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Abstract
Parameter-Efficient Fine-Tuning (PEFT) methods
like Low-Rank Adaptation (LoRA) optimize fed-
erated training by reducing computational and
communication costs. We propose RoLoRA, a
federated framework using alternating optimiza-
tion to fine-tune LoRA adapters. Our approach
emphasizes the importance of learning up and
down projection matrices to enhance expressive-
ness and robustness. We use both theoretical anal-
ysis and extensive experiments to demonstrate
the advantages of RoLoRA over prior approaches
that either generate imperfect model updates or
limit expressiveness of the model. We present
theoretical analysis on a simplified linear model
to demonstrate the importance of learning both
down-projection and up-projection matrices in
LoRA. We provide extensive experimental evalua-
tions on a toy neural network on MNIST as well as
large language models including RoBERTa-Large,
Llama-2-7B on diverse tasks to demonstrate the
advantages of RoLoRA over other methods.

1. Introduction
The remarkable performance of large language models
(LLMs) stems from their ability to learn at scale. With
their broad adaptability and extensive scope, LLMs depend
on vast and diverse datasets to effectively generalize across
a wide range of tasks and domains. Federated learning
(McMahan et al., 2017) offers a promising solution for
leveraging data from multiple sources, which could be par-
ticularly advantageous for LLMs.

Recently, Parameter-Efficient Fine-Tuning (PEFT) has
emerged as an innovative training strategy that updates only
a small subset of model parameters, substantially reducing
computational and memory demands. A notable method
in this category is LoRA (Hu et al., 2021), which utilizes
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low-rank matrices to approximate weight changes during
fine-tuning. These matrices are integrated with pre-trained
weights for inference, facilitating reduced data transfer in
scenarios such as federated learning, where update size
directly impacts communication efficiency. Many works
integrate LoRA into federated setting (Zhang et al., 2023b;
Babakniya et al., 2023; Kuang et al., 2023; Chen et al., 2024;
Sun et al., 2024). FedPETuning (Zhang et al., 2023b) com-
pares various PEFT methods in a federated setting. SLoRA
(Babakniya et al., 2023) presents a hybrid approach that
combines sparse fine-tuning with LoRA to address data
heterogeneity in federated settings. Furthermore, FS-LLM
(Kuang et al., 2023) presents a framework for fine-tuning
LLMs in federated environments. However, these studies
typically apply the FedAVG algorithm directly to LoRA
modules, resulting in in-exact model updates, as we will
discuss later in the paper.

To address the issue of in-exact model updates, a few recent
works have proposed modifications to the down-projection
and up-projection components in LoRA. In FlexLoRA (Bai
et al., 2024), the authors propose updating these projections
with matrix multiplication followed by truncated SVD. A
related method is also considered in (Wang et al., 2024).
Another approach, by Sun et al., introduces a federated
finetuning framework named FFA-LoRA (Sun et al., 2024),
which builds on LoRA by freezing the down-projection ma-
trices across all clients and updating only the up-projection
matrices. They apply differential privacy (Dwork et al.,
2006) to provide privacy guarantees for clients’ data. With
a sufficient number of finetuning parameters, FFA-LoRA,
using a larger learning rate, can achieve performance compa-
rable to FedAVG of LoRA while reducing communication
costs by half. However, we observe that with fewer fine-
tuning parameters, FFA-LoRA is less robust than FedAVG
of LoRA, primarily due to its reduced expressiveness from
freezing down-projections. In this work, we explore the
necessity of learning down-projection matrices and propose
a federated fine-tuning framework with computational and
communication advantages.

We connect the objective of learning down-projection ma-
trices in a federated setting to multitask linear representa-
tion learning (MLRL), an approach in which a shared low-
rank representation is jointly learned across multiple tasks.
While, to the best of our knowledge, the alternating opti-
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Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA

Figure 1. RoLoRA framework overview.

mization of down- and up-projection matrices has not been
explored within the context of LoRA, prior works on MLRL
(Collins et al., 2021; Thekumparampil et al., 2021) have
demonstrated the importance of alternately updating low-
rank representations and task-specific heads, demonstrating
the necessity of learning a shared representation. Inspired by
MLRL, we tackle this challenge by employing alternating
optimization for LoRA adapters. We theoretically establish
that alternating updates to the two components of LoRA,
while maintaining a common global model, enable effective
optimization of down-projections and ensure convergence
to the global minimizer in a tractable setting.

1.1. Main Contributions

• RoLoRA framework. We propose RoLoRA, a robust
federated fine-tuning framework based on the alter-
nating optimization of LoRA as shown in Figure 1.
RoLoRA fully leverages the expressiveness of LoRA
adapters while keeping the computational and commu-
nication advantages.

• Theoretical Insights. We show that in a tractable set-
ting involving a local linear model, RoLoRA converges
exponentially to the global minimizer when clients
solve linear regression problems, using rank-1 LoRA
adapters. In this case, RoLoRA is reduced to an alter-
nating minimization-descent approach, outperforming
FFA-LoRA, whose fixed down-projection limits per-
formance. This highlights the importance of training
the down-projection in LoRA for improved federated
learning performance.

• Empirical results. Through evaluations on a two-layer
neural network with MNIST and on large language
models (RoBERTa-Large, Llama-2-7B) across various
tasks (GLUE, HumanEval, MMLU, Commonsense rea-
soning tasks), we demonstrate that RoLoRA maintains
robustness against reductions in fine-tuning parame-
ters and increases in client numbers compared to prior
approaches.

1.2. Notations

We adopts the notation that lower-case letters represent
scalar variables, lower-case bold-face letters denote column
vectors, and upper-case bold-face letters denote matrices.

The d × d identity matrix is represented by Id. Depend-
ing on the context, ∥.∥ denotes the l2 norm of a vector or
the Frobenius norm of a matrix, ∥.∥op denotes the operator
norm of a matrix, |.| denotes the absolute value of a scalar,
⊤ denotes matrix or vector transpose. For a number N ,
[N ] = {1, . . . , N}.

2. Related Works
Parameter Efficient Fine Tuning (PEFT): LoRA and
Its Enhancements Parameter efficient finetuning (PEFT)
allows for updates to a smaller subset of parameters, sig-
nificantly reducing the computational and memory require-
ments. One of the most well-known methods is LoRA(Hu
et al., 2021). LoRA uses low-rank matrices to approxi-
mate changes in weights during fine-tuning, allowing them
to be integrated with pre-trained weights before inference.
In (Zhang et al., 2023a), the authors propose a memory-
efficient fine-tuning method, LoRA-FA, which keeps the
projection-down weight fixed and updates the projection-up
weight during fine-tuning. In (Zhu et al., 2024), the au-
thors highlight the asymmetry between the projection-up
and projection-down matrices and focus solely on com-
paring the effects of freezing either the projection-up or
projection-down matrices. (Hao et al., 2024) introduces the
idea of resampling the projection-down matrices, aligning
with our observation that freezing projection-down matrices
negatively impacts a model’s expressiveness. Furthermore,
(Hayou et al., 2024) explore the distinct roles of projection-
up and projection-down matrices, enhancing performance
by assigning different learning rates to each.

PEFT in Federated Setting PEFT adjusts only a few
lightweight or a small portion of the total parameters for
specific tasks, keeping most foundational model parameters
unchanged. This feature can help reduce data transfer in
federated learning, where communication depends on the
size of updates. Zhang et al. (Zhang et al., 2023b) com-
pares multiple PEFT methods in federated setting, includ-
ing Adapter(Houlsby et al., 2019), LoRA(Hu et al., 2021),
Prompt tuning(Liu et al., 2022) and Bit-Fit(Zaken et al.,
2022). SLoRA(Babakniya et al., 2023), which combines
sparse finetuning and LoRA, is proposed to address the
data heterogeneity in federated setting. As discussed before,
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(Sun et al., 2024) design a federated finetuning framework
FFA-LoRA by freezing projection-down matrices for all the
clients and only updating projection-up matrices. FLoRA
(Wang et al., 2024) considers clients with heterogeneous-
rank LoRA adapters and proposes a federated fine-tuning
approach.

3. Preliminaries
3.1. Low-Rank Adaptation: LoRA

Low-Rank Adaptation (LoRA) (Hu et al., 2021) fine-tunes
large language models efficiently by maintaining the orig-
inal model weights fixed and adding small, trainable ma-
trices in each layer. These matrices perform low-rank de-
compositions of updates, reducing the number of trainable
parameters. This approach is based on the finding that
updates to model weights during task-specific tuning are
usually of low rank, which allows for fewer parameters
to be adjusted. For example, for a pre-trained weight ma-
trix W0 ∈ Rd×d, the update is a low-rank product AB,
where the down-projection A ∈ Rd×r and the up-projection
B ∈ Rr×d, with r ≪ d. Only A and B are trainable, allow-
ing W = W0+αAB, with α adjusting the update’s impact.
Applying LoRA in a federated setting is a practical choice.
By using LoRA adapters, clients can fine-tune foundation
models efficiently with limited resources. Since only these
specific matrices need to be transmitted to a central server,
this approach significantly reduces communication costs.
This makes LoRA an advantageous solution for enhancing
model performance in collaborative scenario comparing to
full parameter finetuning in the federated setting.

3.2. FedAVG of LoRA Introduces Interference

Integrating LoRA within a federated setting presents chal-
lenges. In such a setup, each of the N clients is provided
with the pretrained model weights W0, which remain fixed
during finetuning. Clients are required only to send the up-
dated matrices Bi and Ai to a central server for aggregation.
While most current studies, such as SLoRA (Babakniya
et al., 2023) and FedPETuning (Zhang et al., 2023b), com-
monly apply FedAVG directly to these matrices as shown in
(2), this approach might not be optimal. The precise update
for each client’s model, ∆Wi, should be calculated as the
product of the low-rank matrices Ai and Bi. Consequently,
aggregation on the individual matrices leads to inaccurate
model aggregation.

1

N

N∑
i=1

∆Wi =
1

N
(A1B1 +A2B2 + ...+ANBN ) (1)

̸= 1

N
(A1 +A2 + ...+AN)

1

N
(B1 +B2 + ...+BN) (2)

There are a few options to avoid it.

Updating B and A by matrix multiplication and
truncated-SVD. One approach (Wang et al., 2024; Bai

et al., 2024) involves first computing the product of local
matrices Bi and Ai to accurately recover ∆Wi. Then, the
global B and A of next iteration are obtained by perform-
ing truncated SVD on the averaged set of ∆Wi. However,
this method introduces computational overhead due to the
matrix multiplication and SVD operations.

Freezing A (B) during finetuning. Another method is
to make clients freeze B or A as in Sun et al. (Sun et al.,
2024), leading to precise computation of ∆W. However,
this method limits the expressiveness of the adapter.

With these considerations, we propose a federated finetuning
framework, named RoLoRA, based on alternating optimiza-
tion of LoRA.

4. RoLoRA Framework
In this section, we describe the framework design of
RoLoRA and discuss its practical advantages.

Alternating Optimization and Corresponding Aggre-
gation Motivated by the observations discussed in Sec-
tion 3.2, we propose applying alternating optimization to
the local LoRA adapters of each client in a setting with N
clients. Unlike the approach in FFA-LoRA, where A is con-
sistently frozen, we suggest an alternating update strategy.
There are alternating odd and even communication rounds
designated for updating, aggregating A and B, respectively.

In the odd comm. round:
1

N

N∑
i=1

∆W2t+1
i

=
1

N
(At

1B
t+1
1 +At

2B
t+1
2 + ...+At

NBt+1
N ) (3)

=
1

N
At(Bt+1

1 +Bt+1
2 + ...+Bt+1

N )

In the even comm. round:
1

N

N∑
i=1

∆W2t+2
i

=
1

N
(At+1

1 Bt+1
1 +At+1

2 Bt+1
2 + ...+At+1

N Bt+1
N ) (4)

=
1

N
(At+1

1 +At+1
2 + ...+At+1

N )Bt+1

As in Algorithm 1, all clients freeze At and update Bt in the
odd communication round. The central server then aggre-
gates these updates to compute Bt+1 = 1

N

∑N
i=1 B

t+1
i and

distributes Bt+1 back to the clients. In the subsequent com-
munication round, clients freeze Bt+1 and update At. The
server aggregates these to obtain At+1 = 1

N

∑N
i=1 A

t+1
i

and returns At+1 to the clients. It is important to note that
in round 2t+1, the frozen At

i are identical across all clients,
as they are synchronized with At from the central server at
the beginning of the round. This strategy ensures that the
update and aggregation method introduces no interference,
as demonstrated in (3) and (4).
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Algorithm 1 RoLoRA iterations
1: Input: number of iterations T , number of clients N
2: for t = 1 to T do
3: for i = 1 to N do
4: Fix At, Bt+1

i = GD-update(At,Bt)
5: Transmits Bt+1

i to server
6: end for
7: Server aggregates Bt+1 = 1

N

∑N
i=1 B

t+1
i , broad-

casts Bt+1

8: for i = 1 to N do
9: Fix Bt+1, At+1

i = GD-update(At,Bt+1)
10: Transmits At+1

i to server
11: end for
12: Server aggregates At+1 = 1

N

∑N
i=1 A

t+1
i , broad-

casts At+1

13: end for

Computation and Communication Cost The parameter-
freezing nature of RoLoRA enhances computational and
communication efficiency. In each communication round,
the number of trainable parameters in the model is effec-
tively halved compared to FedAVG of LoRA. The only
additional cost for RoLoRA compared to FFA-LoRA is the
alternating freezing of the corresponding parameters. We
remark this additional cost is negligible because it is applied
to the clients’ models and can be executed concurrently
during the server’s aggregation.

