
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINE-TUNING WITH DIVERGENT CHAINS OF
THOUGHT BOOSTS REASONING THROUGH SELF-
CORRECTION IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Requiring a large language model to generate intermediary reasoning steps has
been shown to be an effective way of boosting performance. In fact, it has
been found that instruction tuning on these intermediary reasoning steps improves
model performance. In this work, we present a novel method of further improving
performance by requiring models to compare multiple reasoning chains before
generating a solution in a single inference step. We call this method Divergent
CoT (DCoT). We find that instruction tuning on DCoT datasets boosts the perfor-
mance of even smaller, and therefore more accessible, LLMs. Through a rigorous
set of experiments spanning a wide range of tasks that require various reasoning
types, we show that fine-tuning on DCoT consistently improves performance over
the CoT baseline across model families and scales (1.3B to 70B). Through a com-
bination of empirical and manual evaluation, we additionally show that these per-
formance gains stem from models generating multiple divergent reasoning chains
in a single inference step, indicative of the enabling of self-correction in language
models. Our code and data are publicly available.1

1 INTRODUCTION AND MOTIVATION

Chain of Thought (CoT; Wei et al. 2022), the prompting method to generate intermediate reasoning
steps to answer a question, is recognized as a simple yet effective mechanism for improving the per-
formance of large language models (LLMs). Given that requiring models to generate intermediary
steps improves performance, it stands to reason that requiring models to simultaneously generate
multiple chains could further improve performance. Prior work exploring this idea includes that by
Wang et al. (2023), wherein they generate multiple CoTs and ensemble them with a voting mecha-
nism. However, this and similar extensions (also see Section 2) do not use multiple inference chains
simultaniously, and so the models do not have access to the different possible reasoning chains in a
single inference step.

We present a novel mechanism that allows an LLM to compare multiple reasoning chains in a single
inference step, leading to improved performance. We call this method Divergent Chain of Thought
(DCoT). This method is inspired by the psychological theory of Divergent and Convergent Thinking,
which posits that problem solving involves two distinct phases: divergent thinking, where many
ideas are generated and explored, followed by convergent thinking, which involves considering these
different ideas to arrive at a single solution or response Guilford (1967).

Unfortunately, the added complexity of generating multiple chains of thought (divergence) before
selecting a single solution (convergence) makes this process too complex for most LLMs to perform
using prompting alone. Our experiments show that the errors that are a result of the added com-
plexity of this method almost completely offset the gains it might provide even in the most powerful
current generation models, including GPT-4o. However, given that instruction fine-tuning, which
involves fine-tuning on datasets consisting of task requirements and associated solutions, improves
performance on those tasks, we hypothesize that similar instruction tuning on this complex diver-
gent CoT is likely to enable not only large models but also smaller models to perform better. This

1https://anonymous.4open.science/r/DCoT-149B/

1

https://anonymous.4open.science/r/DCoT-149B/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Divergent CoT (k = 2) generates k CoTs in a single inference step and selects the correct
answer.

hypothesis is further supported by previous results showing that the addition of CoTs into the in-
struction tuning data allows the model to better learn to use CoTs in generating outputs (Chung et al.,
2024; Kim et al., 2023). As such, this work focuses on boosting the performance of LLMs, includ-
ing small-scale, more easily accessible LLMs, by inducing them to generate accurate and effective
DCoTs through instruction fine-tuning.

We demonstrate that fine-tuning using DCoTs improves LLM performance over the CoT baseline
by rigorously testing on a range of tasks requiring different types of reasoning across model fam-
ilies and scales (1.3B to 70B). Moreover, we show that DCoT fine-tuning provides the additional
benefit of allowing LLMs to improve their first answer without external feedback, which we verify
through a manual analysis of the outputs. Additionally, we show that once fine-tuned, DCoT can be
further augmented by the same methods that boost CoT, such as self-ensembling (Wei et al., 2022).
Independently, performance boosts provided by instruction tuning on DCoT data show that we can
encode other non-trivial reasoning methods into LLMs by instruction tuning on appropriate datasets.

The contributions of this work are as follows:

• We introduce Divergent CoT, a modification to CoT that generates multiple reasoning
chains and selects an answer in a single inference step.

• We show the effectiveness of fine-tuning on DCoT data, through a rigorous set of experi-
ments on a range of LLM families and sizes across multiple multiple reasoning tasks.

• We show DCoT has the side-effect of learning to self-correct without external feedback or
prompt optimization, which to the best of our knowledge, is the first work to do so.

2 RELATED WORKS

In this section, we examine related work from three distinct perspectives: (i) prompting methods
that enhance CoT prompting for divergence, (ii) research focused on instruction tuning models using
CoTs, and (iii) studies on self-correction.

Divergent Prompting. Many works have shown the benefits of generating diverse CoTs and ag-
gregating them (Wang et al., 2023; Zhang et al., 2024; Yoran et al., 2023; Li et al., 2022; Weng
et al., 2023; Zhao et al., 2023a;b). In particular, Wang et al. (2023) proposed the creation of self-
assembles of CoTs to improve LLM’s performance, which they call self-consistency. They sample
a series of CoTs, select the most repeated answer, and show large performance gains on reasoning
tasks. Yoran et al. (2023) extends this work by creating a meta prompt that aggregates the reasoning
paths instead of selecting the most common answer. Zhang et al. (2024) propose explicit steps to
contrast each CoT and reflect on the final answer. However, none of these works induce LLMs to
generate multiple CoTs in the same inference step.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: We train on a series of CoTs to make the model learn how to generate multiple CoTs in
one inference step.

Divergent Fine-Tuning. The success of CoT prompting led to the creation of instruction-tuning
datasets with CoTs (Chung et al., 2024). Kim et al. (2023) argue that small LMs perform poorly
on CoT on unseen tasks compared to large LMs. Hence, they create an instruction-tuning dataset
of CoT to equip small LMs with CoT capabilities. Others suggest distilling CoTs from very large
language models (vLLMs) (Hsieh et al., 2023; Li et al., 2023a). Ho et al. (2023) also show the ben-
efits of distilling CoTs from these vLLMs and claim that sampling multiple CoTs per question is an
effective data augmentation technique that improves the performance of distilled models. However,
they do not use this diversity at inference time, and unlike us, their method only generates one CoT
per question. Huang et al. (2023) show that vLLMs can improve performance on reasoning tasks by
self-training on their own CoT generations from sampling.

Self-Correction. Huang et al. (2023) defines it as the ability of an LLM to correct its initial re-
sponse without relying on external feedback. Some initial works suggest that LLMs possess self-
correct abilities (Shinn et al., 2024; Madaan et al., 2023; Pan et al., 2023; Kim et al., 2024; Weng
et al., 2023; Jiang et al., 2023). However, Huang et al. (2024); Stechly et al. (2024); Tyen et al.
(2023) argue that self-correction’s gains stem from the use of external feedback. Divergent CoT,
on the other hand, exhibits superior performance when generating more than one CoT in a single
inference step, using essentially the same prompt, suggesting that DCoT may enable models to
self-correct without external supervision or prompt optimization.

3 METHODS

To analyze the effectiveness of DCoT, we first evaluate the performance of LLMs when prompted
to generate multiple chains. However, we focus the majority of our experiments on the effect of
instruction tuning on DCoTs, as this allows us to extend the effectiveness of our methods to smaller,
more accessible models.

