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ABSTRACT

Deep Generative Models (DGMs), such as Diffusion Models, have achieved
promising performance in approximating complex data distributions. However,
it is rare to see their application to distributional Reinforcement Learning (RL),
which remains dominated by the classical histogram-based methods that in-
evitably incur discretization errors. In this paper, we highlight that this gap stems
from the non-linearity of modern DGMs, which conflicts with the linear structure
of the Bellman equation, a key technique to permit efficiently training RL models.
To address this, we introduce Bellman Diffusion, a new DGM that preserves the
necessary linearity by modeling both the gradient and scalar fields. We propose
a novel divergence-based training technique to optimize neural network proxies
and introduce a new stochastic differential equation for sampling. With these in-
novations, Bellman Diffusion is guaranteed to converge to the target distribution.
Our experiments show that Bellman Diffusion not only achieves accurate field
estimations and serves as an effective image generator, but also converges 1.5ˆ

faster than traditional histogram-based baselines in distributional RL tasks. This
work paves the way for the effective integration of DGMs into MDP applications,
enabling more advanced decision-making frameworks.

1 INTRODUCTION

Markov Decision Processes (MDPs), particularly distributional Reinforcement Learning
(RL) (Bellemare et al., 2017), learn the distribution of returns rather than just its expected value
(i.e., the Q-function). This allows the model to capture the intrinsic randomness (stochastic dynam-
ics and rewards) of returns, demonstrating its efficacy and broad applicability (Lowet et al., 2020;
Lyle et al., 2019; Dabney et al., 2018). Although many types of Deep Generative Models (DGMs),
such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) and Diffusion Mod-
els (Sohl-Dickstein et al., 2015; Song et al., 2021; Ho et al., 2020), are well-developed for learning
complex continuous distributions, their application to Markov Decision Processes and distributional
RL remains underexplored1. Instead, classical histogram-based methods (e.g., C51 (Bellemare et al.,
2017)) remain widely used in MDPs: These methods leverage Bellman equation (Bellman, 1954;
Mnih et al., 2013) to efficiently update the model with partial trajectories and approximate return
distributions using discrete bins, rather than directly modeling the continuous return distribution.
The discretization inherent in these methods can accumulate errors, causing instability and slower
convergence. Specifically, for continuous return distributions, histogram-based methods inevitably
introduce discretization errors at each state, leading to error propagation along the state-action tra-
jectory. This accumulation of errors, combined with potentially long trajectories, makes histogram-

˚Joint first authors. This work was done while Yangming Li was collaborating at Sony AI.
1A naive approach to modeling the return distribution with DGMs is to sample full state-action trajectories

and use the computed returns to train EBMs. However, this method is not scalable, as trajectory sampling is
costly in many RL environments (see Appendix D for more details).
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based methods, unstable to train and difficult to converge. This highlights the need to leverage a
continuous DGM to model continuous return distributions in the Bellman update.

In this work, we first identify the main reason for the gap in applying modern DGMs to MDPs: the
linear nature of the Bellman equation update. More precisely, Bellman equation relates the return
distribution pz of a state z as a linear combination of return distributions pz1 of future states z1,
expressed formally as:

pzp¨q “
ÿ

z1,r

αz,z1,rpz1

´

¨ ´ r

γ

¯

, (1)

where “¨” indicates a dummy argument, r is the expected reward for transitioning between states,
and αz,z1,r, γ are constants determined by the RL environment. However, the modeling operators
of modern DGMs, which map neural a network-parameterized function to target densities or related
statistics, are inherently nonlinear with respect to the neural network functions themselves (note
that the nonlinearity is not referred to the input data). This nonlinearity conflicts with the Bellman
update’s linear structure, which relates a state’s return distribution linearly to those of future states,
fundamentally hindering the direct application of existing DGMs in Bellman updates. Below, we
will use EBMs, which is effective in distribution approximation (Lee et al., 2023), as an example to
further illustrate this point.

Illustrative example. At each state z, the EBM’s modeling operator MEBM maps the neural net-
work function Ez (known as energy) to the target (return) distribution pz . This mapping is formally
expressed as: MEBM : Ezp¨q ÞÑ e´Ezp¨q

Zz
« pzp¨q. where Zz :“

ş

e´Ezpxq dx is the normalization
factor at each state z. In general, MEBM is a nonlinear operator with respect to the input function
Ez , which means the Bellman equation update cannot be used to link future state densities with the
current state for efficient updates:

pzp¨q “ MEBMpEzqp¨q ‰
ÿ

z1,r

αz,z1,rMEBMpEz1 q

´

¨ ´ r

γ

¯

“
ÿ

z1,r

αz,z1,rpz1

´

¨ ´ r

γ

¯

.

As such, MEBM, acting as a nonlinear operator, disrupts the linearity of the distributional Bellman
equation and rendering EBMs inapplicable in this context. In Sec. 2, we analyze the modeling
approaches of other modern DGMs and find that none can preserve the linearity of the Bellman
update, limiting the application of powerful DGMs in MDP tasks.

Our framework: Bellman Diffusion. To address this bottleneck, we propose Bellman Diffusion,
a novel DGM designed to overcome bottlenecks in applying DGMs to MDPs. The core idea is
to model the gradient field ∇pzp¨q and scalar field pzp¨q directly. That is, MBellman : pzp¨q ÞÑ
„

∇pzp¨q

pzp¨q

ȷ

. Since the gradient and identity operations are linear operators, the linearity of the Bell-

man equation is well preserved under MBellman. For instance, after applying the gradient operator
∇, the Bellman equation still holds:

∇pzp¨q “
ÿ

z1,r

αz,z1,r

γ
∇pz1

´

¨ ´ r

γ

¯

.

We now use ptarget to denote the target density of each state, replacing the previous notation pz .
Since ∇ptargetp¨q and ptargetp¨q are generally inaccessible, we introduce field-based divergence
measures and transform them into feasible training objectives: approximating fields ∇ptargetp¨q

and ptargetp¨q with neural network proxies gϕ and sφ.

Given these proxies, we introduce a new sampling method: Bellman Diffusion Dynamics, associated
with the fields represented by the following stochastic differential equation (SDE):

dxptq “ ∇ptargetpxptqq
looooooomooooooon

«gϕ

dt `

b

ptargetpxptqq
looooooomooooooon

«
?
sφ

dwptq, starting from xp0q „ p0, (2)

where wptq is a Brownian process and p0 is any initial distribution. Once the fields are well ap-
proximated, we can replace the field terms in the above equation with learned proxies, resulting in a
proxy SDE that can be solved forward in time to sample from ptargetpxq.
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Theoretical and empirical results. Theoretically, we guarantee the convergence of our Bellman
Diffusion Dynamics to the stationary distribution ptarget, regardless of the initial distribution (The-
orem 4.1), and provide an error bound analysis accounting for neural network approximation errors
(Theorem 4.2). Thus, Bellman Diffusion is a reliable standalone generative model.

Experimentally, we show the generative capabilities of Bellman Diffusion on real and synthetic
datasets, confirming accurate field estimations, with promising results in image generation. We
further apply Bellman Diffusion to classical distributional RL tasks, resulting in much more stable
and 1.5ˆ faster convergence compared to the widely used histogram method. Notably, it can ef-
fectively learn and recover the target distributions with multiple unbalanced modes, a challenge for
score-based methods (Song & Ermon, 2019) due to the inherent nature of the score function.

