Under review as a conference paper at ICLR 2025

CONVERGENCE OF ADAFACTOR UNDER NON-CONVEX
SMOOTH STOCHASTIC OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adafactor, a memory-efficient variant of Adam, has emerged as one of the popular
choices for training deep learning tasks, particularly large language models. How-
ever, despite its practical success, there is limited theoretical analysis of Adafactor’s
convergence. In this paper, we present a comprehensive analysis of Adafactor in a
non-convex smooth setting. We show that full-batch Adafactor finds a stationary
point at a rate of O(1/v/T) with the default setup, which could be accelerated
to O(1/T') with a constant step-size parameter. For stochastic Adafactor without
update clipping, we prove a convergence rate of 0(1 / V/T) with the right parame-
ters covering the default setup. We also prove that Adafactor with a time-varying
clipping threshold could also find a stationary point with the rate of O(1/v/T).
Our theoretical results are further complemented by some experimental results.

1 INTRODUCTION

The adaptive gradient-based methods, such as the well-known AdaGrad (Duchi et al.| 2011} Streeter
& McMabhan, 2010), RMSProp (Tieleman & Hinton, 2012), Adadelta (Zeiler, [2012), Adam (Kingma:
& Bal 2015)), and AMSGrad (Reddi et al. 2018)) are one of the preferred approaches in solving the
following unconstrained stochastic optimization problem in deep learning fields:

min f(X) =Ezep[l(X; Z)], 1)

X €Rnxm

where [is a smooth potentially non-convex function and P denotes a probability distribution. During
the training process, these adaptive methods require storing the historical gradients’ information to
tune their step-sizes adaptively. For example, both Adam and AdamW maintain the exponential
average of gradients and squared gradients, and AdaGrad stores the cumulative of squared gradients.
Despite their effectiveness, these algorithms pose substantial memory challenges for GPUs to save
these additional gradients’ information, especially when training large language models (LLMs),
such as GPT-3 (Brown et al.,[2020), which contains over 175 billion parameters.

To address memory constraints, several memory-efficient optimization algorithms have been devel-
oped, e.g., (Shazeer & Stern, |[2018; |Anil et al., 2019;|Luo et al., [2023}; L1 et al.,|2024). One of the
popular optimizers is Adafactor (Shazeer & Stern, 2018), a memory-saved variant of Adam that
employs a rank-1 matrix factorization to approximate the second-moment matrix. For an n x m
weight matrices, this technique reduces memory from O(mn) to O(m + n) by only tracking the
moving averages of the row and column sums of the squared gradients matrix. Additionally, Adafactor
eliminates the first-order momentum used in Adam and incorporates update clipping to enhance
training stability. In real applications, several LLMs including PaLM (Chowdhery et al., 2023ﬂ and
T5 (Raftel et al.| 2020) have included Adafactor into their main optimizers (Zhao et al.,2023)).

The empirical results reveal that Adafactor achieves comparable performance to Adam in training
Transformer models (Shazeer & Stern, 2018)), even though it sacrifices gradient information to save
the memory. Despite Adafactor’s empirical success, there is limited understanding on its convergence
in theory, especially the explanation for its hyper-parameter setting in experiments. Theoretical
results, e.g., (Zou et al.,[2019; |Défossez et al.,[2022), have proved that Adam could converge to the
stationarity with O(1/+/T) rate under specific hyper-parameter for non-convex smooth setup. Then,
a natural question arises:

"PaLLM applies Adafactor without matrix factorization.

Under review as a conference paper at ICLR 2025

Could Adafactor still achieve the same order of convergence rate as Adam while sacrificing
gradient information for improved memory efficiency? If so, what’s the requirement for its
hyper-parameters setup?

In this paper, we analyze Adafactor’s convergence for non-convex smooth optimization problems,
considering the typical bounded gradient setting as those for AdaGrad (Li & Orabona, 2019} [Ward
et al., [2020) and Adam (Zaheer et al., [2018). We aim to provide a similar convergence rate for
Adafactor which complements the empirical observation that Adafactor could attain comparable
performance to Adam while reducing memory usage. The analysis is non-trivial compared to other
adaptive methods such as AdaGrad and Adam due to the unique matrix factorization and update
clipping mechanisms in Adafactor. In the full-batch case, we rely on the special exponential moving
averages of the row sums and column sums of the squared gradients to lower bound the first-order
term in the Descent Lemma. In the stochastic case, we design a new proxy step-size to compute the
conditional expectation of the first-order term that involved the stochastic gradient and the adaptive
step-sizes. Further, we successfully control the additional error brought by this proxy step-size. We
also extend a standard way in the analysis of SGD with clipping to handle the update clipping. Our
main contributions are summarized as follows.

* We provide a convergence analysis for full-batch Adafactor under bounded gradients and a
broader range of hyper-parameter settings which covers the default one in (Shazeer & Stern,

2018). The result shows that Adafactor can find a stationary point O(1/+/T') rate with default
step-sizes. This rate can be accelerated to O (1/7") with a constant step-size parameter.

* We further investigate the more realistic stochastic Adafactor. It’s found that a simple variant
of Adafactor, which drops the update clipping, could attain the convergence rate of O (1/ VT)
when the decay rate of the second moment is 1 — 1/k. This rate is optimal, matching the lower
bound (Arjevani et al., [2023)) up to logarithm factors.

* We extend our study to include a time-varying clipping threshold. Our analysis implies that with
proper selections of clipping threshold and hyper-parameters, Adafactor could also achieve the

best convergence rate of O(1/+v/T).

» We further provide some basic experiments on computer vision and natural language processing
tasks to complement our theoretical results.

The rest of the paper are organized as follows. The next section provides some most relevant works.
Section [3] presents some necessary notations definitions and problem setup. Section [reviews
Adafactor and its major differences to Adam. Sections [5]and [6] separately provide convergence
bounds for full-batch Adafactor and stochastic Adafactor (no update clipping) and further discuss
the hyper-parameters’ dependency. Section [7]investigates Adafactor using a time-increasing update
clipping threshold. Section [§]summarizes the main proof challenges brought by Adafactor and our
proof novelty. Section 9 provides experimental results to complement our theory. All the detailed
proofs and some experiments can be found in the appendix.

2 RELATED WORK

Although there are limited works on Adafactor in theory, the convergence for other memory-
unconstraint adaptive methods are widely studied. Here, we briefly list some typical works due to the
page limitation.

Convergence of adaptive methods. Several studies (Li & Orabona, [2019; |Ward et al., 2020} Zou
et al}|2019) prove the convergence of AdaGrad in non-convex smooth settings assuming bounded
stochastic gradients. |Shi et al.|(2020) shows that RMSProp could converge to the stationarity when
the decay rate of the second moment is close to one. Several works (Chen et al.|[2019; Zhou et al.|
2020; |Alacaoglu et al.l [2020) provide convergence bounds for AMSGrad in non-convex smooth
settings. A line of research, e.g., (Zaheer et al.,[2018; |De et al., 2018 |Zou et al.; 2019; |Défossez et al.,
2022) have investigated the convergence of Adam assuming bounded gradients. These mentioned
results successfully derive a convergence rate of O(1/+/T'), matching the lower bound as shown in
(Arjevani et al., [2023)).

Under review as a conference paper at ICLR 2025

Memory efficient algorithms. As large models are increasingly used in deep learning, memory
constraints have become a central issue during training. Consequently, several memory-efficient
optimizers have been developed to address this challenge.

One approach to saving memory involves applying matrix factorization to optimization algorithms.
For instance, |Shazeer et al.| (2017) used matrix factorization in the second moment estimator of
gradients in Adam, similar to the concept behind Adafactor. Luo et al.|(2023)) introduced CAME, a
variant of Adafactor, which incorporates a confidence-guided strategy to mitigate instability caused
by erroneous updates. |Zhao et al.| (2024) proposed Adapprox, leveraging randomized low-rank
matrix approximation for Adam’s second moment estimator, demonstrating superior performance
and reduced memory usage compared to AdamW.

There are some other techniques to save the memory. For example, |Gupta et al.| (2018) relied on
a “Shampoo” technique to reduce the storage requirement of full-matrix preconditioning methods.
Notably, their method could be further extended to the more realistic tensor case. |Anil et al.[|(2019)
presented a memory-saved version of AdaGrad, called SM3, by maintaining k sets gradient ac-
cumulator. They proved the convergence guarantee of SM3 on online convex optimization and
the effectiveness in experiments. Recently, |Li et al.| (2024) built a 4-bit Adam using quantization
techniques to compress the first and second moment estimators in Adam, also reducing memory
usage.

In summary, many existing optimizers, particularly adaptive methods like AdaGrad and Adam, face
memory overhead. In response, the discussed works have designed memory-efficient optimizers that
aim to achieve comparable performance to these existing methods while achieving memory benefits.

3 PROBLEM SETUP
To start with, we introduce some necessary notations.

Notations. The index set [n] denotes {1,2,--- ,n}. || - || and || - || denote the Frobenius norm
and [.-norm respectively. a < O(b) denotes a < Cyb for some positive constant Cyy. For any two
. n m
matrices X = (z45)i;, Y = (yij)i; € R™*™, we define (X,Y) = 310, > 00 25135 X O,
% and v/ X denote the coordinate-wise product, quotient, and squared root respectively. 0,, and
1,, denote the zero and one n-dimensional vector respectively, and 1,,«,, denotes the one n x m-
dimensional matrix. For a positive sequence {«; };>1, we define Zf:a o; = 0 and H?:a o; = 1if
a > b. The operator RMS(+) denotes

n m

1
%ZZI%'

i=1 j=1

RMS(X) =

We consider unconstrained stochastic optimization (I) over R™*™ with the Frobenius norm. The
objective function f : R™*™ — R is differentiable. Given an n x m matrix X, we assume a gradient
oracle that returns a random matrix g(X, Z) € R"*™ dependent on the random sample Z. The
gradient of f at X is denoted by V f(X) € R"*™.

Assumptions. We make the following standard assumptions throughout the paper.

* (A1) L-smoothness: Forany X, Y € R"*™ |Vf(Y) - Vf(X)||lr < L|Y — X||F;
* (A2) Bounded below: There exists f* > —oo such that f(X) > f*,VX € R**™;

* (A3) Unbiased estimator: The gradient oracle provides an unbiased estimator of V f(X), i.e.,
E[¢(X.Z) | X] = Vf(X),VX € R™™;

* (A4) Almost surely bounded stochastic gradient: for any X € R™*"™,

9(X,Z)||lr <G, as..

Combining with (A3) and (A4), it’s easy to verify that |V f(X)| < G,VX € R™*™. Assumptions
(A1)-(A3) are standard in the non-convex smooth convergence analysis. Although Assumption (A4)
is a bit strong, it’s still commonly used to derive the high probability convergence bound, see e.g.,
(Ward et al., |2020; Kavis et al.,|2022)), which is a stronger result than an expected convergence.It’s

Under review as a conference paper at ICLR 2025

also commonly appeared in several early convergence results for adaptive methods, e.g., (Kingma &
Ba, [2015; [Reddi et al.| 2018}, [Zaheer et al., 2018} |Défossez et al.,[2022)). We note that our analysis
can be extended to the sub-Gaussian noise case, which is commonly used for analyzing adaptive
methods, e.g., (Li & Orabonal [2020; [Liu et al., |2023)). We will discuss this in detail in Appendix

4 A REVIEW OF ADAFACTOR

In this section, we briefly introduce Adafactor and highlight its major differences from Adam. The
pseudocode for Adafactor is presented in Algorithm [I]

Algorithm 1 Adafactor

Input: Initialization point X; € R"*™, Ry = 0,,,, Cy = 0,) , relative step-sizes {py, }x>1, decay
rate { B2, r>1 € [0, 1), regularization constants €, €2 > 0, clipping threshold d.
fork=1,---,Tdo

G = 9(Xy, Zy);

Ry = Bo i Ri—1+ (1 — Boi)(Gr © Gy + e11,1)) 1,5

Cr = PokCro1+ (1= Bos)1) (G © Gi + €11,1));

Wi = (RiCy)/1, Ri;

Ui = G /vVWy;

N, = max{ez, RMS(X})}pr/ max{1l, RMS(U})/d};

X1 = Xy — - Gr/vVWhi;
end for

Matrix factorization. Adafactor could be served as a saved-memory version of Adam. Throughout
the training process, Adam maintains two n X m matrices M} and Vj, using exponential moving
average update,

My = 1M1+ (1= p1x)Gry, Vi=P2:Vie1 + (1 —Fok)Gr © Gy,)

where 01, B2,k € (0, 1), thereby tripling the memory usage. The innovation in Adafactor lies in
its method of approximating Vj, by factoring it into two rank-1 matrices, specifically the row sums
and column sums of V4, thus sufficiently reducing the memory from 2mn to m + n. Although
this factorization sacrifices some information about the squared gradients, Adafactor still delivers
performance comparable to Adam in many real application tasks, making it a practical choice where
memory is a constraint.

