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Abstract

Autoregressive language models are vulnera-
ble to adversarial attacks, yet their underlying
mechanistic behaviors under such perturbations
remain unexplored. We propose a systematic
approach to analyzing adversarial robustness,
focusing on TextBugger attacks across three
mechanistic tasks (IOI, CO, CC). Our study
introduces methods for assessing adversarial
influence on circuits and reveals characteris-
tic activation patterns. We show that circuit-
informed attacks can be more effective than
random perturbations, highlighting the poten-
tial of circuit knowledge for designing adver-
sarial attacks.

1 Introduction

Although transformer-based language models
(Vaswani et al., 2017) demonstrate remarkable
capabilities in a wide range of NLP tasks, their
susceptibility to adversarial examples (sometimes
called adversarial attacks) (Szegedy et al., 2014)
contributes significantly to their failures. A criti-
cal aspect of developing practical solutions to re-
solve model vulnerabilities involves not only the
assessment of models’ robustness to adversarial ex-
amples, but also studying the underlying inference
mechanisms and how these mechanisms are dis-
rupted by such attacks. Recent advances in the area
of mechanistic interpretability (Wang et al., 2022b)
provide a promising foundation for understanding
reasoning mechanisms with respect to the compu-
tational structure of the model (Nanda, 2023).

To the best of our knowledge, no prior work has
systematically analyzed the mechanistic behaviors
of models exposed to adversarial inputs. While
numerous studies have focused on the development
and implementation of adversarial examples and
defenses, the underlying mechanisms that govern
model responses to these perturbations remain un-
explored. This gap in the literature limits our ability
to design effective defenses.
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Figure 1: The proposed experimental pipeline'. We use
three datasets which represent downstream tasks each
described by circuits using the EAP-IG method. By
constructing adv. examples to uncover adv. circuits and
comparing them with the original ones we gain insights
into the impact of adversarial examples on the model.
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Understanding how models handle adversarial
examples is crucial for enhancing their defences
against adversarial examples. This is particularly
important for privacy protection, as the models
should be protected against leaks of sensitive and
private data. In the context of circuits, targeted
attacks can be more effective and less costly than
random attacks. Understanding circuits allows us
to identify precise targets, making interventions
more strategic and efficient. Using circuit-level
insights, we can move beyond trial-and-error ap-

'This figure has been designed using resources from Flati-
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proaches and develop more informed and impactful
methods to influence model behaviour. Designing
protective circuits could allow for more precise
model security by identifying and reinforcing the
components and connections that are key to resist-
ing attacks. Users of LLMs apply prompt injection
to exploit model vulnerabilities. Black-box attacks,
which introduce minimal text changes, effectively
bypass NLP filters, highlighting the need for deeper
adv. circuit analysis. A structured approach to
studying these perturbations can reveal systematic
weaknesses and enhance adv. robustness.

In this paper, we propose a mechanistic approach
to analysing models in the context of TextBug-
ger (Lietal., 2019) attacks. We analyse the patterns
of activation changes in task-specific circuits under
task-oriented adversarial examples. Focusing on
black-box attacks, we study three well-researched
tasks: Indirect Object Identification (I0I), Colored
Objects (CO), and Capital Country (CC). Through
a series of experiments, we analyse how token se-
quence perturbations affect model activations. Our
key contributions are as follows.

* We designed two methods to describe the be-
havior of adversarial examples using mech-
anistic circuit analysis, marking the first at-
tempt to systematically map their influence on
circuit components. This approach provides
insights into how individual elements respond
to perturbations to understand the model’s in-
ternal mechanisms and vulnerabilities.

* We present the first in-depth analysis of adver-
sarial perturbations (TextBugger attacks) on
three well-studied mechanistic downstream
tasks, revealing systematic patterns in circuit
activations that have not been previously doc-
umented.

* We showed that targeted attacks using circuit
knowledge can be more effective than con-
ventional random perturbations, highlighting
previously unknown vulnerabilities.

* We suggest how to utilize acquired knowledge
to mitigate the threats posed by adversarial
examples.

Our findings might open new avenues for design-
ing robust model defenses strategically reinforcing
critical circuit components, offering a fresh per-
spective on adversarial robustness.