In summary, Bellman Diffusion introduced in this paper stands as a novel and mathematically
grounded generative modeling approach, paving the way for continuous density modeling in var-
ious applications within MDPs, such as Planning and distributional RL.

2 LINEAR PROPERTY FOR MDPS

In this section, we review modern DGMs and highlight the desired property to facilitate density
estimation with Bellman updates, avoiding full trajectory updates.

2.1 MODELINGS OF MODERN DEEP GENERATIVE MODELS

DGMs aim to model the complex target distribution ptarget using a neural network-approximated
continuous density, enabling new samples generation. Below, we review well-known DGMs and
offer high-level insights into how they define a modeling operator M that connects their own mod-
eling functions to the desired density or its related statistics.

Energy-Based Models (EBMs) (Teh et al., 2003): These models define an energy function Epxq

and represent the probability as: ptargetpxq « e´Epxq

Z , where Z :“
ş

e´Epxq dx is the partition

function for normalizing probabilities. EBM defines a modeling operator MEBM : Ep¨q ÞÑ e´Ep¨q

Z ,
linking the statistic Ep¨q to desired density.

Flow-Based Models (Rezende & Mohamed, 2015; Chen et al., 2018): These use a series of invert-
ible transformations fpxq to map data x to a latent space z, with an exact likelihood: ptargetpxq «

πpzq

ˇ

ˇ

ˇ
det Bf´1

pxq

Bx

ˇ

ˇ

ˇ
. It determines a modeling operator MFlow : fp¨q ÞÑ πpfp¨qq

ˇ

ˇ

ˇ
det Bf´1

p¨q

Bx

ˇ

ˇ

ˇ
, con-

necting the transformation fp¨q to desired density.

Implicit Latent Variable Models: These models define a latent variable z and use a generative
process ppx|zq, where the latent space is sampled from a prior πpzq, usually taken as a standard
normal distribution. Two popular models are VAE (Kingma, 2013) and GAN (Goodfellow et al.,
2020). VAE maximizes a variational lower bound using an encoder network qpz|xq to approximate
the posterior distribution, while GAN employs a discriminator to distinguish between real and gen-
erated data, with a generator learning to produce realistic samples but lacking an explicit likelihood.
Since VAEs and GANs are implicit models, they lack an explicit modeling operator like MEBM and
MFlow that connects modeling functions to the desired density or its related statistics.

Score-Based Generative Models (SGMs) (Song et al., 2021): They involve a process that grad-
ually adds noise to ptarget, resulting in a sequence of time-conditioned densities tppxt, tqutPr0,T s,
where t “ 0 corresponds to ptarget and t “ T corresponds to a simple prior distribution πpzq.
Then, SGMs reverse this diffusion process for sampling by employing the time-conditioned score
sp¨, tq :“ ∇ log pp¨, tq and solving the ordinary differential equation (Song et al., 2021) from t “ T
to t “ 0 with ϕT pxT q “ xT „ π: dΨtpxT q “

`

fpΨtpxT q, tq ´ 1
2g

2ptqspΨtpxT q, tq
˘

dt,
where f and g are pre-determined. This flow defines a pushforward map VTÑtrss of the den-

sity as VTÑtrsstπu :“ π
`

Ψ´1
t p¨q

˘

ˇ

ˇ

ˇ
det

BΨ´1
t p¨q

Bx

ˇ

ˇ

ˇ
. Thus, SGMs determine a modeling operator

MSGM : s ÞÑ VTÑ0rsstπu « ptarget.
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2.2 DESIRED LINEAR PROPERTY IN MDP

As the case of EBMs shown in Sec. 1, to leverage the strong capability of DGMs in density modeling
with the Bellman update (Eq. (1)), the linearity of modeling operator M is crucial:

Linear property of modeling. The modeling operator M defined by a DGM is linear:
M

`

af ` bg
˘

“ aM
`

f
˘

` bM
`

g
˘

, for any reals a, b and functions f, g.

If M : fzp¨q Ñ pzp¨q is linear, we can link future state densities or their statistics with the current
state for efficient updates, as shown in the Bellman equation in Eq. (1):

Mpfzqp¨q “
ÿ

z1,r

αz,z1,rMpfz1 q

ˆ

¨ ´ r

γ

˙

.

However, for current well-established DGMs, their modeling operators are either not explicitly
defined (e.g., VAE and GAN), lacking guaranteed linearity, or are nonlinear operators (e.g., MEBM,
MFlow, and MSGM). Consequently, this restricts the application of these powerful DGMs to MDPs.
We provide an extended discussion of related work in Appendix A.

3 METHOD: BELLMAN DIFFUSION

In this section, we mainly provide an overview of Bellman Diffusion, presenting the usage, with its
theoretical details later in Sec. 4. We defer all proofs to Appendix 3.

3.1 SCALAR AND VECTOR FIELD MATCHING

Field matching. Suppose we have a finite set of D-dimensional samples, with each data x drawn
from the distribution ptarget. As a generative model, Bellman Diffusion aims to learn both the
gradient field ∇ptarget and the scalar field ptarget. Similar to Fisher divergence (Antolı́n et al.,
2009) for the score function ∇ log ptarget, we introduce two divergences for ∇ptarget and ptarget.

Definition 3.1 (Field Divergences). Let pp¨q and qp¨q be continuous probability densities. The dis-
crepancy between the two can be defined as

Dgrad

`

pp¨q, qp¨q
˘

“

ż

ppxq ∥∇ppxq ´ ∇qpxq∥2 dx (3)

using the gradient operator ∇ in terms of x, or as

Did

`

pp¨q, qp¨q
˘

“

ż

ppxqpppxq ´ qpxqq2 dx (4)

using the identity operator I. Here, ∥¨∥ denotes the ℓ2 norm.

As shown in Appendix B.2, the two measures above are valid statistical measures. These mea-
sures are used to empirically estimate the gradient field ∇ptargetpxq and the scalar field ptargetpxq

from real data X . Furthermore, our modeling defines a modeling operator given by MBellman :“
„

∇
I

ȷ

: ptargetp¨q ÞÑ

„

∇ptargetp¨q

ptargetp¨q

ȷ

which is linear in its input.

Similar to SGMs, we parameterize two neural networks, gϕpxq and sφpxq ě 0, with learnable
parameters ϕ and φ, to match with these fields using the following estimation loss functions:

$

’

&

’

%

Lgradpϕq :“ Dgrad

`

ptargetp¨q,gϕp¨q
˘

“ Ex„ptargetpxq

”

}∇ptargetpxq ´ gϕpxq}2
ı

Lidpφq :“ Did

`

ptargetp¨q, sφp¨q
˘

“ Ex„ptargetpxq

”

pptargetpxq ´ sφpxqq2
ı

.
(5)

Since the terms ∇ptargetpxq and ptargetpxq inside the expectation are generally inaccessible, these
losses cannot be estimated via Monte Carlo sampling. The following proposition resolves this issue
by deriving a feasible proxy for the loss functions.
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Proposition 3.1 (Equivalent Forms of Field Matching). The loss Lgradpϕq is given by

Lgradpϕq “ Cgrad ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN px2 ´ x1;0, ϵIDq

ı

,

and Lidpφq is expressed as

Lidpφq “ Cid ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, N p¨;0, ϵIDq denotes a D-dimensional isotropic Gaussian density function, and Cgrad and
Cid are constants independent of the model parameters ϕ and φ.

