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ABSTRACT

Scaling the size of large language models typically involves 3 dimensions: depth,
width, and the number of parameters. In this work, we explore a 4th dimension: vir-
tual logical depth (VLD), which allows increasing the effective algorithmic depth
without changing the overall parameter count by reusing parameters within the
model. While parameter reuse is not new, its role in scaling dynamics has remained
underexplored. Unlike currently trending test-time methods, which mainly scale
in token-wise, VLD alters the internal computation graph scaling during training,
inference, or combination. We carefully design controlled experiments and have
the following key insights on VLD scaling: 1. Knowledge capacity vs. parameters.
At a fixed parameter count, VLD leaves knowledge capacity nearly unchanged
(with only minor variance), while across models knowledge capacity scales with
the number of parameters; 2. Reasoning vs. reuse. Properly implemented VLD
substantially improves reasoning ability without increasing parameter count, de-
coupling reasoning from sheer model size. This provides a new possibility for
scaling besides the current token-wise test-time scaling used by most reasoning
models. 3. Robustness and generality. The trend of improved reasoning persist
across architectures and configurations (e.g., different reuse schedules and step
counts), indicating that VLD captures a general scaling behavior. These findings
not only provide useful insights into the future model scaling strategies, but also
introduce an even deeper question: Does super intelligence necessarily require
ever-larger models, or could it have some trade-offs by re-using parameters and
increasing virtual logic depth? We believe that there are many unknown dynamics
within the model scaling that need exploration. Codes are available at https://
anonymous.4open.science/r/virtual_logical_depth-8024/.

Classical Model Size Scaling

VLD Scaling
(Layer = 4)

VLD Scaling
(Layer = 8)

10!

4          8           12             16                 24 Effective Depth: 
(Base layer +VLD)

Figure 1: Comparison between classical model size scaling vs. VLD scaling. Bubble size
proportional to total effective depth (base layer depth + virtual logical depth). Blue bubbles represent
standard models without VLD scaling but following the classical model size scaling, while green
bubbles show models with VLD scaling applied, demonstrating near-vertical scaling paths. VLD
scaling significantly enhances reasoning capability (y-axis) while keeping the knowledge capacity
(x-axis) almost constant without significant variations.
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1 INTRODUCTION

Scaling up large language models (LLMs) has long been regarded as a primary driver of their rapid
progress (Kaplan et al., 2020; Hoffmann et al., 2022; Brown et al., 2020; Wei et al., 2022). Scaling
typically proceeds along multiple axes, including model size, data, compute (Wei et al., 2022), and
more recently inference-time scaling (Snell et al., 2024; Jaech et al., 2024). The model size scaling
direction typically occurs along three dimensions: depth, width, and the total number of parameters 1.
Contemporary LLMs often exceed 100B parameters (Wei et al., 2022), enabling them to store vast
knowledge. However, parameter growth does not straightforwardly translate into stronger reasoning
capabilities.

In contrast, human cognition demonstrates the opposite profile. Memory is relatively limited—hence
the invention of external storage such as writing—yet reasoning and abstract problem solving
are remarkably strong (Chollet, 2019; Xu & Poo, 2023; Wang & Li, 2024), largely supported by
specialized circuits in the prefrontal cortex (Raichle, 2009). This asymmetry highlights a fundamental
tension: while current scaling paradigms expand memory-like capacity, they do not necessarily
improve reasoning, which is arguably central to achieving super-intelligence. Ideally, an intelligent
system would combine (i) a powerful reasoning core, (ii) a compact but essential internal memory,
and (iii) external retrieval for domain knowledge (Kumaran et al., 2016).

Motivated by this perspective, we introduce a new scaling dimension that deliberately limits knowl-
edge capacity in order to encourage improvements in reasoning. Specifically, we revisit weight
sharing in the transformer architecture and show that repeating layers with tied parameters yield
surprisingly strong benefits. We term the resulting phenomenon virtual logical depth (VLD). While
related techniques—such as parameter reuse, layer repetition, and equilibrium models (Lan et al.,
2020; Dehghani et al., 2019; Bai et al., 2019; Hay & Wolf, 2024; Bhojanapalli et al., 2021; Reid et al.,
2021; Takase & Kiyono, 2021; Liu et al., 2023)—have been explored in other contexts, their scaling
dynamics have remained underexplored. A closely related effort, looped transformers (Saunshi
et al., 2025), studies reasoning capacity, but our focus is on scaling laws: we conduct systematic
experiments and uncover new properties of VLD as a scaling strategy.

Through carefully controlled experiments, we investigated the characteristics of VLD scaling, specifi-
cally measuring reasoning capabilities and knowledge capacity under various configurations. We
discovered that VLD scaling shows very different properties from classical model size scaling. In
brief, VLD scaling forces the knowledge capacity of the model to stay almost constant (with non-
significant variations), while significantly improving the reasoning capability. We illustrate a part
of our main findings in Figure 1, which compares the two scaling strategies. These findings hold
for various model and experiment configurations, and are likely to be universal under our scope of
experiments. Under reasonable conditions, we don’t have to increase the number of parameters in
order to increase the inherent reasoning capability of the model.

Beyond the scope of this work, we would like to raise a even deeper question: Do we really need
a lot of parameters to achieve super-intelligence? Of course this first depends on how we define
super-intelligence. Humans have poor memory but good reasoning capability and agency capability
(e.g., subjective initiatives). Under limited human brain capacity, why did the natural evolution chose
to allocate more capacity on reasoning capability and agency capability, but only some essential
capacity for memory? It is not impossible that under a small but essential amount of parameters
and memory capacity, we will be able to push the reasoning capability and agency capability to the
extreme and achieve super-intelligence in the far future. We would like to move a small step towards
this ultimate goal, and open-source all source code of our current work to facilitate future research.