2 Related Work

Our contribution draws mainly from two subar-
eas of Al - mechanistic interpretability of large
language models and adversarial examples. Ad-
versarial examples (AE, adversarial attacks) in the
broad sense are carefully modified inputs to Al
models that cause their incorrect responses. They
are currently considered a critical challenge to the
trustworthiness of Al systems, especially for DL-
based ones. Since the seminal paper (Szegedy et al.,
2014) there have been tens of thousands of related
works on this topic, most of which can be found in
the constantly growing list (Carlini, 2019-2025).
The most spectacular results regarding AE con-
cerned the classification problem and there are still
relatively few works on AE in the context of LLMs.
In general, the problem of AE in text processing
fields seems to be still underinvestigated. A broad
overview of threat methods in LLMs (incl. AE) can
also be found in (Jia et al., 2024), where one can
find a description of the global challenge regarding
LLM security. In the recent research significant
effort has been put into "jailbreaking" attacks that
are specific AE which aim to synthesize adversarial
prompts to induce targeted and possibly harmful
behaviors from LLMs. In this vein the bulk of re-
search concentrates on pointing specific dangers re-
lated to LLM or propose some protection methods
like filtering the output (e.g. (Wang et al., 2022a))
or scrubbing the training set (Lukas et al., 2023).
Only a few papers are trying to explain what
mechanisms cause these attacks to work. A notable
result can be found in (Wei et al., 2023). They
point to competing objectives and mismatched gen-
eralization as the reasons why AE may be possible
in LLMs. Our work explains how AEs emerge
through network structure changes. We focus on
forcing models to produce incorrect answers within
a specific domain, even for simple, well-known
problems. (described in Section 3.1). We believe
that such analysis can be a step towards understand-
ing more complex types of adversarial examples.
To our knowledge, there are no works that deal
with explaining the phenomenon of AE from the
point of view of mechanistic interpretability. In
the relatively close paper (uit de Bos and Garriga-
Alonso, 2024) authors investigate what the largest
difference between the original model and the cir-
cuit representing it can be for a fixed input, where a
circuit in the context of transformer language mod-
els (Wang et al., 2022b) is described as the smallest



computational subgraph of the model that accu-
rately mirrors the model’s overall behavior for a
specific task. This is therefore a typical worst-case
analysis for the adversarial model. Such an input
is referred to as adversarial example, although of
course it does not have to be an AE in the sense
used in our work. The work of (uit de Bos and
Garriga-Alonso, 2024) focuses on demonstrating
the weaknesses of the circuit as an approximation
of the original model, not on understanding the na-
ture of AEs and eliminating them from the original
model.

3 Circuit Recognition Methods

Circuit recognition in language models can be
costly because of the need to identify key compo-
nents and predominant connections between them.
Testing these connections is expensive, especially
in large models such as GPT-2 small, medium, or
large (Hanna et al., 2024).

Edge Attribution Patching (EAP) To address
the efficiency issue, (Nanda, 2023) developed edge
attribution patching (EAP), a method that estimates
the impact of connections with minimal compu-
tational passes through the model. The effective-
ness of EAP is supported by its high overlap with
manually found circuits, a common measure of
success in circuit-finding research. EAP is based
on gradient computation procedure that is used to
approximate causal interventions on each model’s
edge with two forward passes and one backward
pass. The EAP describes the transformer model as
a computational graph, where the circuit executing
a specific task can be represented as a subset of
nodes and edges of the original graph. In order to
find the circuit, the scoring function for each model
edge is needed. The EAP propose for to approxi-
mate this value by usage of negative loss change in
each edge between clean and corrupted run.

Edge Attribution Patching with Integrated Gra-
dients (EAP-IG) (Hanna et al., 2024) is an im-
provement over the EAP method which introduces
integrated gradients technique (IG) (Sundarara-
jan et al., 2017) into circuit recognition frame-
work. The addition of IG aims to improve the EAP
method when facing zero gradients. The score func-
tion uses accumulation of gradient, which helps in
situation of facing zero gradients along path be-
tween clean and corrupted activations.

