PK+TL” refers to using the PK sampler and Triplet Loss during training.

Method Training set CUHK03-NP Market1501 MSMT17
R1 mAP R1 mAP R1 mAP

M3L Zhao et al. (2021) Multi 33.1 32.1 75.9 50.2 36.9 14.7
MGN Wang et al. (2018) Market1501 8.5 7.4 - - - -
MuDeep Qian et al. (2019) Market1501 10.3 9.1 - - - -
QAConv Liao & Shao (2020) Market1501 9.9 8.6 - - 22.6 7.0
OSNet-AIN Zhou et al. (2021) Market1501 - - - - 23.5 8.2
CBN Zhuang et al. (2020) Market1501 - - - - 25.3 9.5
QAConv + GS Liao & Shao (2022) + TL Market1501 19.1 18.1 - - 45.9 17.2
QAConv + Ours Market1501 19.2 18.5 - - 48.4 18.3
PCB Sun et al. (2018) MSMT17 - - 52.7 26.7 - -
MGN Wang et al. (2018) MSMT17 - - 48.7 25.1 - -
ADIN Yuan et al. (2020) MSMT17 - - 59.1 30.3 - -
SNR Jin et al. (2020a) MSMT17 - - 70.1 41.4 - -
CBN Zhuang et al. (2020) MSMT17 - - 73.7 45.0 - -
QAConv + GS Liao & Shao (2022) MSMT17 20.9 20.6 79.1 49.5 - -
QAConv + Ours MSMT17 21.1 21.3 79.2 50.1 - -
OSNet-IBN Zhou et al. (2019) MSMT17 (all) - - 66.5 37.2 - -
OSNet-AIN Zhou et al. (2021) MSMT17 (all) - - 70.1 43.3 - -
QAConv Liao & Shao (2020)+ PK + TL MSMT17 (all) 25.3 22.6 72.6 43.1 - -
QAConv + GS Liao & Shao (2022) + TL MSMT17 (all) 27.6 28.0 82.4 56.9 - -
QAConv + Ours MSMT17 (all) 30.2 30.3 82.6 58.1 - -
QAConv + GS Liao & Shao (2022) + TL CUHK03-NP - - 68.2 37.3 46.9 15.4
QAConv + Ours CUHK03-NP - - 69.8 38.2 48.4 16.3

4.5 COMPARISON WITH SOTA MODELS ON FEW-SHOT RELATION EXTRACTION TASKS

Table 4 shows the performance of models using different hard example mining schemes on the test
set of FewRel Han et al. (2018) dataset. The first and second groups of schemes use PK sampler, the
third group of ConceptFERE uses SOTA hard example mining strategy GS and Triplet Loss, and the
fourth group of ConceptFERE uses our proposed scheme. It should be noted that, due to the insuf-
ficient computing power of our GPU, the performance of the proposed scheme is tested only under
5 ways 1 shot and 10 ways 1 shot scenarios. It can be observed from Table 4 that compared with all
the comparison schemes, our proposed scheme achieves the best performance. More specifically,
our proposed scheme achieves gains of 1.03% and 3.13% compared with ConceptFERE, under the
scenarios of 5-w-1-s and 10-w-1-s, the best model in the second group, respectively. The possible
reason is that PK Sampler randomly selects classes and examples, and it is almost impossible to
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Table 4: Accuracies (%) of different models on the test set. TL refers to the Triplet Loss. Due to
the randomness of the FSRE experiment, we take the average of ten experimental results as the final
result. ”+PK+TL” refers to using the PK sampler and Triplet Loss during training.

BackboneSamplerModel 5-w-1-s5-w-5-s10-w-1-s10-w-5-s

CNN PK

Gnearest neighbor Satorras & Estrach (2018)67.30 78.84 54.10 62.89
SNAIL Mishra et al. (2018) 71.13 80.04 50.61 66.68
Proto Snell et al. (2017) 74.29 85.18 61.15 74.41
HATT-Proto Gao et al. (2019a) 74.84 85.81 62.05 75.25
MLMAN Ye & Ling (2019) 78.21 88.01 65.70 78.35

BERT PK

Bert-PAIR Gao et al. (2019b) 82.57 88.47 73.37 81.10
TD-Proto Yang et al. (2020) 84.76 92.38 74.32 85.92
ConceptFERE(Simple) Yang et al. (2021) 84.28 90.34 74.00 81.82
ConceptFERE Yang et al. (2021) 89.21 – 75.72 –

BERT GS ConceptFERE+GS Liao & Shao (2022)+TL 89.37 – 75.75 –
BERT Ours ConceptFERE+Ours 90.24 – 78.85 –

mine hard examples. More importantly, our proposed scheme achieves 0.87% and 3.1% gains over
the GS under the scenarios of 5-w-1-s and 10-w-1-s, respectively. This may be because GS, in the
natural language scene with thousands of examples in each category and complicated semantics,
can’t accurately model the relationship between classes by building an NNG by randomly selecting
an example as the representative of the class, so it’s difficult to mine global hardest classes. And
it also ignores the global hard example at the intersection between clusters. Theoretically, 1-shot
relation extraction is more difficult than 5-shot relation extraction, and the experimental results in
the 1-shot scenario have illustrated the effectiveness and superiority of our scheme. We believe that
our strategy can achieve better performance under the other two scenarios.