Note that using the sequence of isotropic Gaussians tN p¨;0, ϵIDquϵą0 is not strictly necessary. It is a
convenient choice for constructing a family of distributions with parameters ϵ ą 0 that approximates
the delta distribution as ϵ Ñ 0`, enabling feasible and simple training objectives.

Building on the above proposition, we can obtain feasible approximations of the training losses.
With ϵ fixed to be sufficiently small (see Sec. G for experimental setups), we have:
$

’

&

’

%

sLgradpϕ; ϵq :“ Cgrad ` Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN p¨,0, ϵIDq

ı

« Lgradpϕq,

sLidpφ; ϵq :“ Cid ` Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1,0, ϵIDq

ı

« Lidpφq

(6)

We note that scalar and gradient fields can be modeled independently. Moreover, as Bellman Dif-
fusion directly matches these fields, it eliminates the need for the normalizing constant associated
with costly spatial integrals in the density network required by EBMs.

In the cases of MDP and RL, sample x represents the discounted return, a scalar, so we can simply
denote it as x P R. More conveniently, the trace term trp∇gϕpx1qq in loss function Lgradpϕq, which
is computationally expensive to estimate in practice, reduces to a 1-dimensional derivative Bgϕpx1q,
which can be efficiently estimated by automatic differentiation frameworks (e.g., PyTorch (Paszke
et al., 2019)). For the high-dimensional cases, we adopt the slice trick (Kolouri et al., 2019) to make
the trace term scalable. The discussion in this thread is placed in Appendix F.

3.2 BELLMAN DIFFUSION DYNAMICS

Suppose that neural networks gϕpxq, sφpxq accurately estimate the target fields ∇ptargetpxq

and ptargetpxq, one can sample from ptargetpxq by approximating the score function as:
∇ log ptargetpxq “

∇ptargetpxq

ptargetpxq
«

gϕpxq

sφpxq
, and then applying Langevin dynamics (Bussi & Parrinello,

2007): dxptq “ ∇ log ptargetpxqdt `
?
2 dωptq «

gϕpxq

sφpxq
dt `

?
2 dωptq, where ωptq is a standard

Brownian motion. However, this approach can be numerically unstable due to the division2. This
issue is unavoidable as ptargetpxq vanishes when ∥x∥ Ñ 8. Additionally, it doesn’t support the
distributional Bellman update for MDPs as mentioned in Sec. 1.

To solve this, we propose a new SDE to sample from ptarget, termed Bellman Diffusion Dynamics:

dxptq “ ∇ptargetpxptqq dt `

b

ptargetpxptqq dωptq. (7)

We also provide the theoretical motivation and derivation of Eq. (7) in Appendix B.1.

In practice, once the neural network approximations gϕpxq « ∇ptargetpxq and sφpxq « ptargetpxq

are both well-learned, we can derive the following empirical Bellman Diffusion Dynamics, a feasible
proxy SDE for Eq. (7):

dxptq “ gϕpxqdt `

b

sφpxqdωptq. (8)

Bellman Diffusion learns and samples using both the scalar and gradient fields, allowing it to better
approximate low-density regions and unbalanced target weights (see Sec. G.1).

2For example, if sφpxq is around 0.01, its inverse can magnify the estimation error of gϕpxq by 100 times.
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3.3 SUMMARY OF TRAINING AND SAMPLING ALGORITHMS

To summarize Bellman Diffusion as a DGM, we outline the training and sampling steps in Alg. 3
and Alg. 4 in Appendix D.1. For training, we first sample real data x1,x2 from dataset X (line 2)
and slice vectors v,w from some predefined distributions qpvq, qpwq (line 3)3. Then, we estimate
the loss functions sLslice

gradpϕ; ϵq, sLslice
id pφ; ϵq using Monte Carlo sampling (lines 4-6). Finally, the

model parameters ϕ and φ are updated via gradient descent (lines 7-8).

For inference, we begin by sampling xp0q from an arbitrary distribution, such as standard normal
(line 1). Then, after setting the number of steps T and step size η, we iteratively update xp0q to
xpηT q following Eq. (7) (lines 3-7).

4 THEORETICAL GUARANTEES

In this section, we present theoretical foundations for Bellman Diffusion Dynamics, including
steady-state analysis of Eq. (7) and an error analysis for Eq. (8), to justify its underlying rationale.
We defer all proofs to Appendix C.

4.1 STEADY-STATE ANALYSIS OF BELLMAN DIFFUSION DYNAMICS

Let pt be the marginal density of Bellman Diffusion Dynamics given by Eq. (7), starting from any
initial density p0. The following theorem shows that, regardless of the initial distribution p0, pt
converges to the stationary distribution, which is exactly ptarget, as t Ñ 8, at an exponential rate.

Theorem 4.1 (Convergence to the Steady State). Let ptarget be the target density satisfying Assump-
tion C.1. Then, for any initial density p0, we have the following KL and Wasserstein-2 bounds:

W 2
2

`

pt, ptarget
˘

À KL
`

pt}ptarget
˘

À e´2αtKL
`

p0}ptarget
˘

.

Here, α ą 0 is some constant determined by ptarget, and À hides multiplicative constants that
depend only on ptarget.

This theorem implies that as t Ñ 8, pt Ñ ptarget in both KL and Wasserstein-2 senses. Thus,
it justifies that by using our sampling method, which involves solving the SDE in Eq. (7), we can
ensure that samples will be obtained from the target distribution ptarget.

4.2 ERROR ANALYSIS OF EMPIRICAL BELLMAN DIFFUSION DYNAMICS

We let pt;ϕ,φ denote the marginal density from the empirical Bellman Diffusion Dynamics in Eq. (8),
starting from any initial density p0. The following theorem extends the result in Theorem 4.1 by
providing an error analysis. It accounts for network approximation errors in gϕpxq « ∇ptargetpxq

and sφpxq « ptargetpxq, and gives an upper bound on the Wasserstein-2 discrepancy between pT ;ϕ,φ

and ptarget.

Theorem 4.2 (Error Analysis of Neural Network Approximations). Let ptarget be the target dis-
tribution satisfying Assumptions C.1 and C.2. Suppose the dynamics in Eqs. (7) and (8) start
from the same initial condition sampled from p0. For any ε ą 0, if T “ Oplog 1{ε2q and

εest “ O
´

ε
?
Te

1
2
LT

¯

, such that ∥gϕp¨q ´ ∇ptargetp¨q∥
8

ď εest and |sφp¨q ´ ptargetp¨q|
8

ď εest,

where L ą 0 is the Lipschitz constant associated with ptarget, then W2ppT ;ϕ,φ, ptargetq ď ε.

From the above theorem, our dynamics can function as a standalone generative model, capable
of learning the target distribution ptarget. Using advanced techniques such as Chen et al. (2022);
De Bortoli (2022); Kim et al. (2023; 2024), a tighter bound between pT ;ϕ,φ and ptarget in W2 or
other divergences could be achieved. Moreover, discrete-time versions of both Theorems 4.1 and 4.2
can be derived with more advanced analysis. However, we defer this to future work, as the current
focus is on establishing the core principles.

