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ABSTRACT

Efficient anomaly detection and diagnosis in multivariate time series data is of
great importance for various application areas. Forecasting of long-sequence time
series is an important problem to prepare for future changes. An accurate pre-
diction can help to detect anomaly events beforehand and make better decisions.
It seems that one has to use more complex structures for deep learning models
to get better performance, e.g., the recent surge of Transformer variants for time
series modeling. However, such complex architectures require a large amount of
training data and extensive computing resources. In addition, many of the consid-
erations behind such architectures do not hold for time series applications. The
objective of this study is to re-consider the effectiveness of deep learning architec-
tures for efficient and accurate time series forecasting and anomaly detection. A
model with direct projections is proposed, and it outperforms existing Transformer
based models in most cases by a significant margin. The new decomposition based
dual projection (DBDP) model consists of an anchored global profile and a varied
number of decomposed seasonal local profiles of the time series for better fore-
casting performance. In addition to forecasting, a non-contrastive self-supervised
learning approach, we propose to include a contrastive learning module in the DB-
DPC model for better forecasting performance and robustness. Finally, we apply
the DBDP and DBDPC models to forecasting based time series anomaly detec-
tion and achieve superior performance over the latest SOTA models. These results
demonstrate the effectiveness of the several key considerations behind the DBDP
and DBDPC models, which also encourages the development of new architectures
for time series applications.

1 INTRODUCTION

A time series is defined as an ordered sequence of continue values arranged in chronological order.
It is a measure of the numerical properties of a system as it evolves over time. A time series contains
a lot of system information that can be used to ensure the proper operation of the system.

Time-series forecasting has been an critical ingredient of many applications, such as climate mod-
eling (Mudelsee, [2019), biological analyzing (Stoffer & Ombao, |2012), high-performance medicine
(Topol, |2019), demand forecasting in retail (Bose et al.| 2017), economic forecasting (Andersen
et al., 2005) and power generation forecasting (Antonanzas et al.,|2016; Foley et al., 2012). It can be
categorized into one-step-ahead and multi-horizon time series forecasting (forecasting on multiple
steps in future time), while the latter can be further divided empirically into short sequence and long
sequence time series forecasting (LSTF) (Zhou et al.,|2021). The latter, LSTF, has been the recent
focus of many works, especially for the application of Transformer (Zhou et al., |2021; [Wu et al.,
2021} ILiu et al., [2022; |Cirstea et al., [2022; [Zhou et al.| [2022).

On the other hand, time series anomaly detection is a key research topic in many fields, such as
the maintain and management of the modern IT systems, Internet of Things (IoT), robotics and
urban resource (Audibert et al., |2020; Thudumu et al,, [2020). Anomaly detection in large-scale
databases is increasingly challenging due to the increasing complexity of the data modes (Tuli et al.}
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2022). Many data-driven industries are now adopting deep learning based unsupervised methods for
anomaly detection.

The time series anomaly detection methods can be categorized into the reconstruction methods and
the forecasting methods. The latter do not require the current and future information, and thus can
be utilized online for the stream data. As the modern society has seen more and more extensive
utilization of the stream data, we focus on the forecasting methods in this study.

Recently, the Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also stimulated great interests in time series applications.
Some notable models for the time series forecasting tasks include: Informer |Zhou et al| (2021),
Autoformer Wu et al.[(2021), Pyraformer|Liu et al.|(2022)), Triformer [Cirstea et al.[(2022) and FED-
former [Zhou et al.| (2022). One of the main benefits of the Transformers is the efficient capturing
of the long-term dependencies with an optimal path length of one. Essentially, the attention module
can be viewed as a fully connected layer with the weights that are dynamically generated based on
the pairwise similarity of input patterns. Another efficiency gain is from the output method. The se-
quential output method is not efficient and there may be error accumulation. Informer (Zhou et al.,
2021) started to use the parallel output method that all the elements of the forecasting sequence
are generate at one time, which is more efficient and eliminates the error accumulation. However,
many recent works also started to doubt about the effectiveness of the Transformers for time series
applications (Zeng et al., 2022; Zhang et al., 2022). Time series data is a special kind of data that
the step-wise pairwise relation may be not proper to capture the temporal dependencies. In addi-
tion, the efficiency gain can be achieved with direct feed forward networks instead of the attention
mechanism.

Actually, the recent progresses on time series modeling mainly due to the introduction of multi-
resolution representation or time series decomposition to the deep learning architecture (Wu et al.,
20215 Zhou et al., 2022} [Woo et al.| 2022). Pyraformer (Liu et al. 2022) and Triformer (Cirstea
et al., 2022) introduce hierarchical structures to get the multi-scale features. Whereas historically
and naturally, the seasonal-trend decomposition may be a more suitable way for time series analysis.
Such a decomposition block is a crucial part of the Autoformer (Wu et al., [2021) and FEDformer
(Zhou et al.| [2022)).

Our main contributions are:

* We propose a model that does not contain the attention module while inheriting all the key
performance contributing blocks, such as the channel projection that serves as the value
embedding, and the sequence projection that generates the multi-step outputs directly at
one time. To this end, our work is similar to DLinear (Zeng et al., [2022), but we are
different that we explicitly propose channel projection for variable correlation learning.