3.1 PROMPTING

We conducted exploratory experiments to evaluate the effectiveness of DCoT prompting on com-
mercial black-box LLMs. We use prompts to require models to generate multiple CoTs, compare
them, and generate an answer, all in a single inference step. We found that smaller LLMs, with fewer
than 100B parameters, lacked the capacity to perform this complex task. When prompted, they often
generated the same CoT repeatedly. Even when they did generate multiple CoTs, our manual eval-
uation revealed they failed to effectively select the correct answer from among them. These results
are in line with prior results that indicate that these smaller models are also not the most effective
in generating CoTs (Kim et al., 2023). While GPT-4o showed more success, the complexity of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

task also heightened its tendency to hallucinate. Consequently, we observed no performance boost
through prompting alone and thus focused our experiments on instruction tuning using DCoTs, as
detailed in subsequent sections. Appendix C reports the prompts we used.

3.2 FINE-TUNING

DCoT. We aim to instruction-tune LLMs to generate a sequence of divergent CoTs before select-
ing the final answer in a single inference step at inference time. To this end, we devise a DCoT
instruction template, where we introduce a set of commands (in brackets) to request the number of
CoTs to generate:

Prompt: [Question] Question [Options] Options [Number of answers] k
Response: [Answer 1] CoT1 [Answer 2] ... [Answer k] CoTk [Final answer] answer

We instruction-tune each of the models we experiment with (Section 3.5) using the above template.
We generate DCoT data in the required format using methods described in Section 3.3. For brevity,
we refer to instruction-tuned models on DCoT data as DCoT.

CoT (Baseline). So as to establish a comparable baseline, we instruction-tune the same LLMs
using the more traditional CoT format. To ensure a fair comparison, we use the same reasoning
chains as above. As shown in Figure 2, each data point is composed of a question and a CoT, and
a question may appear in more than one data point but with a different CoT. In this way, the model
leverages CoT diversity at training time but, unlike in DCoT, it does not do so at inference time.
Once again, for brevity, we refer to these models as CoT.

3.3 DATASET GENERATION

We follow the methods set out by Ott et al. (2023) to create CoTs that we use to create our CoT
and DCoT tuning datasets. We use GPT 3.5 turbo in the zero-shot setting with multiple triggers to
generate CoTs. Specifically, CoT Triggers are prompt suffixes, such as “Let’s think step by step”
that ‘trigger’ LLMs to generate CoTs. We use the same triggers as in (Ott et al., 2023). For each
question, we select four random CoT triggers. We limit the number of CoTs to four to ensure that the
targets fit the context window of the LLMs. We restrict the training data to those reasoning chains
that lead to correct answers as determined by the labels provided by the corresponding dataset. We
report the prompt templates and triggers in Appendix H.

3.4 FINE-TUNING DATASET CREATION

Table 1 lists the datasets we use to generate our CoTs and train the models. These datasets were se-
lected following prior works (Wang et al., 2023; Yoran et al., 2023). We have added BoardgameQA
(Kazemi et al., 2023) to include logic and ConditionalQA (Sun et al., 2022) to include natural con-
ditional reasoning, both of which are highly complex and a second thought can be beneficial to find
the answer. With this selection, we cover multiple domains, output spaces, and reasoning abilities.
More details are provided in Appendix A.

Table 1: Brief description of the training datasets.

Dataset Reasoning Type
ARC (Clark et al., 2018) High-School Science
BGQA (Kazemi et al., 2023) Logic
CoinFlip Wei et al. (2022) State-tracking
CondQA (CQA; Sun et al. 2022) Conditional
GSM8K (Cobbe et al., 2021) Math
HotpotQA (HQA; Yang et al. 2018) Explicit multli-hop
LLC (Wei et al., 2022) Symbolic
Quartz (Tafjord et al., 2019) Relationships
StrategyQA (StrQA; Geva et al. 2021) Implicit multi-hop

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.5 MODELS

We train a series of models covering the scaling laws and different families. Concretely, we employ
Phi 1.5 (1.3B; Li et al. 2023b), Phi 2 (2.7B; Abdin et al. 2023), LLaMA-2 7B, LLaMA-2 13B
(Touvron et al., 2023). For all of our experiments, we select the non-instruction tuned-based models
so as to ensure that the comparison between DCoT and CoT is fair. This is because instruction-tuning
datasets contain CoT data (Touvron et al., 2023), which would otherwise make the comparison
unfair. We also conduct a smaller experiment on LLaMA-2 13B Chat to analyze whether our DCoT
instruction-tuning method can be applied to already-instruction-tuned models and on LLaMA-2
70B. We refer the reader to Appendix B for details on the training setup of the models.

3.6 EVALUATION

We use the macro average F1 metric for all in-domain classification tasks and the squad-metric (Ra-
jpurkar et al., 2016) for the in-domain span-extraction tasks (i.e., ConditionalQA and HotpotQA).
We run our DCoT with k ∈ [1, 4] and select the best k for each dataset based on the dev set. For
LLaMA-2 70B, we only report results on the dev set due to the costs for hyperparameter tuning.
Further discussions are provided in Appendix B.

For the out-of-domain evaluation, we select tasks from the three domains on which self-consistency
has been shown to improve, namely math, commonsense, and symbolic reasoning (Wang et al.,
2023). Specifically, we evaluate on AQuA (math; Ling et al. 2017), SVAMP (math; Patel et al.
(2021)), CommonsenseQA (CSQA; Talmor et al. 2019), and Object Counting (symbolic reasoning;
Suzgun et al. 2023). We hypothesize that DCoT tuning will improve performance on these tasks.

Lastly, we use Big Bench Hard (Suzgun et al., 2023) as a control experiment to evaluate whether
generating multiple CoTs can confuse the models and generate worse performance. We specifically
use this benchmark because their authors report that CoT is only beneficial in large enough models;
in other words, not using CoT is better for small models. This implies that it is extremely difficult
for small models to generate correct CoTs for these tasks, and therefore, generating more than one
is even more difficult, so it is reasonable to question whether DCoT can reduce performance.

4 RESULTS AND ANALYSIS

In this section, we present results demonstrating the following:

1. The in-domain effectiveness of DCoT, as measured by its effectiveness on the tasks that we
instruction tune on (Section 4.1)

2. The generalizability of DCoT to unseen tasks (Section 4.2)
3. The robustness of DCoT to tasks where CoT is detrimental (Section 4.3)
4. The feasibility of using post-hoc CoT extensions with DCoT (Section 4.4)
5. That DCoT elicits self-correct abilities in LLMs (Section 5 and 5.2)

4.1 DCOT IS BENEFICIAL ON IN-DOMAIN TASKS

Overall performance. The first two rows of each model in Table 2 compares DCoT with the CoT
baseline using the greedy decoding.2 As explained in Section 3.6, DCoT uses the best k for each
dataset according to the results on the dev set. The first result we observe is that DCoT achieves
consistent and significant performance gains compared to CoT. The largest average gain is 2.19 for
Phi 1.5, the smallest gain is 1.75 for Phi 2, and the maximum gain is 7.59 for Phi 2 on BGQA. We
also observe that, overall, these gains are consistent across all datasets for all models. In particular,
we only observe one dataset where CoT outperforms DCoT in Phi 1.5 and Phi 2, two in LLaMA 7B,
and three in LLaMA-2 13B. However, the largest decrements are on StrategyQA, the only boolean
QA dataset. We attribute this to the nature of this dataset, where only two options are possible, and
thus, the divergence in the reasoning is less needed.