3Here, we follow the practice in Song et al. (2020) by using a single slice vector to approximate the expec-
tation over qpvq or qpwq, trading variance for reduced computational cost.
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Algorithm 1 Training with Bellman Diffusion
1: repeat
2: Sample state transition pzt, at, zt`1, at`1, rtq from

the environment and policy π
3: if zt is the end state then
4: Sample x1, x2 from N prt; 0, ξq

5: Compute Lgradpϕ; ϵq “ gϕpx1, zt, atq
2

` N px1 ´

x2; 0, ϵqBx1gϕpx1, zt, atq

6: Compute Lidpφ; ϵq “ sφpx1, zt, atq
2

´ 2N px1 ´

x2; 0, ϵqsφpx1, zt, atq

7: Update parameter ϕ with ´∇ϕLgradpϕ; ϵq
8: Update parameter φ with ´∇φLidpφ; ϵq
9: else

10: Sample x from a bounded span pxmin, xmaxq

11: Set target gradient gtgt “ gϕ
`

x´r
γ

, zt`1, at`1

˘

12: Set target scalar stgt “ 1
γ
sφ

`

x´r
γ

, zt`1, at`1

˘

13: Update ϕ with ´∇ϕ

`

gϕpx, zt, atq ´ gtgt
˘2

14: Update φ with ´∇φ

`

sφpx, zt, atq ´ stgt
˘2

15: end if
16: until parameters ϕ,φ converge

Algorithm 2 Inference with Bellman Diffusion
1: Set the initial environment state z0 P Z
2: Set the cumulative return X “ 0, with discount

rate γ P p0, 1q

3: Set the current time step t “ 0
4: while zt is not the terminal state do
5: Set an empty map f : A Ñ R
6: for a P A do
7: Sample a batch of particle xi from uniform dis-

tribution Upxmin, xmaxq

8: Apply the Bellman Diffusion Dynamics (i.e.,
Eq. (7)), with gradient and scalar fields gϕ, sφ,
to convert each particle xi into a new one sxi

9: Set fpaq as the mean of all new particle sxi

10: end for
11: Set at “ argmaxaPA fpaq

12: Based on the last state zt and action at, get new
state zt`1 and reward x from the environment

13: Update the current return X “ x ` γX
14: Update time step t “ t ` 1
15: end while

5 EXPERIMENTS: BELLMAN DIFFUSION FOR DISTRIBUTIONAL RL

In this section, we mainly show experiment results, verifying that Bellman Diffusion is a capable
RL model. Note that our method can also be regarded as a new generative model. We place
the experiment results to confirm that in Appendix G. In the following content, we first detail the
training and evaluation algorithms of Bellman Diffusion for distributional RL tasks, and then we
demonstrate its effectiveness in this classical MDP setting. A method effective in RL can naturally
address simpler MDP tasks, such as planning.

5.1 BELLMAN DIFFUSION FOR DISTRIBUTIONAL RL MODELING

An MDP is defined by a 5-tuple pZ,A, ptran, prwd, γq, where Z is the state space, A is the action
space, ptran represents the transition probability, prwd is the reward model, and γ is the discount
factor. Given a policy π that selects an action a P A for each state z P Z , the goal is to estimate the
probability distribution of the discounted return X “

ř

tě1 γ
t´1Rt for each state z or state-action

pair pz, aq, where Rt is the reward received at time step t.

Training and evaluation algorithms. Let us consider the case of state-action return Xz,a, z P

Z, a P A. To apply Bellman Diffusion to model this return distribution, we need to first parameterize
the gradient and scalar fields for every state-action pair pz, aq, which is memory consuming. One
way to address this inefficiency is to share field models across all state-action pairs. In this spirit,
we respectively denote the 1-dimensional gradient and scalar models as gϕpx, z, aq and sφpx, z, aq.
Alg. 1 shows the training procedure of field models in terms of the distributional Bellman update,
while Alg. 2 shows how to form a policy π : Z Ñ A with the field models and evaluate its
performance. Alg. 1, together with the 5th-11th lines in Alg. 2 to predict the next action at`1,
form a complete distributional RL learning algorithm.

More algorithm details. In Alg. 1, we assume that the reward at the terminal state is a scalar and that
the variance of the Gaussian ξ is small—an assumption that holds in most scenarios. For instance,
at the end of a game, one either wins or loses. We also define xmin and xmax as the minimum
and maximum possible returns. This algorithm can also be naturally applied to planning, and as
mentioned above, it can also be extended to RL by incorporating action selection: typically choosing
the action with the highest expected return, while occasionally exploring randomly. We compare
our method to the baseline histogram-based approach C51, which models the return distribution as
a simple categorical distribution. Its training algorithm is detailed in Algorithm 1 of their paper.
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Figure 1: The 2 ˆ 2 subfigures, arranged from left to right and top to bottom, show a trajectory of
Bellman Diffusion, interacting with a maze environment. Each subfigure consists of the state on the
left, gradient field in the middle, and scalar field on the right.

Figure 2: The left and right subfigures respectively show the initial and some middle states of
Bellman Diffusion, interacting with an environment of balance control. Every subfigure is composed
of the observation on the left, gradient field in the middle, and scalar field on the right.

5.2 EXPERIMENT RESULTS ON DISTRIBUTIONAL RL

We apply Bellman Diffusion to two OpenAI Gym environments (Brockman, 2016):
Frozen Lake and Cart Pole. Concrete implementations are detailed in Appendix D.
Frozen Lake is a maze where actions (e.g., moving up) may yield unexpected out-
comes (e.g., moving left), while Cart Pole involves balancing a pole on a movable car.

Figure 3: The returns on the Cart
Pole, with the colored areas as
the confidence interval and the
maximum return as 500.

Results in Figs. 1 and 2 show that Bellman Diffusion accurately
estimates state-level return distributions and their derivatives.
For instance, as the agent approaches the goal in the maze, the
expected return shifts from 0.5 to 1, reflecting that the agent re-
ceives no rewards until it reaches the goal.

With the same model sizes and different random seeds, Bellman
Diffusion and C51, are both run on the environment of Cart Pole
10 times. The results of return dynamics over training steps are
shown in Fig. 3. Both models can ultimately achieve the maxi-
mum return; however, Bellman Diffusion converges significantly
faster than C51 and exhibits highly stable dynamics. Unlike C51,
which accumulates discretization errors across state transitions,
our method learns a continuous return distribution, minimizing
such errors and achieving superior convergence.

6 CONCLUSION

In this work, we aim to address the limitations of modern DGMs
in MDPs and distributional RL, emphasizing the need for linearity in modelings. To this end, we
propose Bellman Diffusion, a novel DGM that maintains linearity by modeling gradient and scalar
fields. Through new divergence measures and a novel SDE-based sampling method (i.e., Bellman
Diffusion Dynamics), we ensure convergence to the target distribution. Experimental results show
that Bellman Diffusion provides accurate estimations and outperforms traditional RL methods, of-
fering a promising approach for integrating DGMs into RL frameworks.
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A RELATED WORK

A.1 RELATED WORK ON DGMS

Deep generative models (DGMs) have gained significant attention in recent years due to their ability
to learn complex data distributions and generate high-fidelity samples. This literature review cov-
ers several prominent categories of DGMs, including Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs), energy-based methods, flow-based methods, and diffusion models.