3.1 Circuit Recognition Tasks

The Indirect Object Identification (IOI) task
(Wang et al., 2023) consists of pairs of sentences
with unique names, which describes situation when
two people perform activity. The goal is to predict
name based on the context. For example: “When
Mary and John went to the bar, John gave a drink
to”, models task is to predict “Mary”. The task
score is measured by logit difference: logit of the
10 (“Mary”) minus logit of the subject (S) (“John”).
Corrupted examples are created with replacing of
third name with different name that consists of the
same number of tokens.

The Capital-Country (CC) task introduced in
(Hanna et al., 2024) checks model’s ability to pre-
dict country name based on name of its capital.
The model receives the sentence “Bridgetown, the
capital of” and should predict the country name
(“Barbados”), in corrupted settings the capital is
changed to another, for example “Lilongwe”. Per-
formance of task is measured by logit difference
between correct country and corrupted one.

The Colored Objects (CO) task introduced in
BigBench (BIG-bench authors, 2023) and simpli-
fied for circuit recognition task in (Merullo et al.,
2024). The task checks model ability to identify the
color of an object that was previously mentioned
in context alongside other objects. In each exam-
ple model receives information about three objects
and their color, followed by question what is the
color of one of the objects. The corrupted version
is obtained by asking for different object color. The
performance in this task is measured by checking
the probability of desired color tokens.

The IOI circuit head groups identified in (Wang
et al., 2022b) demonstrate how, in IO tasks, heads
are categorized into classes that perform a specific
task. The authors propose seven such groups of
attention heads for an indirect object identification
task, but for purpose of this work we will focus on
thrre of them: Previous Token Heads (PTH), Du-
plicate Token Heads (DTH) and Induction Heads
(IH). DTH connects duplicated names in sentence,
they add attention on second name occurrence (S2)
and maps this name to the first occurrence (S1).
Simultaneously IH map the name S2 to S1+1, let-
ting the model know that the name S is duplicated
and pointing to its follower. The PTH attend to
connect first occurrence of duplicated name (S1) to
its following token (S1+1).



4 Adversarial Circuit Analysis

Our goal is to conduct a mechanistic analysis of at-
tention heads by perturbing tokens in task-relevant
phrases. Attention heads serve different functions
in the model (Wang et al., 2022b), however their
understanding is limited to non-adversarial cases.
In adversarial circuit analysis, we aim to examine
how distinct token disruptions affect these various
functions. Specifically, we want to understand the
impact of perturbations in phrases that are critical
for downstream task on the behavior of attention
heads, which are central to task target. To study
the effects of adversarial attacks on task-specific
circuits in the mechanistic analysis of language
models, we designed two experimental protocols
for adversarial attacks: gradual token disruption
and adversarial token injection.

4.1 Designing adversarial examples

Generation of adversarial example involves chang-
ing some of model’s input tokens, preferably the
most important ones, in the way that the created
adversarial sample changes the original model
prediction. One of the techniques for attacking
models text input is TextBugger (TB) (Li et al.,
2019). Other adversarial generation methods such
as TextFooler (Jin et al., 2020) have a limitation of
changing all words tokens at once; the main rea-
son for using TextBugger is the ability to attack
single tokens, which greatly increase research op-
tions. Identification of important input’s words,
most cases depends on given task, is crucial for ad-
versarial examples performance. For the 101 task,
three words can be identified as crucial for correct
output generation: IO, duplicated word first (S1)
or second (S2) occurrence. Changing the 10 is not
considered as it would change the correct model
response. Similar analysis can be obtained for the
CO, where instead on one 10O and dupicated S, are
three color, object pairs. In this setting when asking
for one of the objects color, the duplicate objects
occurs and respectively to 10, first occurrence of
this object can be attacked. For the CC only one
important word can be identified in each sample
the capital name.

Gradual adversarial token disruption (GATD)
The method of gradual adversarial token disrup-
tion involves a systematic approach to perturbing
text at the token level for mechanistic analysis of
attention heads. Given a text composed of n to-
kens T' = (t1,t2, ..., t,) and a multi-token phrase

F = (f1, f2,..., fr) being a subsequence of T,
we create multiple variants of the text by token-
level alternations of phrase tokens by applying
function g(F, ).

g(F,i) ={(f1,- .-, fi—1,
fisfists-- s fu) | fi € S(fi)}

i=1,...,k where f/ € S(f;)is a set of possible
alternations of token f; in phrase F'.