2CoinFlip results are omitted because all models achieve perfect scores.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Comparison of DCoT against CoT on the test sets. *70B results on the dev set.

LLM Method Avg. ARC BGQA CQA GSM8K HQA LLC Quartz StrQA
CoT 47.20 48.70 32.39 61.21 34.95 32.56 41.00 72.69 54.08

Phi 1.5 DCoT (Ours) 49.39 50.01 38.60 62.48 36.85 34.81 39.00 77.39 55.97
(1.3B) CoT + SC 46.48 53.81 21.59 63.39 40.33 33.63 32.00 75.11 51.96

DCoT + SC 49.01 53.24 27.60 65.23 40.18 37.79 31.00 81.08 55.97
CoT 60.85 70.87 39.48 65.13 56.71 52.65 58.00 82.91 61.06

Phi 2 DCoT 62.60 73.77 47.07 68.61 60.73 55.15 58.00 83.16 54.34

(2.7B) CoT + SC 61.50 74.36 28.99 68.14 64.97 55.82 55.00 85.20 59.51
DCoT + SC 65.12 76.06 44.16 70.53 68.08 58.61 66.00 86.09 51.43

CoT 58.97 61.63 43.13 65.73 28.51 53.88 75.00 79.32 64.59
LLaMA2 DCoT 60.80 62.70 41.91 70.99 29.57 56.26 82.00 81.37 61.64

7B CoT + SC 62.90 65.98 46.04 69.92 33.97 57.05 81.00 83.28 65.99
DCoT + SC 61.09 68.53 28.20 71.36 36.01 58.35 83.00 84.05 59.22

CoT 64.39 71.79 42.63 70.25 42.53 60.23 81.00 84.82 61.85
LLaMA2 DCoT 66.18 71.41 50.21 71.56 44.28 63.52 80.00 83.29 65.16
13B CoT + SC 66.82 74.82 40.80 72.72 50.27 62.34 80.00 85.84 67.75

DCoT + SC 68.12 74.89 41.27 72.61 54.51 65.92 86.00 85.07 64.65
LLaMA2 CoT 64.87 70.43 44.39 71.71 42.76 60.83 78.00 84.04 66.78
13B Chat DCoT 64.62 72.22 40.94 71.59 44.20 63.87 71.00 85.43 67.68
LLaMA2 CoT 66.96 81.69 44.34 73.59 56.00 55.94 76.00 81.99 66.15
70B* DCoT 68.63 89.04 38.30 69.57 66.00 49.78 82.00 85.99 68.34

Table 3: DCoT average performance across different number of CoTs per question on the dev sets.

LLM k=1 k=2 k=3 k=4
Phi 1.5 49.64 49.36 49.16 48.47

Phi 2 61.60 63.04 64.21 62.71

LLaMa2 7B 61.08 62.20 62.28 62.26

LLaMA2 13B 65.37 67.85 67.45 67.32

Performance across k. Table 3 shows the average performance across all datasets for each k.
Here, we focus on efficiency and aim to obtain gains with small k. We can see that, in general, a
k > 1 (i.e., the number of generated CoTs in our DCoT) improves the performance of the model
across all datasets (compared to k = 1). This also shows that we do not need to optimize k to make
DCoT effective, any k > 1 provide performance gains. Furthermore, we observe gains even with
k = 2, showing the efficiency of our approach. The best performance of our model is achieved
with more than one CoT in 25 cases out of 32 dataset × LLM combinations (see Figure 3 in Ap-
pendix G). However, DCoT sometimes exhibits some performance drop when increasing k (e.g.,
Phi-2@4 on GSM8K). We attribute this to an overthinking effect, where the model tries to explore
more CoTs and ends up generating wrong CoTs that bias the final answer. We report the best k for
each dataset × LLM combination on Table 15 in Appendix F.

DCoT@1≈ CoT Table 12 in Appendix D reports the mean and standard deviation of both methods
across three random seeds on the dev set. An important phenomenon we observe there is that the
performance of DCoT when generating a single CoT (i.e., DCoT@1) is very similar to the CoT base-
line, as expected. This result shows that our DCoT training does not interfere with the regular CoT
generation. Therefore, DCoT is a safe replacement to CoT in regular instruction-tuning datasets.

We also conduct a smaller experiment on general instruction-tuned models (LLaMA2 13B chat).
It is worth noting that comparing CoT with DCoT is not completely fair in this setting because
this model has already been fine-tuned on CoTs (Touvron et al., 2023); thus, the CoT training is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: DCoT vs. CoT on unseen tasks.

LLM Method AQuA CSQA ObjCnt SVAMP

Phi 1.5

CoT 20.27 33.88 35.60 40.00

DCoT@1 21.51 32.26 25.20 40.50
DCoT@2 17.31 34.23 27.60 30.00
DCoT@3 22.38 33.81 30.80 30.00
DCoT@4 22.06 34.73 30.00 31.50

Phi 2

CoT 29.52 44.29 54.00 55.00

DCoT@1 34.86 44.15 58.40 60.50
DCoT@2 34.09 44.13 56.40 60.50
DCoT@3 31.83 45.99 57.60 60.00
DCoT@4 34.73 45.43 56.40 59.50

CoT 19.41 38.41 34.80 39.50

DCoT@1 17.70 36.94 40.00 41.50
LLaMA2 DCoT@2 17.27 40.79 39.60 43.00
7B DCoT@3 16.90 40.67 36.80 43.00

DCoT@4 17.21 40.43 37.20 39.00

CoT 24.85 46.55 45.2 62.50
DCoT@1 23.98 44.62 46.00 55.00

LLaMA2 DCoT@2 22.42 45.48 47.60 53.50
13B DCoT@3 20.72 47.42 52.40 56.50

DCoT@4 23.13 46.45 54.00 53.50

Table 5: Results on Big Bench Hard.

Method Phi 1.5 Phi 2 LLaMA2 7B LLaMA2 13B
CoT 28.37 46.7 31.08 36.38
DCoT@1 28.31 44.56 31.23 34.59
DCoT@2 28.07 45.81 31.11 35.94
DCoT@3 28.35 45.92 31.00 36.90
DCoT@4 28.21 46.71 31.13 36.45

larger and more diverse than the DCoT one. Despite this, we observe that in more than half of the
datasets DCoT outperforming CoT. However, the average score across all tasks is very similar for
both methods. This is because of the performance outlier in LLC, where CoT outperforms DCoT by
7 points.