Variational Autoencoders (VAEs). Variational Autoencoders (VAEs) are a class of generative
models that leverage variational inference to approximate the posterior distribution of latent vari-
ables given the data. The VAE framework is based on the evidence lower bound (ELBO), which can
be expressed as:

Lpθ,ϕ;xq “ Eqϕpz|xqrlog pθpx|zqs ´ DKLpqϕpz|xq||ppzqq,

where qϕpz|xq is the approximate posterior, pθpx|zq is the likelihood, and DKL denotes the
Kullback-Leibler divergence. VAEs have shown remarkable success in generating images and other
complex data types Kingma (2013).

Generative Adversarial Networks (GANs). Generative Adversarial Networks (GANs) consist
of two neural networks, a generator G and a discriminator D, that compete against each other.
The generator aims to create realistic samples Gpzq from random noise z, while the discriminator
attempts to distinguish between real samples x and generated samples Gpzq. The objective function
for GANs can be formulated as:

min
G

max
D

Ex„ptargetpxqrlogDpxqs ` Ez„pzpzqrlogp1 ´ DpGpzqqqs,

where pdatapxq is the data distribution and pzpzq is the prior distribution on the noise. GANs have
become popular for their ability to produce high-quality images and have been applied in various
domains Goodfellow et al. (2020).

Energy-Based Models Energy-based models (EBMs) define a probability distribution through an
energy function Epxq that assigns lower energy to more probable data points. The probability of a
data point is given by:

ppxq “
1

Z
expp´Epxqq,

where Z “
ş

expp´Epxqqdx is the partition function. Training EBMs typically involves minimiz-
ing the negative log-likelihood of the data (LeCun et al., 2006). They have been successfully applied
in generative tasks, including image generation and modeling complex data distributions.

Flow-Based Methods Flow-based methods, such as Normalizing Flows (NFs), learn a bijective
mapping between a simple distribution z and a complex data distribution x through a series of
invertible transformations. The probability density of the data can be expressed as:

ppxq “ ppzq

ˇ

ˇ

ˇ

ˇ

det
Bf´1

Bx

ˇ

ˇ

ˇ

ˇ

,

where f is the invertible transformation from z to x. Flow-based models allow for efficient ex-
act likelihood estimation and have shown promise in generating high-quality samples (Rezende &
Mohamed, 2015).

Diffusion Models Diffusion models are a class of generative models that learn to generate data
by reversing a gradual noising process. The generative process can be described using a stochastic
differential equation (SDE):

dxt “ fpxt, tqddt ` gptqddwt,

where wt is a Wiener process, and fpxt, tq and gptq are functions defining the drift and diffusion
terms, respectively. The model learns to recover the data distribution from noise by training on
the denoising score matching objective (Ho et al., 2020; Song et al., 2021). Diffusion models have
recently gained attention for their impressive image synthesis capabilities.
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A.2 RELATED WORK ON MDPS

Limited by the linearity of the distributional Bellman equation, Previous works (Bellemare et al.,
2017; Hessel et al., 2018; Dabney et al., 2018) in planning and distributional RL have relied on
conventional generative models to represent state-level return distributions. For instance, the widely
used C51 (Bellemare et al., 2017) is a histogram model, resulting in discrete approximation errors. In
contrast, Bellman Diffusion is a new type of diffusion model that serves as an expressive distribution
approximator without discretization errors.

Recent work (Messaoud et al., 2024) (S2AC) also explores to leverage DGMs for RL tasks. How-
ever, they do not align with the problem setting and objectives of our paper. S2AC is designed for
Maximum Entropy (MaxEnt) RL, where the primary goal is learning a stochastic policy. In contrast,
our work focuses on distributional RL, which aims to model the return distribution for each state.
These are fundamentally different RL paradigms, addressing distinct challenges and requiring tai-
lored methodologies. Similar to the Langevin dynamics used in vanilla diffusion models, the SVGD
sampler relies on the score function. This dependency introduces challenges when applied to distri-
butional RL, where we aim to model the return distribution without direct reliance on the score of
the updated particle.

One concurrent work (Schramm & Boularias, 2024) (BDM) may share some conceptual connec-
tions as Bellman Diffusion, they address different problem settings and have distinct goals. BDM
is grounded in standard value-based RL and aims to estimate the successor state measure (SSM).
In contrast, our work focuses on distributional RL, where the goal is to model the entire return dis-
tribution for each state, rather than just its first moment (i.e., the value). This difference reflects
a fundamental distinction in the types of information each method seeks to capture. Additionally,
while BDM estimates the SSM, it does not explicitly discuss how a policy can be derived from it. In
comparison, distributional RL, as utilized in our method, provides a direct framework for deriving
a feasible policy from the return distribution. This makes our approach more readily applicable to
practical RL tasks. At last, BDM focuses primarily on introducing the concept of SSM estimation
using diffusion models, but it does not include experimental validation to support its methodology.
In contrast, we provide a comprehensive framework with experimental results that demonstrate the
effectiveness of Bellman Diffusion in both RL tasks and generative modeling.

B THEORETICAL RESULTS AND PROOFS FOR SEC. 3

B.1 MOTIVATION OF THE PROPOSED DYNAMICS IN EQ. (7)

1-dimensional Case. Let us first consider the one-dimensional case:
dxptq “ fpxptqq dt ` gpxptqqdwptq.

Based on the Fokker–Planck equation Risken & Risken (1996), the probability distribution ppx, tq
of dynamics xptq satisfies

Bppx, tq

Bt
“ ´

B

Bx

´

fpxqppx, tq
¯

`
1

2

B2

Bx2

´

g2pxqppx, tq
¯

“
B

Bx

´

´ fpxqppx, tq `
1

2

B

Bx

´

g2pxqppx, tq
¯¯

.

Suppose that the density ppx, tq converges as t Ñ 8, then we have Bppx, tq{Bt |tÑ8“ 0. As a
result, the above equality indicates that

´fpxqppx,8q `
1

2

d

dx

´

g2pxqppx,8q

¯

“ C.

Suppose the constant C is 0, then we have

g2pxq
dppx,8q

dx
“

´

2fpxq ´
dg2pxq

dx

¯

ppx,8q.

One way to make this equality hold is to have the below setup:
$

&

%

g2pxq “ ppx,8q

fpxq “
1

2

´dppx,8q

dx
`

dg2pxq

dx

¯¯

“
dppx,8q

dx
.
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Therefore, the following dynamics:

dxptq “
dptargetpxptqq

dx
dt `

b

ptargetpxptqqdwptq,

will converge to distribution ptargetpxq as t Ñ 8, regardless of the initial distribution ppx, 0q.

D-dimensional Case. For the general situation, the dynamics will be

dxptq “ ∇xptqptargetpxptqqdt `

b

ptargetpxptqqdωptq,

Let us check this expression. Firstly, the Fokker–Planck equation indicates that

Bppx, tq

Bt
“ ´∇x ¨

`

ppx, tq∇xptargetpxq
˘

`
1

2
∆x

`

ptargetpxqppx, tq
˘

“ ∇x ¨

´

´ ppx, tq∇xptargetpxq `
1

2
∇x

`

ptargetpxqppx, tq
˘

¯

,

where ∆x “ ∇x ¨ ∇x is the Laplace operator. With the Leibniz rule, we have

´ ppx, tq∇xptargetpxq `
1

2
∇x

`

ptargetpxqppx, tq
˘

“ ´ ppx, tq∇xptargetpxq `
1

2
ppx, tq∇xptargetpxq `

1

2
ptargetpxq∇xppx, tq

“
1

2
ptargetpxq∇xppx, tq ´

1

2
ppx, tq∇xptargetpxq.