Increasing decay rate. In Adam, corrective terms are introduced into M}, and Vi, resulting in
two increasing-to-one decay rates. Theoretically, it has been demonstrated that a value close to
one for /3, ;; would ensure the convergence, e.g., (Défossez et al.l 2022; Zou et al.l 2019; Zhang
et al.l 2022)). Inspired by this observation, Adafactor used an increasing second-moment decay rate
B2 =1—1/k° ¢ > 0, and the empirical default setting is ¢ = 0.8. As pointed out by [Shazeer &
Stern| (2018), this setting allows for enjoying the stability of a low 3 j at the early stage of training
and the insurance of convergence from a high 35 j as the run progresses. Moreover, it also leverages
the bias correction.

Update clipping. Adafactor modifies the update process by discarding the first-order moment
M, and instead applies an update clipping technique inside the step-size 7. This involves dividing
the root-mean-square of the update Uy, denoted as RMS(U},), when it exceeds a threshold d. This
mechanism helps to calibrate the second moment estimator W, when it’s larger-than-desired G, © G
Empirical findings in (Shazeer & Stern, 2018)) indicated that implementing update clipping leads to
significant performance improvements when the warm-up technique is not used.

Relative step-sizes. Adafactor incorporates a step-size proportional to scale of X}, denoted by
RMS(X},), which is shown in experiments more resilient to the more naive parameter initialization
and scaling schemes (Shazeer & Stern 2018).

Under review as a conference paper at ICLR 2025

5 CONVERGENCE RESULT FOR FULL-BATCH ADAFACTOR

We first provide the convergence bound for the full-batch Adafactor. At each iteration, full-batch
Adafactor obtains the gradient V f(X},) and then updates Ry, C}, using V f(X}) instead of G, in
Algorithm 1]
Theorem 5.1. Let { X} }i,>1 be generated by Algorithm[l|\with (X, Zy) = V f(Xy),Vk > 1. If
Assumptions (Al) and (A2) hold, ||V f(X)||lr < G,Yk >1, f21 =1/2,p1 = po and

pr=po, 0<pBor<l, VE2>2, 3)

for some positive constant pg, then for any T > 1,

win [V £(X0)[% < (logT) |

ke[T] T
When setting p, = po/k,k > 1, forany T > 1,

. logT
% <
min V101 50 (250,
The result indicates that full-batch Adafactor could find a stationary point at a rate of O(log T/T))
under the non-convex smooth case, corresponding to the rate for gradient descent (Bottou et al.|[2018)
and full-batch Adam (Shi et al.,|2020). We note that the time-decreasing step-size only leads to a
sub-optimal rate in our framework. The hyper-parameter setting in (3) only requires 32 5 € (0,1),
denoting a much wider range including the default one which requires 835 = 1 — 1/k%®. The
detailed version for the above result can be found in Theorem [A.T|from the appendix.

6 STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

In the stochastic case, we start from the simple scenario where
M, = max{ez, RMS(Xy)} pi 4)
dropping the update clipping 1/ max{1, RMS(U})/d}. The main reasons are as follows.

* As pointed out in the experiments from (Shazeer & Stern|,2018]), Adafactor’s performance shows
little difference with and without update clipping when implementing learning rate warm-up.
Since the warm-up technique is a popular method in deep learning (Zhao et al.l 2023), it’s
reasonable to drop the update clipping.

* In stochastic Adafactor, the correlation between G, and 7, would be more complex if the update
clipping is involved. The proof would be simpler when dropping the update clipping, which
could help to better understand the analysis for Adafactor.

Based on these reasons, we assume that the warm-up technique is implemented and drop the update
clipping. In addition, we focus on the stage when the warm-up is finished, which allows us to focus
on the stage that leads to the final output. Despite these reasons, we also believe that investigating the
warm-up stage could be quite an interesting topic for future work. We now present the probabilistic
convergence bound for Adafactor without update clipping as follows.

Theorem 6.1. Let { X} },>1 be generated by Algortthmlwzthout update clipping where ny, is given
by @) for each k > 1. If Assumptions (Al)-(A4) hold, and

/8271 - 1/27 P1 = Po,
/827k:1_1/kca pk:p()/\/Ev Vk227

Sor some constants 1/2 < ¢ < 1,pg > 0, then for any T > 1,6 € (0,1), with probability at least
1-4,

&)

1 T
. 2 <ot -
Igrelg“l] IV X)lz SO (Tc1/2 log (5)) ’

The detailed version of the above results can be found in Theorem B.T|from the appendix. We will
make a detailed discussion on the convergence bound as well as some hyper-parameter dependencies
in the next section.

Under review as a conference paper at ICLR 2025

6.1 DISCUSSION OF THE HYPER-PARAMETER DEPENDENCY.

In this section, we discuss the dependency of several important hyper-parameters in Theorem
and the detailed version in Theorem [B.1]in the appendix. It’s worthy to mention that the dominated
order in our convergence bound is determined by the total iteration number 7', whereas other hyper-
parameters could be regarded as constants. However, we hope to improve the dependency of these
hyper-parameters as much as possible to make the convergence bound tight.

Discussion of ¢ and the optimal rate. Theoremreveals that whenc=1,82, =1—1/k and

Pk = po/ vk, the convergence rate attains the optimal rate matching the lower bound. The result then
complements the empirical results that the information lost in Adafactor does not essentially harm
the convergence speed and Adafactor could still achieve comparable performance to Adam.

In addition, when ¢ increases from 1/2 to 1, the convergence rate improves, which could also be
seen roughly in the experiment (see Figure[I)). This phenomenon somehow explains that a small
decay rate 32 j; (c is low) may harm the convergence speed, as 33 j should be closed enough to 1
to ensure convergence. This phenomenon is both verified by convergence bounds for Adam in e.g.,
(Zou et al.| 2019; |Défossez et al) 2022; [Zhang et al., [2022; Wang et al.| 2023)) and negative results
where a constant 35 is not guaranteed to converge in e.g., (Reddi et al.,|2018; Zhang et al.| 2022).

Dependency to mn. It’s clear to see that the convergence bounds in Theorem[A.T|and Theorem
[B.T]are free of the curse of the dimension factor mn as mn only appears on the denominator in each
coefficient. We think that solving the curse of dimension is vital since the applied range for Adafactor
includes many deep learning tasks where mn are comparable large to T'.

Dependency to €1, €. The convergence bounds in Theoremis of order O(e; *log(1/e;1)) on
€1E] Although the polynomial dependency to €, is a bit worse since €; usually takes a small value
in experiments, e.g., 1073% in the default setup, it’s still common in some theoretical convergence
results, e.g., (Zaheer et al., 2018} |Li et al.l 2023). We also perform some experiments to show that a
relatively large €1, roughly 10~°, makes no observable effect on the convergence speed (see Figure
in Appendix[E). Thereby, ¢; could be regarded as a constant in comparison to 7" and the influence
brought by 1/€; could be somehow acceptable.

Since the default value of €5 is 1073 in experiments, the dependency O(1/e2) on €5 shows little
effect on convergence bounds given the sufficiently large 7.

Dependency on the scale of parameters. The convergence bounds in Theorem B.1 contain a
O (Omax) factor where ©,,,, denotes the maximum values of | X||~,Vk > 1. However, the
dependence on O,y is not fundamental, as it arises from the relative step-size max{es, RMS(X%)},
which could be dropped by removing the relative step-size as done in Adam.

7 CONVERGENCE OF ADAFACTOR WITH UPDATE CLIPPING

In this section, we slightly change the update clipping threshold d in Algorithm[I]to a time-varying
threshold dj. The step-size 7y, then becomes

max{ez, RMS(X}) }px
max{l, RMS(Uk)/dk} '
The update-clipping in Adafactor differs from the standard clipping mechanism with the form
1/max {1, \/||Gkl| r}, bringing some more essential challenges for analyzing. In what follows,

we demonstrate that incorporating such clipping can still ensure convergence for Adafactor under
bounded stochastic gradient assumption.

Theorem 7.1. Let { X} }>1 be generated by Algorithm I\ with 1y, given by (@) for each k > 1. If
Assumptions (Al)-(A4) hold, and

di =1, B21=1/2, p1=po,
d, = k™0, Bop=1-1/k pp=po/Vk Vk=>2,

N = (6)

N

*The detailed discussion could be found in @) and @2) in Appendix

Under review as a conference paper at ICLR 2025

Sor some constants o > 1,1/2 < ¢ < 1,pg > 0, then forany T > 1,6 € (0, 1), with probability at
least 1 — 9,

1 T
. 2
mmin IV X)lE SO <T1/2 log <5)> '

Discussion of Theorem The convergence result indicates that with a proper selection of the
clipping threshold, along with the commonly used pj, and f33 1., Adafactor can find a stationary point

with a rate of (’}(1 /T¢~1/2). The dependency on ¢ remains consistent with Theorem achieving
the optimal rate when ¢ = 1. We thus conclude that Adafactor, equipped with matrix factorization
to reduce the memory of Adam and update clipping, could still obtain a convergence rate as fast as
Adam in theory. In addition, the convergence bound can still avoid the curse of dimension, which is
shown in the detailed version Theorem D.T]from the appendix.

The additional hyper-parameter « primarily influences the dependency on e€;, specifically as
O (e;*log(1/e1)). Thus, our convergence bound may deteriorate as c increases, possibly due
to the limitation of our proof framework. This dependency could be potentially improved to
(@) (61_1 log(1/€1)) when mn is comparable to 1/€;, which is practical in large-size models In our
experiments, we found that suitably small values, such as o = 4, 6, 7, 8 can lead to convergence speed
and training stability comparable to the default one without implementing the warm-up technique
(see Figure[5]and [6). This finding suggests that our new threshold setting plays a similar role in
enhancing training stability as the default one, which is also the main motivation for update clipping.
Since €; can be set to a relatively large value, e.g., 1072, a dependency like O(e] “log(1/e1)) is
somewhat acceptable for sufficiently large 7'.

The time-increasing dj, provides the following intuition: As shown in (Shazeer & Stern, 2018} Figure
1), during the early stages of training, a high decay rate 3 j can cause larger-than-desired updates
and training instability. Therefore, we set a low threshold dj, to ensure that the update clipping
mechanism effectively calibrates these larger-than-desired updates. As training progresses, the
sequences and updates become more stable, and the second moment estimator W}, becomes more
accurate in estimating the squared gradients, which is also shown in (Shazeer & Stern|, 2018| Figure
1). Consequently, there is less need for update clipping, corresponding to a relatively large d.

8 SUMMARY OF PROOF CHALLENGES AND TECHNIQUES

In this section, we will summarize the main proof challenges brought by Adafactor, which are essen-
tially different from other adaptive methods particularly Adam due to the unique matrix factorization
and update clipping. We also present our proof techniques including a proof sketch for Theorem [6.1]
in the solution part. The proof for other main results shares many similarities with this proof sketch.

We begin by the descent lemma of the smoothness and using the updated rule in Algorithm]

2
;o Yk =1, ®)
F

2
f(Xky1) < F(Xk) =1 <Vf(Xk)’ \/GWL,C> + % \/C;%

(@ (ID)

Challenge 1. A new type of adaptive step-size (no update clipping). We first consider the step-
size excluding the update clipping. The analysis of Adafactor presents two unique challenges, both
arising from its adaptive step-size involving a distinctive matrix factorization:

* Addressing the entanglement of the stochastic gradient G, and the adaptive step-size matrix
W, that appears in component (I) in (8).