* We include the time series decomposition as a basic building block. The proposed De-
composition Based Dual Projection (DBDP) model has decomposition and dual projection
conducted alternatively to capture the total variable-temporal dependencies effectively.

* We further propose the DBDPC model with a contrastive learning module attached to
DBDP, inspired by the self-supervised learning.

Our experimental results successfully demonstrated the superior performance of the DBDP and
DBDPC models on multi-variate time series forecasting and anomaly detection. The remainder of
this paper is organized as follows. Section 2 presents the related works on the key considerations
of our model. Section 3 explains the methods and section 4 gives the typical experimental results.
Section 5 concludes the paper.

2 RELATED WORKS

2.1 THE TRANSFORMER AND ATTENTION

The vanilla Transformer [Vaswani et al.| (2017 has an encoder-decoder structure that is commonly
adopted in most sequence models. Both encoder and decoder are composed of multiple multi-head
self-attention modules, and a cross-attention module is used to connect the two. The position-wise
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feed forward network (FFN) is used to transform the dimensionality of input to the model for the
intermediate attention layers and finally to the output.

Various variants of Transformers have been proposed for LSTF tasks, with the focus on solving the
quadratic time complexity and memory consumption |Zhou et al.| (2021)); Wu et al.| (2021); |Cirstea
et al.| (2022); |Liu et al.| (2022). It is well recognized that the Transformers are capable of capturing
the long-range dependencies and interactions, which is especially attractive for time series modeling.
This is realized with the attention mechanism which uses the paired information in a sequence, and
is permutation-invariant, i.e., regardless of the order. However, the most important information for
time series analysis is the temporal dynamics among a continuous set of time steps. Transformers
use only the position encoding added in the input embeddings to model the sequence information,
which makes people doubt about their effectiveness for time series analysis (Zeng et al.| 2022).

In addition, capturing the correlation among multiple variables is another key issue for multi-variate
time series modeling. The attention mechanism in the Transformers essentially does not contribute
to this point. Instead, the value embedding before the attention layers, and the final point-wise
projection to the output target time series are the main contributors.

2.2 TIME SERIES DECOMPOSITION

Recently, people began to realized that time series is a special type of sequence data that down-
sampling of time series often preserves most of the information, while this is not true for general
sequence data such as text sequences and DNA sequences |Liu et al.| (2021); [Zhang et al.| (2022).
Various down-sampling techniques were proposed to capture the multi-resolution or long-short term
information.

SCINet [Liu et al.| (2021) mentioned that existing deep learning techniques using generic sequence
models all ignore such unique properties of time series. It proposed a hierarchical framework to
capture the temporal dependencies at multiple temporal resolutions. LightTS [Zhang et al.| (2022)
proposed two delicate down-sampling strategies, including interval sampling and continuous sam-
pling, inspired also by the fact that down-sampling time series often preserves the majority of its
information.

Instead of using down-sampling to construct the multi-resolution architecture, some people tend to
the seasonal-trend decomposition for the decomposed representation of time series, which is related
to ideas from the Bayesian Structure Time Series models |Qiu et al.|(2018)).

N-BEATS |Oreshkin et al.|(2019) was among the first to explore the seasonal-trend decomposition
of time series to construct an stacked interpretable architecture to make the stacked outputs more
easily interpretable. Autoformer Wu et al.|(2021)) proposes to use the seasonal-trend decomposition
as a builtin block for both encoder and decoder. The encoder eliminates the long-term trend part and
focuses on seasonal patterns modeling. The decoder accumulates the trend parts extracted from hid-
den variables progressively. FEDformer |Zhou et al.| (2022) proposes to combine Transformer with
the seasonal-trend decomposition in which the decomposition method captures the global profile of
time series while Transformers capture more detailed structures.

2.3 TIME SERIES REPRESENTATION LEARNING

In additional to the previous models that are directly applied to the target tasks like time series
forecasting, some works propose a two-step approach, that is, learning a good representation of the
time series as the first step, and then utilizing the learned representation for various following tasks.

From a broader view point of learning, forecasting is a kind of unsupervised learning, specifically,
the self-supervised learning, as no additional label information is involved during the process. Train-
ing with forecasting helps to learn the temporal dependencies. However, from the view point of
learning the temporal dependencies, there are many other effective self-supervised learning methods
except for forecasting. Among all, there is the contrastive learning that is extensively investigated
and adopted in various fields.

As introduced in [Balestriero & LeCun/(2022), on contrast to the unsupervised learning that relies
on a collection of inputs (X) and the supervised learning that relies on inputs and outputs (X, Y),
self-supervised learning relies on inputs and some inter-sample relations (X, G). The inter-sample
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relations can be the future information to be predicted in time series forecasting, or some component
similarity that works as a kind of weak-supervision. For the latter, the relation matrix G is often
constructed by augmenting the input through data-augmentations that preserve the input semantics,
e.g., the flip for an image that will not change the prediction category of the image.