4.2 DCOT IS BENEFICIAL ON UNSEEN TASKS

In this section, we investigate whether DCoT remains beneficial on unseen tasks. To answer this, we
utilize the DCoT and CoT trained on the nine tasks described on Section 3.4 and evaluate them on
new ones where self-consistency is known to improve performance (Wang et al., 2023). We report
these results in Table 4 and observe that DCoT outperforms CoT on most datasets with Phi 1.5, Phi
2, and LLaMA2 7B. In particular, we find gains larger than 5 points on AQuA and SVAMP for Phi
2, and larger than 3 on ObjCnt for Phi2 and SVAMP for LLaMA-2 7B. However, the results on
LLaMA-2 13B are mixed and only on the non-math domains we observe significant gains. More-
over, we observe consistent and large gains by increasing k on Object Count, showing its capability
to improve the CoTs consistently.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 DCOT IS ROBUST ON TASKS WHERE COT IS DETRIMENTAL

We analyze the performance of our method on Big Bench Hard, a benchmark where small models
do not benefit from CoTs (Suzgun et al., 2023) to discover whether generating multiple CoTs can
further confuse the models and lead to worse results than the CoT baseline. The results from Table 5
show that on these tasks, DCoT exhibits similar performance to CoT, thus demonstrating that DCoT
does not lead to deterioration in challenging cases, where CoT might be detrimental. Moreover,
we can observe some performance gains on Phi 2 and LLaMA-2 13B when increasing k, further
showing the robustness of DCoT tuning and generalization to unseen tasks.

4.4 DCOT BENEFITS FROM COT EXTENSIONS

The last two rows of each model (i.e., CoT+SC and DCoT+SC) in Table 2 compares our DCoT with
the CoT baseline using the self-consistency decoding (Wang et al., 2023). This decoding method is
an add-on that has been shown to increase the performance of CoT across a wide range of tasks by
sampling multiple generations and the aggregating them by a voting mechanism.

We observe that our DCoT also benefits from this mechanism and keeps its performance gains over
the CoT baseline, showing that our method can be a replacement for CoT in future instruction-tuning
datasets. It is also worth noting that our DCoT with the greedy decoding even outperforms CoT+SC
on all models, showing its superiority against CoT.

5 DCOT ELICITS SELF-CORRECT ABILITIES

Self-correction is the ability of an LLM to correct its initial response without relying on external
feedback (Huang et al., 2023). According to them, truly intrinsic self-correction is yet to be found
in LLMs. Our findings show that DCoT-tuned models, trained to generate a multiple CoTs where
subsequent CoTs can provide different answers, do have the capacity to self-correct initial CoT
answers without external feedback, a result of particular note since they are not explicitly trained to
do so. In this section, we provide a detailed empirical and careful manual analysis to quantify this
effect and understand why it is a form of self-correction.

5.1 QUANTITATIVE ANALYSIS OF SELF-CORRECTION

In the previous sections, we have demonstrated that DCoT does indeed improve performance. How-
ever, these gains could be achieved in two distinct ways: it could be a result of self-ensembling as in
the case of self-consistency, or alternatively, it could be a result of self-correction. To test which of
these mechanisms leads to improvements, we compare the performance of DCoT when we generate
two reasoning chains (k = 2) to that where we generate just one. Importantly, any performance
improvement between these cases cannot be a result of self-consistency as two outputs are not suffi-
cient to provide a majority vote, and at least three reasoning chains are needed. For this reason, we
only compare DCoT@1 vs DCoT@2, and we do not compare with DCoT@3 or 4.

We can see in Table 6 that all models improve performance for most datasets when generating
two CoTs instead of one. Specifically, in over 62% of cases (i.e., 25 out of 40 LLM × dataset).
Furthermore, we can observe performance improvements greater than 0.5 for more than half of
the datasets for Phi 1.5, Phi2, LLaMA2 13B, and 70B. This result is significant because it means

Table 6: Performance gain from generating two CoTs instead of one on the dev set.

LLM ARC BGQA CQA GSM8K HQA LLC Quartz StrQA
Phi 1.5 1.26 ↑ 2.10 ↑ 0.10 3.00 ↑ 0.83 ↑ -14.00 ↓ 3.38 ↑ 1.11 ↑
Phi 2 -3.56 ↓ -2.38 ↓ 0.95 ↑ 0.80 ↑ 1.06 ↑ 14.00 ↑ 1.55 ↑ -0.85 ↓
LLaMA2 7B 1.28 ↑ -0.99 ↓ -0.56 ↓ 4.00 ↑ -0.01 6.00 ↑ -1.04 ↓ 0.25
LLaMA2 13B 4.15 ↑ 0.91 ↑ -1.02 ↓ 3.00 ↑ 2.02 ↑ 12.00 ↑ 0.77 ↑ -2.03 ↓
LLaMA2 70B 3.24 ↑ 1.38 ↑ 3.68 ↑ 10.00 ↑ 0 4.00 ↑ -1.00 ↓ -4.07 ↓

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

that the generation of a second CoT is beneficial. In other words, the second CoT overrides the
first, leading to the observed performance gains. We observe a similar effect on the unseen tasks in
Table 4, although the effect is less pronounced due to lower overall improvements on these out-of-
domain tasks. Regardless, across models and tasks, we find that in 6/16 cases (i.e., models × tasks),
DCoT@2 improves over DCoT@1, and in 8/16 DCoT@k for k > 1 improves over DCoT@1, with an
additional two cases where the drop with increased k is only marginal.

These results indicate that DCoT tuning enables models to self-correct. Notably, our training data
includes only reasoning chains that lead to the correct answer, never incorrect ones. This suggests
that the ability to self-correct can be enabled in LLMs without explicitly training for it.

5.2 DCOT@2: MANUAL EVALUATION

We conduct a manual evaluation to verify our conclusions based on the quantitative results. Specifi-
cally, we verify that DCoT achieves self-correction abilities by generating an improved second CoT.
To this end, we select instances for every dataset where LLaMA 7B with DCoT@1 outputs an in-
correct answer while DCoT@2 results in a correct answer. We then randomly sample five instances
per dataset, resulting in a total of 33 samples. We note that the first reasoning chain of DCoT@2
might differ from that of DCoT@1 because they are different runs. We find this to be the case in
nine instances. This implies that in most cases, the first CoT is the same in both cases. Of these
instances where the first reasoning chain is shared, we observe that in 45% of the cases, the second
CoT of DCoT@2 exhibits a different reasoning pattern from the first. Therefore, in 45% of the cases,
a second, improved CoT, allows the model to generate a correct answer, when the first CoT results
in an incorrect answer. In other words, we observe that the performance gains in DCoT@2 can be
attributed to self-correction.

A more fine-grained analysis of these instances reveals that in one case, we observe that the second
CoT is very similar to the first one but extracts more information from the context and uses it for
the logical inference that allows it to reach the correct answer. In three cases, the second CoT fixes
a conclusion from the first CoT. In the last three cases, the CoTs lead to two potential answers,
and only the second CoT selects the correct one. Table 13 in Appendix E shows examples of these
observations. Overall, our manual analysis confirms that the performance gains achieved through
DCoT result from the model self-correcting its initial answer.

5.3 DCOT@3: QUANTITATIVE AND QUALITATIVE ANALYSIS OF WRONG CORRECTIONS

In this section, we analyze how DCoT works when we generate three CoTs to confirm that DCoT
generates CoTs that correct prior ones instead of doing a self-ensemble of CoTs. Firstly, we observe
in Table 7 that DCoT@3 only incorrectly revises the CoTs in very minor cases.3 For example, for
ARC, this only happens in 19 cases out of the 168 (11%) cases where DCoT@1 is correct.