5. Analysis
In this section, we provide an intuitive analysis of the ne-
cessity of training down-projection of LoRA module in a
federated setting. We first theoretically compare RoLoRA
and FFA-LoRA on a linear model. Then we empirically
verify the effectiveness of the theoretical analysis on a two-
layer neural network.

5.1. Federated LoRA on a Toy Model

Consider a federated setting with N clients, each with the
following local linear model

fi(Xi) = Xiab
⊤ (5)

where Yi ∈ Rm×d, Xi ∈ Rm×d with the sample size m,
a ∈ Rd (a unit vector) and b ∈ Rd are the LoRA weights
corresponding to rank r = 1. In this setting, we model the
local data of i-th client such that

Yi = Xia
∗b∗⊤

(6)

for some ground truth LoRA weights a∗ ∈ Rd (a unit vector)
and b∗ ∈ Rd. We consider the following objective

min
a∈Rd,b∈Rd

1

N

N∑
i=1

li(a,b) (7)

where the local loss is li(a,b) = 1
m∥Xia

∗b∗⊤−Xiab
⊤∥2.

Each Xi is assumed to be a Gaussian random matrix, where
each entry is independently and identically distributed ac-
cording to a standard Gaussian distribution.

We remind the reader that Section 1.2 provides a summary
of mathematical notations and also point to Table 3 in Ap-
pendix A.1 for a summary of the symbols used throughout
the theoretical analysis.

Results. In this section, we assume homogeneous clients
where there is a single target model as in (6). In the special
case with the model as in (5) and the objective in (7), we
modify RoLoRA from Algorithm 1 to Algorithm 2, em-
ploying alternating minimization for b (line 5) and gradient
descent for a (line 9). Details are described in Algorithm 2.
We note that the analysis of the alternating minimization-
gradient descent algorithm is inspired by (Collins et al.,
2021; Seyedehsara et al., 2022; Vaswani, 2024) for a dif-
ferent setting of MLRL. We aim to show that the training

Algorithm 2 RoLoRA for linear regressor, Alt-min-GD
iterations

1: Input: GD Step size η, number of iterations T , number
of clients N

2: for t = 1 to T do
3: Let a← at−1,b← bt−1.
4: for i = 1 to N do
5: set b̃i ← argminb li(a,b)
6: end for
7: b̄ = 1

N

∑N
i=1 b̃i

8: for i = 1 to N do
9: Compute∇ali(a, b̄)

10: end for
11: â+ ← a− η

N

∑N
i=1∇ali(a, b̄), â← â+

∥â+∥
12: at ← â, bt ← b̄
13: end for

procedure described in Algorithm 2 learns the target model
(a∗,b∗). First, we make typical assumptions on the ground
truth b∗.

Assumption 5.1. There exists Lmax <∞ (known a priori),
s.t. ∥b∗∥ ≤ Lmax.

Next, to obtain the convergence results, we define the angle
distance between two unit vectors.

Definition 5.2. (Angle Distance) For two unit vectors
a,a∗ ∈ Rd, the angle distance between a and a∗ is defined
as

| sin θ(a,a∗)| = ∥(Id − aa⊤)a∗∥ (8)

where Id − aa⊤ is the projection operator to the direction
orthogonal to a.

4
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Let δt = ∥(Id − a∗a∗
⊤
)at∥ = ∥(Id − atat

⊤
)a∗∥ denote

the angle distance between a∗ and at of t-th iteration. We
initialize a0 such that | sin θ(a∗,a0)| = δ0, where 0 < δ0 <
1, and b0 is zero. All clients obtain the same initialization
for parameters. We show that the algorithm learns the target
model by showing the angle distance between a and a∗ is
decreasing in each iteration. Now we are ready to state our
main results.

Lemma 5.3. Let δt = ∥(Id − a∗a∗
⊤
)at∥ be the angle dis-

tance between a∗ and at of t-th iteration. Assume that As-
sumption 5.1 holds and δt ≤ δt−1 ≤ · · · ≤ δ0. Let m be the
number of samples for each updating step, let auxiliary error
thresholds ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ = ϵ3
1−ϵ0 for ϵ0, ϵ1, ϵ2, ϵ3 ∈

(0, 1), if m = Ω(q) for q = max

(
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

)
,

and auxiliary error thresholds are small such that ϵ′, ϵ̃ <
1−(δ0)2

16 , for any t and η ≤ 1
L2

max
, then we have,

δt+1 ≤ δt
√
1− η(1− δ02)∥b∗∥2 (9)

with probability at least 1− 2q−10.

Theorem 5.4 follows by recursively applying Lemma 5.3
and taking a union bound over all t ∈ [T ].

Theorem 5.4. (Convergence of RoLoRA for linear regres-
sor in homogeneous setting) Suppose we are in the set-
ting described in Section 5.1 and apply Algorithm 2 for
optimization. Given a random initial a0, an initial an-
gle distance δ0 ∈ (0, 1), we set step size η ≤ 1

L2
max

and the number of iterations T ≥ 2
c(1−(δ0)2) log(

δ0

ϵ ), for
c ∈ (0, 1). Under these conditions, if with sufficient number
of samples m = Ω(q) and small auxiliary error thresholds
ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ = ϵ3
1−ϵ0 , such that ϵ′, ϵ̃ < 1−(δ0)2

16 ,
we achieve that with probability at least 1 − 2Tq−10 for

q = max

(
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

)
,

sin θ(aT ,a∗) ≤ ϵ

which we refer to as ϵ-accurate recovery. In addition,

∥aT (bT+1)⊤ − a∗(b∗)⊤∥ ≤ (1 + ϵ′)ϵ∥a∗b∗⊤
∥.

Theorem 5.4 and Lemma 5.3 show that with a random initial-
ization for the unit vector a (δ0 ∈ (0, 1)), RoLoRA makes
the global model converge to the target model exponentially
fast with large q. The requirement for sample complexity is
well-supported, as demonstrated in (Collins et al., 2022; Du
et al., 2021).

While the proof of the above results are relegated to the
Appendix, we provide a brief outline of the proof. In
Appendices A.3, we first analyze the minimization step

for updating bti (Lemma A.9), then establish a bound on
the deviation of the gradient from its expectation with re-
spect to a (Lemma A.10), and finally derive a bound for
| sin θ(at+1,a∗)| based on the gradient descent update rule
for a (Lemma 5.3). The proof of Theorem 5.4 is in Sec-
tion A.4.

Intuition on Freezing-A Scheme (FFA-LoRA) can Satu-
rate. We begin by applying the FFA-LoRA scheme to a
centralized setting, aiming to solve the following optimiza-
tion problem:

min
b∈Rd
∥Xa∗b∗⊤

−Xa0b⊤∥2 (10)

where a∗ ∈ Rd and b∗ ∈ Rd represent the ground
truth parameters, and a0 ∈ Rd is the random initializa-
tion. The objective can be transformed to

∑d
p=i(a

∗b∗p −
a0bp)

⊤X⊤X(a∗b∗p − a0bp), with bp as the p-th entry of
b, b∗p as the p-th entry of b∗. In FFA-LoRA scheme, a0

remains fixed during training. If a0 is not initialized to be
parallel to a∗, the objective can never be reduced to zero.
This is because optimizing b only scales the vector a0bp
along the direction of a0, without altering the angular dis-
tance between a0 and a∗.

Suppose we are in the federated setting described in Sec-
tion 5.1, we apply FFA-LoRA, to optimize the objective
in (7). In FFA-LoRA scheme, we fix a of all clients to
a random unit vector a0, where the initial angle distance
δ0 = | sin θ(a∗,a0)|, δ0 ∈ (0, 1). And we only update bi
by minimizing li and aggregate them.

Proposition 5.5. (FFA-LoRA lower bound) Suppose we are
in the setting described in Section 5.1. For any set of ground
truth parameters (a∗,b∗), the initialization a0, initial angle
distance δ0 ∈ (0, 1), we apply FFA-LoRA scheme to obtain
a shared global model (a0,bFFA), yielding an expected
global loss of

E[
1

Nm

N∑
i=1

∥Xia
∗b∗⊤

−Xia
0(bFFA)⊤∥2]

= (1 + c̃)∥b∗∥2(δ0)2 (11)

where the expectation is over all the randomness in the Xi,
and c̃ = O( 1

Nm ).

See Appendix A.4.1 for the proof. Proposition 5.5 shows
that for any choice of δ0 ∈ (0, 1), the global objective
reached by FFA-LoRA is shown as in (11). The global
objective of FFA-LoRA is dominated by ∥b∗∥2(δ0)2 which
is due to the angular distance between a0 and a∗.

By Theorem 5.4, we demonstrate that RoLoRA achieves ϵ-
accurate recovery of the global minimizer. Specifically, the
expected global loss of RoLoRA can be upper bounded

5
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by (1 + c̃)∥b∗∥2ϵ2. Under the same initialization and
ground truth parameters for both FFA-LoRA and RoLoRA,
RoLoRA’s ability to update a reduces the global loss caused
by the angle distance between a and a∗ from ∥b∗∥2(δ0)2
to ∥b∗∥2ϵ2. By increasing the number of iterations, ϵ can
be made arbitrarily small.

In Appendix A.5, we analyze the convergence of RoLoRA
with single rank-1 LoRA structure in a federated setting
with heterogeneous clients. By showing the decreasing of
the angle distance between the ground truth a∗ and the
shared down-projection a, we demonstrate that RoLoRA
allows the global model to converge to global minimum
while the global loss of FFA-LoRA can be dominated by
the term caused by the angle distance between the random
initialization a0 and a∗.

Through this analysis of the LoRA structure with rank-1, we
highlight the necessity of updating the down-projections.

5.2. Verifying Results On a Two-Layer NN

Figure 2. (Left) Comparison of three methods on a toy model with
5 clients. (Right) Comparison of three methods on a toy model
with 10 clients.

The previous analysis considers a simple linear model for
each client. To assess the validity in a non-linear model, we
consider a two-layer neural network model on each client
given by

fi(xi) = ReLU(xiAB)Wout (12)

where Wout ∈ Rd×c, A ∈ Rd×r and B ∈ Rr×d are
weights. We train the model on MNIST (Deng, 2012) with
60,000 training images. We consider two different ways
to distribute training images to clients. The first is to dis-
tribute the images to 5 clients and each client gets access to
training images of two specific labels, while the second is to
distribute the images to 10 clients and each client only has
training images of one specific label. There is no overlap in
the training samples each client can access. Only weights
matrices B and A are tunable, while Wout are fixed. We
apply the typical initialization, where A is initialized to a
random Gaussian matrix, and B is initialized to zero. We
use c = 10, d = 784, r = 16 and make each client train 5
epochs locally with batch-size 64 and aggregate clients’ up-
date following three methods: FedAVG of LoRA, referred
as LoRA; FFA-LoRA (Sun et al., 2024), which freezes A
during training, and RoLoRA, which alternately update B

and A. We experiment with multiple learning rates, display
the best performance of each method in Figure 2.

As shown in Figure 2, we evaluate the performance of the
model in each iteration on the test set with 10,000 images.
We observe that the accuracy of FFA-LoRA plateaus around
55% in both settings, which aligns with our theoretical
analysis. The decline in LoRA’s performance with an in-
creasing number of clients is most likely due to less accurate
model aggregation, as demonstrated in (1) and (2). Notably,
RoLoRA demonstrates greater robustness in these settings.

6. Experiments on LLMs
In this section, we evaluate the performance of RoLoRA
in various federated settings. Considering all clients will
participate in each round, we will explore the following
methods based on FedAVG.

• LoRA means LoRA adapter and its finetuning algo-
rithm are directly applied to local finetuning of clients
in the federated system. Specifically, in iteration t, the
server receives At

i and Bt
i from client i and aggregates

by At = Avg(At
i) and Bt = Avg(Bt

i).
• LoRA-FFA (Sun et al., 2024) is a baseline that enable

the clients to finetune B and keep A frozen locally.
Thus, in iteration t, the server aggregates by Bt =
Avg(Bt

i).
• RoLoRA enables clients to alternate updating A and
B as described in Section 4.

FlexLoRA (Bai et al., 2024) fine-tunes large models in a fed-
erated setting by aggregating the matrix products of LoRA
components and compressing them using truncated-SVD.
However, due to its significant memory and computation
overheads it is not directly comparable with other schemes.
Nonetheless, we include its performance in Table 6 in Ap-
pendix.

Implementation & Configurations. We implement all
the methods based on FederatedScope-LLM (Kuang et al.,
2023). We use NVIDIA GeForce RTX 4090 or NVIDIA
A40 for all the experiments. To make a fair comparison,
for each dataset, we obtain the best performance on test
set and report the average over multiple seeds. Specifi-
cally, the learning rate is chosen from the set {5e− 4, 1e−
3, 2e − 3, 5e − 3, 1e − 2, 2e − 2, 5e − 2, 1e − 1}. Other
hyper-parameters for experiments are specified in Table 4 in
Appendix B.1. Please note that in all tasks, we compare the
performance of the three methods under the same number
of communication rounds.