2 RELATED WORK

Parameter Sharing and Layer Reuse. Parameter reuse has garnered considerable attention in
recent research. (Reid et al., 2021) introduced Subformer, which reused 50% of parameters for
compression purposes, while (Liu et al., 2023) presented ESP (Efficient Shared Parameterization)

1Since depth and width directly influence the number of parameters, these three dimensions are not entirely
independent. However, the total parameter count can indeed be adjusted independently by modifying the inner
dimension of the MLP layer within a transformer block.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1st layer

4th layer

6th layer

5th layer

3rd layer

2nd layer

1st layer

4th layer

6th layer

5th layer

3rd layer

2nd layer

1st layer

4th layer

6th layer

5th layer

3rd layer

2nd layer

1st layer

3rd layer

2nd layer

Input Input Input Input

(a) BASE                            (b) SEQUENCE                         (c) CYCLE              (d) INVERSE CYCLE

Share

Share

Share

Share

Share

Share

Share

Share

Share

Figure 2: Different patterns of parameter reuse to increase VLD while keeping the total number
of parameters constant. (a) an example of a standard transformer with 3 layers. (b) sequentially
repeat neighboring layers. (c) cycle-repeat the layers. (d) repeat layers in an inverse-cycle order.
Under the same pattern, two layers with the same color share the same parameters. In all cases, the
actual number of parameters do not change.

that reused central tensor matrices. However, both introduced atypical elements to transformer
architectures, complicating direct comparison with standard models. (Bhojanapalli et al., 2021)
developed Reuse Transformers, exploring attention mechanism reuse while sharing less than 10% of
attention heads. (Takase & Kiyono, 2021) proposed three distinct layer-sharing patterns but conducted
experiments only on small networks without scaling analysis. More recently, (Hay & Wolf, 2024)
proposed Dynamic Layer Tying, employing reinforcement learning to identify optimal layer-sharing
configurations. In parallel, several studies have explored Looped Transformers (Fan et al., 2024;
Saunshi et al., 2025; Yang et al., 2023), which iteratively apply transformer layers to enhance model
capabilities without proportionally increasing parameters. Our work builds upon these foundations
by systematically analyzing VLD scaling dynamics and its distinct impact on reasoning capability
versus knowledge capacity.

Measuring Reasoning and Knowledge Capacity. Quantitative assessment of reasoning and
knowledge remains challenging. For reasoning capabilities, (Ye et al., 2024) employed synthetic
GSM8K benchmarks to isolate inherent reasoning abilities from memorized solutions. Regarding
knowledge capacity, (Allen-Zhu & Li, 2024) demonstrated that LLMs store approximately 2 bits
of knowledge per parameter, providing a quantitative metric for model memory. (Carlini et al.,
2022) established methodologies for quantifying memorization in LLMs, offering insights into
information retention mechanisms. Understanding how large language models (LLMs) store and
retrieve information is central to evaluating their memory mechanisms. (Liang et al., 2024) introduced
the SAGE framework, which enhances LLM agents with reflective and memory-augmented abilities.
(Xu et al., 2025) propose A-Mem, an agentic memory framework designed to enhance the long-term
reasoning and adaptability of LLM agents.

3 VIRTUAL LOGICAL DEPTH

We define Virtual Logical Depth (VLD) as the effective algorithmic depth of a model minus the
number of base layers. Figure 2 provides an illustration: here, 3 base layers are reused to form 3 VLD
layers. Instead of introducing a new architecture, our goal is to establish a new scaling dimension
within the standard transformer framework. Concretely, we retain the transformer architecture but
repeat its layers with shared parameters, following the parameter reuse insights of Takase & Kiyono
(2021).

We explore three reuse patterns—sequence, cycle, and inverse cycle—as shown in Figure 2 (b–d). In
the sequence mode, adjacent layers share parameters. In the cycle mode, several layers form a block
that is repeated. In the inverse cycle mode, the same block is repeated but in reversed order. Detailed
implementation and intuition for each strategy are described in Appendix D.

3
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Problem Statement. Given the VLD scaling and standard model size scaling, find the difference of
their influence on knowledge capacity and reasoning capability of the model.

The above question requires us to develop reasonable approaches to measure the knowledge capacity
and reasoning capability. Our high-level guideline is that such kind of measurement should be
done with rigorously controlled experiments like in (Allen-Zhu & Li, 2024). We got inspiration
from (Allen-Zhu & Li, 2024) and develop the measurement approaches as explained in Section 3.1
and Section 3.2.

3.1 MEASUREMENT OF KNOWLEDGE CAPACITY

Knowledge capacity can estimated by measuring the maximum information entropy (Gray, 2011;
Volkenstein, 2009) that a LLM absorbs. For a discrete variable X that has n possible values
x1, x2, · · · , xn, the expected information entropy (in bits) for a realization of X is:

H(X) = −
n∑

i=1

p(xi)log2p(xi)

Given this, we follow these steps to measure the knowledge capacity:

Step 1: Construct a Random Number Dataset. We construct a random number dataset, which
is a sequence of k numbers, where each number is a realization of X , uniformly drawn from the n
possible values. The information entropy bits of this dataset is:

H1 = −k

n∑
i=1

1

n
log2

1

n
= klog2n

Step 2: Train a LLM to Remember the Random Number Sequence. Now assuming we train a
LLM to fit the dataset. Each random number corresponds to exactly one token. The softmax output
of the LLM is a length-n vector that predicts the probability of the next token. If the LLM is not
trained at all, the softmax vector could have uniform probability output. But if the LLM is trained to
remember the sequence, it should output a higher probability for the correct next token. To be more
mathematically specific, we first ensure that each xi only occupy one token position in the tokenizer,
then we build the training set by putting the k realization of X into a fixed-order sequence. After
this step, we already obtained a sequence of length k where each token has uniform distribution on n
possible values. Then a LLM is trained to fit the sequence.

Step 3: Calculate Knowledge Capacity from Softmax Output. First notice that this experiment
only relies on a training set but not a validation set, because the objective is to let the LLM remember
the training set as good as possible. Once the training is converged, let the softmax probability
output at the jth input for the ith value of X is pj(xi). To be clear, pj(xi) is the probability that the
(j + 1)th number in the sequence is xi, predicted by the LLM. The LLM is expected to output a
higher probability if that number is really xi and lower probability otherwise. If the LLM remembers
everything and has absolute confidence, then pj(xi) is 1 for the correct xi and is 0 otherwise. But in
reality the LLM has limited knowledge capacity. We define quantity H2 as:

H2 = −
k∑

j=1

n∑
i=1

pj(xi)log2pj(xi)

If the LLM remembers everything in the dataset, then H2 should be close to zero 2. If the LLM
remembers nothing, then H2 should be H1. The difference between H1 and H2 is:

∆H = H1 −H2

The ∆H is essentially the information entropy that the LLM absorbed, which can be viewed as a
form of knowledge capacity. In the case that H1 is larger than the knowledge capacity of the LLM,

2There are some boundary conditions to be satisfied before we can make such claim. But as the sequence
length becomes extremely long, such as 640k in our experiments, the influence of the boundary conditions is
averaged out and does not impact the conclusion of our experiments.
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H2 cannot reach 0 because there is always a part of the information entropy that the LLM cannot
absorb. In this case, the difference ∆H effectively reflects the maximum knowledge capacity of the
LLM being trained. We will present more details on how we configured the experiments to measure
the knowledge capacity in Section 4 the experiments.