The set of all single-token alternations of phrase
F' is defined as follows:

ey

K
F(F)=Jg(Fi).
i=1

For task-specific dataset D = {11, Ts, ..., T}
consisting of texts T; = (tj,1,%j1,...,tjn,;), With
j =1,...,m, we generate disrupted versions T]’ of
the text 77} by alternating the tokens of phrase [; C
T; in a sequential manner, using g(F}, ). Let D’
be an adversarial dataset derived from D, consist-
ing of texts created through phrase-specific pertur-
bations. Let D' = {S(T},F;)|j € {1,...m}},
where S : (T}, Fj) — T). The set D' contains
texts in which phrase F); has been replaced with a
new phrase F, where Fj’ is the result of replacing
a single token f; at position ¢ by applying g(F, ).
The new phrase FJ’ belongs to the set of possi-
ble single-token replacements F; € F(Fj). In
practice, each text T); consists of multiple phrases
Fj1,Fj2,...,F;; and one can generate adversar-
ial examples based on these phrases collectively. In
our work, we consider one type of phrase at a time
(e.g. S1, S2, or IO) when generating an adversarial
dataset, which is consistent with the methodology
of mechanistic analysis.

The process starts by choosing a single token to
alter, ensuring it doesn’t affect the original mean-
ing or form. This creates a new version of the text
with one changed token. In GATD, we sequentially
replace each token of phrase I to obtain multi-
ple variants T]’- of the same text 7} (see Figure 2),
ensuring that the newly introduced tokens do not
replicate or closely resemble the original tokens.

Adpversarial token injection (ATI) Adversarial
token injection extends the concept of gradual to-
ken disruption by introducing a more controlled
manipulation of token placement within a given
phrase. While gradual token disruption focuses
on progressively altering or removing tokens to
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Figure 2: Methodology of adversarial example creation. Two techniques, token injection and gradual token
disruption, are presented. Adversarial changes modify each F's occurrence using one of five substitution methods.
Note that M ode means the most frequent element of given set, the Rand indicates probing random element from set,
Froli] i-th token from sequence Fyo and Visually_Sim means replacing token with its visually similar equivalent.

observe how these changes impact the model’s re-
sponse, ATI goes a step further by inserting the to-
kens from source phrase F? C Tj to target phrase
F]t C Tj. This process consists of replacing ele-
ments from th with the elements of £} considering
different positioning within F]t and resulting in new
variations TJ/ of source text 7. The main objective
of this approach is to explore how the insertion of
tokens from one part of the text into another can
influence models’ circuit, particularly its attention
mechanisms and its understanding of context:

g(th,Z) = i87
fres(fh=r.

This approach is inspired by circuits detected in IOI
tasks, where certain attention heads of the model
focus on specific elements of analysed text. For ex-
ample, attention heads such as the Duplicate Token
Head (Wang et al., 2022b) may focus on specific
phrase pairs — in this case, F7 = S1 and F]t =82
phrases. As attention heads in a model can fo-
cus on specific parts of the input, ATI allows to
test how different parts of a source phrase inter-
act when introduced into a target phrase, poten-
tially triggering specific attention patterns. After
applying g(F]’?, i), the alternative phrase of th be-
comes (1., fly, [, Flyro- -0 L) € g(FL ).
The methodology of adversarial example creation
is presented on the figure 2. Two techniques are
presented: token injection and gradual tokens dis-
ruption. Adversarial change can be applied to each
of Fs occurrence with substitution of tokens using
one of five methods, namely change of tokens to
random, retrieved token wise or fixed position from
other important word (e.g. 10), replacing to fre-
quent token from the input or using TextBugger vi-
sually similar change. The proposed techniques are
used to generate adversarial examples and datasets
in the pipeline presented on figure 1.