We have manually inspected 15 random examples of those wrong corrections and discovered three
patterns: i) The second and the third answers are the same and wrong (e.g., answers are A,B,B).
This happens in six cases. ii) The first and second answers are the same, while the third one is a
wrong revision (e.g., A,A,B). This was found eight times. iii) All answers are different. We only
found one case, and the final answer selected by the model was the second one. The first and second
patterns show that our model tends to select the last revision as the final answer, even if the majority
of answers point otherwise. This illustrates that DCoT is not a mere ensemble of CoTs, and instead,
is trying to self-correct.

Table 7: Instances where DCoT@1 gives the correct answer and DCoT@3 does a wrong correction.

ARC BGQA GSM8K Quartz StrQA
@1 Correct 168 224 158 310 162
@3 Wrong 19 44 35 17 34

3We count as wrong corrections those cases where DCoT@3 generates a first CoT that is the same as in
DCoT@1, but its final answer is different from the final one of DCoT@1, and thus wrong.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 DISCUSSION

It is important to note that both DCoT and CoT are trained on exactly the same amount of CoTs and
questions. While the CoT baseline uses data points in the form of [(q, cot1), (q, cot2), ...], DCoT
uses data points in the form of [(q, cot1, cot2, ...) , ...]. In other words, a simple re-organization
of the training CoTs into the form of multiple CoTs per label has a major impact on the model’s
performance, making our results more striking. Importantly, DCoT@1 matches the performance of
the CoT baseline, indicating that it is safe to augment existing instruction-tuning datasets with DCoT
data, as it will not hinder model performance.

DCoT is different from ensembling methods like self-consistency, which also benefit from gener-
ating multiple candidate answers but do so across different inference steps using high-temperature
values. DCoT, while it may resemble these ensemble methods, is fundamentally different. Our
method generates reasoning chains that have access to previous ones and shows performance im-
provements even when generating just two CoT chains.

The most surprising aspect of our findings is that DCoT has the ability to self-correct. This ability
presents itself despite us not explicitly training models to learn to correct themselves. The reason-
ing chains we use for training are all correct CoTs, and we fine-tune base models without prior
instruction-following capabilities. We believe this self-correction is the reason why our model per-
forms best with smaller k. After one or two attempts to self-correct, it is highly unlikely the model
will be able to find a correct revision. We also find this in (Madaan et al., 2023) and (Kim et al.,
2024). Where the former uses k ≤ 4 and the latter finds the optimal k at 3. We argue that these
abilities stem from the model’s attempt to generate subsequent correct CoTs. In other words, the
model may generate a first wrong CoT without knowing it, but it generates a second CoT that is
correct and, therefore, as a side-effect, corrects the first one.

More generally, we deduce that these abilities arise from the model’s capacity to learn to generalize
based on the divergent reasoning chains we train on. This supposition gains further credence from
recent work suggesting that instruction tuning allows models to generalize their abilities to solve
tasks, rather than leading to novel capabilities Lu et al. (2023). Regardless of the underlying mech-
anism—identification of which we leave to future work—we provide a novel method for enabling
LLMs to self-correct. We posit that instruction tuning on other complex multi-step reasoning prob-
lems, as we have done with generating multiple divergent CoTs before converging on a final answer,
will lead to encoding those complex capabilities into LLMs while also allowing them to generalize
in powerful new ways.

7 CONCLUSIONS

This work presents Divergent Chain of Thought (DCoT), a new CoT method that aims to improve
LLM’s performance on reasoning tasks by generating multiple CoTs in a single inference step. We
show through extensive quantitative experiments the effectiveness and scalability of our method
across a wide range of reasoning tasks (in-domain and out-of-domain), model families, and sizes.
Furthermore, we show its efficiency w.r.t k by achieving gains even with k = 2. We also show
that DCoT can be extended with any CoT extension, such as self-consistency, wherein it outper-
forms CoT similarly extended with self-consistency. Lastly, we show a beneficial side effect of our
method: the subsequent generated CoTs can self-correct previous reasoning chains without any ex-
ternal feedback or prompt optimization. This is the first work that achieves such self-correct ability
in LLMs. We show quantitatively the occurrence of this phenomenon with gains up to 14 points,
and further explain it with a qualitative analysis showing that the second generated CoT provides
a different reasoning chain compared to the first one and that this second CoT leads to a correct
answer. We leave as future work extending our DCoT fine-tuning to other types of prompting such
as code prompting (Puerto et al., 2024) or graph of thoughts (Besta et al., 2024).

REFERENCES

Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio César Teodoro Mendes, Weizhu Chen, Allie Del
Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gunasekar, Mojan Javaheripi, Piero Kauffmann,
Yin Tat Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shah, Michael Santacroce, Harkirat Singh Behl, Adam Taumann Kalai, Xin Wang, Rachel Ward,
Philipp Witte, Cyril Zhang, and Yi Zhang. Phi-2: The surprising power of small language models.
Microsoft Ignite 2023, 2023. URL https://www.microsoft.com/en-us/research/
blog/phi-2-the-surprising-power-of-small-language-models.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, Mar. 2024.
doi: 10.1609/aaai.v38i16.29720. URL https://ojs.aaai.org/index.php/AAAI/
article/view/29720.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1–53, 2024. URL https:
//arxiv.org/abs/2210.11416.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.
org/abs/2110.14168.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions
of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl a 00370.
URL https://aclanthology.org/2021.tacl-1.21.

Joy P Guilford. Creativity: Yesterday, today and tomorrow. The Journal of Creative Behav-
ior, 1(1):3–14, 1967. URL https://onlinelibrary.wiley.com/doi/10.1002/j.
2162-6057.1967.tb00002.x.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14852–
14882, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.830. URL https://aclanthology.org/2023.acl-long.830.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 8003–8017, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.507. URL https://aclanthology.org/2023.
findings-acl.507.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.67. URL https://aclanthology.org/2023.
emnlp-main.67.

11

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2021.tacl-1.21
https://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.1967.tb00002.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.1967.tb00002.x
https://aclanthology.org/2023.acl-long.830
https://aclanthology.org/2023.findings-acl.507
https://aclanthology.org/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James T. Kwok.
Forward-backward reasoning in large language models for mathematical verification, 2023. URL
https://arxiv.org/abs/2308.07758.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. BoardgameQA: A dataset for natural language reasoning with contradictory in-
formation. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=BR1m3JIoKm.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024. URL https://arxiv.org/
pdf/2303.17491.