3.2 MEASUREMENT OF REASONING CAPABILITY

Developing a rigorous measurement of reasoning capability is harder than measuring the knowledge
capacity. Reasoning capability does not have a clear unit like information entropy bits as we have in
knowledge capacity. Therefore, we adopt widely used empirical metrics as measurements, including
accuracy on mathematical problems, scientific reasoning tasks, and code generation benchmarks. To
ensure comprehensive evaluation, we employ both synthetic and real-world datasets to assess VLD’s
impact on reasoning capabilities.

3.2.1 SYNTHETIC DATA

Step 1: Synthesize Large Math Datasets. Inspired by (Ye et al., 2024), we synthesize the highly
diverse iGSM (Ye et al., 2024; Cobbe et al., 2021) dataset to measure the mathematical reasoning
capability of LLMs and study how virtual logical depth influences such capability. In each problem
of the iGSM dataset, the problem statement implies the dependencies of a set of variables. Given
the value of some variables, the goal is to infer the value of a target variable. The problem difficulty
is measured by the number of algebra operations to derive the target value. Since the dataset can
theoretically contain more than 90 trillion (Ye et al., 2024) solution templates, which is much larger
than the number of parameters in LLMs, LLMs cannot solve the problems by simply memorizing
the solution templates. The process of synthesizing the iGSM dataset is thoroughly described in (Ye
et al., 2024) and will not be covered in this manuscript. One example of the synthesized problem is
provided below, with additional training data examples included in Appendix E.1.

Question: Question: The number of each Lungs’s Platelets equals each Lungs’s B Cells. The
number of each Pleural Cavity’s Platelets equals 0. The number of each Pleural Cavity’s B Cells
equals 11 more than the sum of each Lungs’s Platelets and each Lungs’s B Cells. The number of
each Lungs’s B Cells equals 10. How many B Cells does Pleural Cavity have? Solution: Define
Lungs’s B Cells as p; so p = 10. Define Lungs’s Platelets as r; so r = p = 10. Define Pleural
Cavity’s B Cells as u; m = r + p = 10 + 10 = 20; so u = 11 + m = 11 + 20 = 8. Answer: 8. a.

aIn order to control the complexity of pure numerical calculations, all solutions are mod 23. In this
example, 11 + 20 := (11 + 20) mod 23 = 8.

Step 2: Train LLM on Synthetic Math Data and Evaluate the Accuracy. Solving these questions
basically requires the LLM to produce operations step-by-step to derive the value of the target
variables. The number of steps is a measurement of the problem’s complexity. We generated a
non-overlapping training set and validation set. The training set contains problems with operations no
greater than 15. The validation set contains problems with operations equal to 15, which represents
the highest difficulty that the model saw during training. During validation, we feed the problem
statement into the LLM and let it generate the solution and final answer. The detailed experiment
configurations are described in Section 4.

3.2.2 REAL-WORLD DATA EVALUATION

Step 1: Construct Multi-Domain Training Corpus. To validate VLD’s effectiveness beyond
synthetic scenarios, we construct a comprehensive real-world training corpus spanning multiple
reasoning domains. This corpus comprises diverse datasets organized by category as shown in Table 3
in the Appendix E.3. This multi-domain approach ensures the model is exposed to diverse reason-
ing patterns including conversational AI, instruction following, programming tasks, mathematical
problem-solving, and scientific reasoning across over 2.3 billion tokens.

Step 2: Evaluate on Real-World Reasoning Benchmarks. We assess reasoning capability using
established benchmarks that evaluate distinct aspects of reasoning. For mathematical reasoning,

5
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we use Math500(Hendrycks et al., 2021) and AIME(Mathematical Association of America) to
evaluate multi-step mathematical problem solving capabilities. For scientific knowledge, we employ
GPQA(Rein et al., 2024) to assess graduate-level scientific reasoning and factual knowledge. For
code generation, we utilize HumanEval(Chen et al., 2021) and MBPP(Austin et al., 2021) to
measure functional programming and algorithmic reasoning abilities. These benchmarks provide
comprehensive coverage of reasoning modalities, enabling assessment of VLD’s impact across
mathematical, scientific, and computational domains. The detailed experiment configurations are
described in Section 4.

4 EXPERIMENTS

Our experiments are designed to systematically investigate the distinct impacts of Virtual Layer Depth
(VLD) scaling on two fundamental aspects of Large Language Models (LLMs): knowledge capacity
and reasoning capability. We aim to understand how VLD patterns influence these attributes
compared to classical model scaling approaches. Our experiments are centered around two main
questions:

• How does VLD affect knowledge capacity and reasoning capability compared to classical
parameter scaling?

• Do the observed effects of VLD persist across both pretraining and fine-tuning regimes?

Shared evaluation protocol. Unless noted otherwise, we align tokenizer/vocabulary, per-layer
parameterization, optimizer, schedule, batch size, and decoding settings within each table to isolate
the effect of VLD. We denote VLD Depth ×k as repeating each virtual block k times according to the
pattern definitions in Section 3. Reporting is consistent across rows; any deviation is explicitly stated.

4.1 KNOWLEDGE CAPACITY EXPERIMENTS

Random Sequence Data Setup. For the knowledge capacity experiment, we construct a high-
entropy random number corpus parameterized by (n, k) as in Section 3.1. The n is chosen based on
the default vocabulary size of our transformer training pipeline and does not have a specific meaning;
we use n = 50257. The k is chosen to be sufficiently large so that the dataset contains enough
information entropy. Prior research (Allen-Zhu & Li, 2024) established that approximately 2 bits of
information can be stored per model parameter. With our smallest model containing 5M parameters,
we designed experiments to store approximately 10M bits of information (aligning with the 2 bits
per parameter capacity), requiring a sequence length of approximately k = 640,000 random tokens.
Training data examples consist of IID token IDs generated from [0, 50256].