S Experimental Setup

Hyperparameters Experiments were conducted
on the GPT-2 model” large language model. The
hyperparameters for the circuit recognition method
EAP-1IG were integrated gradient steps 5, top edges
100. For all datasets four token equivalents of im-
portant words were chosen, in this way for the
GATD we created four versions of each dataset,
where gradually from 1 to 4 tokens where changed
in chosen important words. For the adversarial to-
ken injection, version with one of token changed
was chosen as base for AE creation. The datasets
have 1000, 200 and 30 unique samples for respec-
tively CO, IOl and CC tasks.

6 Results and Discussion

In the experimental part of this study, we aim at
finding how the adversarial examples affect task
circuits and what the properties of an attacked cir-
cuits are. The adversarial example should be made
in a way that shows how gradual change in impor-
tant words, defined as perpetuating single tokens,
affect components of the tested circuit. We exam-
ine the circuits behaviour by using the proposed
two techniques GATD and ATIL.

6.1 Which heads are vulnerable to text bug
attacks?

Based on previous work in the area of analysing at-
tention heads (Wang et al., 2022b), we investigate
task-specific circuit heads in adversarial setting us-
ing gradual token disruption. The main findings
can be grouped according to head types: Duplicate
Token Heads, Previous Token Heads and Induction
Heads. The key observations are as follows.
Typically, Duplicate Token Heads (DTH) per-
form mapping between duplicated words in the text,
e.g. attending to S1 and S2 names in the 101 task.
Under adversarial attack, where we alternated 4

2https://huggingface.co/openai-community/gpt2
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tokens of the name being attacked (gradual token
disruption), a drift of mapping can be observed
(Figure 3). For altered tokens, the attention map-
ping in a1.ho is changed and no longer focuses
on S1 and S2, shifting the activation of the second
occurrence of the duplicated word to itself (S2 to
S2). Moreover, the activation shift pattern obtained
in yet another DTH head a3.h@ differs from the
pattern obtained in a1.h@. Instead of shifting the
mapping towards S2 itself on corrupted tokens, at-
tention is directed to the end of text (EOT) token.
This might be explained as the result of error accu-
mulation across different layers under the influence
of adversarial examples.

Figure 3: Activation differences between clean and cor-
rupted text in a@.h1 and a3.h@ (DTH), under change
of four tokens. Positive values (red) indicate attention
in a clean run, while negative values (blue) show shifts
due to corrupted input.

The Previous Token Heads (PTH) are respon-
sible for connecting tokens to their subsequent to-
kens in the text. When facing adversarial example,
the attention mapping should be close to diagonal
breaks towards left or right side, especially changes
occure in mapping duplicated word tokens (S1 and
S2) to their followers, which results in mapping to
tokens S-1 or S+2.

The Induction Heads (IH) performs a similar
task to Duplicated Token Heads, but instead of
connecting duplicated words, uses the induction
mechanism for mapping follower tokens of the first
duplicated word occurrence (S1+1) to the second
word occurrence (S2). Notably in this case the
attention mapping shift towards EOT token, effec-
tively disrupting the connection. Example of such
gradual change is shown on 4.

The attention heads discussed in this section
were originally identified for the IOI task, but the
same circuit heads exhibit similar behavior in the
CO task. In contrast, for the CC dataset, the DTH
and IH heads remain inactive, as there are no dupli-
cated words in the CC test set. However, the PTH
heads discovered in the IOI task demonstrate the
same behavior across CC and CO tasks.

Figure 4: Activation differences between clean and cor-
rupted text in a5.h5 (IH) distinguished by the number
of modified tokens. Positive values (red) indicate atten-
tion in a clean run, while negative values (blue) show
shifts due to corrupted input.