* Controlling the summation of the second-order term (II).

A key difficulty in analyzing adaptive methods lies in computing the conditional expectation of (I)
due to the correlation of G, and W),. To overcome this, existing analyses typically introduce a proxy

3The detailed calculation could be found in (92) from the appendix.

Under review as a conference paper at ICLR 2025

step-size matrix Ay, that is conditional independent of G'y,. This approach is applied in works such as
(Ward et al.l 2020; |IDéfossez et al.,2022) for AdaGrad and (Wang et al., 2023} [Hong & Lin| [2024)) for
Adam. Introducing Ay, into (8) and summing up both sides over k € [t],

. _
_ Gk—Gk>

E e Gry —F—==

st k< g VA

(A)
t

1 T) Gk

+)k <Gk7 GO () > - '
> oA S

(B) (©)

Note that (A) is a summation of a martingale difference sequence, which could be estimated through a
concentration inequality. The primary challenge, however, comes from estimating the additional error
(B). For Adam, the updated rule in (Z)) and AdaGrad, the updates Vi, = Vi_1 + G\, © Gy, ensures
that V}, and Vj;,_; share a linear relation. Most existing works rely on this linear relation to design
suitable proxy step-sizes, thereby tightly controlling (B) (see e.g., (Défossez et al.,|2022, Lemma 5.1)

and (Wang et al., 2023, Lemma 7)). However, the step-size matrix W}, in Adafactor does not exhibit
a linear relationship with Wj,_;. Specifically, we let G, , = G © G}, + €1 and derive

(BoxRi—1+ (1 = Bok)Ra, .,) © (B2kCro1 + (1 — f2k)Ca,..,)
B2k Sk—1+ (1 — Bak)Say,.., 7
where R, . = G, 1. Cay ., = 1) Gy, and Sk, Sa,,,., are the coordinate sum of Vi, Gy, -

The absence of a linear relation between W), and Wj,_; suggests that B may be unbounded using
existing proxy step-sizes.

Existing results, such as (Ward et al., 2020, Lemma 3.2) for AdaGrad or (Défossez et al., 2022,
Lemma 5.2) for Adam, show that the summation of the second-order term is restricted by logarithm
order of T. However, these results could not be directly applied to Adafactor due to the rather
different adaptive step-size and the time-varying 33 .

f(Xeq1) < f(Xy) an

F

W, =

Solution. The solution part also serves as a proof sketch of Theorem[6.1] Motivated by the existing
construction, we design a new proxy step-size matrix Ay as follows:

(BoxRi—1+ (1 — P2x)G1) © (B2,kCr—1 + (1 — B2.x)G2)
B2.xSk—1+ (1 — B2.1)G ’

where Gy, G2, G are constants related to G ﬂ We note that Ay is conditional independent with the
noise G — G;.. Note that we omit update clipping in Theorem- 6.1]and A is now a summation of
the martingale difference sequence. Hence, we could use the concentration inequality to derive that
A < O(G?1log(T/5)/e1) with the detail in Lemma |B.6| More importantly, the construction of Ay,
is delicate since we are able to control the relative distance (detailed in Lemma[B.7) as

Ay =

(k) (k) ‘
a;;

2
9
S3 Z T F > ©)
The remained thing is to control the second-order summation that emerged both in (C) and (9). We

setup. These results are summarized as (see the details in Lemma@]and@
Gk 2 GQ Gk} 2 t k t
SO — — Bak SO | log (1~ Bar)
H i (o)2 Ba) RN

il

’wi = a,;
Ji(k)’ <0 (G\/l - 52,k) Wk > 1,0 € [n],j € [ml.
Relying on this bound, we could control the error term (B) as
t 2
Gk
+ o (G > (1= Bak)
begin by analyzing the ratio of the second-order term for Adafactor and Adam. Then, we extend an
inequality for Adam with a constant decay rate (Défossez et al.|[2022, Lemma 5.2) to a time-varying
VWi V Vi k=1
*The detailed expression is given in (T4).

Under review as a conference paper at ICLR 2025

These results help to derive that
t = 2 t
1 G G3 (G?)
B)+(C)< - +0O0|—|lo + 1-— .
B)+(C) <3]?Zlmc A, (o (el kE:I(Ba,k)
Combining with the bounds for (A),(B),(C) and using 82 , = 1 — 1/k¢, it holds that with probability

atleast 1 — 0,
1 2 a3
- < -
S|l <o (e £)

Finally, by upper boundmg H VA ‘] 7 With G (see Lemma , we can derive the desired result.

Gk

Challenge II. Additional update clipping in the adaptive step-size. We note that the solution to
the first challenge only considers the matrix factorization but omits the update clipping. However,
incorporating update clipping introduces an even more complex adaptive step-size 7, as in Algorithm
[} and the conditional expectation of (I) is even harder to compute. To our knowledge, this structure
causes all existing constructions of proxy step-size ineffective. We will face this challenge in the
proof of Theorem

Solution. We first rewrite the updated rule as
Gr - Gy .
G = s Pk
vV Wk max{l RMS(Uk)/dk}

The first-order term in the descent lemma then become ()=k — Pk <Gk, Gr/VW, > Inspired

Xk+1 Xk — ﬁk = max{ez,RMS(Xk)}pk.

by a standard way in the analysis of SGD with clipping, we provide a decomposition for (I),

—Enl Gl En e (e i) o)

k=
(1)

t = = t = =
. /A G Gy, . /A G Gy,
=Y pe{Gr,—==—Egz, |—==|)+ > t{Gr,—==—Ez, |—=]|).
v e St e
(2) (3)
Here, (2) is a summation of a martingale difference sequence and (1) is an error term that can be

estimated similarly to (B) in (9). The critical step is to handle the additional error term (3) using the
maximum operator inside the update clipping (detailed in (I03) and (106)),

Gl (G +a) 1
3) 50(ks ﬁ>

To ensure that this error term remains controlled by a logarlthm order of ¢, we should further require
d = k2(a-1) 2(a 1),

Challenge III. Lower bound first-order term (full-batch case). A central problem in the proof of
Theorem-ls to lower bound (I) in (T3). Existing results on Adam, e.g., De et al|(2018)) obtain
that ||V ||ooc < G2 based on exponential moving average property, thus lower bounding (I). However,
Adafactor does not enjoy such a property. In addition, we should consider the effect of the update

clipping.

Solution. We first separate [¢] into two index set

={ke[l] | |Ukllr > dv/mn}, Ep={ke[t]||[Ukllr <dymn}.

Through Lemma we show that |[Wy |l < O(G? + €1), |Uk|lr < O(G?/e1). Then, for some
constant ¢ > 0, (I) is lower bounded by

n20 pill Gl pknakuF) -0 <mm{co,q/(;} -)
= (Z Ukl /W ”oo > [Willso G+ /a > okl Gillz

keEy keE> k=1

Under review as a conference paper at ICLR 2025

Loss vs Steps for Different Decay Parameters

0.725 4 —— Adafactor (c=0.5)

Adafactor (c=0.6)
—— Adafactor (c=0.8)
0.675 4 / —— Adafactor (c=0.9)
| —— Adafactor (c=1.0)

0.700 4

Training Loss
o o o
()] o o
o N (%]
o w o

0.575 1

0.550 1

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Step t

Figure 1: Training loss curve using BERT-Base model on GLUE/MNLI dataset. Adafactor: py =
7 x 1073, batch-size = 128. Adam: pg = 3.5 x 1072, 31 = 0.9, B> = 0.999, batch-size = 128.

9 EXPERIMENTS

In this section, we will report our experimental results based on our convergence results. We will
mainly provide the following three experiments (the last two are included in Appendix [E|due to the
page limitation):

* We will show the training/testing performance of Adafactor (no update clipping) under different
decay rate parameters c on CV and NLP tasks.

* We evaluate the sensitivity of Adafactor to different values of €1, particularly showing that a
relatively large €; does not significantly impact the convergence speed.

¢ We assess the training performance of Adafactor with a time-increasing dy, setting, as described
in Theorem [7.1] and compare it to the default constant setting.

We train BERT-Base model using Adafactor (no update clipping) with decay rate c ranging from
0.5 to 1.0, while keeping other hyper-parameters the same. Each experiment is run with 4 epochs,
and we plot the training loss curve in Figure[T] We also train the model with Adam as the baseline.
The result indicates that convergence rates for Adafactor and Adam are comparable. In addition,
the convergence rate for Adafactor grows fast as c increases from 0.5 to 1.0, roughly aligning with
Theorem

The second experiment (Figure) shows that Adafactor is not sensitive to the choice of €, and a
relatively large ¢;, such as 1073 can still lead to convergence, making the polynomial dependency
O(1/e71) in convergence bounds acceptable. The third experiment (Figure and@ indicates that, for
o =4,6,7,8, Adafactor achieves comparable convergence speed compared to the default threshold.
All the detailed results could be found in Appendix [E]

10 CONCLUSIONS

In this paper, we investigate the convergence behavior of Adafactor on non-convex smooth landscapes
with bounded stochastic gradients. Our theoretical results complement an empirical observation
that Adafactor could achieve comparable performance to Adam, despite sacrificing some gradient
information to reduce memory usage. We introduce a new proxy step-size to decouple the stochastic
gradients from the unique adaptive step-size and update clipping. We also rely on the unique structure
of proxy step-sizes and an appropriate choice of 5, to control the additional errors.

Limitations. Several limitations warrant further investigation. First, the polynomial dependency
on € in convergence bounds may be improved to a better one, such as log(1/¢;). Second, the
convergence bound for stochastic vanilla Adafactor remains unknown. Third, the bounded stochastic
gradient can be relaxed to some more realistic assumptions. Finally, it’s beneficial to further support
our theoretical results through experiments on large language models.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret analysis
for adam-type algorithms. In International conference on machine learning, pp. 202-210. PMLR,
2020.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
In Advances in Neural Information Processing Systems, 2019.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):
165-214, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations,
2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for RMSProp and Adam
in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv preprint
arXiv:1807.06766, 2018.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of Adam and Adagrad. Transactions on Machine Learning Research, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7):2121-2159, 2011.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842-1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Yusu Hong and Junhong Lin. On convergence of adam for stochastic optimization under relaxed
assumptions. arXiv preprint arXiv:2402.03982, 2024.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
algorithms with AdaGrad stepsize. In International Conference on Learning Representations,
2022.

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of Adam under relaxed assump-
tions. In Advances in Neural Information Processing Systems, 2023.

11

Under review as a conference paper at ICLR 2025

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In International Conference on Artificial Intelligence and Statistics, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum. In
Workshop on International Conference on Machine Learning, 2020.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
2023.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. CAME: Confidence-
guided adaptive memory efficient optimization. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. RMSProp converges with proper hyper-
parameter. In International Conference on Learning Representations, 2020.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of Adam’s iteration complexity. In Advances in Neural
Information Processing Systems, 2023.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(1):9047-9076, 2020.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in Neural Information Processing Systems, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In Advances in Neural Information Processing Systems,
2022.

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kolker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized low-
rank matrices. arXiv preprint arXiv:2403.14958, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the
convergence of adaptive gradient methods for nonconvex optimization. In Annual Workshop on
Optimization for Machine Learning, 2020.

12

Under review as a conference paper at ICLR 2025

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of Adam and RMSProp. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

13

Under review as a conference paper at ICLR 2025

A PROOF DETAIL FOR FULL-BATCH CASE

We first provide the full-batch Adafactor as follows. The only difference to Algorithm (1)) is the
replacement of stochastic gradient by deterministic gradient V f (X,) at each iteration.