Models & Metric. We established four 4-layer GPT-2 models with increasing parameter counts
(5M, 10M, 15M, and 20M). The layer size we use is 92 for 5M model and 184 for 20M model,
which is consistent with the settings in (Allen-Zhu & Li, 2024). To investigate VLD effects while
holding parameters fixed, we implemented the three VLD patterns described in Section 3 on the
smallest (5M) and largest (20M) baseline models. For each pattern, we studied repetition factors
of ×{1, 2, 3}. After training, we input the training sequence to the LLM and computed the sum of
entropy of the model’s softmax outputs, then compared the total entropy of the dataset with this
measured value. The difference, ∆H (Section 3.1), represents the amount of information successfully
absorbed by the model. The mean absorbed information entropy is defined as the average amount
of information absorbed per token, calculated as the reduction from the original uncertainty (15.6
bits for n = 50257) to what the model predicts. We used a maximum sequence length of 768 during
training and 1024 during evaluation. The detailed model configuration is listed in the Appendix F.1.

4.2 REASONING CAPABILITY EXPERIMENTS

To ensure comprehensive evaluation and robust validation of VLD’s effectiveness, we conduct
reasoning capability experiments in two settings: (1) Pretraining with synthetic data for controlled
analysis, (2) Post-training with diverse real-world benchmarks for practical validation.

6
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Table 1: GPT-2 performance on synthetic GSM-8K tasks across multiple VLD patterns and depths.
Accuracy (%) at controlled operation counts. “VLD Depth” denotes the repetition factor applied to
the base layer count. Cell shading encodes accuracy (darker = higher); within each VLD pattern,
accuracy generally increases with VLD depth, though not strictly monotonically

Model VLD Pattern VLD Depth* iGSM Acc. (4 Base Layer) iGSM Acc. (8 Base Layer)

op15 op20 op21 op15

G
PT

-2

Base – 46.3 21.8 21.2 60.5

Cycle

×1 54.9 26.4 26.2 62.0
×2 62.1 30.4 35.4 63.3
×3 61.6 30.8 32.0 61.0
×4 65.7 39.2 33.0 66.8
×5 70.7 43.8 40.2 –

Sequence

×1 50.7 25.6 21.2 59.2
×2 51.2 27.0 22.2 62.1
×3 55.5 28.0 25.0 62.9

Inv. Cycle

×1 43.9 17.4 15.8 53.3
×2 50.8 24.2 18.2 62.0
×3 54.8 25.2 22.2 62.8

Notes. (i) “opX” denotes test problems with exactly X operations; (ii) rows within each backbone share identical training and decoding
settings; (iii) reported numbers are the mean test accuracy over 2–3 checkpoints after training convergence.

* VLD Depth indicates the multiplication factor applied to the base model’s layer count. Models all train from scratch.

Table 2: LLaMA-3.2-3B-Instruct on real-world benchmarks over Base model vs. Cycle-VLD. Perfor-
mance (%) under fixed prompts/decoding per benchmark. Both models are fine-tuned on our SFT
corpus from the same pretrained weights.

Model VLD Pattern Real-World Benchmarks Performance (%)

Math500 GPQA AIME HumanEval MBPP
(Acc.) (Acc.) (Acc.) (pass@1) (pass@1)

Llama-3.2-3B-Inst Base 30.40 29.80 3.33 37.79 38.36
Cycle 35.40 32.32 6.67 39.52 40.22

4.2.1 PRETRAINING SETTING

Synthetic Data & Models Setup. For the reasoning capability experiment, we build dataset gener-
ated from the iGSM framework (Ye et al., 2024), comprising 500K mathematical problem samples
with carefully controlled difficulty parameters. Each problem adheres to consistent complexity
constraints with a maximum of 15 operational steps, ensuring reliable measurement of reasoning
abilities. We generated non-overlapping training and validation sets, with training problems having
≤15 operations and validation problems having exactly 15 operations. We constructed four GPT-2
based models with identical per-layer parameter counts but varying native layer depths (4, 8, 12, and
16 layers, corresponding to roughly 50M, 100M, 150M, and 200M parameters). We applied the three
VLD patterns to the 4-layer and 8-layer models with multiplication factors of ×{1, 2, 3} (and up to
×5 for cycle pattern). All models were trained to convergence on 8× A100 GPUs using Adam with
learning rate 2×10−5. We place more details of model and training in Appendix F.2.

In-distribution & Out-of-distribution Evaluation To assess VLD’s impact on reasoning capabili-
ties, we employ a controlled evaluation protocol measuring exact-answer accuracy across different
complexity levels. Our evaluation encompasses both in-distribution and out-of-distribution scenarios
to examine reasoning robustness under controlled shifts in problem difficulty. For In-Distribution
evaluation, we test models on 500 synthetic iGSM samples with exactly 15 operations, matching the
maximum complexity seen during training. Each problem requires multi-step mathematical reasoning,
and we calculate exact-answer accuracy by comparing model-generated solutions against ground truth
labels using string matching on the final numerical answers. To evaluate robustness under Distribution
Shifts, we assess model performance on higher complexity problems containing 20 and 21 operations,
respectively. These out-of-distribution problems maintain the same mathematical reasoning structure

7
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Figure 3: Reasoning Capability Under VLD patterns. (a) Standard scaling with native depth
(16-layer ≈ 200M; 12-layer ≈ 150M). (b–d) Sequence, Cycle, and Inverse Cycle applied to 4-layer
(50M; red) and 8-layer (100M; blue) backbones. Train from scratch, test with op15 GSM data.

but require additional computational steps, allowing us to measure whether VLD improvements
generalize beyond the training distribution. All evaluations use identical decoding parameters (greedy
decoding) and prompting strategies across model variants to ensure fair comparison. Models generate
complete step-by-step solutions, from which we extract final answers for accuracy assessment.