6.2 How adversarial attacks affect circuit
structure?

In order to answer this question, we examined how
adversarial attacks affect the effectiveness of each
downstream task. For all three tasks, we measured
the impact of attack by analyzing changes in the
probability of the desired output under adversarial
perturbations. The results of this experiment are
presented on Figures 5 (IOI) and 6 (CO and CC).
The plots illustrate probability distribution of task
label (IO) under adv. attack with prob. distribution
of clean input as a reference. For IOl task, grad-
ually increasing the number of disrupted tokens
from one to four progressively lowers the output
probability of IO tokens. We illustrate the attacks
for both S1 and S2 targets, which were indepen-
dently tested during this experiment. The impact
of attack location on the task goal is noticeable
but inconsistent. For 1- and 3-token changes, at-
tacking S2 phrase led to higher effectiveness of the
attack, whereas in other cases, the opposite effect
was observed. Notably, in IOI task the modifica-
tion of S2 phrase affects semantics of the second
sentence — the actual task question — which is why
we focused on perturbing only S1 phrase in further
experiments. For the CO and CC datasets, adversar-
ial examples gradually degraded the models’ task
performance.

The systematic change in the number of nodes
and edges between baseline and TB corruption can
be seen in Table 1. Generally, TextBugger corrup-
tion leads to a decrease in the number of nodes and
edges. This is due to the use of the same minimum
edge score in the EAP-IG method for both baseline
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Figure 6: Distribution of correct output log probability
on clean and corrupted examples for CO and CC.

and TextBugger graphs. This suggests that adver-
sarial examples lower the edge score, effectively
removing nodes and edges from the circuit.

To assess the impact of perturbations on circuit
structure, we represented the recognized circuits
as graphs using the EAP-IG method. To com-
pare differences, we developed a visualisation ap-
proach that overlays two graphs (perturbed and
baseline) to highlight shared and newly introduced
nodes and edges. Figure 7 shows an example com-
paring the 10Ol baseline run with one affected by
TextBugger corruption. The triangular nodes rep-

Table 1: Nodes and edges number for Baseline (BS) and
TextBugger (TB) run of the EAP-IG. Data are presented
for IOI, CC and CO tasks. For TB runs can be distin-
guished between change between 1 and 4 tokens, BS
runs follows techniques according to the task definition.

Capital Colored
Country | Objects
BL TB | BL TB | BL TB

Tokens 101
changed

" I 27 25 |29 20 [ 25 22
RS 2 27 18 | 29 21 [ 25 22
S 3 26 31 |29 22 |25 20

4 26 25 |29 22 |25 26
" I 74 64 | 88 42 | 61 55
) 2 83 40 | 88 48 | 61 57
= 3 77 75| 88 49 | 61 54

4 77 57 | 88 48 | 61 63

resent additions in the TextBugger graph absent
in the baseline. Notably, DTH (a@.h1, a3.h@) in-
creased their importance on the TB graph, but one
of IH a5.h5 lower the importance. This observa-
tion likely stems from shifts in attention head pat-
terns which originally attempt to connect S1 and
S2 instances but fail under adversarial inputs.

G

Figure 7: Graph comparison of clean vs. corrupted
runs of the model, showing the 50 most important
edges. Nodes represent model submodules: rectangular
(present in clean), dotted (removed in corrupted), and
triangular (added in corrupted). Edge thickness reflects
connection importance.

6.3 Does adversarial effectiveness vary with
token position?

To examine the impact of injecting AE on various
token position we used ATI. For this purpose, four
datasets with attacks were created by substituting
tokens with: random token, corresponding token
from 10/Color, last IO/Color token, and frequent
token from the text. The overall attack performance
is measured in terms of the reduction in the prob-
ability of the correct output — the results of this
experiment are presented in Figures 8 (I0I) and 9
(CO). For both tasks, injecting the last token of
10/Color significantly reduces the probability of
the desired output. The experiment shows that the
position of the attacked token is less important than
the method of injection. Furthermore, the injection
of frequent token performs similarly in CO task but
stands out for IOI. This can be explained by the
fact that CO examples tend to be more schematic
with multiple tokens repeated, whereas in 1Ol the
tokens are more unique.
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To analyse the factors that contribute to the
greater effectiveness of one attack compared to
another, differences in attention maps were inves-
tigated. The first difference between 10/Color last
and random settings can be seen in DTH 10, this
head should link the S2 token to S1, signalling that
the name is duplicated. However, the attack in both
settings alters this mapping, redirecting S2 to itself
at the attacked position. Notably, in the first setting
the attention is also shifted from IO last token to
altered S1 token, which may explain the difference
in performance between those attacks.