Algorithm 2 Full-batch Adafactor

Input: Initialization point X; € R"*™, Ry = 0,,, Cy = 0,}, relative step-sizes {p }x>1, decay
rate {32 1 }x>1 € [0, 1), regularization constants €1, €2 > 0, clipping threshold d.
fork=1,---,Tdo

Gi = Vf(Xy); L

Ry, = BopRy—1+ (1 — Boi)(Gr © G + e11,1))1,

Cr = B2k Cr1 + (1 = o)1, (G © G + €11,1,,);

Wk = (Rka)/].;l;Rk,

Ui, = G/ Wi;)

M, = max{ez, RMS(X})}pr/ max{1l, RMS(Uy})/d};

X1 = Xy — k- Gr/V Wi
end for

Then, we provide the detailed version of Theorem @] as follows.
Theorem A.l. Let {X}i>1 be generated by Algorithm E] If Assumptions (Al), (A2) hold,
IVf(Xi)llr < G,Vk > 1and py = po, f21 = 1/2,
pe=po, 0< o<1, Vk=>2
for some positive constant pg, then for any T > 1,

AgA X1)— f*+ AZlogT + A?
min va(Xk)H%‘ < 0 1(f(1) f + Aglog 1 + 0).
ke[T] T

Iflet pr. = po/V'k, then for any T > 1,
Ao A1 (f(X1) — f*+ Aflog T + Af)

min ||V f(X)|F <

k€T F VT ’ (10
AgAL(f(Xy) — f*+ AZlog T + A2
min V(X 3 < 2 =+ Agloe T+ 20)
ke[T] VT
where we define
Omax = max || Xilloo, G = G?+ mney, (11)
ke[T]
and the other constant parameters are given by
A2 _ Ldzmn(eg + @max)Qp% AZ _ LG2g(€2 + @max)Qp%
0 2 »0 2mne(1 — f21)?
max{l’ %}
A = dermn(1—F21) VA = {‘/G‘1 + G2(m + n)ep + mne?, (12)

Po€2

/ G1
Al =42 +G?+¢e .
mne;

A.1 PRELIMINARY

We first denote the auxiliary matrix G‘iﬂ =Gr G, + e 1n1;—1. In addition, we define V}, =

(5®> as follows,
17 ij

Vo =0nxm, Vi=PBxVie1+(1— 52,1@)@%,617 E>1. (13)

14

Under review as a conference paper at ICLR 2025

To simplify the notation, we let G}, = (gl(]k)) R(’) Cy (J) and Sy, be the i-th row sum, j-th column

sum and the coordinate sum of Vj, respectlvely The same definition principal is applied to the
notation R(Y and C(J) . We also use w(k) v(k) (2 to denote the coordinates of Wy, Vi, Uy,

) , U
k o 9 9

in Algorlthm[Z]respectlvely We also define values G, gz, G as follows:

glzG + mey, g2:G + ney, gZG + mne;. (14)

A.2 TECHNICAL LEMMAS

Following the descent lemma for a L-smooth objective function f, we derive that

FOV) < FX) + (VXY = X) 4 SV - X[}, vX ¥ eR™" a3
In the following, we will provide some necessary technical lemmas.
Lemma A.1. Let B2), € (0,1) and 'y, be defined by

Io=0, Tp=pFklk_1+(1—02k), Vk>1.
Then, (1 — fB2,1) <T\ <1,Vk > 1.
Proof. We could prove the result by induction. Since I'g = 0, it’s easy to derive that (1 — 821) =
I’y < 1. Suppose that for any j € [k — 1], (1 — B2,1) <T'; < 1. Then
Iy >Bor(l—=Pop)+ (1 =Por)>1—Po1, T <Pop+(1—pFor) <1
The induction is then complete. O
Lemma A.2. Let Vj, be defined in (13). For any k > 0, it holds that
R, =Vil,, C,=1Vi, Sy =1 R, =1]Vi1,,.

Asa consequence,

RY) = BoxRY) + (1= Bop)BE , CY = BosCy) +(1-Bas)CI)
k,e1 k,e1
Proof. Note that Ry = Vy1,, = 0,, and Co = 1]V, = 0,},. Suppose that for any j < k — 1,

R;=V;1,,,C; =1}V, Then using the updated rule in Algorithm [2{and (T3),

Ry = BopRi—14+ (1= Bok)Gh o, Lin = B2k Vi1 + (1 = B2k)Gi o)) L = Vili,
Cr = BoiCror+ (1= Bop)1,Gr ., =1, (Bos Vi1 + (1 - Bo)Gr,) =1, Vi

Since SVk represents the coordinate sum of V., we could derive that

= ii@g’?) =1'R,=1Vi1,,

i=1 j=1

(16)

Since R%z denotes the i-th row sum of Vj, it’s the i-th coordinate of Ry,. Hence, for each coordinate
of Ry, using (T6),

RY) =B kRY + (1= Ba4)RY)
Similarly, we could derive the results related to C‘(i) O

Lemma A.3. Following the parameter setting in (3), for any i € [n],j € [m],k > 1, it holds that

RY) € [me(1-B21),G1], Cf) € [nea(1 = B21),G), Sy € [mner (1 — B21),G).

15

Under review as a conference paper at ICLR 2025

Proof. Recalling the definition of Vj, in (T3) and ||V f(Xk)||r < G, Vk > 1, we derive that

o= 33 =03) ()) T

i=1 j=1 i=1 j=1p=1 l=p+1

k k B

<> (1=Bap) | [I B2t | IGoll% + Twmner < G?T +mney <G, (17)
p=1 l=p+1

where the last inequality comes from Lemma[A.T] Following and Lemma|[A.T] we also derive
that

SVk Z mnelfk Z mnel(l — 52’1).

We also derive the upper bounds for Ri—;z and C%) as follows,

k k
Zv(k <> =B2p) [I Boa | IGlI% + Tumer < Gy + mer < Gy,
p=1 I=p+1
n k k
. m _
C‘(’;k,) = ngj) S (1 =Bap) | II Bt | 1GolF + Tuner < G’y + ney < Go.
i=1 p—1 l=p+1

Similarly, the lower bound could be derived by

Riz > meTy 2 mey (1= Boa), CF) = neily = nei (1= Ba,).

Y
Vi
A.3 PROOF OF THEOREM[A_]

Now we move to prove the main result. Using (I3)) and the updated rule in Algorithm 2]

_ L
f(Xkt1) < f(Xk) + (Gry Xir1 — Xig) + §||Xk+1 - Xi||%
e Lt || G
—f(Xk)_nk<Gk7 = >+ =
VW, 2 VW

We then re-arrange the order, sum up both sides over k& € [t] and apply f(X;y1) > f* from
Assumption (A2) to get,

2

F

<HX) -S> (18)

(a) (b)

Since || Xk|loo < Omax, we have RMS(X}) < Opax for any k£ > 1. Hence, using 7, defined in
Algorithm 2]
max{ez, RMS(X}) }px

A oo,
= @Iflax 19
T tnax {1, | Okl 7/ (dy/mn)} < (€2 4 Omax) kmln{ A {19

Using (T9), Uy, = G./\/ Wi, A in (I2) and py, = po/V'k, we thus derive that

t

Ld?mn(62 +0 ||U;¢||2 ‘1
b) < max) —E =AY - 20
(b) < Z O 0

To lower bound (a), we first discuss the maximum operator inside 7. Let

={k e[| 1U:llr > dv/mn}, Esy={ke[t]|||Uklr <dyvmn}.

16

Under review as a conference paper at ICLR 2025

When k € FE4, it derives that
dymnespr. 1)
Ukl »

Using Lemma | we first derive that w(k) (R(z) cY)) /Sy, . Then, applying Lemma and
IVf(Xk)|lr < G, we could upper bound ||U;€ 1% as follows,

M >

(k) _
- n ™ (gy) Sy, ”Gk”Zg G2G
U,|% = (< E < . (22)
Okl ;; RYCY ~ mnei(l=F21) T mnei(l— F21)

Hence, combining with (21)) and (22), we have

2 2

G, G,
Tk e > dv/mnes ——
21 k F ;1 ||UkHF Wk F
_ 2
1 —
> damnl o e 5, | 2 23)
kEE, Willp
When k € E5, we obtain that 7j, = max{es, RMS(X})}pr > €2pk and thus
2 2
k
> > Y : (24)
kEE> VWi F kEE VW F
Combining with (23] and (24), we derive that
) deymn(1l — B2 1)} : G,
a) > eming 1, ———— == Pk || —= (25)
@ amn {1, B S |

We also derive from Lemma[A.2]and Lemma[A.3]that for any i € [n], j € [m],
RO o) R(z) C(a)
(k) _ Vi Vi RW
o) = =g < </RYCY </G:Ga. (26)

Using (26), we have

2
v (3) | 1GuE _ 16 o
Fooi=1j=1 ‘(k V4g1g2 A

where A; has been defined in (T2). Plugging (27) into (23), we derive that

(a) > Qmin{l,M}ZPkHGkHF (28)

Plugging (20) and (28) into (T8), and using py = po/V'k, we thus derive that

t t = t
A 1 pil|Grll3 L
GQE:—<§:7F<AA X)) — f* A2§— 29
I?él[%H kHFkﬂ\/E_k:l < AoAr | f(X1) = [T+ A e (29)

Po 1

where Ay is given in (I2). Moreover, we have the following results,

t t t
1 1 1
7§1+/fda::1+10 ¢, — >/t (30)
We thus derive the first desired result in (T0) as follows,
AoAy

min IGxlIF < (F(X1) = "+ AF + Aflogt) .

Vit

17

Under review as a conference paper at ICLR 2025

A constant step-size p;, = po Setting pr, = po, then following the result in (29), we derive that

t t
. —~ ~ * 1
tomin [Gul < 3 IGilE < Aods (f(Xl) RAREDD k) .
k=1 k=1
Using (30) and dividing ¢ on both sides, we obtain that

AgAq

mmHGkHF (f(X1) = "+ Af + Aflogt) .

kelt

Avoiding the curse of dimension To derive a free-dimension numerator bound, we first derive
from (T9) and @2) with pj, = po/V'k that

t t

L(€es + Opax)? _ LGQe+@maX e 1
(b)é%}jpi\lmllfm_ 2 Z =A3Y . 6D

2mmne? 1 —
k=1 (1= B21) k=1

where A has been defined in (T2). In addition, we derive from Lemma|A.2] Lemmal[A.3|and (T4)
that

l)]
L BYCY _ 269 <2< G

w:. =
i < <
J Sy, mney mne;

+G* + 61) = (A})3,

where we use m +n < mn and A} in @) Thereby, we have

ZEZ%%&‘Z%-

i=1 j=1

Combining with 23]), we thus derive that

(a) > 62min{l7 dqmn(l_ﬁﬂ)} iPkHGkH% (32)
T A4 GVG k=1

Plugging (1) and (32) into (T8), and using pi = po/V'k, we derive that

¢ ¢ ¢
A 1 k||Gk||F ARk
min || G||? < < ApAj X)-f"+A —1,
iy 16l 3 7 < 37 Al FX) -+ AFY

k=1
where Ay has been defined in (I2). Using @), we derive the second desired result in (I0).
Ag A} A2 L A
min |G (X1)— f*+Af+ A lo t).
min [Gul3 < 22 (7(060) - £ + A3 + Aflog

B PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

We first provide the detailed version of Theorem[6.1]

Theorem B.1 (Formal statement of Theorem. Let { X}, }1>1 be generated by Algorzthmlwzthout
update clipping where ny, is given by @) for each k > 1. If Assumptions (Al)-(A4) hold, and

/8271 = 1/27 P1 = Po,
Box=1—1/k, pp=po/VEk, Yk>2

Sfor some constants 1/2 < ¢ < 1,pg > 0, then forany T > 1,6 € (0,1), we have the following
results.
When ¢ = 1, with probability at least 1 — 9,

_ Cy T
i < —= 1 log T
52%;1] |IGk|l% < T <C’1 og <5> + CalogT + Cs +C’3> , (33)
min [|G||% < Co C1 log r +(Ch + C%) log T + Ch + C4 (34)
Ke[T] EllF = \FT 1 5 2 3 2 3

18

Under review as a conference paper at ICLR 2025

When 1/2 < ¢ < 1, with probability at least 1 — 6,

Co T Cs 1
1 — .Te 35
;?elf:rrl] 1Grll7 < Nia (01 0g<6) e +02+C3> (35)
C(/) T 202 1—c / ’ i
krgf% |GL|% < Wi (C’1 log <6) t1o . T ¢+ CilogT +Ci,+C5 | . (36)

Here, Oyax and G are as in (1)), and
24G2(62 + @max)po

Cr=f(X1)— "+ NG (37)
The Cy, Cy, C3 are constants defined as
22 2G?
C(): ga CV3 Czlg(2+G>7
Po€2 4 €1
Cy — 32mnG3 (62 + Omax)po n 4LmnG(eq + @max)Qp%. (38)
max{m,n}e max{m,n}e

The C{), C%, C% are positive constants (that could be further upper bounded by constants independent
from m,n), defined by

2\/2 (m + G+ 61) L,
= j— max

06 ’Cé 4G3(G1 + G2)(€e2 + Omax)pos Cé = 3(€2 + Omax) PO’
PoE2 5

(39)

and G1,G4, G3 are given by

4 4 4 2
Gl\/6< < +G2+61), Gy = NG+ GTmner)

mne; mnes

G3 2G? G
=2 v/ . 4
G (mnel + J/mneq * v/mn G+ 61) (40)

Calculation of hyper-parameter dependency To derive a free dimension bound, we shall use the
convergence bounds in (34) and (36). From (39), it’s easy to show that m, n could only exist in the
denominator of C}, C%, C%, which could avoid the curse of dimension.