6.1. Language Understanding Tasks

Model and Datasets. We take the pre-trained RoBERTa-
Large (355M) (Liu et al., 2019) models from the Hugging-
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Face Transformers library, and evaluate the performance
of three federated finetuning methods on 5 datasets (SST-2,
QNLI, MNLI, QQP, RTE) from the GLUE (Wang et al.,
2019). GLUE benchmark is a comprehensive set of tasks
for evaluating the performance of language models on a
variety of natural language understanding tasks. Due to the
limitation of the unpublished test set in GLUE, we follow
the previous studies (Zhang et al., 2023b) and use the origi-
nal validation set as the new test set and split a part of the
training set as the validation set.

Figure 3. Accuracies over rounds with RoBERTa-Large models on
SST-2, QNLI, MNLI, and QQP. The total number of clients is 50.
We use rank 4.

Effect of Number of Clients In this section, we study the
effect of the number of clients. The configurations are pre-
sented in Table 5 in Appendix. In Table 1, we increased the
number of clients from 3 to 20, and then to 50, ensuring that
there is no overlap in the training samples each client can
access. Consequently, each client receives a smaller fraction
of the total dataset. We observe that as the number of clients
increases, while maintaining the same number of fine-tuning
samples, the performance of the LoRA method significantly
deteriorates for most datasets. In contrast, RoLoRA main-
tains its accuracy levels. The performance of FFA-LoRA
also declines, attributed to the limited expressiveness of
the random initialization of A for clients’ heterogeneous
data. Notably, RoLoRA achieves this accuracy while in-
curring only half the communication costs associated with
LoRA. Figure 3 illustrates the dynamics during finetuning
for three methods, highlighting that the convergence speed
of RoLoRA is substantially better than that of the other two
methods.

Effect of Number of Finetuning Parameters In Figure 4,
we compare three methods across five GLUE datasets. We
apply LoRA module to every weight matrix of the selected
layers, given different budgets of LoRA parameters. For
each dataset, we experiment with three budgets (P1,P2,P3)

ranging from low to high. The corresponding layer sets that
are attached with LoRA adapters, P1,P2,P3, are detailed
in Table 7 in Appendix B.1. The figures indicates that with
sufficient number of finetuning parameters, FFA-LoRA can
achieve comparable best accuracy as LoRA and RoLoRA,
aligning with the results in (Sun et al., 2024); as the num-
ber of LoRA parameters is reduced, the performance of
the three methods deteriorates to varying degrees. How-
ever, RoLoRA, which achieves performance comparable to
LoRA, demonstrates greater robustness compared to FFA-
LoRA, especially under conditions of limited fine-tuning
parameters. It is important to note that with the same fine-
tuning parameters, the communication cost of RoLoRA and
FFA-LoRA is always half of that of LoRA due to their pa-
rameter freezing nature. This implies that RoLoRA not only
sustains its performance but also enhances communication
efficiency. Additional results of varifying ranks are provided
in Figure 6, 7, and 8 in Appendix B.2.2.

Align Communication Cost for Three Methods In Fig-
ure 5, we conduct a comparison of three methods under
the constraint of identical communication costs under the
assumption that the number of clients is small. To align the
communication costs across these methods, two approaches
are considered. The first approach involves doubling the
rank of FFA-LoRA and RoLoRA, with results presented in
Appendix B.2.2. The second approach requires doubling
the number of layers equipped with LoRA modules. In
Figure 5, the latter strategy is employed. Specifically, for
both FFA-LoRA and RoLoRA, we adjust the communi-
cation costs by doubling the number of layers equipped
with LoRA modules, thereby standardizing the size of the
transmitted messages. The configurations are presented in
Table 8 in Appendix. Figure 5 demonstrates that when oper-
ating within a constrained communication cost budget, the
performance of RoLoRA surpasses that of the other two
methods for most of the tasks.

6.2. Commonsense Reasoning Tasks

Model, Datasets. We evaluate RoLoRA against FFA-
LoRA and LoRA on Llama-2-7B(Touvron et al., 2023) for
commonsense reasoning tasks. The commonsense reason-
ing tasks include 8 sub-tasks, each provided with predefined
training and testing datasets. Following the setting in (Hu
et al., 2021), we merge the training datasets from all 8 sub-
tasks to create a unified training dataset, which is then evenly
distributed among the clients. Evaluations are conducted
individually on the testing dataset for each sub-task.

Results In Table 2, we compare the results of three meth-
ods with Llama-2-7B models on 8 commonsense reasoning
tasks. The configurations are presented in Appendix B.2.4.
The performance is reported as the mean accuracy with
standard deviations across 3 trials. RoLoRA consistently

7
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rank Clients num Method SST-2 QNLI MNLI QQP RTE Avg.

LoRA 95.62±0.17 91.59±0.21 86.20±0.05 86.13±0.10 81.46±1.22 88.20
4 3 FFA-LoRA 95.18±0.09 91.35±0.32 84.58±0.21 85.50±0.25 81.10±0.33 87.48

RoLoRA 95.49±0.16 91.64±0.30 85.70±0.04 86.14±0.06 82.43±0.84 88.28

LoRA 94.3±0.27 86.67±2.02 78.55±7.31 83.1±0.04 51.87±3.24 78.90
4 20 FFA-LoRA 93.88±0.06 89.11±0.19 80.99±1.74 83.92±0.2 57.16±1.46 80.01

RoLoRA 94.88±0.18 90.35±0.37 85.28±1.04 85.83±0.1 78.82±1.7 87.03

LoRA 93.00±0.35 78.13±5.13 52.64±15.07 77.60±1.47 52.23±1.1 70.72
4 50 FFA-LoRA 93.23±0.12 85.05±0.34 69.97±5.57 78.44±0.41 55.72±1.99 76.48

RoLoRA 94.80±0.17 90.00±0.63 82.98±3.36 85.71±0.18 75.57±2.88 85.81

LoRA 93.00±0.23 79.87±1.52 56.96±2.02 77.45±1.97 53.79±6.57 64.03
8 50 FFA-LoRA 92.74±0.13 83.69±0.75 64.51±1.92 79.71±2.04 53.07±1.3 72.46

RoLoRA 94.53±0.17 90.1±0.45 85.17±0.41 85.25±0.13 76.3±4.9 86.27

Table 1. Results with RoBERTa-Large models with varying client numbers (3, 20, 50), maintaining a constant sample count during
fine-tuning.

Figure 4. Results with RoBERTa-Large models on GLUE under different fine-tuning parameter budgets, involving three clients with rank
4.

Figure 5. RoBERTa-Large accuracies on QQP, MNLI, QNLI, and
RTE with specific uplink communication budget. It involves 3
clients using rank 4. Error bars reflect standard deviations.

achieves the highest accuracy across all tasks, demonstrating
significant improvements over both LoRA and FFA-LoRA.
We also highlights that FFA-LoRA exhibits large perfor-
mance variances across trials, such as a standard deviation
of 9.55 for PIQA and 8.44 for SIQA, respectively. This
significant variability is likely due to the initialization qual-
ity of parameter A, as different initializations could lead
to varying optimization trajectories and final performance

outcomes as discussed in Section 5. Additional results on
this task are presented in Table 10 in Appendix B.2.4.

BoolQ PIQA SIQA HellaSwag

LoRA 61.42±0.29 33.19±9.8 31.88±3.95 21.23±2.82
FFA-LoRA 53.43±4.3 35.49±9.55 10.63±8.44 11.81±4.53
RoLoRA 61.83±0.22 61.26±3.3 39.76±0.41 27.49±2.34

WinoGrande ARC-e ARC-c OBQA

LoRA 31.36±5.02 27.36±0.89 32.03±1.14 26.07±2.32
FFA-LoRA 1.61±2.14 6.88±0.42 7.93±0.89 15.0±5.41
RoLoRA 47.67±0.75 33.19±1.29 40.13±1.73 31.67±1.4

Table 2. Results with Llama-2-7B models on commonsense rea-
soning tasks. This involves 50 clients using rank 8.

More results. We include more experimental results
on Llama-2-7B on HumanEval and MMLU tasks in Ap-
pendix B.2.5.

7. Conclusion
In this work, we introduce RoLoRA, a federated framework
that leverages alternating optimization to finetune LoRA
adapters. Our approach highlights the role of learning down-
projection matrices to enhance both expressiveness and ro-
bustness. Through theoretical analysis on a simplified linear
model, and comprehensive experiments on a toy neural net-
work and large language models like RoBERTa-Large and
Llama-2-7B, we show that RoLoRA outperforms existing
methods that limit model updates or expressiveness.

8
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A. Theoretical Analysis
A.1. Notation

Table 3 provides a summary of the symbols used throughout this theoretical analysis.

Notation Description

a∗,b∗
i Ground truth parameters of client i

b̄∗ Average of b∗
i

at,bt Global model parameters of t-th iteration
δt The angle distance between a∗ and at, | sin θ(a∗,at)|
η Step size
Id d× d identity matrix
∥·∥ l2 norm of a vector
∥ · ∥op Operator norm (l2 norm) of a matrix
| · | Absolute value of a scalar
∥ · ∥ψ2

Sub-Gaussian norm of a sub-Gaussian random variable
∥ · ∥ψ1

Sub-exponential norm of a sub-exponential random variable
N Total number of clients
â+ Updated a by gradient descent
â Normalized â+

b̄ Average of bi

Table 3. Notations

A.2. Auxiliary

Definition A.1 (Sub-Gaussian Norm). The sub-Gaussian norm of a random variable ξ, denoted as ∥ξ∥ψ2 , is defined as:

∥ξ∥ψ2
= inf{t > 0 : E[exp(ξ2/t2)] ≤ 2}.

A random variable is said to be sub-Gaussian if its sub-Gaussian norm is finite. Gaussian random variables are sub-Gaussian.
The sub-Gaussian norm of a standard Gaussian random variable ξ ∼ N (0, 1) is ∥ξ∥ψ2

=
√
8/3.

Definition A.2 (Sub-Exponential Norm). The sub-exponential norm of a random variable ξ, denoted as ∥ξ∥ψ1 , is defined as:

∥ξ∥ψ1
= inf{t > 0 : E[exp(|ξ|/t)] ≤ 2}.

A random variable is said to be sub-exponential if its sub-exponential norm is finite.
Lemma A.3 (The product of sub-Gaussians is sub-exponential). Let ξ and υ be sub-Gaussian random variables. Then ξυ is
sub-exponential. Moreover,

∥ξυ∥ψ1
≤ ∥ξ∥ψ2

· ∥υ∥ψ2

Lemma A.4 (Sum of independent sub-Gaussians). Let X1, · · · , XN be independent mean-zero sub-Gaussian random
variables. Then

∑N
i=1 Xi is also sub-Gaussian with∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥
2

ψ2

≤ C

N∑
i=1

∥Xi∥2ψ2
,

where C is some absolute constant.

Proof. See proof of Lemma 2.6.1 of (Vershynin, 2018).

Corollary A.5. For random vector x ∈ Rd with entries being independent standard Gaussian random variables, the inner
product a⊤x is sub-Gaussian for any fixed a ∈ Rd, and∥∥a⊤x∥∥

ψ2
≤ C ′∥a∥

11
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where C ′ is some absolute constant.

Proof. Note that a⊤x =
∑d
i=1 aiξi, where ξi ∼ N (0, 1) is the i-th entry of the random vector x. Choose C to be the

absolute constant specified in Lemma A.4 for standard Gaussian random variables, and set C ′ =
√
8C/3. We have

∥∥a⊤x∥∥2
ψ2
≤ C

N∑
i=1

∥aiξi∥2ψ2

(a)
= C

N∑
i=1

a2i ∥ξi∥2ψ2

(b)
=

8

3
· C∥a∥2 ⇒

∥∥a⊤x∥∥
ψ2
≤
√

8C

3
∥a∥ = C ′∥a∥.

Step (a) makes use of the homogeneity of the sub-Gaussian norm, and step (b) uses the fact that ∥ξ∥ψ2
=
√

8/3 for
ξ ∼ N (0, 1).

Definition A.6 (ϵ-net). Consider a subset A ⊆ Rd in the d-dimensional Euclidean space. Let ϵ > 0. A subset N ⊆ A is
called an ϵ-net of A if every point of A is within a distance ϵ of some point in N , i.e.,

∀x ∈ A, ∃x′ ∈ N , ∥x− x′∥ ≤ ϵ.

Lemma A.7 (Computing the operator norm on a net). Let a ∈ Rd and ϵ ∈ [0, 1). Then, for any ϵ-net N of the sphere Sd−1,
we have

∥a∥ ≤ 1

1− ϵ
sup
x∈N
⟨a,x⟩

Proof. See proof of Lemma 4.4.1 of (Vershynin, 2018).

Theorem A.8 (Bernstein’s inequality). Let X1, . . . , XN be independent mean-zero sub-exponential random variables.
Then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi ∥Xi∥ψ1

))
,

where c > 0 is an absolute constant.

Proof. See proof of Theorem 2.8.1 of (Vershynin, 2018).

A.3. Vector-vector case with homogeneous clients

Theorem 5.4 follows by recursively applying Lemma 5.3 for T iterations. In Lemma A.9 and Lemma A.10, we start by
obtaining the important bounds that will be reused. Using Lemma A.9 and Lemma A.10, based on the update rule of a, we
analyze the convergence behavior of a in Lemma 5.3.