Contrastive Predictive Coding (CPC) (van den Oord et al., |2018)) compresses high-dimensional data
into a much more compact latent embedding space in which conditional predictions are easier to
model, and then using a powerful autoregressive model in this latent embedding space to predict
many steps in the futures. Compressing high-dimensional data can encode the underlying shared
information between different parts of the high-dimensional signal. By predicting many steps in the
futures, it can discard low-level information and noise that is more local while capturing more global
structure. A probabilistic contrastive loss is used to induce the latent space to capture information
that is maximally useful to predict future samples.

Time-Series representation learning via Temporal and Contextual Contrasting (TSTCC) (Eldele
et al.| [2021) learns the transformation invariant representation by augmenting the samples to two
different yet correlated views. A temporal contrasting module is proposed to learn robust temporal
representations by designing a tough cross-view prediction task. To further learn discriminative rep-
resentations, a contextual contrasting module built upon the contexts from the temporal contrasting
module is proposed to maximize the similarity among different contexts of the same sample while
minimizing similarity among contexts of different samples.

TS2Vec (Yue et al.,2022) learns the temporal and contextual contrastive representations like TSTCC
(Eldele et al.,[2021)), but in a different way. It proposes a new augmentation method which is used
for multi-scale temporal contrastive learning. It randomly crops the sub-segment from a very long
time series, and then mask some part of the cropped sub-segment time series to construct the positive
samples. This augmentation method is very different with others like TSTCC (Eldele et al.| |2021)),
which uses the jitters, crop, or permutation. The temporal contrastive learning is also different with
TSTCC. The temporal contrastive in TS2Vec learns directly from the two augmentation, which the
temporal contrastive in TSTCC learns from the prediction many steps like CPC (van den Oord et al.,
2018)). It finally gets an compressed latent space vector, which is used for the following tasks.

3 METHOD

We propose a model that is aimed to provide efficient and accurate multi-variate time series fore-
casting, which can be further applied to online anomaly detection. For the requirement of efficiency,
no recurrent network or attention module would be used. Instead, the direct channel-wise sequence
projection would be adopted to capture the temporal dependencies, which could be achieved with
multi-layer perceptions (MLPs) or conv1D layers. To capture the correlations among the variables,
we just borrow the embedding layers of the common sequence models like Transformers, which
form the step-wise channel projection. The time series decomposition would be adopted to further
improve the accuracy.

3.1 DBDP: DECOMPOSITION BASED DUAL PROJECTION NETWORK

The proposed Decomposition Based Dual Projection (DBDP) model is illustrated in Fig. [T} It is
mainly composed of the time series decomposition block and the dual projection block. For time
series decomposition, a moving average layer is used to capture the slow stream of the input se-
quence, which is regarded as the Trend component. Subtracting this part from the input sequence
would produce the fast stream, which is regarded as the Seasonal component. The dual projection
block consists of the channel-wise sequence projection and the step-wise channel projection block
which can be stacked in any order.

At the beginning, a decomposition block is applied to the input sequence, and the seasonal com-
ponent is selected for the following operations. The trend component is discarded, as it does not
contain much detail information. The same practice has been also adopted in Autoformer (Wu et al.,
2021)). We think the selection of the seasonal component is like a sequence-wise scaling that makes
the series all in a similar level with less changes in the level and the magnitude of the variations.
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Figure 1: The architecture of the DBDP model.

After the first decomposition block, the stacked dual projection layers are applied, which captures
the temporal dependencies and variable correlations and transforms the sequence to a latent repre-
sentation. After that, the stacked decomposition blocks are applied, with the seasonal component
as he input for the next decomposition block while the decomposed trend components are all ag-
gregated together. Finally, optional dual projections are applied to the seasonal component of the
last decomposition block and the aggregated trend component separately. The output of the two are
added with the mean value of the original input series to give the final forecasting results.

To recover the global information, two architectures are constructed in the model. First, the Mean
value of the input time series is recorded and added to the final forecasting results. We also tried to
utilize the trend component of the beginning decomposition block for this purpose, but the perfor-
mance is not improved when compared with the mean value. Second, the trend component of the
following decomposition blocks are aggregated finally to give the output, which is also adopted in
Autoformer (Wu et al.,[2021)).

3.2 DBDPC: EXTENSION OF THE DBDP MODEL WITH CONTRASTIVE LEARNING

Data augmentation is a key component of the contrastive learning. For time series augmentation,
masking, cropping or jitters may change the temporal variations of the time series. Analysis of
the DBDP model shows that the "Mean” value of the original time series plays an important part.
Therefore, to extend the DBDP model with contrastive learning (DBDPC), the proposed augmenta-
tion method is that, instead of masking some part of the cropped sub-series, the mean value of the
input time series is used to randomly replace some selected sub-series. It will keep the mean value
of the positive samples the same. The architecture of the DBDPC model is illustrated in Fig.[2| The
contrastive learning is conduct on the seasonal components, which contain most of the local details.