To calculate the dependency of €1, we first show that its dependency in coefficients Cy, C1, Co, C'5 as
follows, based on the assumption that 0 < ¢; < 1,

CONO(l), ClNO(l/\/a), CQNO(l/el), C3NO(0210g(1/61)) (41)
Thereby, with the convergence bounds in (33)) and (33), it’s easy to show that

krgfn [GrllF < O (7 Hog(1/e1)) . (42)

Proposition B.1. Following the same assumptions and settings in Theorem[6.1} then with probability

at least 1 — 6,
min ||Gy|% < Go Cy log +C E
ke[T] ke = T 1 2 kc

and with probability at least 1 — 9,

' T T 1 &l 1
0 - 4 - - ! —
1l VSl < U (Cl s (5) r e e - UL k) |

k=1

where all constants are given as in Theorem|[B.1]

19

Under review as a conference paper at ICLR 2025

B.1 PRELIMINARY

We first follow the notations of G, = (gl(jk)) ~and G,G1,Gz in (I4). Let G, = (gfjk)) ~and
1] ¥

& = Gy, — Gy We also define G, =GrOG, + €11,1) and Vj, = (%‘?) ~as follows,
ij

Vo =0nxm, Vi=pBuVic1+(1—B2k)Gr,,, k=>1. (43)

We also define R%ﬁ , 082 and Sy, as the i-th row sum, j-th column sum and coordinate sum of V,
respectively. R(cl:)z and ng represent the same definitions with respect to G5 ¢,- Then, using a
ke k,e ’

similar deduction in Lemma we also obtain that for all £ > 1,

RY) = B2uRY) 4+ (1= B2)Gh Ly OF) = forCY) + (1 - Boi) LI G, (44)

As a consequence of (44), each coordinate of W, satisfies that

L (i) (i) () ()
w R@C@ (Bz,kRVk_l + (1 - Bz,k)RGiﬂ) (ﬁg,kc‘}k_l +(1— ﬁg,k)ccg%‘l)

k. __

w: - =
Y Svi B2kSviy + (1= Bax)Sez
(45)
Next, we introduce a proxy step-size matrix Ay = (agf)) ~such that
ij
) _ (5271@3%171 + (1 - 52,k)91) (62,;603271 +(1- ﬁz,k)gz))

" Bo.xSv,_, + (1 — P2x)G

The proxy step-size technique is a standard way in the convergence analysis of adaptive methods, e.g.,
Ward et al.| (2020); Défossez et al.[(2022)). We provide a new proxy step-size in to handle the
matrix factorization in Adafactor. This construction satisfies two properties. First, it’s independent
from Zj, in order to disrupt the correlation of stochastic gradients and adaptive step-sizes. Second, it

needs to remain sufficiently close to the original adaptive step-size wl(f to avoid generating divergent
terms.

B.2 TECHNICAL LEMMAS

In the following, we first provide some more necessary technical lemmas. We introduce a concentra-
tion inequality for the martingale difference sequence, see (Li & Orabonal 2020) for a proof.

Lemma B.1. Suppose that { Z} ;c[r) is a martingale difference sequence with respect to C1,- - - , (7.
Assume that for each s € [T, o is a random variable dependent on (1, - - ,(s—1 and satisfies that

2
o (2) 16 6| <o

Then for any \ > 0, and for any 6 € (0,1), it holds that

d 1 1\ 3 «
P Zs>~log (=) +=A 2] <4
(32 () Pt <
Lemma B.2. Following the parameter setting in (8), for any i € [n],j € [m], k > 1, it holds that

Rgy Ry €[me/2.G1), CF) Oy €ne/2.62), Saz . Sv, € [mne/2,G].
s€1 yET ©,€1

20

Under review as a conference paper at ICLR 2025

Proof. First, using Assumption (A4), we derive that

mnel/2<SG2F1 ZZ((QU) +€1> = ||G|% +mne <G,

=1 j5=1

) n 2
mey /2 < Rg)’% = E ((gf?) —|—61> < ||Gk|% +mer < Gy,
1€ j:l

n€1/2SC(GJ%,€1 :2<(gfj)) +61> < ||Gg||F + ner < Ga.
. .. . B (4) .
Using the similar deduction for Lemma L we could show that me; (1 — B21) < Rw, < G;. Since

B2,1 = 1/2 from (B), we then obtain the desired result. The bounds for Cy; (j) , Sy, could be also
derived by using similar arguments. O

We have the following lemma to upper bound each coordinate of the proxy step-size matrix Ay,
defined in (@6) .

Lemma B.3. Forany k > 1, it holds that
2

Bak(1l— Bar)e < a() < 2mm{g —l—G—i—el}, Vi € [n],j € [m].

mney
Proof. We first have

52,]@R§271 + (1 - BQ,k)gl Ba, kRVk) (1 — s k)g1
< 2 < 2. 47
BrrSv T <1 —ﬁmg BorSve s, (L= Bar)G @7

Then, recalling the definition of a) in (@6) and Lemma it derives that CJ) < G5 and thereby
Ba, kCgk) (1= B2x)Ga < Go < G. Then combining with @7), we derive al(j) < 2G. We also
derive a free dimension bound from Lemma for a() as follows,

4B < 26192 _ 2(G* + G(m + n)er + mne?) < (G?

ZJ

+G+61>7

T omney mney mne;

where we use m +n < mn when m,n > 2 and 82 1Sy, _, + (1 — B2,%x)G > mne1 /2. To lower
bound a() , we derive from Lemmathat B2.kSv,_, + (1 — B2x)G < G. Thereby,

Bai(L = Bo) (RY)_, G2+ CF)_G1)
al) > G > Pak(l = Ba) -
[(m + n)G? + 2mnei e

2(G? 4+ mney)

(mGa + nG1)ex
2G

= Boi(1 = Pak) - > Bok(1 — Bak)er
O

Lemma B.4. Let W), and V), be defined in Algorithm[I|without update clipping where ny, is given by
(@) and [@3) respectively. For any k > 1, it holds that

H G | 2G G
VWi |lp ~ max{m,n}er ||/Vi|p

Proof. Recalling @3], vgl-c) < R&Z ,vgk) < Cg) and Lemma one could verify that

W)) se 2000 () () _2()'s

)

wz(Jk) - R%ng - nﬁlv(k) wEf) B R%C’g: B melv()

9

21

Under review as a conference paper at ICLR 2025

which leads to the desired result that

G |I?

VWi

26

F max{m,n}e

Gy,

Uil? =

.
O

The following lemma is inspired by (Défossez et al., 2022, Lemma 5.2) where they considered a
constant 3 3. Here, we generalize the result to the case of time-varying 3 . and provide the proof
detail.

Lemma B.5. Foranyt > 1, if 32), are as in @ then it holds that

t 2 t
Gy, 2(G* + 1)
20 [, e (F5) amn 20

Proof. Recalling the definition of Vj, and since Vi = 0,,x.,,, we have that for any & > 1,

2
U(jk) Ba, kv(k Rt + (1 = fBok) [(95?) +61}

k) k
(1= B2p) [(95')) + 61} II B

l=p+1

p=1

Then, we have

(k)2
9i;
(1_62,%@)'(j) = Tk (48)

where we set yo = 0,6y = 0 and

k k
xp = (1—Pog) (gi(;_v)f, o = Z(l — Bap) (gz(f)) H B |
p=1 I=p+1
k k
Z = B2,p) H Bau |, Vk>1.
p=1 l=p+1

Then we have y,, — x = B2 rYr—1, vk > 1. Moreover, since y;, > xj, we could use logz >
1—1/z,¥x > 1 to derive that

< log(yr + k) — log(yx + Ok — xx) = log(yx + Ok) — log(B2,xYk—1 + Ok)

:log(Y + Ok >+log(yk—1+9k—1)
Yr—1 + 01 BokYk—1+6k)
Noting that 8, = B2 x0k—1 + (1 — B2,)€1, which leads to 8 8,1 <). Hence, we further have
Tk Yr + O, > (Ye—1 + Or—1) (Yr + O)
<log| ——— | +1o =log| ——) —1lo .
Yr + Ok & (yk—l + Or—1 & Ba.k(Yk—1 + Ok—1) & Yk—1 +0p—1 8 Pk
(49)

Hence, summing up on both sides of (@8) and (@9) over k£ € [¢], and noting that z; = y;, we obtain
that

Tk
Yk + Ok

2
¢ (gz(j’“)) . ¢
Z — Bak) - ® :y1+101+z

k=1 Vij k=2

> Z log B, - (50)

<1—|—1og(

22

Under review as a conference paper at ICLR 2025

Note that y; + 61 > (1 — 82,1)e1 = €1/2. Moreover, using Lemma [A.T|and Assumption (A4), we
have 6, = T'ye; < €; and y; < I';G? < G2. We then derive that

Yt + 0; < 2(G2 =+ 61)
y1+01 — €1 -
Noting that for k > 2, ¢ € [1/2,1], Box > B2z =1 —1/2¢ > 1 — 1/+/2, we then derive that

—Bog _ V2(1—Bay) B
Sk < PUPo) a1 - o) (52)

Finally, plugging (51)), (52) into (50), and then summing (50) up over i € [n],j € [m], we obtain the
desired result. O

D

1
—log B2 1 <

Next, we have the following probabilistic result relying on the property of the martingale difference
sequence which is commonly used in the analysis of adaptive methods.

Lemma B.6. Following the parameter setting in (9), for any T > 1 and \ > 0, with probability at
least 1 — 6, Vit € [T,

PGS WL

2

2
i 24G (62 + Gmax)po log <T> .
F Ver

4]

Proof. Let (x, = —ny <Gk, £ > and the filtration F, = o (Z1, - - , Zi) where o(+) denotes the

o-algebra. Note that 1, G, and Ay are dependent by { X, -+, X;_1} and thereby Fj_;. Since
&, is dependent by Fy,, we could prove that {(x }r>1 is a martingale difference sequence since

E[Ce | Fr-1] = —nx <C_¥k, W> -0,

where we apply that E [£), | Fr—1] = Ez, [€x] = 0 from Assumption (A3). Then, using Assumption
(A3) and Assumption (A4), we have

1GkllF = Bz, [Gilllr <Ez |Gkllr <G, |&llr = IGk — Gillr < 2G.