Combining the above two equations, we get

Bppx, tq

Bt
“

1

2
∇x ¨

´

ptargetpxq∇xppx, tq ´ ppx, tq∇xptargetpxq

¯

.

By applying the Leibniz rule to divergence operators, we have
#

∇x ¨
`

ptargetpxq∇xppx, tq
˘

“
〈
∇xptargetpxq,∇xppx, tq

〉
` ptargetpxq∆xppx, tq

∇x ¨
`

ppx, tq∇xptargetpxq
˘

“
〈
∇xppx, tq,∇xptargetpxq

〉
` ppx, tq∆xptargetpxq

.

Therefore, the original partial differential equation (PDE) can be simplified as

Bppx, tq

Bt
“

1

2

´

ptargetpxq∆xppx, tq ´ ppx, tq∆xptargetpxq

¯

.

Since the dynamics will converge, we set ptargetpxq “ ppx,8q. Then, we get

Bppx, tq

Bt

ˇ

ˇ

ˇ

tÑ8
“

1

2

´

ppx,8q∆xppx,8q ´ ppx,8q∆xppx,8q

¯

“ 0.

Therefore, the dynamics lead to sampling from a given distribution ptargetpxq.

B.2 VALIDITY OF FIELD DIVERGENCES.

The first step is to check whether Dgrad, Did are well defined divergence measures. To this end, we
have the below conclusion.
Theorem B.1 (Well-defined Divergences). Suppose that pp¨q, qp¨q are probability densities that are
second-order continuously differentiable (i.e., in C2) and that ppxq ‰ 0 for all x. Then the diver-
gence measure Dgradppp¨q, qp¨qq defined by Eq. (3) and that Didppp¨q, qp¨qq formulated by Eq. (4)
are both valid statistical divergence measures, satisfying the following three conditions:

• Non-negativity: D˚ppp¨q, qp¨qq is either zero or positive;

• Null condition: D˚ppp¨q, qp¨qq “ 0 if and only if ppxq “ qpxq for every point x;

• Positive definiteness: D˚ppp¨q, pp¨q ` δpp¨qq is a positive-definite quadratic form for any
infinitesimal displacement δpp¨q from pp¨q.
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Here the subscript ˚ represents either grad or id.

Proof. Non-negativity condition obviously holds for both Dgrad and Did, due to their definitions.

For the null condition,

Dgradppp¨q, qp¨qq “ 0 implies ppxq}∇ppxq ´ ∇qpxq}2 “ 0 for all x.

This implies ∇ppxq “ ∇qpxq for all x. Since the gradients are equal, ppxq and qpxq differ by at
most a constant. For probability densities, this constant must be zero, so ppxq “ qpxq. On the other
hand, for Didppp¨q, qp¨qq “ 0:

Didppp¨q, qp¨qq “ 0 implies pppxq ´ qpxqq2 “ 0 for all x

This directly implies that ppxq “ qpxq for all x. Hence, both Dgrad and Did satisfy the null condi-
tion: D˚ppp¨q, qp¨qq “ 0 if and only if ppxq “ qpxq for all x.

At last, we prove that the two measurements satisfy the positive definiteness condition. For
Dgradppp¨q, pp¨q ` δpp¨qq:

Dgradppp¨q, pp¨q ` δpp¨qq “

ż

ppxq}∇ppxq ´ ∇pppxq ` δppxqq}2 dx “

ż

ppxq}∇δppxq}2 dx.

This expression is quadratic in δppxq, and since norms are positive definite, Dgrad is positive definite
for any infinitesimal displacement δppxq. On the other hand, for Didppp¨q, pp¨q ` δpp¨qq:

Didppp¨q, pp¨q ` δpp¨qq “

ż

ppxqpppxq ´ pppxq ` δppxqqq2 dx “

ż

ppxqpδppxqq2 dx.

Again, this is quadratic in δppxq, making Did positive definite for any infinitesimal displacement
δppxq. Thus, both Dgrad and Did are positive-definite quadratic forms for any infinitesimal dis-
placement δppxq from ppxq. This concludes the proof.

Since measures Dgrad, Did are well defined, it is valid to derive the corresponding loss functions
Lgrad,Lid as formulated in Eq. (5).

B.3 PROOF TO PROPOSITION 3.1.

We aim to rearrange the following loss function:

Lgradpϕq “ Dgrad

`

ptargetp¨q,gϕp¨q
˘

“ Ex„ptargetpxq

”

}∇ptargetpxq ´ gϕpxq}2
ı

By expanding the inner quadratic form, we get

Lgradpϕq “

ż

pdatapxq}∇xpdatapxq}2dx `

ż

pdatapxq}gϕpxq}2dx

´ 2

ż

pdatapxq

´

gϕpxq

¯J

∇xpdatapxqdx.

The first term in the right hand side is in fact a constant and we denote it as Cgrad. Then, by applying
the technique of integral by parts, we can simply the last term as

2

ż

pdatapxq

´

gϕpxq

¯J

∇xpdatapxqdx

“

ż

´

gϕpxq

¯J

∇xpdatapxq2dx

“

ż

∇x ¨

´

pdatapxq2gϕpxq

¯

dx ´

ż

pdatapxq2
´

∇x ¨ gϕpxq

¯

dx

Suppose the integral area is Ω (say by taking it as a ball with a radius R ą 0) and applying Gauss’s
Divergence Theorem, we have

ż

Ω

∇x ¨

´

pdatapxq2gϕpxq

¯

dx “

ż

BΩ

npxqJ
´

pdatapxq2gϕpxq

¯

dx,
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where BΩ denotes the boundary of area Ω and npxq represents the unit norm to the boundary BΩ.
Furthermore, suppose that lim}x}Ñ8 pdatapxq Ñ 0 and gϕpxq are uniformly bounded in x, then
this integral vanishes. So, we have the reduced objective:

Lgradpϕq “ Cgrad `

ż

pdatapxq}gϕpxq}2dx `

ż

pdatapxq2trp∇gϕpxqqdx.

For the second integral, we apply the decoupling trick:
ż

ptargetpxq2sφpxqdx

“

ż

ptargetpxqptargetpyqsφpxqδpy ´ xqdx dy

“Ex„ptargetpxq,y„ptargetpyq

”

sφpxqδpy ´ xq

ı

“ lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, we use that N p¨;0, ϵIDq weakly converges to δp¨q as ϵ Ñ 0`. Therefore, we simplify the loss
function as

Lgradpϕq “ Cgrad ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN px2 ´ x1;0, ϵIDq

ı

,

Next, we prove for the case of

Lidpφq “ Cid ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1;0, ϵIDq

ı

,

by following a similar argument. Suppose that we have a divergence loss function:

Lidpφq “

ż

ptargetpxq

´

ptargetpxq ´ sφpxq

¯2

dx.

Then, we can expand the term as

Lidpφq “

ż

ptargetpxq3 dx ´ 2

ż

ptargetpxq2sφpxqdx `

ż

ptargetpxqsφpxq2 dx.

For the second integral, we apply the trick again:
ż

ptargetpxq2sφpxqdx “

ż

ptargetpxqptargetpyqsφpxqδpy ´ xqdx dy

“Ex„ptargetpxq,y„ptargetpyq

”

sφpxqδpy ´ xq

ı

“ lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, we use that N p¨; 0, ϵIDq weakly converges to δp¨q as ϵ Ñ 0. Therefore, we simplify the loss
function as

Lidpφq “ Cid ` Ex„ptargetpxq

”

sφpxq2
ı

´ 2 lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

,

where Cid is a constant without learnable parameter φ.