Seungone Kim, Se Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo.
The CoT collection: Improving zero-shot and few-shot learning of language models via chain-
of-thought fine-tuning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 12685–12708,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.782. URL https://aclanthology.org/2023.emnlp-main.782.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operat-
ing Systems Principles, 2023. URL https://dl.acm.org/doi/10.1145/3600006.
3613165.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “think” step-by-step. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 2665–2679, Toronto, Canada,
July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.150.
URL https://aclanthology.org/2023.acl-long.150.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336,
2022. URL https://arxiv.org/pdf/2206.02336.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023b.
URL https://arxiv.org/abs/2309.05463.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Regina Barzilay and Min-Yen
Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 158–167, Vancouver, Canada, July 2017. Association for
Computational Linguistics. doi: 10.18653/v1/P17-1015. URL https://aclanthology.
org/P17-1015.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning?, 2023. URL https:
//arxiv.org/abs/2309.01809.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

12

https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2308.07758
https://openreview.net/forum?id=BR1m3JIoKm
https://arxiv.org/pdf/2303.17491
https://arxiv.org/pdf/2303.17491
https://aclanthology.org/2023.emnlp-main.782
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://aclanthology.org/2023.acl-long.150
https://arxiv.org/pdf/2206.02336
https://arxiv.org/abs/2309.05463
https://aclanthology.org/P17-1015
https://aclanthology.org/P17-1015
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2309.01809
https://openreview.net/forum?id=S37hOerQLB

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Simon Ott, Konstantin Hebenstreit, Valentin Liévin, Christoffer Egeberg Hother, Milad Moradi,
Maximilian Mayrhauser, Robert Praas, Ole Winther, and Matthias Samwald. Thoughtsource: A
central hub for large language model reasoning data. Scientific Data, 10(1):528, 2023. URL
https://www.nature.com/articles/s41597-023-02433-3.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang
Wang. Automatically correcting large language models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188, 2023. URL https://arxiv.org/
abs/2308.03188.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830, 2011. URL https://www.jmlr.org/papers/volume12/
pedregosa11a/pedregosa11a.pdf.

Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan Zhu, and Iryna Gurevych. Code prompting
elicits conditional reasoning abilities in text+code llms, 2024. URL https://arxiv.org/
abs/2401.10065.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024. URL https://openreview.net/pdf?id=vAElhFcKW6.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks, 2024. URL https://arxiv.org/
abs/2402.08115.

Haitian Sun, William Cohen, and Ruslan Salakhutdinov. ConditionalQA: A complex reading com-
prehension dataset with conditional answers. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 3627–3637, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.253. URL https:
//aclanthology.org/2022.acl-long.253.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.824. URL https://aclanthology.org/2023.
findings-acl.824.

13

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://www.nature.com/articles/s41597-023-02433-3
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://aclanthology.org/2021.naacl-main.168
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://aclanthology.org/D16-1264
https://openreview.net/pdf?id=vAElhFcKW6
https://arxiv.org/abs/2402.08115
https://arxiv.org/abs/2402.08115
https://aclanthology.org/2022.acl-long.253
https://aclanthology.org/2022.acl-long.253
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. QuaRTz: An open-domain dataset
of qualitative relationship questions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
jun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 5941–5946, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1608. URL https://aclanthology.org/
D19-1608.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/
N19-1421.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location, 2023. URL https://arxiv.
org/abs/2311.08516.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 2550–2575, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.167. URL https://aclanthology.org/2023.
findings-emnlp.167.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan Berant. An-
swering questions by meta-reasoning over multiple chains of thought. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5942–5966, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.364. URL https:
//aclanthology.org/2023.emnlp-main.364.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weim-
ing Lu. Self-contrast: Better reflection through inconsistent solving perspectives. arXiv preprint
arXiv:2401.02009, 2024. URL https://arxiv.org/pdf/2401.02009.

14

https://aclanthology.org/D19-1608
https://aclanthology.org/D19-1608
https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2023.findings-emnlp.167
https://aclanthology.org/2023.findings-emnlp.167
https://aclanthology.org/D18-1259
https://aclanthology.org/2023.emnlp-main.364
https://aclanthology.org/2023.emnlp-main.364
https://arxiv.org/pdf/2401.02009

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

James Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Michael Xie. Automatic model selec-
tion with large language models for reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 758–783,
Singapore, December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.55. URL https://aclanthology.org/2023.findings-emnlp.55.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit:
A knowledge-enhanced chain-of-thought framework. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5823–5840, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.320. URL
https://aclanthology.org/2023.acl-long.320.

A DATASETS

All the datasets used in this work are exclusively in English language. In particular, we use ARC
(Clark et al., 2018), BGQA (Kazemi et al., 2023),CoinFlip Wei et al. (2022), ConditionalQA (CQA)
(Sun et al., 2022), GSM8K (Cobbe et al., 2021), HotpotQA (HQA) (Yang et al., 2018), LLC Wei
et al. (2022), Quartz (Tafjord et al., 2019), and StrategyQA (StrQA) (Geva et al., 2021) for training,
while we use AQuA (Ling et al., 2017), CommonsenseQA (Talmor et al., 2019), Object Count (a
task of Big Bench Hard Suzgun et al. 2023), SVAMP (Patel et al., 2021), and Big Bench Hard for
out of domain evaluation. For BGQA, we use the partition main-3, the most difficult one requiring
3-hop reasoning skills.

Some of these datasets do not provide a validation set. In those cases, we randomly sample 500
instances from the training set and use them as validation set. Similarly, when a dataset does not
provide a test set, we use the validation set as a test and create a validation set from the unused
instances from the training set. When the training set is not larger than 1k, we divide the validation
set into two. For Last Letter Concatenation (LLC), the training set is very small (350 instances), and
the test set is also very small (150), so we pick 50 instances of the test set as validation and 100 as
test. We release in our github repository the exact partitions we used.

Table 10 reports the licenses and sizes of the training, dev, and test sets of the datasets we used and
Table 11 reports for the out of domain datasets. We use these datasets for research purposes only,
fulfilling their intended use.

Due to the large size of LLaMA-2 70B and its computation costs, we trained it on a smaller sample
data of 900 questions. Similarly, for inference, we pick a random sample of 100 questions per
dataset.

B EXPERIMENTAL SETUP

We run all our experiments on a GPU cluster with an Nvidia A180. To run GPT models, we use the
Azure OpenAI service and prompt them with the library Langchain.4 We use Scikit-learn (Pedregosa
et al., 2011) for the implementation of the evaluation metrics.

We train all models using LoRA (Hu et al., 2022) with the PEFT library (Mangrulkar et al., 2022)
and use vLLM (Kwon et al., 2023) as the inference engine. For training, we load the models with
fp8, while for inference, we load them with fp16. We train models for three epochs, save checkpoints
for each epoch and select the best checkpoint based on the average results on the dev set.

Due to the challenge of running very large models, such as LLaMA-2 70B, to simplify the evaluation
setup. We trained the model with 8-bit quantization and ran the evaluation on 4-bit. Instead of
evaluating on the full dev sets, we had to evaluate on a random sample of 100 questions per dataset
and only evaluate the last checkpoint. Therefore, we could not conduct hyperparameter tuning either.
Because of these challenges, we cannot report results on the test set, and instead, we only report
results on the dev set. It is important to emphasize again that we do not conduct any hyperparameter

4https://github.com/langchain-ai/langchain

15

https://aclanthology.org/2023.findings-emnlp.55
https://aclanthology.org/2023.acl-long.320
https://github.com/langchain-ai/langchain

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Training parameters

Param. name Value
lora r 64
lora alpha 16
lora dropout 0.1
batch size 4
max grad norm 0.3
learning rate 2e-4
weight decay 0.001
optim paged adamw 32bit
lr scheduler type constant
max steps -1
warmup ratio 0.03
group by length True
max seq length 4096
packing False
seeds 0, 42, 2024
load in 8bit True

Table 9: Best hyperparameters tuned on the dev set.