DBDPC uses the similar temporal contrastive and instance contrastive learning as in TS2Vec [Yue
et al.| (2022). The forecasting loss of the DBDP and contrastive loss are combined for the DBDPC
model. Contrastive losses measure the similarities of the sample pairs in a representation space.
Instead of matching an input to a fixed target, in contrastive loss formulations the target can vary on-
the-fly during training and can be defined in terms of the data representation computed by a network.
The contrastive loss is defined as:

exp(*7*)

K ks
>izoexp(LH)

where ¢ and k. correspond to the original and the augmentation of a sample, respectively. {q, k4 }
is the positive pair, and 7 is the temperature coefficient.

Le = —log ; )
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Figure 2: The architecture of the DBDPC model. Since the seasonal components contain the main
local details, we conduct the contrastive learning process with the seasonal components.

4 EXPERIMENTS

For all the experiments in this paper, the DBDP model we applied contains only one DBDP module,
so that the whole model is very simplified.

4.1 EXPERIMENTS ON LSTF PROBLEMS

Datasets Extensive experiments have been conducted on datasets from various domains.
The basic characteristics of the datasets that have been used in the time series forecasting experi-
ments are listed and compared in Table[T} which are ordered with the dimensionality of the channels.

Baselines For a fair comparison, all the experiments are done following the protocol of Informer
(Zhou et al.| |2021)), which is widely used as a baseline for LSTF. The other baselines we reported
here are all the latest SoTA, including two Transformer variants, Autoformer (Wu et al., [2021)) and
FEDformer (Zhou et al., 2022), and a non-Transformer, DLinear (Zeng et al., |2022). In addition,
to clearly demonstrate the performance contribution of the decomposition block, we include a Dual
Projection (DP) model that is a modification of DBDP by deleting the decomposition block.

Experiment settings For a fair comparison, all the experiments are done following the protocol of
Informer (Zhou et al., [2021). All the experiments are conducted on a single GeForce GTX TITAN
X GPU.

Experiment results Table [2] summarizes the results of our models and the top baselines for the
multi-variate LSTF. The results of FEDformer and DLinear are directly copied from their papers,
and so there are missing data for some settings. We run the other models by ourselves. The results
show that: (i) The performance of DP is superior to Informer, especially for the longer forecasting
sequences. This implies that the step-wise attention mechanism does not capture the temporal de-
pendencies effectively, and the direct sequence projection can do the job better. (ii)) DBDP generally
performs the best with datasets of relatively lower dimensionality among the four models that utilize
time series decomposition, Autoformer, FEDformer, DLinear and DBDP. For the two datasets of
higher dimensionality, ECL and Traffic, DBDP performs on par with FEDformer and DLinear.

Table 1: Statistics of the dataset for forecasting experiments, where 71" is the length of time series, D
is the number of features and R is the recording/sampling rate.

Dataset T D R
ETTh, 17420 7 1 hour
ETTh, 17420 7 1 hour
ETTm;, 69680 7 15 minutes
ETTm, 69680 7 15 minutes
Exchange 7588 8 1 day
ILI 983 11 1 week
Weather 52534 30 10 minutes
ECL 26304 213 1 hour
Traffic 17544 862 1 hour
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Table 2: Multivariate LSTF results on the electricity datasets for different prediction lengths. The

Informer and Transformer results are reproduced with the source code.

Models
Metric

Informer
MSE MAE

Autoformer
MSE MAE

FEDformer
MSE MAE

DLinear
MSE MAE

DP
MSE MAE

DBDP
MSE MAE

ETTh,

24
48
96
168
192
336
720

0.577 0.549
0.685 0.625
0.8650.713
0.931 0.752
1.008 0.792
1.107 0.809
1.181 0.865

0.384 0.425
0.392 0.419
0.449 0.459
0.490 0.481
0.500 0.482
0.505 0.484
0.498 0.500

0.376 0.419
0.420 0.448
0.459 0.465
0.504 0.506

0.386 0.400
0.437 0.432
0.481 0.459
0.5190.516

0.468 0.480
0.506 0.504

0.646 0.591

0.952 0.783
0.798 0.679

0.313 0.371
0.349 0.393
0.373 0.406
0.428 0.444
0.414 0.432
0.449 0.453
0.464 0.481

ETThs

24

48

96

168
192
336
720

0.72 0.665
1.457 1.001
3.755 1.525
3.489 1.515
5.602 1.931
4.721 1.835
3.647 1.625

0.261 0.341
0.3120.373
0.358 0.397
0.457 0.455
0.456 0.452
0.471 0.475
0.474 0.484

0.376 0.419
0.429 0.439
0.496 0.487
0.463 0.474

0.295 0.352
0.452 0.462
0.504 0.490
0.577 0.538

0.4770.553
0.724 0.689

2.320 1.254

2.488 1.300
2.509 1.293

0.225 0.318
0.267 0.342
0.301 0.362
0.388 0.414
0.409 0.427
0.437 0.456
0.466 0.471

ETTm;

24
48
96
192
288
336
672
720

0.323 0.369
0.494 0.503
0.678 0.614
0.795 0.669
1.056 0.786
1.212 0.871
1.192 0.926
1.166 0.823

0.383 0.403
0.454 0.453
0.481 0.463
0.553 0.496
0.634 0.528
0.621 0.537
0.606 0.542
0.671 0.561