4.6 ABLATION STUDY

In this section, we verify the effectiveness of the proposed GHEM and pTriplet presented in 3.2 and
3.3, respectively. As shown in Table 5 and Tabel 6, without GHEM and pTriplet, the performance of
TransReID and ConceptFERE drops sharply. This proves that the proposed GHEM can effectively
mine the global hard example, and the pTriplet corrects outlier anchors for the Triplet Loss to work
efficiently.

Table 5: Results of ablation study on MSMT17
dataset of person ReID task.

Scheme R1 mAP
TransReID + Ours 87.8 70.7
w/o GHEM 87.2 70.2
w/o pTriplet 87.0 70.1
w/o GHEM & pTriplet 86.2 69.4

Table 6: Results of ablation study on
FSRE task.

Scheme 10-w-1-s
ConceptFERE + Ours 78.85
w/o GHEM 76.81
w/o pTriplet 77.12
w/o GHEM & pTriplet 75.72

5 CONCLUSION

In this paper, we studied the problem of hard example mining, which is essential for deep learning
algorithms. Our designed GHEM can accurately mine the global hard example by the prototype-
based NNG and location search strategy. Our designed pTriplet corrects the outlier anchor for Triplet
Loss so that it can produce a more compact cluster. And the experimental results demonstrate the
effectiveness and generalization of our scheme. In the future work, we will pay attention to the
outliers near the classification surface, and quickly build the nearest neighbor graph with the outliers
as nodes, and do more fine-grained mining of hard examples.
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A RANDOMNESS

We choose an arbitrary random seed and conduct experiments on the ReID task with this seed. Due
to the randomness of the FSRE experiment, we take the average of ten experimental results as the
final experimental result.

B EXPERIMENT

B.1 PERSON RE-IDENTIFICATION

B.1.1 DATASETS, EVALUATION METRICS, BASELINE, COMPARABLE SCHEME, AND
EXPERIMENTAL SETTINGS

Datasets: On person re-identification and generalizable person re-identification tasks, we use four
datasets to validate our proposed scheme, namely: Market1501 Zheng et al. (2015), DukeMTMC-
reID Ristani et al. (2016), MSMT17 Wei et al. (2018), CUHK Li et al. (2014). The details of the
datasets are summarized in Table 7. It should be pointed out that on the generalizable person re-
identification task, cross-dataset evaluation is performed by training the model on the training set of
the source dataset, and then evaluating it on the test set of the target dataset.

Table 7: IDq , IDg , IDt represent the number of IDs (pedestrians) in the query set, gallery set, and
training set, respectively. IMGq , IMGg , IMGt represent the number of images in the query set,
gallery set, and training set respectively. CAMn represents the number of cameras in the dataset.

Dataset IDq IDg IDt IMGq IMGg IMGt CAMn

MSMT17 3060 3060 1041 11659 82161 32621 15
Market1501 750 750 751 3368 19732 12936 6
DukeMTMC-reID 702 702 702 2228 17661 16522 8
CUHK03-NP 700 700 767 1400 5332 7365 2

Evaluation Metrics: Rank-1 (R1) and mean average precision (mAP) are used as evaluation met-
rics. R1 is the correct rate of the first one in the retrieve results. The mAP refers to the correct rate
of the overall ranking of the retrieved results. All experimental evaluations follow the single-query
evaluation protocolLi et al. (2014).

Baseline: We use the commonly used PK sampler as the baseline of hard negative mining, which
randomly picks P pedestrians from the training set, and each pedestrian randomly picks K images to
construct a mini-batch. We use Triplet Loss as the baseline for online hard example mining Schroff
et al. (2015).

Comparable Scheme: For the comparison of the hard example mining schemes, we use Clus-
ter Wang et al. (2017), SOTA GS Liao & Shao (2022). It should be noted that since the Cluster Wang
et al. (2017) is not open source code, we cite its experimental results only on the generalized person
re-identification task inLiao & Shao (2022).