Random

Figure 10: Activation differences between clean and
corrupted text in a@.h1 (DTH) for the IO last and Ran-
dom token injection on position 0. Positive values (red)
indicate attention in a clean run, while negative values
(blue) show shifts due to corrupted input.

6.4 How to mitigate the threat of
circuit-oriented adversarial examples?

Although we were unable to conduct particular ex-
periments aimed at securing models against circuit-
based targeted attacks, one can suggest promising

approaches for defending against such attacks:

* Perturbation-based data augmentation — train-
ing the models on augmented datasets with
perturbations via token copy-pasting (adver-
sarial token injection, Sec. 4) might signifi-
cantly increase the models’ robustness to sub-
tle token changes, but it may not necessarily
solve the problem of targeted attacks com-
pletely.

* Counterfactual data design — creating coun-
terfactual examples, where specific elements
such as certain tokens or phrases are inten-
tionally altered, can teach the model to focus
on the most relevant parts of the input rather
than being overly sensitive to targeted pertur-
bations.

We believe that while regularization techniques
may help reduce the model’s sensitivity to typi-
cal perturbations, they are unlikely to fully defend
against sophisticated targeted attacks that manip-
ulate specific components of the model, such as
task-specific attention heads. In this context, the
techniques such as perturbation-based data aug-
mentation and counterfactual data design are more
likely to be effective in improving robustness of
modern language models. We suggest that further
exploration of this topic is important for developing
more effective defenses against targeted attacks on
model circuits.

Conclusions In this paper, we proposed how to
investigate LLM circuits using adversarial example,
especially with two new techniques: GATD and
ATI. The main findings of analysing the GPT-2
model under three tasks (IOI, CO, CC) are:

* In the Sec. 6.1 we presented how gradual to-
ken disruption affects attention heads, espe-
cially how attention changes and how the er-
ror propagates in the DTH, PTH and IH head
groups, additionally we shown that adversar-
ial activation patterns are shared across tasks.

* Impact of GATD on model performance in
tasks was examined in Sec. 6.2 were we
shown that model behave differently when fac-
ing TB attack and swapped name even though
same number of tokens was changed.

* The position of ATI usage has less impact on
attack performance than the chosen injection
technique, which varies in effectiveness de-
pending on the task Sec. 6.3.



Limitations

Our experimental analysis was conducted on the
tasks of a similar type, i.e. I0I, Colored Object, and
it remains unclear whether the observed effects gen-
eralize to other tasks. Additionally, we do not know
whether the same attention heads are used across
significantly different tasks. The observed atten-
tion head patterns might be strongly related with
task types. However, as shown in the appendix, cer-
tain attention heads such as PTH (Previous Token
Head) appear to be shared across different tasks.

We were not entirely able to explain why the
attention heads exhibit the behaviors observed in
our experiments. The patterns described in the 6.1
section, such as mapping to EOT, may be highly
model-specific and could result from incidental be-
havior of a particular GPT-2 model family instance
rather than representing a fundamental property of
attention heads. However, the results presented
in 6 were obtained for two different models, GPT-2
small and GPT-2 medium, suggesting some level
of consistency between model scales and different
training initialisation.

Some models struggle with more complex tasks
due to their limited parameter count or due to the
lack of SFT tuning. This suggests that our findings
should be valid mostly for pre-trained models only,
and future research could extend our findings on a
broader range of models to assess their generaliz-
ability.
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A Lexical Consistency

A.1 Does lexical consistency of adv. attacks
affect the performance of downstream
tasks?

One of the key restrictions commonly used in adver-
sarial examples generation is maintaining lexical
consistency of modified texts. For IOl tasks in base
version, corrupted texts are generated with substi-
tution of S2 name with different name from dictio-
nary. TextBugger attacks substituting given number
of tokens with different creating visually similar
word however, such substitute is not a lexically cor-
rect word. Figure 11 presents differences in the 10
log probability distribution between: clean, texts
with swapped names at S1 or S2 position, as well
as perturbing the original S1, and S2 tokens with
TextBugger attack.
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Figure 11: Distribution of 10 log probability on adver-
sarial examples on each of four tokens modified.
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It can be noted that swapping names on S2 posi-
tion reduces the most probability of 10, same action

10

on S1 is less successful however under TextBug-
ger attack the relation is inverted. It can be con-
cluded that adversarial disruption based on replac-
ing one of the names with another that is lexically
correct reduces indirect object probability more
than TextBugger attacks. From a different perspec-
tive, TB gives ability to attack words gradually,
which is not possible on names swapping.