0.379 0.419
0.426 0.441

0.445 0.459

0.543 0.490

0.345 0.372
0.380 0.389

0.4130.413

0.474 0.453

0.301 0.366
0.404 0.435
0.456 0.473

0.528 0.525

0.644 0.597

0.252 0.330
0.316 0.372
0.348 0.394
0.373 0.390
0.404 0.425
0.408 0.416
0.477 0.467
0.471 0.445

ETTm,

24
48
96
192
288
336
672
720

0.173 0.301
0.303 0.409
0.365 0.453
0.533 0.563
1.047 0.804
1.363 0.887
3.126 1.302
3.379 1.338

0.153 0.261
0.178 0.280
0.255 0.339
0.281 0.340
0.342 0.378
0.3390.372
0.434 0.430
0.433 0.432

0.203 0.287
0.269 0.328

0.325 0.366

0.421 0.415

0.183 0.273
0.260 0.325

0.336 0.367

0.4150.423

0.201 0.331
0.293 0.406
0.367 0.460

0.783 0.704

1.353 0.933

0.120 0.226
0.159 0.256
0.212 0.295
0.243 0.310
0.305 0.347
0.308 0.353
0.401 0.402
0.409 0.411

Exchange

96
192
336
720

0.847 0.752
1.204 0.895
1.672 1.036
2.478 1.310

0.197 0.323
0.300 0.369
0.509 0.524
1.447 0.941

0.148 0.278
0.271 0.380
0.460 0.500
1.195 0.841

0.078 0.197
0.159 0.292
0.274 0.391
0.558 0.574

0.178 0.343
0.516 0.606
0.762 0.737
1.201 0.929

0.077 0.200
0.153 0.289
0.259 0.393
0.536 0.594

ILI

24
36
48
60

4.388 1.360
4.651 1.391
4.581 1.419
4.583 1.432

3.483 1.287
3.103 1.148
2.669 1.085
2.770 1.125

3.228 1.260
2.679 1.080
2.622 1.078
2.857 1.157

2.398 1.040
2.646 1.088
2.614 1.086
2.804 1.146

3.075 1.167
2.9371.075
2.603 1.048
2.676 1.030

2.092 0.951
2.013 0.899
2.139 0.959
1.793 0.869

Weather

96
192
336
720

0.300 0.384
0.598 0.544
0.578 0.523
1.059 0.741

0.266 0.336
0.307 0.367
0.359 0.395
0.419 0.428

0.217 0.296
0.276 0.336
0.339 0.380
0.403 0.428

0.196 0.255
0.237 0.296
0.283 0.335
0.345 0.381

0.2500.314
0.300 0.352
0.341 0.375
0.449 0.439

0.160 0.226
0.207 0.280
0.256 0.314
0.330 0.370

ECL

96
192
336
720

0.274 0.368
0.296 0.386
0.300 0.394
0.373 0.439

0.201 0.317
0.222 0.334
0.231 0.338
0.254 0.361

0.193 0.308
0.201 0.315
0.214 0.329
0.246 0.355

0.194 0.276
0.193 0.280
0.206 0.296
0.242 0.329

0.325 0.409
0.285 0.383
0.300 0.397
0.312 0.401

0.199 0.312
0.202 0.314
0.208 0.318
0.237 0.342

Traffic

96
192
336
720

0.719 0.391
0.696 0.379
0.777 0.420
0.864 0.472

0.613 0.388
0.616 0.382
0.622 0.337
0.660 0.408

0.587 0.366
0.604 0.373
0.621 0.383
0.626 0.382

0.650 0.396
0.598 0.370
0.605 0.373
0.645 0.394

0.759 0.456
0.713 0.437
0.693 0.409
0.713 0.425

0.602 0.378
0.607 0.391
0.617 0.388
0.637 0.397
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Table 3: Further improvement for multivariate LSTF on the ECL and Traffic datasets for different
prediction lengths.

Models  FEDformer DLinear DBDP DBDPC
Metric MSE MAE MSE MAE MSEMAE MSE MAE

96 0.5870.366 0.6500.396 0.6020.378 0.455 0.330

% 192 0.604 0.373 0.598 0.370 0.607 0.391  0.539 0.370
£ 336 0.6210.383 0.6050.373 0.6170.388  0.548 0.365
720 0.626 0.382 0.6450.394 0.637 0.397 0.591 0.384
96 0.1930.308 0.1940.276 0.1990.312 0.164 0.273
d 192 0.2010.315 0.1930.280 0.2020.314 0.1820.291
M 336 0.2140.329 0.2060.296 0.208 0.318  0.194 0.296

720 0.246 0.355 0.2420.329 0.2370.342  0.224 0.328

For the high dimensional time series data, ECL and Traffic, the variable correlations become more
important. As the DBDP model we adopted for the experiments contains only one DBDP block, it
may be not enough to capture the total variable-temporal dependencies. The DBDPC model is thus
applied to these two datasets to demonstrate the performance of the contrastive learning module.
The results are listed in Table 3] with DBDPC showing obvious performance improvement.