Experimental Settings: Our scheme is based on the official PyTorch code of TransReID1 He
et al. (2021) and GS2 Liao & Shao (2020). In the person re-identification task, the backbone uses
ViT Dosovitskiy et al. (2020), and the data augmentation strategy used is random horizontal flipping,
padding, random cropping, and random erasing Zhong et al. (2020). On the generalizable person
re-identification task, the backbone is ResNet50 He et al. (2016), with IBN-b layers appended. And
the data augmentation strategies include random cropping, flipping, occlusion, and color jittering.
The input image is resized to 384×128, and the loss function is Triplet Loss or cross-entropy loss.
The rest of the hyperparameters, e.g., batch size, and the learning rate of the optimizer, follows the
settings of TransReID He et al. (2021) and GS Liao & Shao (2020). Some columns in the table are
empty, indicating that the method has no test results on the corresponding dataset or the generalized
person re-identification task. The source dataset is not tested.

1https://github.com/damo-cv/TransReID
2https://github.com/ShengcaiLiao/QAConv
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PK

GS

GHEM

Figure 2: Due to the limited space, we only show some people in the MSMT17 dataset. PK randomly
selects six people, the first image of GS and GHEM is the target class, and the remaining five images
correspond to the five nearest neighbor classes.

B.2 FEW-SHOT RELATION EXTRACTION

B.2.1 DATASETS, EVALUATION METRICS, BASELINE AND COMPARABLE SCHEME,
EXPERIMENTAL SETTINGS

Dataset: In order to verify our proposed scheme, we use the most commonly used few-shot rela-
tion extraction dataset FewRel Han et al. (2018), which contains 100 relations and 70,000 instances
extracted from Wikipedia, with 20 relations in the unpublished test set. So we follow previous
work Yang et al. (2021) to re-split the published 80 relations into 50, 14, and 16 for training, valida-
tion, and testing, respectively.

Evaluation: N-way-K-shot (N-w-K-s) is commonly used to simulate the distribution of few-shot
relation extraction in different situations, where N and K denote the number of classes and examples
from each class, respectively. In N-w-K-s scenario, accuracy is used as the performance metric.

Baseline: We use commonly used PK sampler as the baseline of hard negative mining and use
Triplet Loss as the baseline for online hard example mining Schroff et al. (2015).

Comparable Scheme: To the best of our knowledge, there is no dedicated hard example mining
algorithm in few-shot relation extraction, and almost all hard example mining algorithms used in
NLP come from CV. So we choose the GS in CV as the comparison scheme. We choose excellent
ConceptFERE Yang et al. (2021) as the comparable model.
Experimental Settings The BERTDevlin et al. (2018) parameters are initialized by bert-base-
uncased, and the hidden size is 768. Hyperparameters such as learning rate follow the settings
in ConceptFERE Yang et al. (2021).

B.2.2 MODEL TRAINING DETAILS

When mining hard examples in the data sampling stage, taking 5-w-1-s as an example, our scheme
will randomly sample a target class. And then, find the top-4 nearest neighbor in the training set as
the global hardest class. Each of sampled five classes finds its global hardest examples, and then
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randomly assigns hard examples to the query set and support set. Our proposed scheme and GS are
implemented on ConceptFERE3.

C QUALITATIVE ANALYSIS

C.1 HARD EXAMPLE MINING CASES

In order to intuitively observe the ability of our proposed GHEM to mine hard examples, We ran-
domly select a mini-batch from mini-batches constructed by PK Sampler, GS, and GHEM, respec-
tively, as shown in Figure 2. By observing the case in Figure 2, GHEM has a stronger ability to mine
hard examples.

C.2 EVIDENCE FOR CLUSTERS BECOMING COMPACT

To verify that our proposed pTriplet can generate more compact clusters, we show in Table 8 the
intra-class variance distributions produced when using Triplet Loss and pTriplet, respectively. The
smaller the variance, the higher the similarity between examples in a class, the closer they are in
space, and the more compact the cluster. On the ReID task, and the variance distribution of the
intra-class similarity is shown in Table 8. The intra-class variance is the variance of the cosine
distance between any two examples within the class. By observing Table 8, the clusters produced
by pTriplet are more compact.

Table 8: The variance distribution of the intra-class similarity on MSMT17.

Model Variance Sampler Online Hard Example Loss

TransReID 45.2 PK Triplet Loss
32.9 PK pTriplet

C.3 COMPARE PREDICT RESULTS

In order to intuitively observe the impact of different hard example mining algorithms on the model
to classify hard examples, we take the person ReID task as an example and randomly select a group
from the retrieve results to show in Figure 3. By observing the case in Figure 3, it can be found that
models trained with our scheme are more capable of discriminating hard examples.

3https://github.com/LittleGuoKe/ConceptFERE
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PK

GS

Ours

Figure 3: Top-5 of the retrieval results of the models trained with PK, GS, and ours, respectively. The
pictures with a yellow box, green box, and red box are query, positive example, negative example,
respectively
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