Lemma A.9. Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote the angle distance between a∗ and a. Let

g⊤ = a⊤a∗b∗⊤
, b̄ = 1

N

∑N
i=1 bi, If m = Ω(q), and q = max( log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22
), then with probability 1− q−10,

∥b̄− g∥ ≤ ϵ′δt∥b∗∥ (13)

where ϵ′ = ϵ2
(1−ϵ0)(1−ϵ1) , for ϵ0, ϵ1, ϵ2 ∈ (0, 1).

Proof. We drop superscript t for simplicity. Following Algorithm 2, we start by computing the update for b̃i. With
g⊤ = a⊤a∗b∗⊤

, we get:

b̃⊤
i =

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(14)

=
a⊤X⊤

i Xiaa
⊤a∗b∗⊤

+ a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

a⊤X⊤
i Xia

(15)

= g⊤ +
a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤

a⊤X⊤
i Xia

. (16)

12
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Therefore,

∥b̃i − g∥ ≤ |a⊤X⊤
i Xia|−1 · ∥a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
∥ = ∥Xia∥−2 · ∥a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
∥. (17)

Note that since each entry of Xi is independent and identically distributed according to a standard Gaussian, and ∥a∥ = 1,
Xia is a random standard Gaussian vector. By Theorem 3.1.1 of (Vershynin, 2018), the following is true for any ϵ1 ∈ (0, 1)

P
{
∥Xia∥2 ≤ (1− ϵ1)m

}
≤ exp (−c1ϵ

2
1m

K4
) (18)

where K = ∥ξ∥ψ2 ≥ 1 for ξ ∼ N (0, 1) and c1 is some large absolute constant that makes (18) holds. Next we upper
bound ∥a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤∥. Note that E[a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

] = a⊤E[X⊤
i Xi](Id − aa⊤)a∗b∗⊤

=

ma⊤(Id − aa⊤)a∗b∗⊤
= 0. First we need to apply sub-exponential Berstein inequality to bound the deviation from this

mean, and then apply epsilon net argument. LetN be any ϵ0-net of the unit sphere Sd−1 in the d-dimensional real Euclidean
space, then by Lemma A.7, we have

∥a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

∥ ≤ 1

1− ϵ0
max
w∈N

a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w (19)

≤ 1

1− ϵ0
max
w∈N

|a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w| (20)

Meanwhile, denote the j-th row of Xi by x⊤
i,j , for every w ∈ N , we have

a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w =

m∑
j=1

(a⊤xi,j)(x
⊤
i,j(Id − aa⊤)a∗b∗⊤

w) (21)

On the right hand side of (21), a⊤xi,j and x⊤
i,j(Id−aa⊤)a∗b∗⊤

w are sub-Gaussian random variables. Thus, the summands
on the right-hand side of (21) are products of sub-Gaussian random variables, making them sub-exponential. Now by
choosing c2 = (C ′)2 for the C ′ in Corollary A.5, we have the following chain of inequalities for all i, j:

∥(a⊤xi,j)(x⊤
i,j(Id − aa⊤)a∗b∗⊤

w)∥ψ1
≤ ∥a⊤xi,j∥ψ2

· ∥x⊤
i,j(Id − aa⊤)a∗b∗⊤

w∥ψ2
(22)

≤ c2 · ∥a∥ · ∥(Id − aa⊤)a∗b∗⊤w∥ (23)

≤ c2 · ∥a∥ · ∥(Id − aa⊤)a∗b∗⊤∥op∥w∥ (24)

≤ c2 · ∥(Id − aa⊤)a∗b∗⊤∥op (25)

Equation (22) is due to Lemma A.3, (23) is due to Corollary A.5, (25) is by the fact that ∥a∥ = ∥w∥ = 1.

Furthermore, these summands are mutually independent and have zero mean. By applying sub-exponential Bernstein’s
inequality (Theorem A.8) with t = ϵ2m∥(Id − aa⊤)a∗b∗⊤∥op, we get

P
{∣∣∣a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(26)

= P


∣∣∣∣∣∣
m∑
j=1

(a⊤xi,j)(x
⊤
i,j(Id − aa⊤)a∗b∗⊤

w)

∣∣∣∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤
∥op

 (27)

≤ 2 exp

(
−cmin

(
ϵ22m

2∥(Id − aa⊤)a∗b∗⊤∥2op∑m
j=1 ∥(a⊤xi,j)(x⊤

i,j(Id − aa⊤)a∗b∗⊤w)∥2ψ1

,
ϵ2m∥(Id − aa⊤)a∗b∗⊤∥op

maxj ∥(a⊤xi,j)(x⊤
i,j(Id − aa⊤)a∗b∗⊤w)∥ψ1

))
(28)

= 2 exp (−c3ϵ22m) (29)

for any fixed w ∈ N , ϵ2 ∈ (0, 1), and some absolute constant c3. (29) follows because

ϵ22m
2∥(Id − aa⊤)a∗b∗⊤∥2op∑m

j=1 ∥(a⊤xi,j)(x⊤
i,j(Id − aa⊤)a∗b∗⊤w)∥2ψ1

≥ ϵ22m

c22
(30)

ϵ2m∥(Id − aa⊤)a∗b∗⊤∥op
maxj ∥(a⊤xi,j)(x⊤

i,j(Id − aa⊤)a∗b∗⊤w)∥ψ1

≥ ϵ2m

c2
(31)
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And ϵ22m

c22
≤ ϵ2m

c2
. Now we apply union bound over all elements in N . By Corollary 4.2.13 in (Vershynin, 2018), there exists

an ϵ0-net N with |N | ≤ ( 2
ϵ0

+ 1)d, therefore for this choice of N ,

P
{
max
w∈N

∣∣∣a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(32)

≤
∑
w∈N

P
{∣∣∣a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(33)

≤
(

2

ϵ0
+ 1

)d
· 2 exp (−c3ϵ22m) (34)

= 2 exp (d log(1 + 2
ϵ0
)− c3ϵ

2
2m) (35)

Combining (17),(18), (20), and (35), we get

P
{
∥b̃i − g∥ ≤ ϵ′∥(Id − aa⊤)a∗b∗⊤

∥op
}
≥ 1− p0 (36)

where ϵ′ = ϵ2
(1−ϵ0)(1−ϵ1) and p0 = 2 exp (d log(1 + 2

ϵ0
)− c3ϵ

2
2m) + exp (− c1ϵ

2
1m

K4 ). Using a union bound over i ∈ [N ], we
have

P

{
N⋂
i=1

∥b̃i − g∥ ≤ ϵ′∥(Id − aa⊤)a∗b∗⊤
∥op

}
≥ 1−Np0. (37)

Next we bound ∥b̄− g∥ where b̄ is the average of {bi}Ni=1.

∥b̄− g∥ = ∥ 1
N

N∑
i=1

(b̃i − g)∥ (38)

≤ 1

N

N∑
i=1

∥b̃i − g∥ (39)

≤ ϵ′∥(Id − aa⊤)a∗b∗⊤
∥op (40)

= ϵ′∥(Id − aa⊤)a∗∥ · ∥b∗⊤
∥ (41)

= ϵ′δt∥b∗∥ (42)

with probability 1−Np0. (39) follows by Jensen’s inequality. (41) follows since ∥uv⊤∥op = ∥u∥ · ∥v∥. (42) follows since
δt = ∥(Id − aa⊤)a∗∥.

If m = Ω(q), where q = max( log(N)
[min(ϵ1,ϵ2)]2

,
d log( 2

ϵ0
)

ϵ22
), then 1 − Np0 > 1 − exp(−Cq) > 1 − q−10 for large absolute

constant C. Then with probability at least 1− q−10,

∥b̄− g∥ ≤ ϵ′δt∥b∗∥ (43)

Lemma A.10. Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote the angle distance between a∗ and a.

Then for Nm = Ω(
d log( 2

ϵ0
)

ϵ23
) and q = max( log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22
), with probability at least 1− 2q−10,

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤ 2ϵ̃((ϵ′)2 + ϵ′)δt∥b∗∥2 (44)

where ϵ̃ = ϵ3
1−ϵ0 , and ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , for ϵ0, ϵ1, ϵ2, ϵ3 ∈ (0, 1).
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Proof. Based on the loss function l(a,b) = 1
N

∑N
i=1 li(a,b) =

1
Nm

∑N
i=1∥Xia

∗b∗⊤ −Xiab
⊤∥2, we bound the expected

gradient with respect to a and the deviation from it. The gradient with respect to a and its expectation are computed as:

∇al(a, b̄) =
2

Nm

N∑
i=1

(X⊤
i Xiab̄

⊤b̄−X⊤
i Yib̄) (45)

=
2

Nm

N∑
i=1

(X⊤
i Xiab̄

⊤b̄−X⊤
i Xia

∗b∗⊤
b̄) (46)

=
2

Nm

N∑
i=1

X⊤
i Xi(ab̄

⊤ − a∗b∗⊤
)b̄ (47)

E[∇al(a, b̄)] =
2

Nm

N∑
i=1

m(ab̄⊤ − a∗b∗⊤
)b̄ (48)

= 2(ab̄⊤ − a∗b∗⊤
)b̄ (49)

Next, we bound ∥∇al(a, b̄)− E[∇al(a, b̄)]∥. Construct ϵ0-net N over d dimensional unit spheres Sd−1, by Lemma A.7,
we have

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤
1

1− ϵ0
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ (50)

≤ 1

1− ϵ0

2

Nm
max
w∈N

∣∣∣∣∣∣
N∑
i=1

m∑
j=1

(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄−w⊤(ab̄⊤ − a∗b∗⊤

)b̄

∣∣∣∣∣∣
(51)

where x⊤
i,j is the j-th row of Xi. Observe that x⊤

i,jw and xi,j(ab̄
⊤−a∗b∗⊤

)b̄ are sub-Gaussian variables. Thus the product
of them are sub-exponentials. For the right hand side of (51), the summands are sub-exponential random variables with
sub-exponential norm

∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄−w⊤(ab̄⊤ − a∗b∗⊤

)b̄∥ψ1
(52)

≤ ∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄∥ψ1 + ∥w⊤(ab̄⊤ − a∗b∗⊤

)b̄∥ψ1 (53)

≤ ∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄∥ψ1 +

|w⊤(ab̄⊤ − a∗b∗⊤
)b̄|

log 2
(54)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

|w⊤(ab̄⊤ − a∗b∗⊤
)b̄|

log 2
(55)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

∥w∥ · ∥(ab̄⊤ − a∗b∗⊤
)b̄∥

log 2
(56)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

∥w∥ · ∥ab̄⊤ − a∗b∗⊤∥op · ∥b̄∥
log 2

(57)

= c4 · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥ (58)

where c4 = c2 +
1

log 2 is some absolute constant greater than 1. Equation (54) is due to the fact that for a constant c ∈ R,

∥c∥ψ1
= inf

t
exp

{
|c|
t
≤ 2

}
=
|c|
log 2

.

Equation (55) is derived similarly as (22)-(24).

The summands in (51) are mutually independent and have zero mean. Applying sub-exponential Bernstein inequality
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(Theorem A.8) with t = ϵ3Nm∥ab̄⊤ − a∗b∗⊤∥op · ∥b̄∥,

P


∣∣∣∣∣∣
N∑
i=1

m∑
j=1

[((x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))−w⊤(ab̄⊤ − a∗b∗⊤

))b̄]

∣∣∣∣∣∣ ≥ ϵ3Nm∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥

 (59)

≤ 2 exp

(
−cmin(

ϵ23Nm

c24
,
ϵ3Nm

c4
)

)
(60)

= 2 exp (−c5ϵ23Nm) (61)

for any fixed w ∈ N , ϵ3 ∈ (0, 1) and some absolute constant c5.

Now we apply union bound over all w ∈ N using Corollary 4.2.13 of (Vershynin, 2018). We can conclude that

P
{
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ ≥ 2ϵ3∥ab̄⊤ − a∗b∗⊤

∥op · ∥b̄∥
}

(62)

≤
∑
w∈N

P
{∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]

∣∣ ≥ 2ϵ3∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥

}
(63)

≤ 2 exp (d log(1 +
2

ϵ0
)− c5ϵ

2
3Nm) (64)

Combining (42), (50) , and (62), with probability at least 1− 2 exp (d log(1 + 2
ϵ0
)− c5ϵ

2
3Nm)− q−10,

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤
1

1− ϵ0
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ (65)

≤ 2ϵ3
1− ϵ0

∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥ (66)

=
2ϵ3

1− ϵ0
∥a(b̄− g)⊤ − (Id − aa⊤)a∗b∗⊤

∥op · ∥b̄∥ (67)

≤ 2ϵ3
1− ϵ0

(∥a⊤(b̄− g)∥+ ∥(Id − aa⊤)a∗b∗⊤
∥op)∥b̄∥ (68)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ ∥(Id − aa⊤)a∗∥ · ∥b∗∥)∥b̄∥ (69)

=
2ϵ3

1− ϵ0
(∥b̄− g∥+ δt∥b∗∥)∥b̄− g + g∥ (70)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ δt∥b∗∥)(∥b̄− g∥+ ∥g∥) (71)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ δt∥b∗∥)(∥b̄− g∥+ ∥b∗∥) (72)

=
2ϵ3

1− ϵ0
(∥b̄− g∥2 + δt∥b̄− g∥∥b∗∥+ ∥b̄− g∥∥b∗∥+ δt∥b∗∥2) (73)

≤ 2ϵ3
1− ϵ0

((ϵ′)2(δt)2 + ϵ′(δt)2 + ϵ′δt + δt)∥b∗∥2 (74)

≤ 2ϵ3
1− ϵ0

(ϵ′ + 1)2δt∥b∗∥2 (75)

= 2ϵ̃(ϵ′ + 1)2δt∥b∗∥2 (76)

with ϵ̃ = ϵ3
1−ϵ0 . (66) uses (62). (68) follows by triangle inequality. (70) follows by δt = ∥(Id − aa⊤)a∗∥. (72) uses

∥g∥ = ∥b∗a∗
⊤
a∥ ≤ ∥b∗∥. (75) follows by (δt)2 < δt since δt ∈ (0, 1).
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Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA

If Nm = Ω(
d log( 2

ϵ0
)

ϵ23
), then existing large constant C,

1− 2 exp (d log(1 +
2

ϵ0
)− c5ϵ

2
3Nm)− q−10 > 1− exp(−Cd)− q−10 (77)

> 1− d−10 − q−10 (78)

> 1− 2q−10 (79)

Thus with probability at least 1− 2q−10, (76) holds.