4.2 EXPERIMENT ON MULTI-VARIATE TIME SERIES ANOMALY DETECTION

We focus on the forecasting based time series anomaly detection. The forecasting loss is the natural
choice of the anomaly score. Furthermore, it is also possible to have the anomaly scores for each
timestamp and each variable in the case of multivariate timeseries anomaly detection. As is com-
mon in prior works (Su et al.,|2019; Boniol et al., 20205 Tuli et al., 2022), for a fair comparison, the
Peak Over Threshold (POT) (Siffer et al.,l|2017) method is adopted to choose the threshold automat-
ically and dynamically. The current time step is labeled anomalous if any of the variate is labeled
anomalous.

It should be noted that we do not apply the point adjustment that was adopted in some works (Q1
et al.,[2022; |Audibert et al., [2020) to get relatively higher Recall and F1-score.

Datasets Five publicly available datasets are tested in this study. Table 4 summarizes the dataset
characteristics.

Baselines DBDP is compared with five latest SOTA multivariate timeseries anomaly detection
baselines, including TranAD (Tuli et al.| 2022)), GDN (Deng & Hooi} 2021), OmniAnomaly (Su
et al.,[2019), MSCRED (Zhang et al.,[2019), and MAD-GAN (Li et al.,[2019).

Experiment settings Generally, all the experiments are done following the protocol of TranAD
for a fair comparison. The hyper-parameters are chosen based on the baseline models as presented
in their respective papers.

Experiment results Table |5|lists the results of six models on five datasets. DBDP generally per-
forms superior over the other models. For the SMAP dataset with much more test than train data
and the two datasets of higher dimensionality, SWaT and WADI, the DBDPC model is tested. The
results shown in Table 6] confirmed the effectiveness of the contrastive learning module.

5 CONCLUSION

We propose a novel DBDP model for efficient and accurate multi-variate time series forecasting and
anomaly detection. Instead of the attention mechanism, the direct sequence projection is adopted to
learn the short and long-term temporal dependencies. Similarly, the channel projection is adopted
to capture the variable correlations. Experiment results show that this dual projection architecture
already surpass the step-wise attention on the LSTF tasks.
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Table 4: Dataset statistics.

Dataset train Test Dimension  Anomalies(%)
MBA 100,000 100,000 2 0.14
SMAP 135,183 427,617 25 13.13
SMD 708,405 708,420 38 5.37
SWaT 496,800 449,919 51 11.98
WADI 784,571 172,803 123 5.99

Table 5: Performance comparison of DBDP with several latest SOTA baseline methods on the five
datasets. P: Precision; R: Recall; AUC: Area under the ROC curve; F1: F1 score with the complete
training data. The best F1 and AUC scores are highlighted in bold.

Models DBDP TranAD GDN
Metric P R AUC Fl P R AUC Fl P R AUC Fl

MBA 0.990 1.000 0.997 0.995 0.957 1.000 0.989 0.978 0.883 0.989 0.953 0.933
SMAP 0.828 1.000 0.990 0.906 0.804 1.000 0.992 0.892 0.748 0.989 0.986 0.852
SMD 0.999 1.000 1.000 0.999 0.926 0.997 0.997 0.961 0.717 0.997 0.992 0.834
SWaT 0.942 0.890 0.941 0.915 0.976 0.700 0.849 0.815 0.970 0.696 0.846 0.810
WADI 0.614 0.827 0.898 0.705 0.353 0.830 0.897 0.495 0.291 0.793 0.878 0.426

Models OmniAnomaly MSCRED MAD-GAN
Metric P R AUC F1 P R AUC Fl P R AUC F1

MBA 0.856 1.000 0.957 0.923 0.927 1.000 0.980 0.962 0.940 1.000 0.984 0.969
SMAP 0.978 0.696 0.847 0.813 0.813 0.942 0.989 0.873 0.816 0.922 0.989 0.865
SMD 0.888 0.999 0.995 0.940 0.728 0.997 0.992 0.841 0.821 0.922 0.992 0.868
SWaT 0.978 0.696 0.847 0.813 0.999 0.677 0.843 0.807 0.959 0.696 0.846 0.807
WADI 0.316 0.654 0.820 0.426 0.251 0.732 0.841 0.374 0.223 0.912 0.803 0.359

Table 6: Performance comparison of DBDPC with latest state-of-art baseline method TranAD on
three datasets. P: Precision, R: Recall, AUC: Area under the ROC curve, F1: Fl-score with complete
training data. The best F1 and AUC scores are highlighted in bold.

DBDP DBDPC TranAD
P R AUC F1 P R AUC F1 P R AUC F1

SMAP 0.828 1.000 0.990 0.906 0.892 1.000 0.994 0.943 0.804 1.000 0.992 0.892
SWaT 0.942 0.890 0.941 0.915 0.964 0.929 0.962 0.946 0.976 0.700 0.849 0.815
WADI 0.614 0.827 0.898 0.705 0.718 0.894 0.936 0.797 0.353 0.830 0.897 0.495

Dataset

Encouraged by the recent progresses of time series decomposition on LSTF, the newly proposed
DBDP model includes the decomposition as a basic building block. Experiment results show that
this combination can surpass the recent Transformers on LSTF tasks.