Let wi = 2Gny, H % HF We thus derive from the Cauchy-Schwarz inequality that

¢ | x| ez
E [exp (wk) | -7:1@—1} <E |exp —FG' 5 | Fr—1| <exp(1). (53)
k 2 || Gk
162 |,

Then, using LemmaB.1] it leads to that for any A > 0, with probability at least 1 — 4,

t t = 2
~ sk 2 2 k 1 1
SN (G, =) <362y G “log (=
k—lnk< k7\/71k S8AG T F+/\0g 0

k=1 A
= 3\G? (i)) Liog (2 54
;;;(A Ja °4> oY

Meanwhile, when || X ||oo < Omax, pr = po/\/E, we have

(62 + @max)po

€200
RMS(X3) < Omax, 220 < < 55
Combining with Lemma[B.3] we derive that
Nk < Mk < (62 + Gmax)po . kC/Q
a® T Bak(l=Bar)er Bk VE
Qyj
(62 + emax)po < 2(62 + @max)po (56)

~ /min{Ba 1, Bapter NG ’

23

Under review as a conference paper at ICLR 2025

where we use B2 = 1/2, 22 =1—1/2¢ >1—1/v/2,c € [1/2,1] from (@) in the last inequality.
Hence, plugging (506) into (54) and then re-scaling the J, we found that with probability at least 1 — 6,
forall t € [T,

t t = 2

= £k > 6)\G2(62 + Gmax)po Gk 1 (T>

_ E G, < + —log| =).

=" < VAL Ve 2| a3

Setting A\ = /€1 /(24G? (€2 + Omax)po), we derive the desired result. O

The following key lemma provides an upper bound for the error brought by the proxy step-size a%ﬂ),

illustrating the error is controllable.
Lemma B.7. Forany k > 1,i € [n],j € [m], it holds that

o9

’wl(]k) —
(k)
ij

where G is as in (14) and G+, G are as in @0).

< /1= Bopmin{4VG, G + Gy}, (57)

a

Proof. To simplify the notation, we let
X = fogRy) +(1=Ban)RG . AX =(1-B20) (G — Rg),

kep oyeq

Y = BaxCy + (1= Bop)CE) . AY = (1-B2p)(2—CE)),

Z=PrpSviy + (1= Bax)Sez » AZ=(1=P21)(G = Sez) (58)
Then we have
a9 = XY (X+AX)(Y+AY)| |XYAZ - XZAY — YZAX — Z(AXAY)
Wi T | T Ty 7+AZ - Z(Z + AZ) ‘

Applying Lemma [B.2] we could verify that X,Y, Z > 0 and
0<AX <(1—=P2x)bi, 0<SAY <(1—PF2x)02, 0<SAZ<(1-B2x)G. (59)

Hence, we derive that

wg‘c) - az(f)’ I XYAZ — XZAY —YZAX — Z(AXAY)]
Jao T ZJX1AX)(Y 1 AY)(Z + AZ)
IXAY + YAX 4 (AXAY)| N XYAZ
T VX FAX) Y HAY)Z +AZ) Z(X+AX)(Y +AY)(Z +AZ)
(D) (In)
(60)
Since XY > 0 from (538), Term (I) could be bounded as

(1 < IXAY + YAX 4 (AXAY)| - XAY + YAX + (AXAY) 6D

V(XAY + YAX + (AXAY))(Z + AZ) Z+ANZ

Recalling the definition, we have R&;Z < Svi_,» C‘(i?_l < Sy, _, forany i € [n], j € [m]. Further,
applying Lemma|B.2]and (59), we derive that
() ()
xay (B, Re
Z+ANZ ~ \ Svi._, g

AY < 2(1 - B24)Go.

,)
YAX o) .\ Cez..
Z+NANZ — Sv,_, g

AXAY _ AX(1— Bax)G
Z+AZ = (1-p2k)G

AX <2(1 = B2k)G1,

<(1—pa2x)G1.

24

Under review as a conference paper at ICLR 2025

We then derive from (6I), G1 < G and G < G that

(I < \/m (62)

To derive a free dimension bound, we could obtain from Lemma @]) and G > mney /2 that
Z + AZ > mne; /2. Hence,

XAY < 2(1 — B2.£)G1G2 YAX < 2(1 = B2k)G1G2 AXAY < 2(1 = B2.k)G1G2
7+ A7 — mne; T Z4+ANZ mney T Z4+AZ mne; '

‘We then derive that

0 < \/6(1—52,,&,)g1g2 _ \/6(1 —Bon)(G+ Gl)t) _ g

mney mne;
(63)

where we used m + n < mn, and G is defined in (#0). Then, combining with (62) and (63)), we
have

(I) < /1= Bopmin{V/5G, G4}, (64)

where we applied that m + n < mn when m,n > 2. Then we move to bound (II). Recalling the
definitions in (58], we have X < Z,Y < Z. Applying (39), we have

XYAZ vVXYAZ
() < e < Yo" < VAZ <1506

Similarly, we derive from Lemmathat Z > mne1 /2, X < G1,Y < Gs. Hence,

VXYAZ - 2\/(1 = B2,£)G1G2G

II) <
(In) < Z - mney
G? 2G? G
<24/1— ———+ G+ — < Gay/1—
< Ba.k (mnel + e + G+ Jmn + \/E> < Go Ba,k»
where G5 has been defined in @0). We thus derive that
(II) < /1 = B2 min{V/G, G2} (65)
Combining with (63)) into (60), we then derive the desired result. O

B.3 PROOF OF PROPOSITION [B.1]

Using the inequality in (T3]), we have

_ L
[(Xky1) < f(Xk) + (G, Xpep1 — Xi) + §||Xk+1 - Xil%
G > Lni || G
VWi 2 vV W

Introducing the proxy step-size matrix Ay, in (@6) and then summing up both sides over k € [t], we
derive that

2

< f(Xk) =1k <Gk;

F

F(Xern) < F(X0) =D m <ék, Gk>
k=1

VA
A
t t 2
_ 1 1 L772 Gy,
+ Gi, G @(>>+ .) (66)
Z”< BEREA\VAL, YW, 2 > ||Vl
B C

25

Under review as a conference paper at ICLR 2025

Estimation for A We first introduce &, into A,

¢ t

=~ &

A=—> n - > M <Gk7 . (67)
2 2\ Uy
Then, using Lemma with probability at least 1 — ¢, for all ¢ € [T,
t ~ 2
3 (e 24G? (€3 + Omax)P0 T

A=—- Nk log [— . (68)

Estimation for B Term B is essentially the error brought by the proxy step-size Ay. We will first

calculate the gap of 1/4/ wff) and 1/4/ agf) as follows,
1 1 1
|V T Tw| T e Ve e <
w;; a;; w;i 1/ a;

We then apply (69) and Young’s inequality,

’w@ — a@‘. (69)

1
TN o ij ij
/wz(;?) /agf)

n

t 1 1
BSZEZXMk%QW‘ PEENAT)
k=11i=1 j=1 \/E \/C;

t n m gfjk)g” (k) (k)
<220 s ﬁ
=11i=1 j=1 2] 2]
2
B 59 9 SUSSCWINY o) o o P i Muki 8B B RN
k=1i=1 j=1 \/aw k=1i=1 j=1 a;; w;;
Thus, plugging in Lemma[B.7into (70), we derive that
1 G, | ¢ G |I?
B<-—» n +4VG Y /1 = Bo ||——=
D e Lt
t =~ 2 t 2
1 Gk (62 + emax)po Gk
<~ +4VGY 1= By | =
1];Uk AL, Z NG B2,k Wl
1 Gy |
k
< - Nk + 4f 62 + @max)po]- - 62 k: (71)
2|, Z

where we used (53) in the second inequality and 1/v/k < 1/k/? ¢ € [1/2, 1]. Furthermore, using
Lemma[B.4]and Lemma [B.5] we derive that

t 2 3
1 Gy, ImngG?2 (62 + emax)po
B<- E log 2+ — 4 E (1-— . (72
I Ik VAL ¢ + max{m,n}e Jr + Bak)| - (72)
Estimating C Using the similar deduction in (71)) and (72)), we derive that

L max 2pt 2 : t
C< mnG(ez + ©) Po [log <2 + eG) + 42(1 — ﬁz,k)
1

max{m,n}e P

(73)

Putting together We first re-arrange the order in (66) and use f(X;41) > f* in Assumption (A2)
to derive that

0<f(X1)—f*+A+B+C. (74)

26

Under review as a conference paper at ICLR 2025

We then plug (68), (72), (73) into (74) and set t = T', which leads to that with probability at least
1

s

T

G |I° T
\/7% . <C log (5) +Cs Z(l — Bak) + Cs, (75)

k=1

L I
5 Z Mk
k=1
where C1, C, C3 are as in Theorem [B.1] Moreover, using Lemmal@and (33), we have
T = 112
1 G Nk HGkHF Po€2 ||GkHF
Dol 2D Z (76)
23 VARl S 2max; ; \/agf
Combining with (76) and (73), and using Y} _, 1/v/k > /T, we derive that

Co T L
2<c = 1 1-
min |Gy N (a 0g (5> +C2 Y (11— Bak) +03> ,

k=1

2 T

where C has already been defined in (38). We then derive the first desired result that
min ||G'k||2 o Cilog +CQZ .
ke[T] f k“

Free dimension bound We follow the similar deduction in (71)) and use Lemma|[B.7]to derive that

t 2 t 2
1 1 Gy,
< 1 kX::l Mk . +4(G1 + G2)(e2 + Omax)po Z P || W . an
Recalling the definition of w)in @3) and Lemma L we derive that
RW 2
i _ BYCY _ mnet H |Gl 46°6 _ o8
4 SVk N F - mml g w () % -
where G’ is as in (#0). We thus derive from (77) and (78) that
t t
1
<3 Z TG (G + Ga)(er + Oma)p Z i /QH 73 (79)
k=
Using (55) and (78), we derive that
t 2 t
7] LG3(62 + @max 1
—= < —. 80

Plugging the unchanged estimation for A in @ (79) and (80) into (|6_3|) we have that with probability
atleast 1 — 4, for all ¢t € [T,

1o ? T Lo 1
52% F§0110g<5)+cézkc/2+1/2+0§2k7 (81
k=1 k=1 k=1

where C%, C} are given as in (39) and C is as in (37). Further, using Lemma [B.3|and the similar
deduction for (76),

1
2 2

where C{ is as in (39). Combining with (81)) and (82)), and setting ¢ = T', we derive the second
desired result in Proposition [B.T] that

G 2. G Clog (L) + ¢ ! C %
greuclrl]” kll =T\ + 22314;«:/2+1/2Jr sz '

k=1

2

ml|Gelly 1 G
— 2= ; (82)
k=1 2max; ; agf) 61; vk

27

Under review as a conference paper at ICLR 2025

B.4 PROOF OF THEOREM [B 1]

Now based on the result in Proposition[B.T] we could further derive the final convergence rate. Noting
that when ¢ = 1, we could bound that

1 T
7§1+/ Lir<1410gT. (83)
k' 1 X
k=1
Then, we obtain that
Co T
G < —= (01 — CylogT +Cy + C
,52{?” k|| \/T<1og(5>+ 2 log T + Co + 3),
mm IGrl% < S C log r +(ChL+CY)logT + CH+ C5) .
ke[T VT)
When 1/2 < ¢ < 1, we have
T T l—c
1 1
> < 1+ [<1
— k xc _
T T _
1 QT(l c)/2
Z c/2+1/2§1+/ pepde St ——— 84

Then, we obtain that

min |Gi||% < —= | C; 1o
min [Gul[} < 2 (Culos

T
5
_ Ct T 205
: 2 < 0 - 2 . mql—c ! ! ry
Icrgf:rrl]HGkHF_\/T(Cﬂog(é)—f—lC T +C’dlogT—|—Cz—|—C3)

C
)+ 2 -Tl—“+02+03>,
1-c

C AN EXTENSION TO SUB-GAUSSIAN NOISE WITH BOUNDED GRADIENTS

We first recall the sub-Gaussian noise assumption.
Assumption 1. The gradient oracle g(X, Z) satisfies that for some constant o > 0,

E [exp (”g(X’Z) —ViX ”2> ’X] <exp(l), VX €R™™,

o2

We state a standard concentration inequality for sub-Gaussian noise as follows.