B.4 PROOF TO PROPOSITION F.1

Proof. We recall the sliced version of Lgrad as:

Lslice
gradpϕq “ Ev„qpvq,x„ptargetpxq

”

`

vJ∇ptargetpxq ´ vJgϕpxq
˘2

ı

.

By expanding the quadratic term p¨q2 inside the recursive expectations, we have

Lslice
grad “ Ev

”

ż

ptargetpxqpvJ∇xgϕpxqq2 dx ´ 2

ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqq dx ` C 1
grad

ı

,
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where, C 1
grad :“

ş

ptargetpxqpvJ∇xptargetpxqq2 dx is a constant independent of trainable parame-
ter. We will further simplify the second term came from the cross product as:

ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqqdx

“
1

2

ż

pvJ∇xptargetpxq2qpvJ∇xgϕpxqq dx

“
1

2

ż

´

∇xptargetpxq2
¯J´

pvJ∇xgϕpxqqv
¯

dx.

Note that we can replace the gradient field ∇xgϕpxq with neural network gϕpxq. By applying the
integration by parts, this equality can be expanded as

1

2

ż

∇x ¨

´

ptargetpxq2pvJgϕpxqqv
¯

dx ´
1

2

ż

ptargetpxq2∇x ¨

´

pvJgϕpxqqv
¯

dx.

Let us first handle the first term in the above equation. Applying Gauss’s divergence theorem to a
ball BpRq centered at the origin with radius R ą 0, we get

ż

BpRq

∇x ¨

´

ptargetpxq2pvJgϕpxqqv
¯

dx “

ż

BBpRq

npxqJ
´

ptargetpxq2pvJgϕpxqqv
¯

. (9)

where npxq is the unit norm vector to the region boundary BBpRq. Suppose that ptargetpxq decays
sufficiently fast as ∥x∥2 Ñ 8, for instance, lim}x}2Ñ8 ptargetpxq{ ∥x∥D2 “ 0 (see Assumption C.1
(iii)), then this term vanishes as R Ñ 8.

For the second term in the expansion, we have

∇x ¨

´

pvJgϕpxqqv
¯

“
ÿ

1ďiďD

BppvJgϕpxqqviq

Bxi
“

ÿ

1ďiďD

ÿ

1ďjďD

vivjgϕ,jpxq

Bxi
“ vJ∇xgϕpxqv.

Here, we write v “ pviq1ďiďD and x “ pxiq1ďiďD. Collecting the above derivations, we have
ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqqdx “ ´
1

2

ż

ptargetpxq2pvJ∇xgϕpxqvqdx. (10)

Therefore, the loss function can be converted into

Lslice
grad “ Ev

”

ż

ptargetpxqpvJ∇xgϕpxqq2 dx `

ż

ptargetpxq2pvJ∇xgθpxqvqdx
ı

` C 1
grad. (11)

We apply the same trick from the proof of Proposition 3.1—using Dirac expansion—to enable
Monte Carlo estimation for the second inner term:

ż

ptargetpxq2
´

vJ∇xgθpxqv
¯

dx

“

ż

ptargetpxq

´

ż

ptargetpyqδpy ´ xqdy
¯´

vJ∇xgθpxqv
¯

dx

“

ż

ptargetpx1qptargetpx2qpvJ∇x1
gθpx1qvqδpx2 ´ x1qdx1 dx2

“Ex1,x2„ptargetpxq

”

pvJ∇x1gθpx1qvqδpx2 ´ x1q

ı

.

Combining the above two identities, we have

Lslice
grad “ Ev„pslicepvq,x1,x2„ptargetpxq

”

pvJgθpx1qq2 ` pvJ∇x1
gθpx1qvqδpx2 ´x1q

ı

`C 1
grad, (12)

which completes the proof.
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C PROOFS FOR SEC. 4

C.1 PREREQUISITES FOR THEORETICAL ANALYSIS.

We introduce some notations and terminologies. We recall the definition of KL divergence between
ptarget and density p as

KL
`

p}ptarget
˘

:“

ż

RD

ppxq log
ppxq

ptargetpxq
dx.

Fisher divergence between ptarget and p is defined as:

Jptarget
ppq :“

ż

RD

ppxq

∥∥∥∥∇x log
ppxq

ptargetpxq

∥∥∥∥2 dx.
Wasserstein-2 distance (W2) between ptarget and p is defined as:

W 2
2 pp, ptargetq :“ inf

γ„Γpµ,νq
Epx,yq„γ ∥x ´ y∥22 ,

where Γpµ, νq is the set of all couplings of pµ, νq.

The following summarizes the two assumptions for our main theorems in Sec. 4.
Assumption C.1. Assume the target density ptarget satisfies the following conditions:

(i) ptargetp¨q P C2. That is, it is second-order continuously differentiable;

(ii) Log-Sobolev inequality: there is a constant α ą 0 so that the following inequality holds for
all continuously differentiable density p:

KL
`

p}ptarget
˘

ď
1

2α
Jptargetppq. (13)

(iii) ptarget is either compactly supported with M :“ ∥ptarget∥L8 ă 8, or it decays sufficiently
fast as ∥x∥2 Ñ 8:

lim
}x}2Ñ8

ptargetpxq

∥x∥D2
“ 0.

Assumption C.2. Assume the target density ptarget satisfies the following additional conditions:

(i) There is a L ą 0 so that for all x,y
∥ptargetpxq ´ ptargetpyq∥22 ď L ∥x ´ y∥22 and ∥∇ptargetpxq ´ ∇ptargetpyq∥22 ď L ∥x ´ y∥22 .

C.2 PROOFS OF THEOREM 4.1

Proof. Recall our dynamics is

dxptq “ ∇ptargetpxptqqdt `

b

ptargetpxptqqdwptq.

The Fokker-Planck equation of our dynamics with density pt “ ptpxq :“ ppx, tq is

Btppx, tq “
1

2
∇ ¨

´

ptargetpxqppx, tq∇ log
ppx, tq

ptargetpxq

¯

. (14)

This is due to the following derivation Risken & Risken (1996), where we demonstrated for the
D “ 1 case. The probability distribution ppx, tq of dynamics xptq at point x and time t with
fpxq “ Bxptargetpxq and g2pxq “ ptargetpxq is governed by:

Bppx, tq

Bt
“ ´

B

Bx

´

fpxqppx, tq
¯

`
1

2

B2

Bx2

´

g2pxqppx, tq
¯

“
B

Bx

´

´ Bxptargetpxqppx, tq `
1

2

B

Bx

´

ptargetpxqppx, tq
¯¯

“
1

2

B

Bx

´

ptargetpxqBxppx, tq ´ Bxptargetpxqppx, tq
¯

“
1

2

B

Bx

´

ptargetpxqppx, tqBx log
ppx, tq

ptargetpxq

¯

.
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Here, in the last equality we use the identity:

Bx log
ppx, tq

ptargetpxq
“

ptargetpxq

ppx, tq
Bx

´ ppx, tq

ptargetpxq

¯2

“
ptargetpxqBxppx, tq ´ Bxptargetpxqppx, tq

ptargetpxqppx, tq
.

For a general D, the same computation can be carried out to derive Eq. (14).