Lemma A.11 (Lemma 5.3). Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote the angle distance between

a∗ and a. Assume that Assumption 5.1 holds and δt ≤ δt−1 ≤ · · · ≤ δ0. Let m be the number of samples for each updating
step, let ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ =
ϵ3

1−ϵ0 for ϵ0, ϵ1, ϵ2, ϵ3 ∈ (0, 1), if

m = Ω

(
max

{
log(N)

[min(ϵ1, ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

})

and ϵ′, ϵ̃ < 1−(δ0)2

16 , for any t and η ≤ 1
L2

max
, then we have,

δt+1 ≤ δt
√
1− η(1− δ02)∥b∗∥2 (80)

with probability at least 1− 2q−10 for q = max

{
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

}
.

Proof. Recall that â+ = a− η∇al(a, b̄). We substract and add E[∇al(a, b̄)], obtain

â+ = a− ηE[∇al(a, b̄)] + η(E[∇al(a, b̄)]−∇al(a, b̄)) (81)

Multiply both sides by the projection operator P = Id − a∗(a∗)⊤,

Pâ+ = Pa− ηPE[∇al(a, b̄)] + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (82)

= Pa− 2ηP(ab̄⊤ − a∗b∗⊤
)b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (83)

= Pa− 2ηPab̄⊤b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (84)

= Pa(1− 2ηb̄⊤b̄) + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (85)

where (83) uses E[∇al(a, b̄)] = 2(ab̄⊤ − a∗b∗⊤
)b̄, (84) follows by Pa∗ = 0. Thus, we get

∥Pâ+∥ ≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥ (86)

Normalizing the left hand side, we obtain

∥Pâ+∥
∥â+∥

≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥
∥â+∥

(87)

⇒ δt+1 ≤ δt|1− 2ηb̄⊤b̄|+ η∥E[∇al(a, b̄)]−∇al(a, b̄)∥
∥â+∥

(88)

=
E1 + E2

∥â+∥
(89)

where (87) follows by δt+1 = ∥Pâ+∥
∥â+∥ and δt = ∥Pa∥. We need to upper bound E1 and E2 accordingly. E2 is upper

bounded based on Lemma A.10. With probability at least 1− 2q−10,

E2 = η∥E[∇al(a, b̄)]−∇al(a, b̄)∥ (90)

≤ 2ηϵ̃(ϵ′ + 1)2δt∥b∗∥2 (91)
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To upper bound E1, we need to lower bound ∥b̄∥2. We can first lower bound ∥b̄∥ by:

∥b̄∥ = ∥g − (g − b̄)∥ (92)
≥ ∥g∥ − ∥g − b̄∥ (93)

=
√
1− (δt)2∥b∗∥ − ∥g − b̄∥ (94)

≥
√

1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥ (95)

with probability at least 1− q−10. (94) follows by g⊤ = a⊤a∗b∗⊤
and a⊤a∗ = cos θ(a,a∗), (95) follows by Lemma A.9.

Assuming δt ≤ · · · ≤ δ0, we choose ϵ′ < 1−(δ0))2

16 to make
√
1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥ ≥ 0. Hence ∥b̄∥2 is lower

bounded by:

∥b̄∥2 ≥ (
√
1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥)2 (96)

= (1− (δt)2)∥b∗∥2 + (ϵ′)2(δt)2∥b∗∥2 − 2ϵ′δt
√

1− (δt)2∥b∗∥2 (97)

≥ (1− (δt)2)∥b∗∥2 + (ϵ′)2(δt)2∥b∗∥2 − ϵ′∥b∗∥2 (98)

≥ (1− (δ0)2)∥b∗∥2 − ϵ′∥b∗∥2 (99)

with probability at least 1− q−10. (98) follows by xy ≤ 1
2 for x2+y2 = 1, (99) follows by assuming δt ≤ δt−1 ≤ · · · ≤ δ0.

E1 is upper bounded below.

E1 = δt|1− 2ηb̄⊤b̄| (100)

≤ δt|1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2| (101)

with probability at least 1− q−10. Next we lower bound ∥â+∥.

∥â+∥2 = ∥a− η∇al(a, b̄)∥2 (102)

= a⊤a+ η2∥∇al(a, b̄)∥2 − 2ηa⊤∇al(a, b̄) (103)

≥ a⊤a− 2ηa⊤∇al(a, b̄) (104)

= 1− 2ηa⊤∇al(a, b̄) (105)

= 1− 2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)])− 2ηa⊤E[∇al(a, b̄)] (106)

where (104) follows by η2∥∇al(a, b̄)∥2 ≥ 0, and (105) follows by a⊤a = 1. The first subtrahend 2ηa⊤(∇al(a, b̄) −
E[∇al(a, b̄)]) is upper bounded such that

2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)]) ≤ 2η∥a∥ · ∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (107)
= 2η∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (108)

≤ 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 (109)

with probability at least 1− 2q−10. (109) uses Lemma A.9. The second subtrahend is upper bounded such that

2ηa⊤E[∇al(a, b̄)] = 4ηa⊤(ab̄⊤ − a∗b∗⊤
)b̄ (110)

= 4ηa⊤(ab̄⊤ − a∗b∗⊤
)g − 4ηa⊤(ab̄⊤ − a∗b∗⊤

)(g − b̄) (111)

where a⊤(ab̄⊤ − a∗b∗⊤
)g = −a⊤((Id − aa⊤)a∗b∗⊤

+ a(g − b̄)⊤)g = (b̄ − g)⊤g. The second term is simplified
via a⊤(ab̄⊤ − a∗b∗⊤

)(g − b̄) = a⊤((Id − aa⊤)a∗b∗⊤
+ a(g − b̄)⊤)(b̄ − g) = −(g − b̄)2. Both simplifications use

a⊤(Id − aa⊤) = 0 and a⊤a = 1. (111) becomes

2ηa⊤E[∇al(a, b̄)] = 4η(b̄− g)⊤g + 4η(g − b̄)2 (112)

≤ 4η∥g − b̄∥∥b∗∥+ 4η∥g − b̄∥2 (113)

≤ 4ηϵ′δt∥b∗∥2 + 4η(ϵ′)2(δt)2∥b∗∥2 (114)

≤ 4η((ϵ′)2 + ϵ′)∥b∗∥2 (115)
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with probability at least 1− q−10. (158) uses Lemma A.9. Combining (109) and (115), we obtain

∥â+∥2 ≥ 1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2 (116)

with probability at least 1− 2q−10. Combining (101), (91) and (116), we obtain

δt+1 ≤ E1 + E2

∥â+∥
≤ δt(1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2)√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
= δtC (117)

We can choose ϵ′, ϵ̃ < 1−(δ0)2

16 such that (1− (δ0)2) > max(4(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′), 2ϵ′ + 2ϵ̃(ϵ′ + 1)2) holds. Then we
obtain

C =
1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
(118)

=
1− 2η(1− (δ0)2)∥b∗∥2 + 2ηϵ′∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2
(119)

≤ 1− 2η(1− (δ0)2)∥b∗∥2 + η(2ϵ′ + 2ϵ̃(ϵ′ + 1)2)∥b∗∥2√
1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2

(120)

≤ 1− η(1− (δ0)2)∥b∗∥2√
1− η(1− (δ0)2)∥b∗∥2

(121)

=
√

1− η(1− (δ0)2)∥b∗∥2 (122)

Assuming η ≤ 1
L2

max
≤ 1

∥b∗∥2 , 1− η(1− (δ0)2)∥b∗∥2 is strictly positive. Therefore we obtain, with probability at least
1− 2q−10,

δt+1 ≤ δt
√

1− η(1− (δ0)2)∥b∗∥2. (123)

A.4. Proof of Theorem 5.4

Proof. In Lemma 5.3, we have shown the angle distance between a and a∗ decreasing in t-th iteration such that with
probability at least 1− 2q−10 for q = max{log(N), d}, δt+1 ≤ δtC for c ∈ (0, 1), C =

√
1− c(1− (δ0)2) with proper

choice of step size η.

Proving δ1 ≤ δ0C . Now we are to prove that for the first iteration, δ1 ≤ δ0C with certain probability.

By Lemma A.9, we get ∥b̄− g∥ ≤ ϵ′δ0∥b∗∥ with probability at least 1− q−10.

By Lemma A.10, we get ∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤ 2ϵ̃((ϵ′)2 + ϵ′)δ0∥b∗∥2 with probability at least 1− 2q−10.

We drop superscript of the iteration index for simplicity. Recall that â+ = a − η∇al(a, b̄). We substract and add
E[∇al(a, b̄)], obtain

â+ = a− ηE[∇al(a, b̄)] + η(E[∇al(a, b̄)]−∇al(a, b̄)) (124)

Multiply both sides by the projection operator P = Id − a∗(a∗)⊤,

Pâ+ = Pa− ηPE[∇al(a, b̄)] + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (125)

= Pa− 2ηP(ab̄⊤ − a∗b∗⊤
)b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (126)

= Pa− 2ηPab̄⊤b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (127)

= Pa(1− 2ηb̄⊤b̄) + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (128)
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where (126) uses E[∇al(a, b̄)] = 2(ab̄⊤ − a∗b∗⊤
)b̄, (127) follows by Pa∗ = 0. Thus, we get

∥Pâ+∥ ≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥ (129)

Normalizing the left hand side, we obtain

∥Pâ+∥
∥â+∥

≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥
∥â+∥

(130)

⇒ δ1 ≤ δ0|1− 2ηb̄⊤b̄|+ η∥E[∇al(a, b̄)]−∇al(a, b̄)∥
∥â+∥

(131)

=
E1 + E2

∥â+∥
(132)

where (130) follows by δ1 = ∥Pâ+∥
∥â+∥ and δ0 = ∥Pa∥. We need to upper bound E1 and E2 accordingly. E2 is upper bounded

based on Lemma A.10. With probability at least 1− 2q−10,

E2 = η∥E[∇al(a, b̄)]−∇al(a, b̄)∥ (133)

≤ 2ηϵ̃(ϵ′ + 1)2δ0∥b∗∥2 (134)

To upper bound E1, we need to lower bound ∥b̄∥2. We can first lower bound ∥b̄∥ by:

∥b̄∥ = ∥g − (g − b̄)∥ (135)
≥ ∥g∥ − ∥g − b̄∥ (136)

=
√

1− (δ0)2∥b∗∥ − ∥g − b̄∥ (137)

≥
√

1− (δ0)2∥b∗∥ − ϵ′δ0∥b∗∥ (138)

with probability at least 1−q−10. (137) follows by g⊤ = a⊤a∗b∗⊤
and a⊤a∗ = cos θ(a,a∗), (138) follows by Lemma A.9.

Still we choose ϵ′ < 1−(δ0))2

16 to make
√
1− (δ0)2∥b∗∥ − ϵ′δ0∥b∗∥ ≥ 0. Hence ∥b̄∥2 is lower bounded by:

∥b̄∥2 ≥ (
√

1− (δ0)2∥b∗∥ − ϵ′δ0∥b∗∥)2 (139)

= (1− (δ0)2)∥b∗∥2 + (ϵ′)2(δ0)2∥b∗∥2 − 2ϵ′δ0
√
1− (δ0)2∥b∗∥2 (140)

≥ (1− (δ0)2)∥b∗∥2 + (ϵ′)2(δ0)2∥b∗∥2 − ϵ′∥b∗∥2 (141)

≥ (1− (δ0)2)∥b∗∥2 − ϵ′∥b∗∥2 (142)

with probability at least 1− q−10. (141) follows by xy ≤ 1
2 for x2 + y2 = 1. E1 is upper bounded below.

E1 = δ0|1− 2ηb̄⊤b̄| (143)

≤ δ0|1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2| (144)

with probability at least 1− q−10. Next we lower bound ∥â+∥.