Inspired by the self-supervised learning, we further attach a contrastive learning module to the
DBDP model, together with a newly proposed time series augmentation method. Experiment re-
sults demonstrate that it can effectively improve the forecasting performance, especially for the data
with higher dimensionality and thus more complex variable correlations.

We also conducted multi-variate time series anomaly detection with forecasting based approach,
which is beneficial for online stream applications. The superior performance of DBDP and DBDPC
again confirm the effectiveness of our proposed architecture.
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A APPENDIX

Ablation with the anchor: Based on previous experiments, we additionally verified the effect of
anchors on the model. When our model has no anchors, our experimental results are comparable to
Dlinear. However, when our experimental results have anchors, our experimental results are greatly
improved as shown in Table

Table 7: Anchor or without anchor.
Models  FEDformer Dlinear DBDP w/o anchor DBDP w/ anchor

Metric  MSE MAE  MSE MAE MSE MAE MSE MAE
- 9% 03760419 0.3860.400 0.386 0.411 0.373 0.406
£ 192 04200448 0.4370.432 0.432 0.441 0.414 0.432
E 336 0.4590.465 0.4810.459 0.468 0.467 0.449 0.453
720 0.504 0.506 0.5190.516 0.506 0.514 0.464 0.481

~ 96 03760419 0.2950.352 0.307 0.363 0.301 0.362
£ 192 04290439 0.4520.462 0.387 0.412 0.409 0.427
E 336 0.496 0.487 0.504 0.490 0.533 0.506 0.437 0.456
720 0.463 0.474 0.577 0.538 0.619 0.553 0.466 0.471

- 96 03790419 0.3450.372 0.333 0.373 0.348 0.394
E 192 0.426 0.441 0.380 0.389 0.374 0.400 0.373 0.390
E 336 0.4450.459 0.4130.413 0.400 0.411 0.408 0.416
720 0.5430.490 0.4740.453 0.465 0.450 0.471 0.445

~ 96 0.2030.287 0.1830.273 0.177 0.270 0.212 0.295
E 192 0.269 0.328 0.260 0.325 0.253 0.326 0.243 0.310
E 336 0.3250.366 0.336 0.367 0.316 0.370 0.308 0.353
720 0.4210.415 0.4150.423 0.484 0.477 0.409 0.411

24 3228 1.260 2.398 1.040 2.697 1.115 2.092 0.951

= 36 26791080 2.6461.088 2.781 1.087 2.013 0.899
= 48 2.6221.078 2.6141.086 2.873 1.121 2.139 0.959
60 2.8571.157 2.8041.146 2.377 1.041 1.793 0.869

Comparing with the contrastive based method for LSTF problems: During the writing of this
paper, there is another work coming out, the CoST model|Woo et al.[(2022) which applies contrastive
learning methods to learn disentangled seasonal-trend representations for time series forecasting.
Some of its reported results are even better than the latest SOTA baseline Autoformer. The DBDP
model is compared with the CoST model following the settings of the latter, and the results are
shown in Table [§and Table[9] It can be seen that DBDP performs better for most of the cases while
on par with CoST for the rest cases.

Anomaly Diagnosis: Anomaly diagnosis is the natural extension of anomaly detection, and it
is important for anomaly locating, root cause identification and anomaly severity interpreting. The
anomaly scores produced for each time step and each feature variable can be used for such diagnosis.

First, the distribution of the detected anomalies along the temporal dimension can be analyzed. As
shown in Fig. 3] for the SMD dataset, nearly all the anomalies have been correctly detected by the
DBDP model, except for very few false positives.

The predicted anomaly labels of each feature variable can be further analyzed for better anomaly
diagnosis. Taking the SMD as an example, most of the anomalies can be revealed in the feature
dimension 12 and 0, as shown in Fig. @ and Fig.[5] For the other feature dimensions, only part of the
anomalies can be revealed, such as those shown in Fig.[6] Fig.[7and Fig.

The same anomaly diagnosis methodology can be applied to the other datasets. Here the temporal
distribution of the detected anomalies for the SWaT, SMAP and WADI datasets are shown as some

of the examples, as shown in Fig.[9} Fig.[I0] Fig.[12]and Fig.

12
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Table 8: Multivariate LSTF results on various datasets for comparison of the DBDP model and the
CoST model.