4.2.2 POST-TRAINING SETTING

Training Data Composing & Models Setup. We construct a comprehensive multi-domain SFT
corpus for fine-tuning the LLaMA-3.2-3B-Instruct model, totally 2.3 billion tokens. Following the
methodology established in Shen et al. (2024), we carefully curate datasets across three critical
reasoning domains with strategic subset selection to ensure balanced coverage: (1) For natural
language understanding and instruction following, we incorporate xP3x (Muennighoff et al., 2022),
OpenAssistant (LAION-AI, 2023) , OpenHermes (Teknium, 2023) , and UltraChat (Ding et al., 2023).
(2) For code generation capabilities, we include Magicoder-OSS (Wei et al., 2023) , Magicoder-Evol
(Wei et al., 2023) , Code-290k-ShareGPT, CommitPackFT (Muennighoff et al., 2023), and Evol-Code
Alpaca (Luo et al., 2023) . (3) For mathematical reasoning, we utilize Open-web-math (Paster et al.,
2023) , algebraic-stack (Azerbayev et al., 2023) , TemplateGSM (Fu et al., 2023) , StackMathQA
(Zhang, 2024) , and OpenR1-Math-220k (Open R1 Team, 2025). This diverse composition ensures
comprehensive exposure to varied reasoning patterns and generation challenges across multiple
modalities.

For model training, we fine-tune both Base and Cycle VLD variants of LLaMA-3.2-3B-Instruct on the
multi-domain corpus using LoRA(Hu et al., 2022) with standard supervised fine-tuning procedures.
Both models are initialized with identical pretrained weights to ensure fair comparison, with the
Cycle VLD variant incorporating the layer repetition pattern before training commences. We place
detailed training configurations, dataset statistics and samples in Appendix F.3.

Test Datasets & Metrics & Model Configuration. We conduct comprehensive evaluations on
diverse real-world reasoning benchmarks following established evaluation protocols (Habib et al.,
2023). The evaluation encompasses three critical domains: (1) mathematical reasoning datasets:
Math500 (Hendrycks et al., 2021) and AIME (Mathematical Association of America); (2) scientific
reasoning dataset: GPQA (Rein et al., 2024); (3) code generation datasets: HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). For evaluation metrics, we maintain consistency with prior
work (Habib et al., 2023; Hendrycks et al., 2021; Rein et al., 2024), employing exact match accuracy
for mathematical and scientific reasoning tasks (Math500, AIME, GPQA) and pass@1 accuracy for
code generation benchmarks (HumanEval, MBPP) to measure functional correctness. We conduct
experiments comparing the LLaMA-3.2-3B-Instruct Base model against the Cycle VLD variant.
We maintain consistent hyperparameters, optimizer settings, and evaluation protocols across both
configurations to ensure fair comparison. More testing details are provided in Appendix E.3.

4.3 EXPERIMENT RESULTS AND FINDINGS

Primary Finding. VLD scaling significantly increases reasoning capability while maintaining
knowledge capacity nearly constant. As demonstrated in Table 1 and Figure 3, applying VLD patterns
dramatically boosts models’ reasoning performance across all tested configurations. Most notably,
the cycle pattern achieves substantial improvements, increasing the 4-layer model’s accuracy from
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46.3% to 70.7% with a VLD factor of 5. Simultaneously, Figure 4 confirms that despite these
reasoning enhancements, knowledge storage capacity remains largely unchanged across all VLD
patterns and repetition factors. This distinctive attribute clearly differentiates VLD scaling from
classical model scaling, enabling substantial reasoning improvements without significantly altering
knowledge capacity.

Figure 4: Knowledge Capacity Under VLD. (a) Non-VLD:
capacity increases with parameter count. (b) At fixed pa-
rameters, absorbed information stays nearly constant across
VLD depths/patterns for 5M and 20M models.

Beyond the primary result, we identify
several supplementary findings that
warrant further discussion:

Parameter-efficient reasoning im-
provements through VLD. Smaller
VLD-augmented models can surpass
larger non-VLD baselines on multi-
step reasoning (Fig 1). For in-
stance, the 50M-parameter model us-
ing the cycle pattern (factor 2, effec-
tive depth=12) achieves 62.05% ac-
curacy, surpassing the native 150M-
parameter model (12-layer) with only
61.15% accuracy. This remarkable
outcome emphasizes the efficacy of
VLD as a parameter-efficient alterna-
tive for enhancing reasoning capabil-
ities, indicating that increased reason-
ing does not necessitate an expansion in model parameters.

Robustness under distribution shifts in reasoning depth. With increasing operation counts
(15/20/21 operations), cycle-VLD consistently outperforms corresponding base models across all
difficulty levels (Table 1). This supports improved robustness under controlled shifts in depth-of-
reasoning, with larger operation counts corresponding to more challenging mathematical problems.

Cross-domain generalization to real-world applications. VLD benefits transfer beyond synthetic
environments to practical applications. Real-world benchmark validation using Llama-3B confirms
synthetic results with consistent improvements across mathematical reasoning (Math500, AIME),
scientific reasoning (GPQA), and code generation (HumanEval, MBPP) tasks (Table 2), demonstrating
universal applicability.

Non-monotonic scaling behavior with occasional performance plateaus. While general findings
indicate consistent trends, scaling exhibits occasional counterintuitive results. For example, cycle
pattern shows VLD factor 3 (61.6%) performing slightly worse than factor 2 (62.1%) for the 4-layer
model, and Figure 3(c) shows depth 32 yielding lower accuracy than depth 16. These anomalies
suggest potential performance bottlenecks when scaling exclusively in single dimensions, consistent
with prior research indicating effective scaling requires balancing across multiple dimensions (Wei
et al., 2022). Future work will explore non-monotonic cases at extreme depths, test robustness under
broader distribution shifts, and report multi-seed statistics.

5 CONCLUSION

In this study, we studied Virtual Logical Depth (VLD), a novel scaling dimension that enhances
reasoning capabilities without increasing parameter counts. Our experiments demonstrate that
while traditional scaling linearly increases knowledge capacity with parameter count, VLD uniquely
maintains a nearly constant knowledge capacity but significantly boosts reasoning performance.
Remarkably, smaller models with VLD can surpass larger standard models in complex reasoning tasks.
Future research should explore combining VLD with classical scaling dimensions and investigate
non-monotonic cases at extreme effective depths. Our open-source implementation is available online
to facilitate further exploration and practical integration of VLD scaling.