∥â+∥2 = ∥a− η∇al(a, b̄)∥2 (145)

= a⊤a+ η2∥∇al(a, b̄)∥2 − 2ηa⊤∇al(a, b̄) (146)

≥ a⊤a− 2ηa⊤∇al(a, b̄) (147)

= 1− 2ηa⊤∇al(a, b̄) (148)

= 1− 2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)])− 2ηa⊤E[∇al(a, b̄)] (149)

where (147) follows by η2∥∇al(a, b̄)∥2 ≥ 0, and (148) follows by a⊤a = 1. The first subtrahend 2ηa⊤(∇al(a, b̄) −
E[∇al(a, b̄)]) is upper bounded such that

2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)]) ≤ 2η∥a∥ · ∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (150)
= 2η∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (151)

≤ 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 (152)
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(152) uses Lemma A.9. The second subtrahend is upper bounded such that

2ηa⊤E[∇al(a, b̄)] = 4ηa⊤(ab̄⊤ − a∗b∗⊤
)b̄ (153)

= 4ηa⊤(ab̄⊤ − a∗b∗⊤
)g − 4ηa⊤(ab̄⊤ − a∗b∗⊤

)(g − b̄) (154)

where a⊤(ab̄⊤ − a∗b∗⊤
)g = −a⊤((Id − aa⊤)a∗b∗⊤

+ a(g − b̄)⊤)g = (b̄ − g)⊤g. The second term is simplified
via a⊤(ab̄⊤ − a∗b∗⊤

)(g − b̄) = a⊤((Id − aa⊤)a∗b∗⊤
+ a(g − b̄)⊤)(b̄ − g) = −(g − b̄)2. Both simplifications use

a⊤(Id − aa⊤) = 0 and a⊤a = 1. (154) becomes

2ηa⊤E[∇al(a, b̄)] = 4η(b̄− g)⊤g + 4η(g − b̄)2 (155)

≤ 4η∥g − b̄∥∥b∗∥+ 4η∥g − b̄∥2 (156)

≤ 4ηϵ′δ0∥b∗∥2 + 4η(ϵ′)2(δt)2∥b∗∥2 (157)

≤ 4η((ϵ′)2 + ϵ′)∥b∗∥2 (158)

with probability at least 1− q−10. (157) uses Lemma A.9. Combining (152) and (158), we obtain

∥â+∥2 ≥ 1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2 (159)

with probability at least 1− 2q−10. Combining (144), (134) and (159), we obtain

δ1 ≤ E1 + E2

∥â+∥
≤ δ0(1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2)√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
= δ0C (160)

Still we can choose ϵ′, ϵ̃ < 1−(δ0)2

16 such that (1− (δ0)2) > max(4(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′), 2ϵ′ + 2ϵ̃(ϵ′ + 1)2) holds. Then
we obtain

C =
1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
(161)

=
1− 2η(1− (δ0)2)∥b∗∥2 + 2ηϵ′∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2
(162)

≤ 1− 2η(1− (δ0)2)∥b∗∥2 + η(2ϵ′ + 2ϵ̃(ϵ′ + 1)2)∥b∗∥2√
1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2

(163)

≤ 1− η(1− (δ0)2)∥b∗∥2√
1− η(1− (δ0)2)∥b∗∥2

(164)

=
√

1− η(1− (δ0)2)∥b∗∥2 (165)

Assuming η ≤ 1
L2

max
≤ 1

∥b∗∥2 , 1− η(1− (δ0)2)∥b∗∥2 is strictly positive. Therefore we obtain, with probability at least
1− 2q−10,

δ1 ≤ δ0
√
1− η(1− (δ0)2)∥b∗∥2. (166)

Inductive Hypothesis. Based on inductive hypothesis, by proving δ1 ≤ δ0C, the assumption that δt ≤ δt−1C ≤ · · · ≤
δ1Ct−1, and proving δt+1 ≤ δtC, we conclude that δt ≤ δt−1C holds for all t ∈ [T ] iterations. We take a union bound
over all t ∈ [T ] such that,

P

{
T−1⋂
t=0

δt+1 ≤ δt
√

1− c(1− (δ0)2)

}
≥ 1− 2Tq−10. (167)

Solve for T . In order to achieve ϵ-recovery of a∗, we need

δ0(1− c(1− (δ0)2))
T
2 ≤ ϵ (168)

(1− c(1− (δ0)2))
T
2 ≤ ϵ

δ0
(169)

T

2
log (1− c(1− (δ0)2)) ≤ log(

ϵ

δ0
) (170)

(171)
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We proceed such that

T ≥
2 log( ϵδ0 )

log (1− c(1− (δ0)2))
(172)

>
2 log( ϵδ0 )

−c(1− (δ0)2)
(173)

=
2

c(1− (δ0)2)
log(

δ0

ϵ
) (174)

where (173) follows by using log(1−x) < −x for |x| < 1. Thus, with probability at least 1−2Tq−10, δT = sin θ(aT ,a∗) ≤
ϵ.

Convergence to the target model. We now aim to upper bound ∥aT (bT+1)⊤ − a∗(b∗)⊤∥. Recall that (gT )⊤ =

(aT )⊤a∗b∗⊤
and δT = ∥(Id − aT (aT )⊤)a∗∥, we have

∥aT (bT+1)⊤ − a∗b∗⊤
∥ = ∥aT (bT+1)⊤ − aT (gT )⊤ + aT (gT )⊤ − a∗b∗⊤

∥ (175)

≤ ∥aT (bT+1)⊤ − aT (gT )⊤∥+ ∥aT (gT )⊤ − a∗b∗⊤
∥ (176)

= ∥aT (bT+1 − gT )⊤∥+ ∥(aT (aT )⊤ − Id)a
∗b∗⊤

∥ (177)

= ∥aT ∥∥bT+1 − gT ∥+ ∥(Id − aT (aT )⊤)a∗∥∥b∗∥ (178)

≤ ϵ′δT ∥b∗∥+ δT ∥b∗∥ (179)
= (1 + ϵ′)ϵ∥b∗∥ (180)

= (1 + ϵ′)ϵ∥a∗b∗⊤
∥ (181)

where (179) is by Lemma A.9 and the fact that ∥aT ∥ = 1, and (181) is due to the fact that ∥xy⊤∥ = ∥x∥∥y∥ and
∥a∗∥ = 1.

A.4.1. PROOF OF PROPOSITION 5.5

Proof. We start by fixing a0 and updating bi to minimize the objective. Let a = a0. We obtain

b⊤
i =

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(182)

(bFFA)⊤ =
1

N

N∑
i=1

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(183)

let b̄ = bFFA. We aim to compute the expected value of 1
N

∑N
i=1

1
m∥Xia

∗b∗⊤ −Xiab̄
⊤∥2 where the expectation is over

all the randomness in the Xi. We define

si =
a⊤X⊤

i Xia
∗

a⊤X⊤
i Xia

=
(Xia)

⊤(Xia
∗)

∥Xia∥2
(184)

so that b̄ = 1
N

∑N
i=1 sib

∗ = s̄b∗. For each i, the norm becomes

∥Xia
∗b∗⊤

−Xiab̄
⊤∥2 = ∥(Xia

∗ − s̄Xia)b
∗⊤
∥2 (185)

= ∥Xia
∗ − s̄Xia∥2∥b∗∥2 (186)

using the fact that ∥uv⊤∥2 = ∥u∥2∥v∥2 for vectors u and v. Therefore, E[ 1N
∑N
i=1

1
m∥Xia

∗b∗⊤ −Xiab̄
⊤∥2] is reduced

to E[ 1N
∑N
i=1

1
m∥Xia

∗ −Xia∥2] · ∥b∗∥2.

Since each entry of Xi is independently and identically distributed according to a standard Gaussian distribution, both a∗

and a are unit vectors, the vectors Xia
∗ and Xia are N (0, Im). The cross-covariance is αIm where α = a⊤a∗.
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By linearity, we can show that 1
N

∑N
i=1

1
m∥Xia

∗ − s̄Xia∥2 has the same expectation as 1
m∥X1a

∗ − s̄X1a∥2 because all
(Xia

∗,Xia) are i.i.d. pairs. Let z1 = s1
N and z2 = s2+···+sN

N , we have ∥X1a
∗ − z1X1a− z2X1a∥2. Let v = X1a

∗,u1 =
z1X1a and u2 = z2X1a. Thus,

∥X1a
∗ − z1X1a− z2X1a∥2 = ∥v − u1 − u2∥2 (187)

= v⊤v + u⊤
1 u1 + u⊤

2 u2 − 2v⊤u1 − 2v⊤u2 + 2u⊤
1 u2 (188)

Now we compute the expectation term by term.

Expected value of v⊤v We have E[v⊤v] = E[∥X1a
∗∥2] = m.

Expected value of u⊤
1 u1 We have

u⊤
1 u1 = z21∥X1a∥2 (189)

=
s21
N2
∥X1a∥2 (190)

=
1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥4
∥X1a∥2 (191)

=
1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥2
(192)

Note that (X1a
∗,X1a) is a correlated Gaussian pair with correlation α = a⊤a∗. Without loss of generality, we assume

a = e1 thus a∗ = αe1+
√
1− α2e2, where e1 and e2 are standard basis vectors in Rd. So we can get X1a = X1e1 = x1,1,

where x1,1 denotes the first column of X1. Accordingly X1a
∗ = αX1e1 +

√
1− α2X1e2 = αx1,1 +

√
1− α2x1,2 where

x1,2 denotes the second column of X1. Therefore (192) can be written as 1
N2

(x⊤
1,1(αx1,1+βx1,2))

2

∥x1,1∥2 . Now we take expectation
of it.

E
[

1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥2

]
= E

[
1

N2

(x⊤
1,1(αx1,1 + βx1,2))

2

∥x1,1∥2

]
=

1

N2
E

[
(x⊤

1,1(αx1,1 + βx1,2))
2

∥x1,1∥2

]
(193)

Let r1 = ∥x1,1∥2 and r2 = x⊤
1,1x1,2. We have

E

[
(x⊤

1,1(αx1,1 + βx1,2))
2

∥x1,1∥2

]
= E

[
(αr1 + βr2)

2

r1

]
(194)

= E
[
α2r21 + β2r22 + 2αβr1r2

r1

]
(195)

= E
[
α2r1

]
+ E

[
β2r22
r1

]
+ E [2αβr2] (196)

where E
[
α2r1

]
= α2E

[
∥x1,1∥2

]
= α2m, and E [2αβr2] = 2αβE [r2] = 2αβE

[
x⊤
1,1x1,2

]
= 0 because x1,1 and x1,2 are

independent standard Gaussian vectors. Then we analyze E
[
β2r22
r1

]
= β2E

[
r22
r1

]
. Condition on x1,1,

E [r2|x1,1] = E
[
x⊤
1,1x1,2|x1,1

]
= x⊤

1,1E [x1,2] = 0 (197)

and Var(r2|x1,1) = ∥x1,1∥2 = r1, thus

r2|x1,1 = x⊤
1,1x1,2|x1,1 ∼ N (0, r1) (198)

Then we obtain

E
[
r22|x1,1

]
= r1 (199)
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Therefore E
[
r22
r1
|x1,1

]
=

E[r22 |x1,1]
r1

= 1. We take total expectation E
[
r22
r1

]
= E

[
E
[
r22
r1
|x1,1

]]
= 1. Summarizing,

E
[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
= E

[
(αr1 + βr2)

2

r1

]
(200)

= E
[
α2r1

]
+ E

[
β2r22
r1

]
+ E [2αβr2] (201)

= α2m+ β2 (202)

E
[
u⊤
1 u1

]
=

1

N2
E
[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
(203)

=
α2m+ (1− α2)

N2
(204)

Expected value of u⊤
2 u2 We have u⊤

2 u2 = z22∥X1a∥2 where z2 = s2+···+sN
N is independent of pair (X1a

∗,X1a). To
compute E

[
z22∥X1a∥2

]
, first we condition on z2 to obtain,

E
[
z22∥X1a∥2|z2

]
= z22E

[
∥X1a∥2

]
= z22m (205)

Then we take total expectation E
[
z22∥X1a∥2

]
= E

[
E
[
z22∥X1a∥2|z2

]]
= E

[
z22m

]
= mE

[
z22
]
.

E
[
z22
]
= E

[
(s2 + · · ·+ sN )2

N2

]
(206)

=
1

N2
E

 N∑
i=2

s2i +

N∑
i=1,j=1
i̸=j

sisj

 (207)

=
1

N2

 N∑
i=2

E
[
s2i
]
+

N∑
i=1,j=1
i ̸=j

E [sisj ]

 (208)

Write si =
(Xia)

⊤(Xia
∗)

∥Xia∥2 . Without loss of generality, we assume a = e1 thus a∗ = αe1 +
√
1− α2e2, where e1 and e2 are

standard basis vectors in Rd. Thus, we have Xia = Xie1 = xi,1, where xi,1 represents the first column of Xi. Similarly,
Xia

∗ = αXie1 +
√
1− α2Xie2 = αxi,1 +

√
1− α2xi,2, where xi,2 denotes the second column of Xi.