Model Method Seed Epoch

Phi 1.5 CoT 0 2
DCoT 42 2

Phi 2 CoT 0 3
DCoT 2024 2

LLaMA2 7B CoT 0 2
DCoT 0 3

LLaMA2 13B CoT 42 3
DCoT 42 3

tuning, so the results on the dev set are representative of the performance of our method on large-
scale models.

Table 9 reports the best hyperparameters we found on the dev set. Training Phi 1.5 on DCoT takes
approximately 12h, Phi 2 20h, LLaMA 7B 35h, LLaMA 13B 51h, and LLaMA 70B 30h. Training
on CoT takes 9h for Phi 1.5, 15h for Phi 2, 25h for LLaMA-2 7B, 39h for LLaMA-2 13B, and
13h for LLaMA-2 70B. As expected, DCoT training is slower since the targets are longer. The
parameters we use to train the models are reported in Table 8.

C PROMPTING

The prompts we used with GPT4o for DCoT and CoT are “Generate k different reasoning chains
that answer the question. Make sure that none of the reasoning chains are repeated. Generate each
reasoning chain independently, and not based on previous reasoning chains. This means that each
reasoning chain must be as different from the others as possible. When generating the different
reasoning chains, do so without knowledge of the answer. Each step in each of the reasoning chains
must build on the previous steps in that reasoning chain. Once the required number of reasoning
chains are generated, generate an answer based on the all the answers generated by all the reasoning
chains.” and “Generate a reasoning chain that answer the question.” In both cases, after generating
the CoT, we extracted the answer with the following prompt for SVAMP “Therefore, based on the
solution above, extract the number that represents the answer:” and “Therefore, based on the solution

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Training datasets. The training size corresponds to our CoT generations to build the DCoT
dataset.

Dataset Task Train Dev Test License Source
ARC Multiple choice 1033 294 1150 CC BY-SA 4.0 Link
BGQA Multiple choice 716 500 1000 CC BY Link
Coin Flip Multiple choice 1000 1333 3333 mit Link
CQA Span extraction 958 285 804 CC BY-SA 4.0 Link
GSM8K Generation (numbers) 1000 500 1319 mit Link
HQA Span extraction 1000 500 7405 CC BY-SA 4.0 Link
LLC Generation 350 50 100 N/A Link
Quartz Multiple choice 953 384 784 CC BY-SA 4.0 Link
StrQA Boolean QA 998 343 344 mit Link

Table 11: Out of domain datasets.

Dataset Task Dev License Source
AQuA Multiple choice 254 Apache 2.0 Link
CSQA Multiple choice 1220 mit Link
SVAMP Generation (numbers) 100 mit Link
Big Bench Hard Multiple choice & Generation 6511 mit Link

above, select one of the options (options) as the answer to the question (just give me the option and
nothing else).” for ARC and Quartz.

D DEV SET RESULTS

We report the mean and stardard deviation results from the validation set across threee random seeds
in Table 12.

E MANUAL ANALYSIS

Appendix E shows two examples of how the second CoT of LLaMA 7B with DCoT corrects the
first CoT.

F DCOT BEST k PARAMETER

Table 15 shows the best k (i.e., number of CoTs) per model and dataset according to the dev set.

G DCOT PERFORMANCE ACROSS k

Figure 3 shows the performance gains of DCoT@k against DCoT@1.

H DATA GENERATION

We report the CoT triggers used to generate the training CoTs in Table 14. To extract the answers
from the CoTs, we used the following format: “{cot} Therefore, the answer (A, B, C, or D) is:”
where we change (A, B, C, D) for the corresponding options of the dataset. If the dataset expects
a number and not a list of options, we don’t give any list of options in the prompt and extract the
number with a regular expression. Lastly, for the span extraction datasets, we use the following
template: “{text} {question} Answer: {answer} {cot trigger}.” The idea behind this template is to

17

https://huggingface.co/datasets/allenai/ai2_arc
https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip
https://huggingface.co/datasets/skrishna/coin_flip
https://haitian-sun.github.io/conditionalqa/
https://huggingface.co/datasets/openai/gsm8k
https://hotpotqa.github.io/
https://huggingface.co/datasets/ChilleD/LastLetterConcat
https://huggingface.co/datasets/allenai/quartz
https://huggingface.co/datasets/ChilleD/StrategyQA
https://github.com/google-deepmind/AQuA
https://huggingface.co/datasets/tau/commonsense_qa/
https://github.com/arkilpatel/SVAMP
https://huggingface.co/datasets/maveriq/bigbenchhard

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 12: Dev set results using 3 random seeds. *One seed for LLaMA-2 13B Chat and 70B.

LLM Method k Avg ARC BGQA CQA GSM8K HQA LLC Quartz StrQA

Phi 1.5 DCoT
1 47.87±1.71 44.13±1.94 39.43±3.91 61.83±.74 36.07±1.70 38.70±3.18 36.00±3.46 71.69±1.73 55.13±.35
2 48.63±0.67 46.98±2.60 41.94±3.10 60.87±1.14 38.80±3.10 39.79±3.80 30.00±4.00 74.29±2.69 56.40±.87
3 48.96±0.66 47.32±1.66 42.75±1.92 60.75±1.15 39.00±1.71 38.19±2.81 32.67±7.02 75.42±2.38 55.57±1.52
4 48.76±0.33 46.78±1.14 43.23±2.22 60.16±1.32 38.93±3.31 37.33±2.92 32.67±7.02 75.60±3.32 55.41±1.30

CoT 47.51±1.77 46.60±2.38 36.65±1.90 59.55±0.61 37.40±3.22 35.28±4.22 36.67±9.02 75.07±2.36 52.84±2.47

Phi 2 DCoT
1 63.91±2.58 75.21±1.84 45.01±3.03 65.39±1.57 56.47±1.68 62.44±2.63 62.67±16.29 82.88±1.09 57.28±2.35
2 65.33±2.80 76.46±2.52 46.89±3.85 65.69±2.12 57.60±1.64 63.71±2.18 66.67±9.02 84.10±1.36 56.44±3.33
3 65.30±1.72 75.87±1.42 48.06±1.75 65.90±2.02 58.20±1.91 61.66±2.06 68.00±5.29 83.91±1.18 56.28±3.90
4 64.89±2.39 75.91±2.72 49.11±2.31 65.92±1.01 57.07±1.33 59.86±.96 66.00±8.00 84.09±1.88 56.97±5.00

CoT 63.51±.71 74.19±.61 42.08±.79 66.92±.29 62.80±3.53 56.45±.78 62.71±3.00 77.92±7.30 66.74±15.54
LLaMA-2

DCoT
1 61.28±.50 59.36±2.29 43.67±.35 65.31±.50 29.73±1.63 62.92±3.16 86.67±2.31 80.63±.92 61.96±1.45

7B 2 62.46±.45 61.63±1.46 43.56±.80 66.05±.80 33.40±.80 63.86±1.23 86.67±3.06 82.11±1.57 62.38±1.21
3 62.37±.23 60.98±2.37 44.23±.95 66.65±1.21 33.53±.50 63.46±1.46 86.67±1.15 80.89±2.65 62.51±.86
4 62.42±.59 62.13±3.21 43.85±.45 65.98±2.72 33.33±.50 63.63±2.16 86.00±3.46 82.20±2.78 62.20±1.42