9
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A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as a general-purpose assist tool during the writing and
revision process of this paper. Specifically, LLMs were employed to improve the clarity, coherence,
and grammatical accuracy of the manuscript text. All technical content, experimental design, data
analysis, and scientific conclusions presented in this work are entirely the product of the authors’
original research and intellectual contributions. The authors take full responsibility for all content
and claims made in this paper.

B ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work involves computational experiments on
synthetic datasets and publicly available benchmarks, with no direct human subjects involvement. All
datasets used are either synthetically generated or publicly available with appropriate licensing. The
experimental methodologies and applications presented pose no foreseeable harmful implications.
We acknowledge our responsibility to ensure that our research contributions are used ethically and do
not enable malicious applications.

C REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details throughout
the paper and appendix. All model architectures, training hyperparameters, and evaluation protocols
are specified in detail in Sections 3, Sections 4 and Appendix. The synthetic iGSM dataset generation
procedures are fully described in Section 4 and Appendix E.2, with example problems provided.
Real-world benchmark evaluations follow established protocols with specific details in Appendix
D.3. Code for VLD pattern implementation and experimental reproduction are available in https:
//anonymous.4open.science/r/virtual_logical_depth-8024/.

D VIRTUAL LOGICAL PATTERN SELECTION

Our VLD strategies follow insights from prior work on parameter sharing across layers in Transform-
ers. The intuition behind each strategy is:

• SEQUENCE: This represents the most straightforward implementation of parameter sharing,
creating uniform blocks of repeated layers throughout the network.

• CYCLE: This maintains regularity in parameter usage patterns while ensuring each unique
layer appears at consistent intervals throughout the network depth.

• INVERSE CYCLE: This strategy is motivated by key findings from (Liu et al., 2023) and
(Takase & Kiyono, 2021), who reported that higher decoder layers tend to obtain larger
gradient norms during training. Their findings imply that higher layers require more degrees
of freedom than lower layers for optimal expressiveness. Therefore, by this pattern, we can
reuse lower-layer parameters in higher positions while preserving the critical expressiveness.

E DATASET CONSTRUCTION AND SPECIFICATIONS

E.1 RANDOM SEQUENCE DATA FOR KNOWLEDGE CAPACITY

For the knowledge capacity experiment, we construct a high-entropy random number corpus pa-
rameterized by (n, k) as described in Section 3.1. The parameter n is chosen based on the default
vocabulary size of our transformer training pipeline (n = 50257). The sequence length k is deter-
mined to ensure sufficient information entropy for capacity measurement. One example of the dataset
can be sequence like: ”43497, 6111, 32823, 47737, 46351, 1395, 2263, 48286, 13532 . . . ”. We used
a maximum sequence length of 768 during training and 1024 during evaluation.

Following prior research (Allen-Zhu & Li, 2024) which established that approximately 2 bits of
information can be stored per model parameter, we design experiments to store approximately 10M
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bits of information (aligning with the 2 bits per parameter capacity for our smallest 5M parameter
model). This requires a sequence length of approximately k = 640,000 random tokens.

Data Generation Protocol:

• Training data examples consist of IID token IDs generated from [0, 50256]

• Each sequence contains exactly k = 640,000 tokens
• Tokens are sampled uniformly from the vocabulary to maximize entropy
• No preprocessing or filtering is applied to maintain maximum randomness

E.2 IGSM SYNTHETIC DATASET CONSTRUCTION

The iGSM synthetic dataset construction follows rigorous specifications to ensure controlled experi-
mental conditions for reasoning capability evaluation.

Complexity Constraints. Each problem adheres to the following parameters: (1) Maximum of
15 operational steps (individual mathematical operations required for solution). (2) Up to 20 edges
in the structural dependency graph (connections between operations). (3) Permutation level of 5
(determining how narrative elements are arranged in problem text). (4) Comprehensive solution
formatting with step-by-step pathways

Quality Control. All problems underwent rigorous validation to ensure solution accuracy. To
maintain balanced difficulty distribution, we filtered problems using solution template hash values (a
metric quantifying solution pattern complexity), retaining only those with hash values below 17.

Problem Structure. Each sample includes the problem text, step-by-step solution pathway, and final
answer, with most problems requiring multi-step logical reasoning to reach the correct conclusion.

Question: The number of each Music Room’s Clear Backpack equals 20. The number of each Music
Room’s Musical Instrument Backpack equals each Anthropology Classroom’s Toy Backpack. The number of
each Photography Studio’s Toy Backpack equals 21 more than the difference of each Literature Classroom’s
Backpack and each Literature Classroom’s Diaper Backpack. The number of each Literature Classroom’s
Musical Instrument Backpack equals each Music Room’s Backpack. The number of each Music Room’s
Toy Backpack equals 9 times as much as the sum of each Anthropology Classroom’s Toy Backpack
and each Music Room’s Musical Instrument Backpack. The number of each Anthropology Classroom’s
Clear Backpack equals each Photography Studio’s Backpack. The number of each Literature Classroom’s
Diaper Backpack equals 20 times as much as each Music Room’s Clear Backpack. The number of each
Anthropology Classroom’s Toy Backpack equals 2. The number of each Photography Studio’s Clear
Backpack equals each Literature Classroom’s Backpack. Find the number of Anthropology Classroom’s
Clear Backpack. Solution: Define Anthropology Classroom’s Toy Backpack as C; so C = 2. Define Music
Room’s Musical Instrument Backpack as X; so X = C = 2. Define Music Room’s Toy Backpack as M; N
= C + X = 2 + 2 = 4; so M = 9 × N = 9 × 4 = 13. Define Music Room’s Clear Backpack as R; so R = 20.
Define Music Room’s Backpack as s; A = M + X = 13 + 2 = 15; so s = A + R = 15 + 20 = 12. Define
Literature Classroom’s Musical Instrument Backpack as n; so n = s = 12. Define Literature Classroom’s
Diaper Backpack as h; so h = 20 × R = 20 × 20 = 9. Define Literature Classroom’s Backpack as x; so x =
n + h = 12 + 9 = 21. Define Photography Studio’s Toy Backpack as t; d = x - h = 21 - 9 = 12; so t = 21 +
d = 21 + 12 = 10. Define Photography Studio’s Clear Backpack as q; so q = x = 21. Define Photography
Studio’s Backpack as r; so r = t + q = 10 + 21 = 8 a. Define Anthropology Classroom’s Clear Backpack as F;
so F = r = 8. Answer: 8.

aIn order to control the complexity of pure numerical calculations, all solutions are mod 23. In this
example, 10 + 21 := (10 + 21) mod 23 = 8.