Hence,

(Xia)
⊤(Xia

∗) = x⊤
i,1(αxi,1 +

√
1− α2xi,2) = α∥xi,1∥2 +

√
1− α2(x⊤

i,1xi,2) (209)

With ∥Xia∥2 = ∥xi,1∥2, we have

si =
α∥xi,1∥2 +

√
1− α2(x⊤

i,1xi,2)

∥xi,1∥2
= α+

√
1− α2

x⊤
i,1xi,2

∥xi,1∥2
(210)

Let R =
x⊤
i,1xi,2

∥xi,1∥2 . Then

E
[
s2i
]
= E

[(
α+

√
1− α2R

)2]
(211)

= E
[
α2 + (1− α2)R2 + 2α

√
1− α2R

]
(212)

= α2 + (1− α2)E
[
R2
]
+ 2α

√
1− α2E [R] (213)
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For E [R] = E
[
x⊤
i,1xi,2

∥xi,1∥2

]
, similarly as in (198), x⊤

i,1xi,2|xi,1 ∼ N (0, ∥xi,1∥2), thus
x⊤
i,1xi,2

∥xi,1∥2 |xi,1 ∼ N (0, 1
∥xi,1∥2 ), then

E [R] = E [E [R|xi,1]] = 0 (214)

For E
[
R2
]
, since x⊤

i,1xi,2|xi,1 ∼ N (0, ∥xi,1∥2), so E
[
(x⊤
i,1xi,2)

2|xi,1
]
= ∥xi,1∥2. Thus, with R2 =

(x⊤
i,1xi,2)

2

∥xi,1∥4 ,

E
[
R2|xi,1

]
=

E
[
(x⊤
i,1xi,2)

2|xi,1
]

∥xi,1∥4
=

1

∥xi,1∥2
(215)

E
[
R2
]
= E

[
1

∥xi,1∥2

]
(216)

For a m-dimensional standard Gaussian vector, ∥xi,1∥2 follows a chi-squared distribution with m degrees of freedom.
Therefore, E

[
R2
]
= 1

m−2 . (213) becomes

E
[
s2i
]
= α2 + (1− α2)E

[
R2
]
+ 2α

√
1− α2E [R] (217)

= α2 + (1− α2)
1

m− 2
(218)

Now we compute E [sisj ] for i ̸= j. By independence of si and sj , E [sisj ] = E [si] · E [sj ] = E [si]
2. Take expectation of

(210),

E [si] = E

[
α+

√
1− α2

x⊤
i,1xi,2

∥xi,1∥2

]
(219)

= α+
√

1− α2E

[
x⊤
i,1xi,2

∥xi,1∥2

]
(220)

= α+
√

1− α2E [R] (221)
= α (222)

Hence, E [sisj ] = α2. Summarizing,

E
[
u⊤
2 u2

]
= mE

[
z22
]

(223)

=
m

N2

(
(N − 1)E

[
s2i
]
+ (N − 1)(N − 2)E [sisj ]

)
(224)

=
m

N2

(
(N − 1)(α2 + (1− α2)

1

m− 2
) + (N − 1)(N − 2)α2

)
(225)

=
m

N2

[
(N − 1)2α2 + (N − 1)

1− α2

m− 2

]
(226)

Expected value of v⊤u1 We have v⊤u1 = z1(X1a
∗)⊤(X1a) = s1

N (X1a
∗)⊤(X1a). We factor out 1

N , E
[
v⊤u1

]
=

1
NE

[
s1(X1a

∗)⊤(X1a)
]
. By (202),

E
[
s1(X1a

∗)⊤(X1a)
]
= E

[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
(227)

= α2m+ (1− α2) (228)

Then

E
[
v⊤u1

]
=

α2m+ (1− α2)

N
(229)
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Expected value of v⊤u2 We have v⊤u2 = z2(X1a
∗)⊤(X1a). Condition on z2 which is independent of (X1a

∗)⊤(X1a),
we obtain

E
[
z2(X1a

∗)⊤(X1a)|z2
]
= z2E

[
(X1a

∗)⊤(X1a)
]

(230)

Still we assume a = e1 thus a∗ = αe1 +
√
1− α2e2, where e1 and e2 are standard basis vectors in Rd. With X1a =

X1e1 = x1,1, where x1,1 denotes the first column of X1, and X1a
∗ = αX1e1 +

√
1− α2X1e2 = αx1,1 +

√
1− α2x1,2

where x1,2 denotes the second column of X1, using (209),

E
[
(X1a

∗)⊤(X1a)
]
= E

[
α∥x1,1∥2 +

√
1− α2(x⊤

1,1x1,2)
]

(231)

= αE
[
∥x1,1∥2

]
+ z2

√
1− α2E

[
x⊤
1,1x1,2

]
(232)

= αm (233)

Thus z2E
[
(X1a

∗)⊤(X1a)
]
= z2αm, Then we take total expectation

E
[
E
[
z2(X1a

∗)⊤(X1a)|z2
]]

= E [z2αm] (234)
= αmE [z2] (235)

where z2 = s2+···+sN
N . Therefore,

αmE [z2] =
αm

N

N∑
i=2

E [si] =
m

N
(N − 1)α2 (236)

where (236) follows by E [si] = α. Summarizing, we obtain E
[
v⊤u2

]
= m

N (N − 1)α2.

Expected value of u⊤
1 u2 We have u⊤

1 u2 = z1z2∥X1a∥2. By definition of z1 and z2, we obtain

z1z2∥X1a∥2 =
1

N2
((X1a

∗)⊤(X1a))

N∑
i=2

si (237)

Since (X1a
∗)⊤(X1a) depends only on X1 ,

∑N
i=2 si is independent of X1, we obtain

E

[
1

N2
((X1a

∗)⊤(X1a))

N∑
i=2

si

]
=

1

N2
E
[
(X1a

∗)⊤(X1a)
]
· E

[
N∑
i=2

si

]
(238)

=
1

N2
E
[
(X1a

∗)⊤(X1a)
]
· (N − 1)E [si] (239)

=
(N − 1)mα2

N2
(240)

where (240) follows by E
[
(X1a

∗)⊤(X1a)
]
= αm and E [si] = α.

Combining (204), (226),(229),(236),(240) and (188),

1

m
∥X1a

∗ − s̄X1a∥2 =
1

m
(v⊤v + u⊤

1 u1 + u⊤
2 u2 − 2v⊤u1 − 2v⊤u2 + 2u⊤

1 u2) (241)

= (1− α2)

[
1 +

N(4−m)− 2

N2m(m− 2)

]
(242)

= (δ0)2(1 + c̃) (243)

where δ0 is the angle distance between a and a∗. The quantity c̃ = N(4−m)−2
N2m(m−2) = O( 1

Nm ) as N and m approach infinity.
Therefore,

E

[
1

N

N∑
i=1

1

m
∥Xia

∗b∗⊤
−Xiab̄

⊤∥2
]
= (1 + c̃)(δ0)2∥b∗∥2 (244)
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A.5. Vector-vector case with heterogeneous clients

Consider a federated setting with N clients, each with the following local linear model

fi(Xi) = Xiab
⊤ (245)

where a ∈ Rd is a unit vector and b ∈ Rd are the LoRA weights corresponding to rank r = 1. In this setting, we model the
local data of i-th client such that Yi = Xia

∗b∗⊤

i for some ground truth LoRA weights a∗ ∈ Rd, which is a unit vector, and
local b∗

i ∈ Rd. We consider the following objective

min
a∈Rd,b∈Rd

1

N

N∑
i=1

li(a,b) (246)

We consider the local population loss li(a,b) = ∥a∗b∗⊤

i − ab⊤∥2.

We aim to learn a shared model (a,b) for all the clients. It is straightforward to observe that (a′,b′) is a global minimizer of
if and only if a′b′⊤ = a∗b̄∗, where b̄∗ = 1

N

∑N
i=1 b

∗
i . The solution is unique and satisfies a′ = a∗ and b′ = b̄∗. With this

global minimizer, we obtain the corresponding minimum global error of 1
N

∑N
i=1∥a∗(b∗

i − b̄∗)⊤∥2.

We aim to show that the training procedure described in Algorithm 2 learns the global minimizer (a∗, b̄∗). First, we make
typical assumption and definition.

Assumption A.12. There exists Lmax <∞ (known a priori), s.t. ∥b̄∗∥ ≤ Lmax.

Definition A.13. (Client variance) For γ > 0, we define γ2 := 1
N

∑N
i=1∥b∗

i − b̄∗∥2, where b̄∗ = 1
N

∑N
i=1 b

∗
i .

Theorem A.14. (Convergence of RoLoRA for linear regressor in heterogeneous setting) Let δt = ∥(Id − a∗a∗
⊤
)at∥ be

the angle distance between a∗ and at of t-th iteration. Suppose we are in the setting described in Section A.5 and apply
Algorithm 2 for optimization. Given a random initial a0, an initial angle distance δ0 ∈ (0, 1), we set the step size η ≤ 1

2L2
max

and the number of iterations T ≥ 1
c(1−(δ0)2) log(

δ0

ϵ ) for c ∈ (0, 1). Under these conditions, we achieve the following

sin θ(aT ,a∗) ≤ ϵ, and ∥aT (bT+1)⊤ − a∗(b̄∗)⊤∥ ≤ ϵ∥a∗(b̄∗)⊤∥

which we refer to as ϵ-accurate recovery of the global minimizer.

Theorem A.14 follows by recursively applying Lemma A.16 for T iterations. We start by computing the update rule for a as
in Lemma A.15. Using Lemma A.15, we analyze the convergence of a in Lemma A.16. We also show the global error that
can be achieved by FFA-LoRA within this setting in Proposition A.17.

Lemma A.15. (Update for a) In RoLoRA for linear regressor, the update for a and b in each iteration is:

bt+1 = b̄ = b̄∗a∗⊤at (247)

at+1 = â =
at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)

∥â+∥
(248)

where b̄∗ =
∑N
i=1 b

∗
i , ∥â+∥ = ∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)∥.

Proof. Minimization for bi. At the start of each iteration, each client computes the analytic solution for bi by fixing a and
solving their local objective argminbi

∥a∗b∗⊤

i − ab⊤
i ∥2, where a∗ and a are both unit vectors. Setting a = at, we obtain

bi such that

bi =
b∗
i a

∗⊤
a

a⊤a
= b∗

i a
∗⊤

a (249)

(249) follows since a⊤a = 1.

Aggregation for bi. The server simply computes the average of {bi}Ni=1 and gets

b̄ =

N∑
i=1

bi =

N∑
i=1

b∗
i a

∗⊤a = b̄∗a∗⊤a (250)
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The server then sends b̄ to clients for synchronization.

Gradient Descent for â. In this step, each client fixes bi to b̄ received from the server and update a using gradient descent.
With the following gradient

∇ali(a, b̄) = 2(ab̄⊤b̄− a∗b∗⊤

i b̄) (251)

Thus, with step size η, a is updated such as

â+ = a− η

N

N∑
i=1

∇ali(a, b̄)

= a− 2
η

N

N∑
i=1

(ab̄⊤b̄− a∗b∗⊤

i b̄)

= a− 2η(ab̄⊤b̄− a∗b̄∗⊤
b̄) (252)

â =
a− 2η(ab̄⊤b̄− a∗b̄∗⊤

b̄)

∥â+∥
(253)

Lemma A.16. Let δt = | sin θ(a∗,at)| be the angle distance between a∗ and at. Assume that Assumption A.12 holds and
δt ≤ δt−1 ≤ · · · ≤ δ0, if η ≤ 1

2L2
max

, then

| sin θ(at+1,a∗)| = δt+1 ≤ δt · (1− 2η(1− (δ0)2)∥b̄∗∥2) (254)

Proof. From Lemma A.15, at+1 and bt+1 are computed as follows:

bt+1 = b̄ = b̄∗a∗⊤at (255)

at+1 =
at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(256)

Note that at and at+1 are both unit vectors. Now, we multiply both sides of Equation (256) by the projection operator
P = Id − a∗(a∗)⊤, which is the projection to the direction orthogonal to a∗. We obtain:

Pat+1 =
Pat − 2ηPatb̄⊤b̄+Pa∗b̄∗⊤

b̄

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(257)

=
Pat − 2ηPatb̄⊤b̄

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(258)

The third term of the numerator is canceled since Pa∗ = (Id − a∗(a∗)⊤)a∗ = 0. Thus,

∥Pat+1∥ ≤ ∥Pat∥|1− 2ηb̄⊤b̄|
∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥

(259)

Let δt = | sin θ(a∗,at)|. Equation (257) becomes:

δt+1 ≤ δt
|1− 2ηb̄⊤b̄|

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(260)

= δt
|1− 2ηb̄⊤b̄|

∥at(1− 2ηb̄⊤b̄) + 2ηa∗b̄∗⊤ b̄∥
(261)

= δtC (262)
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Obviously C ≥ 0. We drop the superscript t when it is clear from context. Note that we have

C2 =
|1− 2ηb̄⊤b̄|2

∥a(1− 2ηb̄⊤b̄) + 2ηa∗b̄∗⊤ b̄∥2
(263)

=
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2a⊤a+ 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(264)

=
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2 + 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(265)

Recall that b̄ = b̄∗a∗
⊤
a = b̄∗ cos θ(a∗,a), (265) becomes:

C2 =
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2 + 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(266)

=
|1− 2ηb̄⊤b̄|2

1 + 4η2b̄⊤b̄(b̄∗⊤ b̄∗ − b̄⊤b̄)
(267)

≤ (1− 2ηb̄⊤b̄)2 (268)

= (1− 2η∥b̄∥2)2 (269)

where (268) holds because b̄∗⊤
b̄∗ − b̄⊤b̄ = (1 − cos2 θ(a∗,a))b̄∗⊤

b̄∗ ≥ 0. Equation (269) implies C ≤ 1 − 2η∥b̄∥2
if 2η∥b̄∥2 ≤ 1, which can be ensured by choosing a proper step size η ≤ 1

2L2
max
≤ 1

2∥b̄∥2 . Now by the assumption that
δt ≤ δt−1 ≤ · · · ≤ δ0,

C ≤ 1− 2η∥b̄∥2 (270)

= 1− 2η cos2 θ(a∗,a)∥b̄∗∥2 (271)

= 1− 2η(1− (δt)2)∥b̄∗∥2 (272)

≤ 1− 2η(1− (δ0)2)∥b̄∗∥2 (273)

Summarizing, we obtain δt+1 ≤ δtC ≤ δt(1− 2η(1− (δ0)2)∥b̄∗∥2).