Models | DBDP | CoST
Metric ‘ MSE MAE ‘ MSE MAE

24 | 0.3130.371 | 0.386 0.429
48 | 0.349 0.393 | 0.437 0.464
168 | 0.428 0.444 | 0.643 0.582
336 | 0.4520.454 | 0.8120.679
720 | 0.466 0.480 | 0.9700.771

24 | 0.2250.318 | 0.447 0.502
48 | 0.267 0.342 | 0.699 0.637
168 | 0.388 0.414 | 1.549 0.982
336 | 0.437 0.456 | 1.749 1.042
720 | 0.466 0.471 | 1.971 1.092

24 | 0.237 0.315 | 0.246 0.329
48 | 0.316 0.372 | 0.331 0.386
96 | 0.348 0.394 | 0.378 0.419
288 | 0.404 0.425 | 0.4720.486
672 | 0.477 0.467 | 0.620 0.574

24 | 0.1450.230 | 0.298 0.360
48 | 0.1910.277 | 0.359 0.411
168 | 0.273 0.345 | 0.464 0.491
336 | 0.291 0.333 | 0.4970.517
720 | 0.370 0.380 | 0.533 0.542

24 | 0.1490.270 | 0.136 0.242
48 | 0.1750.292 | 0.153 0.258
168 | 0.194 0.310 | 0.1750.275
336 | 0.208 0.318 | 0.196 0.296
720 | 0.229 0.338 | 0.232 0.327

ETTh,

ETThs

ETTm,

WHE

ECL

Ground Truth - 2667 pisitive

Anomalies detected by the model - TP, 2667

L 1111 .

T T -
Anomalies not detected by the model - FN, 0

0.05
0.00

-0.05

" Normal predicted as anomalies by the model - FP, 4

0 ‘
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Figure 3: The predicted and ground truth labels for the SMD dataset with the DBDP model. Top
row: Ground truth labels of the SMD machine-1-1 Dataset; Second row: the True Positives; Third
row: the False Negatives; Fourth row: the False Positives.
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Figure 4: Anomaly scores, the predicted and the ground truth labels of the SMD datset with feature
dimension 12.
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Figure 5: Anomaly scores, the predicted and the ground truth labels of the SMD datset with feature
dimension 0.
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Table 9: Univariate LSTF results on various datasets for comparison of the DBDP model and the
CoST model.

Models | DBDP | CoST
Metric ‘ MSE MAE ‘ MSE MAE

24 | 0.0400.155 | 0.040 0.152
48 | 0.0550.179 | 0.0600.186
168 | 0.078 0.217 | 0.097 0.236
336 | 0.090 0.238 | 0.1120.258
720 | 0.124 0.280 | 0.148 0.306

24 | 0.0750.208 | 0.079 0.207
48 | 0.109 0.255 | 0.118 0.259
168 | 0.181 0.331 | 0.1890.339
336 | 0.214 0.368 | 0.206 0.360
720 | 0.2340.387 | 0.214 0.371

24 | 0.0130.086 | 0.0150.088
48 | 0.0250.121 | 0.025 0.117
96 | 0.038 0.147 | 0.038 0.147
288 | 0.074 0.207 | 0.077 0.209
672 | 0.102 0.240 | 0.113 0.257

24 | 0.016 0.101 | 0.096 0.213
48 | 0.0150.102 | 0.138 0.262
168 | 0.0150.102 | 0.207 0.334
336 | 0.028 0.133 | 0.2300.356
720 | 0.034 0.146 | 0.242 0.370

24 | 0.3050.407 | 0.243 0.264
48 | 0.394 0.466 | 0.292 0.300
168 | 0.390 0.458 | 0.4050.375
336 | 0.414 0.474 | 0.560 0.473
720 | 0.460 0.514 | 0.889 0.645

ETTh;

ETThs

ETTm;,

WHT

ECL
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Figure 6: Anomaly scores, the predicted and the ground truth labels of the SMD datset with feature
dimension 6.
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Figure 7: Anomaly scores, the predicted and the ground truth labels of the SMD datset with feature
dimension 29.
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Figure 8: Anomaly scores, the predicted and the ground truth labels of the SMD datset with feature
dimension 30.
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Figure 9: The predicted and ground truth labels for the SWaT dataset with the DBDP model. Top
row: Ground truth labels of the SWaT Dataset; Second row: the True Positives; Third row: the False
Negatives; Fourth row: the False Positives.
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Figure 10: The predicted and ground truth labels for the SMAP dataset with the DBDP model. Top
row: Ground truth labels of the SMAP Dataset; Second row: the True Positives; Third row: the
False Negatives; Fourth row: the False Positives.
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Figure 11: The predicted and ground truth labels for the SMAP dataset with the DBDPC model.
Top row: Ground truth labels of the SMAP Dataset; Second row: the True Positives; Third row: the
False Negatives; Fourth row: the False Positives.
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Figure 12: The predicted and ground truth labels for the WADI dataset with 82 filtered features
using the DBDP model. Top row: Ground truth labels of the WADI Dataset; Second row: the True
Positives; Third row: the False Negatives; Fourth row: the False Positives.
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Figure 13: The predicted and ground truth labels for the WADI dataset with 82 filtered features
using the DBDPC model. Top row: Ground truth labels of the WADI Dataset; Second row: the True
Positives; Third row: the False Negatives; Fourth row: the False Positives.
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Figure 14: The predicted and ground truth labels for the WADI dataset with all the 123 features
using the DBDP model. Top row: Ground truth labels of the WADI Dataset; Second row: the True
Positives; Third row: the False Negatives; Fourth row: the False Positives.
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Figure 15: The predicted and ground truth labels for the WADI dataset with all the 123 features
using the DBDPC model. Top row: Ground truth labels of the WADI Dataset; Second row: the True
Positives; Third row: the False Negatives; Fourth row: the False Positives.
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