CoT 59.30±.54 56.54±3.83 41.91±2.32 59.85±3.91 31.93±1.42 57.81±3.73 82.67±3.06 79.24±2.16 64.42±1.52
LLaMA-2

DCoT
1 67.30±.49 74.85±1.68 46.40±4.13 68.55±1.33 44.53±1.51 72.35±.93 81.33±3.06 84.89±.90 65.46±1.17

13B 2 66.92±.59 73.63±1.80 45.74±3.50 67.01±1.75 46.93±1.22 72.69±.85 81.33±3.06 84.37±1.04 63.62±1.32
3 66.70±.55 74.95±1.50 45.89±3.64 67.26±1.47 45.73±.42 72.75±.94 80.67±4.16 83.68±1.69 62.71±.75
4 64.20±.66 72.41±1.21 43.30±3.10 67.12±2.19 39.27±2.58 64.20±2.43 79.33±1.15 81.68±.65 66.31±.68

CoT 65.41±.91 71.66±2.15 44.45±1.53 68.39±1.70 42.67±2.32 66.12±.82 82.00±5.29 82.37±.82 65.64±1.29
LLaMA-2

DCoT
1 64.53 71.85 47.11 67.37 41.60 70.52 68.00 82.81 66.97

13B Chat* 2 65.95 70.73 47.76 69.16 42.40 71.02 74.00 84.87 67.68
3 66.10 72.22 46.82 67.48 43.60 72.08 76.00 84.87 65.76
4 66.17 71.85 45.03 69.70 45.00 71.75 74.00 86.44 65.59

CoT 66.27 70.43 45.36 70.71 44.20 70.11 80.00 82.53 66.78
LLaMA-2

DCoT
1 66.48 85.80 36.92 65.89 56.00 49.78 78.00 87.00 72.41

70B* 2 68.63 89.04 38.30 69.57 66.00 49.78 82.00 85.99 68.34
3 68.07 86.64 38.55 68.87 60.00 49.78 80.00 88.00 72.70
4 68.06 88.94 32.62 67.21 66.00 49.78 82.00 85.00 72.92

CoT 66.96 81.69 44.34 73.59 56.00 55.94 76.00 81.99 66.15

Figure 3: DCoT performance across different k on the dev set.

provide the golden answer and prompt the model to generate rationales that explain that answer and
use them as CoTs as in (Kim et al., 2023). The total GPT cost to generate the CoTs is $43.68.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 13: Examples of self-correction.

Type Text
1st and 2nd
CoTs are
the same
but the
1st CoT
makes an
error when
generating
the answer.
2nd CoT
corrects
that.

Question: Take the last letters of each words in “Billie Paloma Tanner Raul”
and concatenate them.
[Answer 1] 1. Write down the words: Billie Paloma Tanner Raul
2. Take the last letter of the first word ”Billie”, which is ”e”.
3. Take the last letter of the second word ”Paloma”, which is ”a”.
4. Take the last letter of the third word ”Tanner”, which is ”r”.
5. Take the last letter of the fourth word ”Raul”, which is ”l”.
6. Concatenate these letters together: ”ealr”.
7. The result word is ”ealr”.
[Answer 2] Sure, let’s break it down step by step:
1. The last letter of ”Billie” is ”e”.
2. The last letter of ”Paloma” is ”a”.
3. The last letter of ”Tanner” is ”r”.
4. The last letter of ”Raul” is ”l”.
Now, if we concatenate these letters, we get the word ”earl”. Therefore, the
answer is ”earl”.
[Final answer] earl

2nd CoT
shows a
different
reasoing
pattern
and yields
the correct
answer.

Question: Cornelia likes to travel. She visited already 42 different countries. 20
of them were in Europe and 10 in South America. From the rest of the countries,
only half of them were in Asia. How many Asian countries has Cornelia visited?
[Answer 1] 1. We know that Cornelia visited 42 countries in total.
2. We also know that 20 of those countries were in Europe and 10 were in South
America.
3. Therefore, the remaining countries must be half of the total number of coun-
tries Cornelia visited, which is 42/2 = 21.
4. We know that Cornelia visited only half of the Asian countries, which means
there are 21 - 10 = 11 Asian countries left to be determined.
5. Therefore, Cornelia visited 11 Asian countries in total.
[Answer 2] Step 1: Let’s start by finding out how many countries Cornelia
visited in Europe and South America. We know that she visited 20 countries in
Europe and 10 countries in South America, so the total number of countries she
visited in these two regions is: 20 + 10 = 30
Step 2: We know that Cornelia visited 42 countries in total. We also know that
30 of these countries were in Europe and South America. Therefore, the number
of countries she visited outside of these regions is: 42 - 30 = 12
Step 3: We are told that only half of the countries Cornelia visited outside of
Europe and South America were in Asia. This means that the number of coun-
tries she visited in Asia is: 12 / 2 = 6
Therefore, Cornelia visited 6 Asian countries.
[Final answer] 6

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 14: List of CoT triggers used to generate the training CoTs. The bottom part of the table are
the triggers for span extraction datasets.

CoT Triggers
Answer: Let’s think step by step.
Answer: Before we dive into the answer,
Answer: Let’s think like a detective step by step.
Answer: Let’s think about this logically.
Answer: Let’s solve this problem by splitting it into steps.
Answer: The answer is after the proof.
Answer: Let’s differentiate using step by step reasoning .
Answer: Let’s think step by step using inductive reasoning.
Answer: Let’s be concise and think step by step.
Answer: Let’s reflect on each answer option step by step.
Answer: Let’s think step by step given every option equal consideration.
Answer: Let’s think step by step like a scientist.
Answer: Let’s use step by step inductive reasoning.
Answer: Let’s work by elimination step by step.
Answer: Let’s use step by step deductive reasoning.
Answer: Let’s work this out in a step by step way to be sure we have the right answer.
because of the following reasons:
Justification:
Here’s why:
Here is a list of the reasons:
Now, let’s think step by step about the reasons:

Table 15: Best number of cots (k parameter) for each model and dataset in our best DCoT models
according to the dev set.

Dataset Phi 1.5 Phi 2 LLaMA2 7B LLaMA2 13B
ARC 4 2 4 4
BGQA 2 4 4 2
ConditionalQA 2 4 4 1
GSM8K 2 3 2 3
HotpotQA 2 2 1 3
LCC 1 2 1 2
Quartz 4 4 2 2
StrategyQA 3 1 1 1

20

	Introduction and Motivation
	Related Works
	Methods
	Prompting
	Fine-Tuning
	Dataset Generation
	Fine-Tuning Dataset Creation
	Models
	Evaluation

	Results and Analysis
	DCoT is Beneficial on In-Domain Tasks
	DCoT is Beneficial on Unseen Tasks
	DCoT is Robust on Tasks where CoT is Detrimental
	DCoT Benefits from CoT Extensions

	DCoT Elicits Self-Correct Abilities
	Quantitative Analysis of Self-Correction
	DCoT@2: Manual Evaluation
	DCoT@3: Quantitative and Qualitative Analysis of Wrong Corrections

	Discussion
	Conclusions
	Datasets
	Experimental Setup
	Prompting
	Dev Set Results
	Manual Analysis
	DCoT Best k Parameter
	DCoT Performance across k
	Data Generation