Proposition A.17. (FFA-LoRA lower bound) Suppose we are in the setting described in Section A.5. For any set of ground
truth parameters (a∗, {b∗

i }Ni=1), initialization a0, initial angle distance δ0 ∈ (0, 1), we apply Freezing-A scheme to obtain a
shared global model (a0,bFFA), where bFFA = b̄∗a∗⊤a0. The global loss is

1

N

N∑
i=1

li(a
0,bFFA) = γ2 + ∥b̄∗∥2δ20 (274)

Proof. Through single step of minimization on bi and corresponding aggregation, the minimum of the global objective is
reached by FFA-LoRA. b̄FFA is obtained through:

bi =
b∗
i a

∗⊤a0

a0⊤a0
= b∗

i a
∗⊤a0 (275)

bFFA =
1

N

N∑
i=1

bi = b̄∗a∗⊤a0 (276)

Next we compute the global loss with a shared global model (a0, b̄FFA). Note that we use Tr(.) to denote the trace of a
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matrix.

1

N

N∑
i=1

li(a
0,bFFA) (277)

=
1

N

N∑
i=1

∥a∗(b∗
i )

⊤ − a0(bFFA)⊤∥2 (278)

=
1

N

N∑
i=1

∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤ + a∗(b̄∗)⊤ − a0(bFFA)⊤∥2 (279)

=
1

N

N∑
i=1

(∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0(bFFA)⊤∥2

+ 2Tr((a∗(b∗
i )

⊤ − a∗(b̄∗)⊤)⊤(a∗(b̄∗)⊤ − a0(bFFA)⊤)) (280)

=
1

N

N∑
i=1

(∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0(bFFA)⊤∥2)

+ 2Tr((a∗
1

N

N∑
i=1

(b∗
i )

⊤ − a∗(b̄∗)⊤)⊤(a∗(b̄∗)⊤ − a0(bFFA)⊤)) (281)

=
1

N

N∑
i=1

(∥a(b∗
i − b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0a0

⊤
a∗(b̄∗)⊤∥2) (282)

=
1

N

N∑
i=1

∥b∗
i − b̄∗∥2 + 1

N

N∑
i=1

∥(Id − a0a0
⊤
)a∗(b̄∗)⊤∥2 (283)

=
1

N

N∑
i=1

∥b∗
i − b̄∗∥2 + 1

N

N∑
i=1

∥(Id − a0a0
⊤
)a∗∥2∥b̄∗∥2 (284)

= γ2 + ∥b̄∗∥2δ20 (285)

where (282) holds since the last term is 0, (283) and (284) hold since ∥uv⊤∥ = ∥u∥ · ∥v⊤∥ for vector u and v, (285) holds
because of Definition A.13.

Proof of Theorem A.14

Proof. In order to achieve ϵ-recovery of a∗, we need

δ0(1− c(1− (δ0)2))T ≤ ϵ (286)

(1− c(1− (δ0)2))T ≤ ϵ

δ0
(287)

T log (1− c(1− (δ0)2)) ≤ log(
ϵ

δ0
) (288)

(289)

We proceed such that

T ≥
log( ϵδ0 )

log (1− c(1− (δ0)2))
(290)

>
log( ϵδ0 )

−c(1− (δ0)2)
(291)

=
1

c(1− (δ0)2)
log(

δ0

ϵ
) (292)
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where (291) follows by using log(1− x) < −x for |x| < 1.

Now we show the convergence to the global minimizer. Recall that bT+1 = b̄∗a∗
⊤
aT and δT = ∥(Id − aT (aT )⊤)a∗∥, we

have

∥aT (bT+1)⊤ − a∗b̄∗⊤
∥ = ∥aT (aT )⊤a∗b̄∗⊤

− a∗b̄∗⊤
∥ (293)

= ∥(aT (aT )⊤ − Id)a
∗b̄∗⊤

∥ (294)

= ∥(Id − aT (aT )⊤)a∗∥ · ∥b̄∗∥ (295)
≤ ϵ∥b̄∗∥ (296)

= ϵ∥a∗b̄∗⊤
∥ (297)

where (297) is due to the fact that ∥xy⊤∥ = ∥x∥∥y∥ and ∥a∗∥ = 1.

Proposition A.17 shows that for any δ0 ∈ (0, 1), the global objective of FFA-LoRA is given by (285), comprising two terms:
γ2, reflecting the heterogeneity of {b∗

i }Ni=1, and ∥b̄∗∥2δ20 , due to the angular distance between a0 and a∗. By Theorem A.14,
RoLoRA achieves ϵ-accurate recovery of the global minimizer, with global loss upper bounded by γ2 + ∥b̄∗∥2ϵ2, since
RoLoRA reduces the angular distance loss from ∥b̄∗∥2δ20 to ∥b̄∗∥2ϵ2. We can make ϵ arbitrarily small by increasing the
iterations.

B. Experiments
B.1. Hyper-parameters for GLUE task

SST-2 QNLI MNLI QQP RTE

Total comm. rounds 500 500 500 500 200
Batch Size 64 32 32 32 32

Local Epochs 20 20 20 20 20

Table 4. Hyper-parameters configurations. Note the total communication rounds are for the setting with 3 clients. When increasing the
number of clients, we decrease the total communication rounds accordingly to maintain a constant sample count used during fine-tuning

We show the hyper-parameter configurations for each dataset in Table 4.

B.2. More Experimental Results

B.2.1. EFFECT OF NUMBER OF CLIENTS

Table 5 shows the selected layer set attached with LoRA modules for Table 1. We present Table 1 with the results of
FlexLoRA (Bai et al., 2024) added in Table 6.

Layer Attributes SST-2 QNLI MNLI QQP RTE

P2
Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {18, . . . , 23} {15, . . . , 23} {15, . . . , 23} {15, . . . , 23} {16, . . . , 23}

Table 5. The selected layer set attached with LoRA modules for Table 1

B.2.2. EFFECT OF NUMBER OF LORA PARAMETERS

In Table 7, we include the details about layers attached with LoRA adapters for different budget of finetuning parameters,
for each dataset.

B.2.3. ALIGN THE COMMUNICATION COST

In Table 8, we include the details about layers attached with LoRA adapters.
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rank Clients num Method SST-2 QNLI MNLI QQP RTE Avg.

4 3

LoRA 95.62±0.17 91.59±0.21 86.20±0.05 86.13±0.10 81.46±1.22 88.20
FFA-LoRA 95.18±0.09 91.35±0.32 84.58±0.21 85.50±0.25 81.10±0.33 87.48
FlexLoRA 94.91±0.18 90.16±0.49 85.16±0.69 85.69±0.17 79.3±1.05 87.04
RoLoRA 95.49±0.16 91.64±0.30 85.70±0.04 86.14±0.06 82.43±0.84 88.28

4 20

LoRA 94.3±0.27 86.67±2.02 78.55±7.31 83.1±0.04 51.87±3.24 78.90
FFA-LoRA 93.88±0.06 89.11±0.19 80.99±1.74 83.92±0.2 57.16±1.46 80.01
FlexLoRA 90.97±1.78 54.36±0.36 53.30±14.59 69.18±10.39 53.19±1.45 64.20
RoLoRA 94.88±0.18 90.35±0.37 85.28±1.04 85.83±0.1 78.82±1.7 87.03

4 50

LoRA 93.00±0.35 78.13±5.13 52.64±15.07 77.60±1.47 52.23±1.1 70.72
FFA-LoRA 93.23±0.12 85.05±0.34 69.97±5.57 78.44±0.41 55.72±1.99 76.48
FlexLoRA 54.08±5.5 55.4±2.03 39.14±2.35 72.00±7.64 52.71±0.00 54.67
RoLoRA 94.80±0.17 90.00±0.63 82.98±3.36 85.71±0.18 75.57±2.88 85.81

8 50

LoRA 93.00±0.23 79.87±1.52 56.96±2.02 77.45±1.97 53.79±6.57 64.03
FFA-LoRA 92.74±0.13 83.69±0.75 64.51±1.92 79.71±2.04 53.07±1.3 72.46
FlexLoRA 50.92±0.00 56.92±1.04 37.43±2.80 66.40±4.74 52.59±0.21 52.85
RoLoRA 94.53±0.17 90.1±0.45 85.17±0.41 85.25±0.13 76.3±4.9 86.27

Table 6. Results for four methods with RoBERTa-Large models with varying client numbers (3, 20, 50), maintaining a constant sample
count during fine-tuning.

Layer Attributes SST-2 QNLI MNLI QQP RTE

P1
Type Wv Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {21, . . . , 23} {21, . . . , 23} {21, . . . , 23} {21, . . . , 23} {21, . . . , 23}
P2

Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {18, . . . , 23} {15, . . . , 23} {15, . . . , 23} {15, . . . , 23} {16, . . . , 23}
P3

Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {0, . . . , 23} {12, . . . , 23} {12, . . . , 23} {12, . . . , 23} {12, . . . , 23}

Table 7. The selected layer set attached with LoRA for the setup of Figure 4

Figure 6. Results with RoBERTa-Large models on GLUE of different budget of finetuning parameters. It involves 3 clients using rank 8.

Figure 7. Results with RoBERTa-Large models on GLUE of different budget of finetuning parameters. It involves 3 clients using rank 2.
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Figure 8. Results with RoBERTa-Large models on GLUE of different budget of finetuning parameters. It involves 3 clients using rank 1.

Communication Cost LoRA FFA-LoRA RoLoRA

187.5 KB Type Wv,Wq Wv,Wq Wv,Wq

Index {21, . . . , 23} {18, . . . , 23} {18, . . . , 23}

250 KB Type Wv,Wq Wv,Wq Wv,Wq

Index {20, . . . , 23} {16, . . . , 23} {16, . . . , 23}

Table 8. The selected layer set attached with LoRA modules for the setup of Figure 5

B.2.4. COMMONSENSE REASONING TASKS

We present the configurations for Table 2 in Table 9. We show the results under the same setup but using rank-2 LoRA
modules in Table 10.

Total comm. rounds Batch size Local Epochs Layer type attached with LoRA Layer index attached with LoRA

10 1 30 Wk,Wv,Wq,Wo {26, . . . , 31}

Table 9. Configurations for Commonsense Reasoning tasks.

B.2.5. LANGUAGE GENERATION TASKS

Model, Datasets and Metrics. We evaluate the performance of three federated finetuning methods with the model
Llama-2-7B (Touvron et al., 2023), on two datasets: CodeAlpaca (Chaudhary, 2023) for coding tasks, and Alpaca (Taori
et al., 2023) for general instruction-following tasks. Using HumanEval (Chen et al., 2021) as the metric for CodeAlpaca, we
assess the model’s ability to generate accurate code solutions. For Alpaca, we employ MMLU (Massive Multitask Language
Understanding) (Hendrycks et al., 2021) to evaluate the model’s performance across diverse domains. This provides an
assessment of Llama-2-7B’s coding proficiency, and general language capabilities when finetuning in the federated setting.
We show the setup in Table 11.

Results Table 12 presents the evaluation results of the Llama-2-7B model using three methods, across two tasks: Hu-
manEval, and MMLU. The metrics reported include the average and standard deviation of performance over five seeds, with
50 clients involved. The results show that RoLoRA achieves the highest scores across most metrics, demonstrating slightly
improved performance compared to LoRA and FFA-LoRA. The improvements are more evident in certain subcategories of
the MMLU dataset.
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BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

LoRA 34.36±16.90 42.87±14.05 19.12±4.22 26.21±1.91 47.2±0.64 10.31±5.96 9.84±6.13 12.33±7.46
FFA-LoRA 44.04±11.48 51.46±9.81 25.38±11.27 23.86±2.67 46.93±1.54 22.25±7.92 20.65±6.33 20.67±5.33
RoLoRA 61.3±0.99 60.81±6.35 37.97±5.39 29.62±2.62 49.59±1.2 37.05±2.92 29.09±3.33 28.93±4.64

Table 10. Results with Llama-2-7B models on commonsense reasoning tasks. It involves 50 clients using rank 2.

Total comm. rounds Batch size Local Epochs Layer type attached with LoRA Layer index attached with LoRA

100 1 30 Wk,Wv,Wq,Wo {24, . . . , 31}

Table 11. Configurations for language generation tasks.

LoRA FFA-LoRA RoLoRA

HumanEval 12.96±0.37 13.29±0.21 13.45±0.28

MMLU 45.81±0.03 45.80±0.02 45.93±0.01
human 43.26±0.04 43.24±0.01 43.46±0.02

other 52.67±0.06 52.72±0.05 52.83±0.04
social 51.73±0.04 51.64±0.05 51.81±0.04
stem 37.10±0.03 37.12±0.01 37.05±0.02

Table 12. Results with Llama-2-7B model on HumanEval, and MMLU. We report the average and std. over five seeds. The number of
clients is 50. The metric used across all tasks is accuracy, where higher values indicate better performance.
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