B Head Disruptions

In this section we present how different attention
head groups change when faced with adversarial
attacks. Attention maps are distinguished between
gradual token disruption of 1 to 4 tokens. Analy-
sis of attention maps presented below is linked to
findings presented in Sec. 6.1.

B.1 1Ol task

For the Indirect Object Identification task we
present attention differences for the Duplicated To-
ken Head 12, Previous Token Head 13 and for the
Induction Head 14.

,,,,,,,,,,

Figure 12: Activation differences between clean and
corrupted text in a@.h1 (DTH) distinguished by the
number of modified tokens, for IOI task. Positive values
(red) indicate attention in a clean run, while negative
values (blue) show shifts due to corrupted input.

B.2 Capital Country task

For the Capital Country task we present atten-
tion differences for the Duplicated Token Head 15,
Previous Token Head 16 and for the Induction
Head 17.
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Figure 13: Activation differences between clean and
corrupted text in a4.h11 (PTH) distinguished by the
number of modified tokens, for IOI task. Positive values
(red) indicate attention in a clean run, while negative
values (blue) show shifts due to corrupted input.
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Figure 14: Activation differences between clean and
corrupted text in a5. h5 (IH) distinguished by the num-
ber of modified tokens, for IOI task. Positive values
(red) indicate attention in a clean run, while negative
values (blue) show shifts due to corrupted input.

B.3 Colored Objects task

For the Colored Objects task we present atten-
tion differences for the Duplicated Token Head 18,
Previous Token Head 19 and for the Induction
Head 20.

11

Figure 15: Activation differences between clean and
corrupted text in a@.h1 (DTH) distinguished by the
number of modified tokens, for Capital Country task.
Positive values (red) indicate attention in a clean run,
while negative values (blue) show shifts due to corrupted
input.

Figure 16: Activation differences between clean and
corrupted text in a4.h11 (PTH) distinguished by the
number of modified tokens, for Capital Country task.
Positive values (red) indicate attention in a clean run,
while negative values (blue) show shifts due to corrupted
input.
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Figure 17: Activation differences between clean and cor-
rupted text in a5. h5 (IH) distinguished by the number
of modified tokens, for Capital Country task. Positive
values (red) indicate attention in a clean run, while neg-
ative values (blue) show shifts due to corrupted input.



1 token changed

Figure 18: Activation differences between clean and
corrupted text in a@.h1 (DTH) distinguished by the
number of modified tokens, for Colored Objects task.
Positive values (red) indicate attention in a clean run,
while negative values (blue) show shifts due to corrupted
1nput.

1 token changed

Figure 19: Activation differences between clean and
corrupted text in a4.h11 (PTH) distinguished by the
number of modified tokens, for Colored Object task.
Positive values (red) indicate attention in a clean run,
while negative values (blue) show shifts due to corrupted
input.
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Figure 20: Activation differences between clean and cor-
rupted text in a5.h5 (IH) distinguished by the number
of modified tokens, for Colored Object task. Positive
values (red) indicate attention in a clean run, while neg-
ative values (blue) show shifts due to corrupted input.



	Introduction
	Related Work
	Circuit Recognition Methods
	Circuit Recognition Tasks

	Adversarial Circuit Analysis
	Designing adversarial examples

	Experimental Setup
	Results and Discussion
	Which heads are vulnerable to text bug attacks?
	How adversarial attacks affect circuit structure?
	Does adversarial effectiveness vary with token position?
	How to mitigate the threat of circuit-oriented adversarial examples?

	Lexical Consistency
	Does lexical consistency of adv. attacks affect the performance of downstream tasks?

	Head Disruptions
	IOI task
	Capital Country task
	Colored Objects task