E.3 REAL-WORLD TRAINING CORPUS SPECIFICATIONS

For the post-training experiments, we constructed a diverse multi-domain corpus totaling approx-
imately 2.3 billion tokens across natural language, code, and mathematical reasoning domains.
Following the methodology established in Shen et al. (2024), we carefully curate datasets across three
critical reasoning domains with strategic subset selection to ensure balanced coverage.
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Table 3: Real-World Training Corpus for Reasoning Capability Evaluation. The dataset contains
totally around 2.3 billion tokens, which comes from three categories: natural language, code and
math data.

Category Dataset Tokens (M)

Natural Language SFT Data

xP3x 317
OpenAssistant 20.9
OpenHermes 396
UltraChat 251

Code SFT Data

Magicoder-OSS 50.5
Magicoder-Evol 74.72
Code-290k-ShareGPT 159.99
CommitPackFT 38
Evol-Code Alpaca 74.77

Math Data

Open-web-math 317
algebraic-stack 353.4
TemplateGSM 79.7
StackMathQA 225
OpenR1-Math-220k 46.7

Data Example We show some training data examples for each categories below:

(1) Natural Language (example from OpenAssistant dataset):

Question: How can one fight back when a monospony had been created?

Answer: Monopsony refers to a market structure where there is only one buyer of a good or service. In the
context of labor markets, a monopsony occurs when there is only one employer in a particular geographic
area or industry, giving them significant power to set wages and working conditions. Research has shown
that the existence of monopsonies can lead to lower wages and reduced job opportunities for workers. For
example, a study by the National Bureau of Economic Research found that in industries with high levels of
concentration, workers earn lower wages and are less likely to receive benefits such as health insurance.

(2) Code (example from Magicoder-OSS dataset):

Problem: Write a Python function to find the longest palindromic substring.

Solution:
def longest palindrome(s: str) -> str:
if not s: return ""

def expand around center(left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1; right += 1
return right - left - 1

start, max len = 0, 0
for i in range(len(s)):
len1 = expand around center(i, i) # odd-length
len2 = expand around center(i, i + 1) # even-length
current max = max(len1, len2)
if current max > max len:
max len = current max
start = i - (current max - 1) // 2

return s[start:start + max len]

(3) Math (example from Open-web-math dataset):
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Text: Physical Quantity Analogous to Inductance

1. May 12, 2013 — tapan ydv

Hi,
I understand that some physical quantities in electromagnetism are analogous to physical quantities
in heat transfer. For instance, electric field is analogous to temperature gradient.
I want to know which physical quantity in heat transfer is analogous to inductance (L)?
Regards,

2. May 12, 2013 — tiny-tim

welcome to pf!
hi tapan ydv! welcome to pf!
i don’t know about a heat transfer analogy,
but a hydraulics analogy is a paddle-wheel.
A heavy paddle wheel placed in the current. The mass of the wheel and the size of the blades
restrict the water’s ability to rapidly change its rate of flow (current) through the wheel due to the
effects of inertia, but, given time, a constant flowing stream will pass mostly unimpeded through
the wheel, as it turns at the same speed as the water flow . . .
(from http://en.wikipedia.org/wiki/Hydraulic_analogy#Component_
equivalents)

3. May 12, 2013 — technician

In mechanics . . . inertia.

4. May 12, 2013 — tiny-tim

how?

5. May 12, 2013 — technician

Reluctance to change . . . as in a paddle wheel.

Last edited: May 12, 2013

F MODEL ARCHITECTURES AND TRAINING DETAILS

F.1 GPT-2 MODEL CONFIGURATIONS FOR KNOWLEDGE CAPACITY EXPERIMENTS

We established four GPT-2 models with increasing parameter counts while maintaining architectural
consistency. The models are configured as follows:

• 5M parameters: 4 layers, hidden size 92

• 10M parameters: 4 layers, hidden size 128

• 15M parameters: 4 layers, hidden size 156

• 20M parameters: 4 layers, hidden size 184

For VLD experiments, we applied the three patterns (Sequence, Cycle, Inverse Cycle) to the 5M and
20M baseline models with repetition factors ×{1, 2, 3}.

Training Configuration: we show the training configurations in Table 4.

F.2 GPT-2 MODEL CONFIGURATIONS FOR REASONING EXPERIMENTS

We constructed four GPT-2 based models with identical per-layer parameter counts but varying native
layer depths:

• 4 layers ( 50M parameters): Base architecture for VLD application

• 8 layers ( 100M parameters): Base architecture for VLD application

• 12 layers ( 150M parameters): Baseline comparison only

• 16 layers ( 200M parameters): Baseline comparison only
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Table 4: Training Hyperparameters and Configuration for Knowledge Capacity Experiments
Parameter Value
Optimizer Adam
Learning rate 2× 10−5

Precision FP16
Micro-batch size 24
Sequence length (training) 768
Sequence length (evaluation) 1024
Max position embeddings 1024
Tensor model parallel size 1
Pipeline model parallel size 1
Seed 1234
Tokenizer type RandomNumberTokenizer
Hardware 8 × A100 GPUs

VLD patterns were applied to 4-layer and 8-layer models with multiplication factors ×{1, 2, 3} (and
up to ×5 for cycle pattern).

Training Configuration: we show the training configurations in Table 5.