Lemma C.1. Given T' > 1, let the noise sequence {&;}icr) where & = g(X4, Z;) — Vf(Xy)
satisfies Assumption|[l| Then, with probability at least 1 — §,

eT
maXH&H < o? log< 5)

te[T]

Proof. See (Li & Orabonal, 2020, Lemma 5) for a proof. O

We also assume that the gradient is bounded, satisfying that |V f(X)|| < Go, VX € R"*™.

C.1 PROOF SKETCH

In sub-Gaussian noise case, there are two probability events. In the first one, we will rely on the
definition of sub-Gaussian to estimate the summation of the martingale difference sequence as shown

28

Under review as a conference paper at ICLR 2025

in (67). Letting ;, = —nx <Gk, > and wj, = ong H o we could derive from Assumption

I|and Cauchy-Schwarz inequality that for any k € [T,

(£ -
exp S) | Fe—1| <exp(1).
(wp,)

Thereby, relying on Lemma|[B.T] we derive a similar result to Lemma|[B.6} with probability at least

1 -4, forallt e [T,
6 ;2 /o)) T
(c2 o log <> . (85)

‘Z”’“<G’“’ >—4Z”’“ Va ;

Relying on the bounded gradient ||V f(X)|| < Go and Lemma we could derive the second
probability event: with probability at least 1 — 4,

E

T
19(Xs, Z)|| < Go + oy | log (65) vt € [T7. (86)

where we let G/ = G + 04 /log () g =(G) + mne;. Then, we will assume both two events,

(B3) and (86), always happen. Based on the events, stochastic gradients are now bounded and we can
replace G, G with G’, G’ in the estimations for (B) and (C) in (72)) and (73), respectively. Similarly,
we replace G, G w1th G, G in (76). As we assume two probab1hty events happen it leads to with
probability at least 1 — 25 ,

o T\ =~ <1 =
HllIl ||Gk|| <\/7<0110g<5>+02;kc4’03>,
where we define
= 602(62 + @rnax)po
Cy = f(X3)— f*
1=f(X) -+ NG)
Cy, Cy, Cs follow the definitions of Cy, Cy, Cs in (38) with G, G replaced by G’, G'. Finally, follow-

ing the same deduction in Appendix e can derive the desired convergence bounds, which share
the same order as the ones in Theorem [B.]

D PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITH UPDATE CLIPPING

We first provide the detailed version of Theorem [7.1]as follows.
Theorem D.1. Ler { X },>1 be the sequence generated by Algorithm|Il|with (6). If Assumptions
(Al) -(A4) hold, and
pr = po/Vk, d=kTED, VEk>1,
Bo1=1/2, PBop=1-1/k"Vk2>2.
When ¢ = 1, with probability at least 1 — 6,

Dy T
rnm IGrl% < T (C’l log <5) + (Ca+ Di())logT + Coy + D1() +C3) , (87)

A D T
krré%% |Gxl|F < 7% (Cl log (6) + (C4+ C% + Dy(a)) logT + Ch + C4 + Dl(a)) . (88)

When 1/2 < ¢ < 1, with probability at least 1 — 0,

Dy T Cy + Dl(a) 1—
1 — - .7 D
min Gl = 20 (cvtog (5) + 2121 +Cot Di0) +C3) (59)
Do T 2(0/ + Dl Od)) 1—c
l?elfil}] IGrl% < IT (Cl log (5) + ChlogT + % ‘T +Cy+ C5+ Di(a) |,
90
where Cy,C>,C3,CY, C} are as in Theoremand
GGG (€2 + Omax) 0 mney
D _ . / D max — . 1
o = min{Co, Cp}, Di(a)= N , Ga W oD

29

Under review as a conference paper at ICLR 2025

Calculation of hyper-parameters’ dependency We first calculate the dependency on m,n, €1, «
in the additional coefficient D; (<) as follows,

a—1
Di(a) ~O ((V”mnq) L 1) : (92)
mney mney €1

which is free of the curse of dimension since mn exists in the denominator. Recalling the definitions
of C}, C1,C%,C5 in and (39), it’s easy to verify that these coefficients are also free of the
curse of dimension factor m, n since m, n exist in the denominator. Thereby, we also derive a free
dimension bound selecting (88)) and (90).

To calculate the dependency on €7, we could combine with (&1)) and (92)) to derive that
CoD1(a) ~ O (1), CoCy ~ (1/ *1/2) . CoCs ~ O (e log(1/e1)) .

Thereby, selecting the bounds in and and noting that & > 1, we derive that the order on €; is

o(qv (&)

Moreover, it’s clear to reveal that there exists mn in the denominator, which could improve the
dependency on €;. If we suppose that mn is comparable to €, then we derive that Co D (a) ~

0(61_1/2) and the order on € is
1 1
(@] <1og ()) .
€1 €1

D.1 PROOF OF THEOREM [D.1]

We define
5 Gk
max {1, |Ug|r/(dr/mn)}’

Since RMS(U},) = ||Uk||r/+v/mn, RMS(X}) < Onpax, we derive that

ﬁk = max{ez,RMS(Xk)}pk. (93)

G
X1 = Xk — pr W “k,k
€p0 _ . (€2 4+ Omax)Po
< S - S €2 + @max 1-— 9 94
NG Pk Tk (€2)P0/ B2,k %94

where we applied that 1/vEk < 1/k/?,c € [1/2,1] and fBa = 1 — 1/k€ in the last inequality. Using
the inequalities in and (94), we have

_ L
F(Xiq1) < f(Xk) +(Gr, Xpy1 — Xi) + §||Xk+1 - X%

< F(Xp) - <Gk, Gi >+L’3’2€

~ 2
Gy,
vV Wy »

VWi 2

Summing up both sides over k € [t] and using f(X;y1) > f* from Assumption (A2), we derive that

LYoyt o

D E

2

k

0< f(X1)—f* +Z pk<Gk, (95)

30

Under review as a conference paper at ICLR 2025

Introducing Ay, in {@6), we further have the following decomposition,

Do (6w S) e S (on (e) oo

D1
¢ ~ 2
Gy,
— S all-2E]l yDa
2 ko
¢ ~ ~ ¢ = ~
. |~ G Gy, - |~ G Gy,
NG T By | VS (G Ez | 22|). (96)
Yo on G x| Fh| e S e []
D.2 D.3

Estimating E Hence, using (93), (94), Lemma|B.4Jand Lemma[B.5] we derive that
¢ 2
L Gk- Gk
E<Z) pi <
2g;k~ﬁW;F VW
L max 2p? 2]
< mnG (€2 + Omax)* P ll <2+G)+4zl—ﬂ2k) (97)

max{m,n}e;

2

L(e +®max2 2 <
(2 5) £0o Z(l _/82,k:)

F

k=1 |
To avoid the curse of dimension, we drive from (93) and (78) that
G 1 ? G |
el = = I R PR
Willp (max{L, |Ukllp/(drv/mn))" IVWelle — I VWil
Then, using (94) and (98), we derive that
LG3(e2 + Oax) 08 <= 1
E< —.
< 5 P (99)

k=1

Estimating D.1 We could follow the similar deduction in (69) and (70) to derive that

X 1 1
D133 S|
k=11i=1 j=1 wij aij

t n o m g
i Zj
< Z’fﬁ(k ﬁ(k\/ U U
1] 1]

k=11i=1 j=1

1 t n m (g(k)> ‘ (k) a(k) g(k) 2
. ij ij ij
SZZZZP’“ \/7 +4 ZZZ Pk - \/7 ’ | (100)
k=1i=1 j=1 k=11i=1 j=1 ij wij
Using Lemma[B.7]and (I00), we further derive that
1~ || G | & |
R k k
D1< - +4 1-—
_4;:10 Al \/?Zpk\/ B2,k \/Wk‘F
t ~ 2 2
1 || Gk R Gy
<> | I 1=
< 4;,0 VA, @;Pk B2,k Wil
Using @]) Lemmaand Lemma B.5] we further have
2 2
Gy,
D1<-= + 4G (€3 + Omax) (1—
Z Pk G(e)Po ; Ba.k) Wil

Ay Gk2 8mnG? (€2 + Omax)po 267
=1 log 2+ =— 4§ (1- .
=7 k:1pk VAL || 5 + maxmn}er og {2+ + > Bar)

(101)

31

Under review as a conference paper at ICLR 2025

To avoid the curse of dimension, we apply Lemma- (©4) and (78) to derive that
t 2 2

1 R Gk ~ Gk
Di1<- 0 +4(G1 + G E P/ 1 — Ba,
4 e k m » (1 2) — k 2.k \/Wk p
t = 2 t 2
1 . Gy, 1 Gy,
S — Pk 4 G + G €2 + Gmax P § T o170 || T A
4 — VAL || g (@ 2)(e2) Ok_ ke/241/2 || /W, F
¢ =~ 2
1 Gy 1
<= % 4G5(G1 + G Omax — s 102
<7 k:1pk VA, +4G3(G1+ G2)(e2 +)po]?:: 1o/ 21)2 (102)

Estimating D.2 Since Ay, is independent from Zj, it further leads to

D2=— Zpk< _Eg, [GkD

Then, the deduction for estimating D.2 follows the similar idea as in Lemma [B.6] relying on a
martingale difference sequence.
Let us set o = —pg <%, Gy — Ez, {ékb and the filtration 7}, = 0 (Z1, - -+ , Z). Noting that

Dk» G, and A}, are dependent by Fj,_1. Since £, is dependent by F,, we could prove that {py }r>1
is a martingale difference sequence by showing that

E ok | Fr-1] = —pr <\/GAikJEzk [ék —Egz, [Gk]]> =0.

In addition, using Assumptions (A3), (A4) and Jensen’s inequality, we have

L Gl
S SN A TICRYD),

Therefore, we derive that
|Gk — Ez, [Gi]llr < |Gkl + [[Ez, [Gi]l| F < 2G. (103)

. We thus derive from the Cauchy-Schwarz inequality and (T03) that
F

<|Grllr <G, |Ez[Gilllr <Ez|IGklF <G.

Let w; = 2Gpy,

|Gk — Bz, [Gi]l%

o)] o

Then, using Lemma[B.1] it leads to that for any A > 0, with probablhty atleast 1 — 4,

Gk 2 1
D.2= < 3M\G? 71 Z
;@k ; | +3 og(é)

t 0 om i®Y’ .
:3)\GQZZZ\/T5 ; (VT? ()

Since {2, }x>2 is non-decreasing, we could apply Lemma to derive that
1 2

1 1
0] = \/52,k(1 = Bak)er = \/min{ﬁz,hﬁz,z}(l — Bak)er = (1—Bar)er
ij

Then, we apply (94)), and re-scale § to obtain that for any A > 0, with probability at least 1 — 4§, for

| Fre—1| <exp(l).

all t € [T7,
6)\G2p0(€2 + @max) i ék 2 1 T
D2< DOk = + —log(—=|.
Ver ; VAllp A g

Setting A = /e1/(24G?po (€2 + Omax)), we derive that

t

1 “ Gk 24G2p0(62 + Gmax) (T)
D2<- log | =). 104
<3 k:1ﬂk VAL, NG 8|3 (104)

32

Under review as a conference paper at ICLR 2025

Estimating D.3 First, since Ay, is independent from Z;, and Ez, [G}] = G}, we have

v /A EzlGd Ez[Gi
D'3‘;p’“<G’“’ VA VA >

Gk Gk

max{1, |Uy| r/(di/mn)}

Qk F

(105)

.

We define the random variable S’,gl), Sl(f) and S’,(:) using the indicator function x and G4 in (1) as
follows,

(1) _ (2) _ (1) _
S1 = XUl e>dovmmtys Ok = X{|Usllp<dovmn}y: Ok = X{|Gxllr>dpGa}-
From (78)), we derive that
2V/G
Vmney

Hence, S ,gl) < S él),Vk > 1. Note that when S ,(62) = 1, it’s equivalent to 2 = 0. Then, we derive
that

|UkllFr < |GkllF -

IE2, (21 = [Ez (S0 + Bz 057 = ||[Ez. 20871,

S EZk S Ezk

QkS’("UHF <Ez, HQkSél)’ F

G816ty e
'

Furthermore, we use Assumption (A4) and Lemma to derive a lower bound for agf) where

NORS mne1 ||G’k||p < 2GG (107)
U / RV TL61
Combining with (94), (T03), (T06) and (T07), we thus derive that
2 1+a 1o max
D.3 < 2677°Gi VG (€2 + Omax) po (108)

vmne; kzl e~ 1f

Putting together Both E and D.1 are bounded with two estimations, one of which owns a better
dependency to 1/€; and the other avoids the curse of the dimension. We thereby derive two results.

Plugging (TOT)), (T04) and (T08) into (96) and then combining with (97) and (©3), we then derive that

with probability at least 1 — ¢, for all ¢ € [T,
1o G T 1
=) < (11 - C 1—- Cs+ D —
22% VA ||, = 10g<5)+ 2];(Bax) +Cs + 1(a);d“_1\/ﬁ’

where C4, Cy, C; are as in Theorem B d D («) is as in (91)). Plugging (T02), (T04) and (TO8)

into (96), then combining with (99) and 93], we then derive that with probability at least 1 — 9, for
all t € [T,

1 t
5P
k=1

~ 2 t t

(109)

G |I? T t1 ! 1

k

— <Cilog| —= | +C - _

VA, o 1 10g <6> 22 kc/2+1/2]; k ; d(]:—l\/%
(110)

where C, C% are as in Theorem- B.1] Moreover, using (94)), we reveal that the lower bound for gy, is
the same the one for 7, in (33)). Thereby, following the same deduction in (76)) and (8T)), we derive
that

LA :

T

ﬁ HF G

Lo k]| F 2 , (111)
ZQ max; s / Z H kHF

0 k=

1T
P

33

Under review as a conference paper at ICLR 2025

where Dy = min{Cj, C} that has been defined in (OT). Setting ¢ = 7" on (I09) and (T10), and then
using (ITTI), we then derive that

D T : o
tIéHTH] |G HF ST i/\/E <C1 log (5> +Cy Y (1= Pak)+Cs +D1(Q)ZM> ;

k=1 k=1

Dy T ~ 1 ~ 1
min |Gl < ST VR (Cl log (5> G Z weor kg R M) '

k=1
Then, using the results in (§3) and (84)), we could derive the desired result in Theorem [D.T}

E SOME COMPLEMENTARY EXPERIMENTS

E.1 TEST ACCURACY OF TRAINING BERT-BASE MODEL

First, we report the test accuracy for the experiment in Section 9, using Adafactor with different ¢
and Adam to train BERT-Base.

Table 1: The test accuracy after 5 epochs. We use Adafactor and Adam to train BERT-Base on
GLUE/MNLI dataset. All the setup is aligned with the one in Figurem

c=05 ¢=06 ¢=08 ¢c=09 ¢=10 Adam
accuracy 0.7785 0.7803 0.7795 0.7827 0.7802 0.8014

Table [implies that the performance of Adafactor and Adam is comparable. It’s also reasonable that
Adafactor sacrifices some accuracy as the memory is saved in comparison to Adam.

E.2 EXPERIMENTS ON RESNET MODEL

In the following experiments, the initialization is Ry = 0,, and Cy = OZ. We use a learning rate
with the warm-up technique as described in (Shazeer & Stern, [2018), specifically pz = min{10~6 -
k,1/ \/E} for all experiments unless otherwise specified. The batch size is set to 256, and the total
number of epochs is 400 by default. Our models are ResNet-20 and ResNet-110 (He et al., [2016)),
and we use the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al.l 2009) without any data
augmentation. The experiments are conducted using the PyTorch implementation of Adafactor on a
single NVIDIA GeForce RTX 4090 GPU.

E.3 REPORT ON EXPERIMENT 1

We train ResNet-20 and ResNet-110 using Adafactor (no update clipping) with decay rate parameter
cranging from 0.5 to 1.0 in increments of 0.05, while keeping other hyper-parameters at their default
values. Each experiment is run 10 times with 100 epochs, and we plot the average training curve
and the average test accuracy with standard deviation (shallow blue region) in Figure [2]and Figure 3]
respectively. The training curves under different decay rates c are not obviously different. Hence, we
turn to use the test accuracy as the measurement. Figure [3]indicates that ¢ = 1.0 yields better test
performance and stability compared to ¢ < 1.0 on different models and datasets, corresponding to
the highest test accuracy and thinner shallow blue band. These performances align roughly with the
results in Theorem

34

Under review as a conference paper at ICLR 2025

E.4 REPORT ON EXPERIMENT 2

Table 2: The test accuracy after 400 epochs. We use Adafactor without update clipping under different
€1 and other hyper-parameters are set by default.

€ ResNet 20 / CIFAR 10 ResNet 20/ CIFAR 100 ResNet 110 / CIFAR 100
1030 0.7526 0.4072 0.4159
1015 0.7439 0.3936 0.4288
108 0.7425 0.4157 0.4266
10-° 0.7480 0.4141 0.3951
103 0.6864 0.3247 0.3377

In the second experiment, we test Adafactor (no update clipping) under different €; values. We
plot the training loss curve against the step ¢ on different models and datasets in Figure[d We also
report the test accuracy after training 400 epochs in Table The performance for ¢; = 1078 and
€1 = 1077 is nearly identical to that for ¢; = 1073, Moreover, even a larger value of 10~ achieves
comparable training performance, though with a slower decrease in loss and a worse test accuracy
compared to other values of €;. Notably, ¢; = 1073 requires approximately the same number of
steps (t &~ 20000) as €; = 10~° to achieve near-zero training loss. We conclude that Adafactor is
not sensitive to the choice of €7, and a relatively large ¢; can still lead to convergence, making the
polynomial dependency O(1/¢;) in our convergence bounds acceptable.

35

Under review as a conference paper at ICLR 2025

Training Loss

0 5000 10000 15000 20000
Step t

(a) ResNet-20 on CIFAR-10

Training Loss

0 5000 10000 15000 20000
Step t

(b) ResNet-20 on CIFAR-100

Training Loss

0 5000 10000 15000 20000
Step t

(c) ResNet-110 on CIFAR-100

Figure 2: Average training loss curve under different decay rate parameters c.

36

Under review as a conference paper at ICLR 2025

Test Accuracy
o o
(0)] ~
1 1

©
(52
1

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter ¢

(a) ResNet-20 on CIFAR-10

Accuracy
o o

w w

o (O)]

1 1

+ 0.25 A

Tes

0.20 A

0.15 A1

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter c

(b) ResNet-20 on CIFAR-100

Test Accuracy
© o ©
w B (0]
1 1 1

©
N
]

©
=
1

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter ¢

(c) ResNet-110 on CIFAR-100

Figure 3: Average test accuracy and standard deviation (shallow blue region) under different decay
rate parameters c.

37

Under review as a conference paper at ICLR 2025

E.5 REPORT ON EXPERIMENT 3

Table 3: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We do not apply the warm-up technique.

« (no warm up) ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

a=4.0 0.6947 0.3096 0.3508
a=6.0 0.7420 0.3600 0.4359
a=170 0.7558 0.3564 0.4483
a=38.0 0.7556 0.3729 0.4586
a=90 0.7751 0.3771 0.4401
o = 1.0 (default) 0.8031 0.4535 0.4906

Table 4: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We apply the warm-up technique.

a(warm up) ResNet 20 / CIFAR 10 ResNet 20/ CIFAR 100 ResNet 110 / CIFAR 100
a=4.0 0.6331 0.2753 0.2958
a=6.0 0.6812 0.2988 0.3433
a=170 0.6811 0.3111 0.3547
a=8.0 0.6930 0.3195 0.3658
a=9.0 0.6969 0.2969 0.3855
« = 1.0 (default) 0.7371 0.3812 0.4085

In this experiment, we explore the appropriate values of « in Theorem[7.1)and compare the training
performance to the default setting of d = 1. As indicated by Theorem [7.1] a relatively small « is
desirable for better dependency on €;. We train models with « set to 4, 6, 7, 8, and 9, keeping other
hyper-parameters at their default values. We also train models with the default d = 1 setting as the
baseline. We report the test accuracy after training 400 epochs. We also plot the training loss against
the steps in Figure [5| without step-size warm-up and Figure [§ with step-size warm-up.

The results indicate that, for the values of o = 6, 7, 8,9, Adafactor achieves comparable convergence
speed compared to the default threshold (represented by "Baseline"), which helps to complement the
theoretical results in Theorem [Z.1]

38

Under review as a conference paper at ICLR 2025

W
1

Training Loss
N
1

1 -
0 L T T T T T
0 20000 40000 60000 80000
Step t
(a) ResNet-20 on CIFAR-10
— €,=10730
6 - —] = 10715
& —] = 10_8
S — €,=10°
8 47 —] = 10 3
% —_— €;=1071
E2- BT
0 _ A
0 20000 40000 60000 80000
Step t
(b) ResNet-20 on CIFAR-100
8

)]
1

Training Loss
N
1

N
1

€;=10"30
e;=10"15
e;=10"8
€;=10"3

@

Step t

(c) ResNet-110 on CIFAR-100

Figure 4: Training loss vs. steps using Adafactor without update clipping under different €;. The

20000 40000 60000 80000

step-size 7, decay rate 33, and learning rate warm-up are set by default.

39

Under review as a conference paper at ICLR 2025

2.0
—_—a=9.0
— = 8.0
w 1.57 — a=7.0
§ — a=6.0
—a=4.0
@)} _
£ 1.0 —— Baseline
£
©
F 0.5 A
0.0 A
1 1 1 1

oK 2K 4K 6K 8K 10K
Step t
(a) ResNet-20 on CIFAR-10

5
—_— =9.0
4 — a=80
& — a=70
3 3 4 —_— a=06.0
o —_— a=4.0
c —— Baseline
£ 2
O
|_
1 -
0 7] 1 1 1 -
oK 5K 10K 15K 20K
Step t
(b) ResNet-20 on CIFAR-100
6
—_—a=9.0
— a=8.0
" — a=17.0
§ 4 - — a=6.0
o —a=4.0
£ —— Baseline
£
© 21
|_
O 7 1 1 1 1

oK 2K 4K 6K 8K 10K
Step t
(c) ResNet-110 on CIFAR-100

Figure 5: Training loss vs. steps on different models and datasets. We use step-size without warm-up
technique and test under different a.

40

Under review as a conference paper at ICLR 2025

a=9.0
a=28.0
a=17.0
a=6.0
a=4.0
Baseline

N
1

Training Loss

oK 5K 10K 15K 20K 25K 30K
Step t
(a) ResNet-20 on CIFAR-10

6
— a=9.0
— = 8.0
7)) —_— a=7.0
§ 4 — 2=6.0
o — a=4.0
£ —— Baseline
=
£27
0 7 T T T _I—|
oK 10K 20K 30K 40K 50K
Step t
(b) ResNet-20 on CIFAR-100
—_— a=9.0
6 - —— a=8.0
0 —_— a=7.0
3 — a=6.0
E" 4 - —_— a=4.0
c — Baseline
£
©
=2
0 - T -r T 1

0K 5K 10K 15K 20K 25K 30K
Step t
(c) ResNet-110 on CIFAR-100

Figure 6: Training loss vs. steps on different models and datasets. We use step-size with warm-up
technique by default and test under different c.

41

	Introduction
	Related work
	Problem setup
	A review of Adafactor
	Convergence result for full-batch Adafactor
	Stochastic Adafactor without update clipping
	Discussion of the hyper-parameter dependency.

	Convergence of Adafactor with update clipping
	Summary of proof challenges and techniques
	Experiments
	Conclusions
	Proof detail for full-batch case
	Preliminary
	Technical lemmas
	Proof of Theorem A.1

	Proof detail for stochastic Adafactor without update clipping
	Preliminary
	Technical lemmas
	Proof of Proposition B.1
	Proof of Theorem B.1

	An extension to sub-Gaussian noise with bounded gradients
	Proof sketch

	Proof detail for stochastic Adafactor with update clipping
	Proof of Theorem D.1

	Some complementary experiments
	Test accuracy of training BERT-Base model
	Experiments on ResNet model
	Report on Experiment 1
	Report on Experiment 2
	Report on Experiment 3