Table 5: GPT-2 Training Configuration for Reasoning Experiments
Parameter Value

Model Architecture
Number of layers 4 (base model)
Hidden size 768
Number of attention heads 12
Sequence length 768
Max position embeddings 2048
Attention backend Auto

Training Hyperparameters
Micro batch size 48
Global batch size 768
Training iterations 30,000
Learning rate 0.0005
LR decay style Cosine
LR warmup fraction 0.019
Weight decay 0.001
Adam beta1 0.9
Adam beta2 0.95
Gradient clipping 1.0
Precision FP16

F.3 LLAMA-3.2-3B-INSTRUCT FINE-TUNING SETUP

For real-world evaluation, we fine-tune both Base and Cycle VLD variants of LLaMA-3.2-3B-Instruct
on the multi-domain corpus. Both models are initialized with identical pretrained weights to ensure
fair comparison, with the Cycle VLD variant incorporating the layer repetition pattern before training
commences. The training details are listed in Table 6.
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Table 6: LLaMA-3.2-3B-Instruct Fine-tuning Configuration
Parameter Value
Base model LLaMA-3.2-3B-Instruct
Total parameters 3,218,828,288
Trainable parameters (LoRA) 6,078,464 (0.19%)
Fine-tuning method LoRA
LoRA target modules gate proj, v proj, k proj, up proj, o proj, down proj, q proj

Optimizer AdamW
Precision BFloat16
DeepSpeed stage ZeRO Stage 3
World size 8 GPUs
Train batch size 192
Micro batch size per GPU 6
Gradient accumulation steps 4
Gradient clipping 1.0

Distributed training DeepSpeed ZeRO-3 + LoRA
Parameter offloading Enabled
Gradient checkpointing Enabled
Memory optimization ZeRO-3 with parameter persistence

G EVALUATION PROTOCOLS AND METRICS

G.1 KNOWLEDGE CAPACITY MEASUREMENT METHODOLOGY

After training, we input the training sequence to the LLM and compute the sum of entropy of the
model’s softmax outputs, then compare the total entropy of the dataset with this measured value. The
difference, ∆H , represents the amount of information successfully absorbed by the model.

The mean absorbed information entropy is defined as the average amount of information absorbed
per token, calculated as the reduction from the original uncertainty (15.6 bits for n = 50257) to what
the model predicts.

G.2 REASONING CAPABILITY ASSESSMENT PROTOCOLS

In-Distribution Evaluation: We test models on 500 synthetic iGSM samples with exactly 15
operations, matching the maximum complexity seen during training. Each problem requires multi-
step mathematical reasoning, and we calculate exact-answer accuracy by comparing model-generated
solutions against ground truth labels using string matching on the final numerical answers.

Out-of-Distribution Evaluation: We assess model performance on higher complexity problems
containing 20 and 21 operations, respectively. These problems maintain the same mathematical
reasoning structure but require additional computational steps. All evaluations use identical de-
coding parameters (greedy decoding) and prompting strategies across model variants to ensure fair
comparison.

G.3 REAL-WORLD BENCHMARK EVALUATION DETAILS

We conduct comprehensive evaluations on diverse real-world reasoning benchmarks following
established evaluation protocols (Habib et al., 2023):

• Mathematical reasoning: Math500 (Hendrycks et al., 2021) and AIME (Mathematical
Association of America)

• Scientific reasoning: GPQA (Rein et al., 2024)

• Code generation: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
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For evaluation metrics, we maintain consistency with prior work (Habib et al., 2023; Hendrycks et al.,
2021; Rein et al., 2024), employing exact match accuracy for mathematical and scientific reasoning
tasks (Math500, AIME, GPQA) and pass@1 accuracy for code generation benchmarks (HumanEval,
MBPP) to measure functional correctness.

Test data examples We show some test data examples for each categories below:

HumanEval:

Problem:

from typing import List

def has close elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, any two numbers are closer
than the given threshold.
>>> has close elements([1.0, 2.0, 3.0], 0.5)
False
>>> has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

Solution:

def has close elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

MBPP:

Problem: Write a function to find the longest chain which can be formed from the given set of pairs.

Solution:

class Pair(object):
def init (self, a, b):
self.a = a
self.b = b

def max chain length(arr, n):
best = 0
mcl = [1 for in range(n)]
for i in range(1, n):
for j in range(0, i):
if arr[i].a > arr[j].b and mcl[i] < mcl[j] + 1:
mcl[i] = mcl[j] + 1

for i in range(n):
if best < mcl[i]:
best = mcl[i]

return best

Math500:
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Problem: If f(x) = 3x−2
x−2

, what is the value of f(−2)+f(−1)+f(0)? Express your answer as a common
fraction.

Solution: f(−2)+f(−1)+f(0) = 3(−2)−2
−2−2

+ 3(−1)−2
−1−2

+ 3(0)−2
0−2

= −8
−4

+ −5
−3

+ −2
−2

= 2+ 5
3
+1 =

14

3

AIME:

Problem: Let x, y and z be positive real numbers that satisfy the following system of equations:

log2

(
x

yz

)
=

1

2

log2

( y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers. Find m+ n.
Solution: Denote log2(x) = a, log2(y) = b, and log2(z) = c.
Then, we have: a− b− c = 1

2
, −a+ b− c = 1

3
, −a− b+ c = 1

4
.

Now, we can solve to get a = −7
24

, b = −9
24

, c = −5
12

. Plugging these values in, we obtain |4a+ 3b+ 2c| =
25
8

=⇒ 033 .

GPQA:

Problem: Two quantum states with energies E1 and E2 have lifetimes of 10−9 s and 10−8 s, respectively.
We want to clearly distinguish these two energy levels. Which of the following options could be their energy
difference so that they can be clearly resolved?
Solution: 10−4 eV

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 LAYER SELECTION STRATEGY ANALYSIS

We also conducted ablation studies to assess how the placement of shared layers affects performance.
Using an 8-layer model with cycle pattern, we compared different layer selection strategies: applying
VLD to all layers (1-8), early layers only (1-4), and later layers only (5-8).

Table 7: GSM Performance of the 8-Layer Model with Varying Layer Selection Strategies
VLD Pattern No VLD 1-8 layers 1-4 layers 5-8 layers

cycle 8 60.5 62.0 54.2 64.2

I LIMITATIONS AND FUTURE WORK

While our comprehensive experiments demonstrate VLD’s effectiveness across multiple configura-
tions, several limitations constrain the scope and generalizability of our findings. The non-monotonic
scaling behavior observed in our experiments, where performance occasionally decreases at higher
VLD factors, warrants deeper investigation to understand the underlying mechanisms and identify
potential fixed points where further scaling yields diminishing returns.

The non-monotonic behavior presents intriguing research opportunities: systematically exploring
whether VLD has inherent fixed points beyond which performance no longer improves, investigating
optimal repetition patterns through combination with other techniques like mixture-of-experts or
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sparse attention mechanisms, and developing principled methods to identify the best VLD configura-
tion for specific tasks and model scales.
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