We now prove the KL bound of convergence using a similar argument motivated by Vempala &
Wibisono (2019).

d

dt
KL

`

pt}ptarget
˘

“
d

dt

ż

RD

pt log
pt

ptarget
dx

paq
“

ż

RD

B

Bt
pt log

pt
ptarget

dx `

ż

RD

pt
B

Bt
log

pt
ptarget

dx

pbq
“

ż

RD

B

Bt
pt log

pt
ptarget

dx

pcq
“
1

2

ż

RD

”

∇x ¨
`

ptargetpt∇x log
pt

ptarget

˘

ı

log
pt

ptarget
dx

pdq
“ ´

ż

RD

ptargetpt

∥∥∥∥∇x log
pt

ptarget

∥∥∥∥2 dx
peq

ď ´ M

ż

RD

pt

∥∥∥∥∇x log
pt

ptarget

∥∥∥∥2 dx
“ ´ MJptargetpptq

ď ´
M

2α
KL

`

pt}ptarget
˘

.

Here, (a) follows from the chain rule; (b) uses the identity
ş

pt
B
Bt log

pt

ptarget
dx “

ş

B
Btpt dx “

d
dt

ş

pt dx “ 0; (c) follows from the Fokker-Planck Eq. (14); (d) is due to integration by parts and
Assumption C.1 (iii); and (e) comes from Assumption C.1 (iii).

Thus, applying Grönwall’s inequality, we can get

KL
`

pt}ptarget
˘

À e´2αtKL
`

p0}ptarget
˘

.

Since ptarget satisfies the LSI, it also satisfies the Talagrand’s inequality Otto & Villani (2000):

α

2
W 2

2

`

pt, ptarget
˘

ď KL
`

pt}ptarget
˘

.

Therefore, we have

W 2
2

`

pt, ptarget
˘

ď
2

α
KL

`

pt}ptarget
˘

À
2

α
e´2αtKL

`

p0}ptarget
˘

.

This completes the proof. We notice that “Talagrand’s inequality implies concentration of measure
of Gaussian type” allowing us to remove the compact support assumption on ptarget while maintain-
ing the validity of the theorem.

C.3 PROOFS OF THEOREM 4.2

Proof. In the proof we will extensively using a simple form of Cauchy-Schwarz (CS) inequality:

pu1 ` u2 ` ¨ ¨ ¨ ` unq2 ď npu2
1 ` u2

2 ` ¨ ¨ ¨ ` u2
nq,

for ui P R, i “ 1, ¨ ¨ ¨ , n. We aim at obtaining the following bound:

W 2
2 ppT ;ϕ,φ, ptargetq À ε2estTe

LT `
2

α
e´αTKL

`

p0}ptarget
˘

. (15)
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To achieve it, we compare the random vector processes txptqutPr0,T s and tpxptqutPr0,T s, governed by
the following dynamics:

dxptq “ ∇ptargetpxptqqdt `

b

ptargetpxptqqdωptq

dpxptq “ gϕppxptqqdt `

b

sφppxptqqdpwptq.

Their strong solutions in the Itô sense are:

xptq “ xp0q `

ż T

0

∇ptargetpxptqq dt `

ż T

0

b

ptargetpxptqqdωptq

pxptq “ pxp0q `

ż T

0

gϕppxptqqdt `

ż T

0

b

sφppxptqqdpwptq.

Set random vectors aptq :“ ∇ptargetpxptqq ´ gϕppxptqq and bptq :“
a

ptargetpxptqq ´
a

sφppxptqq,
we then have

E
“

∥xpT q ´ pxpT q∥22
‰

ď E

«

´

xp0q ´ pxp0q `

ż T

0

aptqdt `

ż T

0

bptqdωptq
¯2

ff

ď 3E
”

∥xp0q ´ pxp0q∥22
ı

` 3E
”

`

ż T

0

aptqdt
˘2

ı

` 3E
”

`

ż T

0

bptqdωptq
˘2

ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` TE
”

ż T

0

a2ptqdt
ı

` E
”

ż T

0

b2ptqdt
ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` TE
”

ż T

0

∥∇ptargetpxptqq ´ ∇ptargetppxptqq∥22 dt
ı

` TE
”

ż T

0

∥∇ptargetppxptqq ´ gϕppxptqq∥22 dt
ı

` E
”

ż T

0

|ptargetpxptq ´ ptargetppxptqq|dt
ı

` E
”

ż T

0

|ptargetppxptqq ´ sφppxptqq|dt
ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` LT

ż T

0

E
“

∥xptq ´ pxptq∥22
‰

dt ` ε2estT.

Here, we apply the Cauchy-Schwarz (CS) inequality and the Itô isometry in the third inequality, the
CS inequality and p

?
u ´

?
vq2 ď |u ´ v| (u, v ě 0) in the fourth inequality, and the estimation

error assumption in the last equality.

Since the dynamics in Eqs. (7) and (8) start from the same initial condition sampled from p0, we have
E

”

∥xp0q ´ pxp0q∥22
ı

“ 0. Applying the Grönwall’s inequality and the definition of the Wasserstein-
2 distance, then we obtain

W 2
2 ppT ;ϕ,φ, pT q À ε2estTe

LT .

Combining the above inequality and the result of Theorem 4.1 that

W 2
2

`

pT , ptarget
˘

À
2

α
e´αTKL

`

p0}ptarget
˘

,

we finally derive the following inequality by applying CS inequality

W 2
2 ppT ;ϕ,φ, ptargetq À ε2estTe

LT `
2

α
e´αTKL

`

p0}ptarget
˘

.

D ALGORITHMS AND EXPERIMENTS WITH BELLMAN DIFFUSION

In Sec. D.1, we present the algorithms of Bellman Diffusion, highlighting its potential as a generative
model. Sec. D.2 demonstrates the computational inefficiencies of naively applying existing DGMs
to MDP tasks, further underscoring Bellman Diffusion’s efficiency for such applications. Lastly,
Sec. D.3 details the training configurations of Bellman Diffusion.
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Figure 4: 15ˆ15 randomly sampled images from our latent Bellman Diffusion model that is trained
on the MNIST dataset. We can see that most of the results are high-quality.

Algorithm 3 Training
1: repeat
2: Sample real data: x1,x2 „ X
3: Sample slice vectors: v „ qpvq,w „ qpwq

4: δ “ N pwJx2 ´ wJx1; 0, ϵq
5: sLslice

gradpϕ; ϵq « pvJgϕpx1qq
2

` δpvJ∇x1gϕpx1qvq

6: sLslice
id pφ; ϵq « sφpx1q

2
´ 2δsφpx1q

7: Update parameter ϕ w.r.t. ´∇ϕ
sLslice
gradpϕ; ϵq

8: Update parameter φ w.r.t. ´∇φ
sLslice
gradpφ; ϵq

9: until converged

Algorithm 4 Sampling

1: Sample xp0q from any initial distribution
2: Set sampling steps T
3: Set constant step size η
4: for t “ 0, 1, . . . , T ´ 1 do
5: z „ N p0, IDq

6: ∆ “ gϕpxpηtqqη `
a

sφpxpηtqqηz
7: xpηpt ` 1qq “ xpηtq ` ∆
8: end for
9: return xpϵT q

D.1 BELLMAN DIFFUSION’S TRAINING AND SAMPLING AS A DGM

In this section, we detail the algorithms for training (Alg. 3) and sampling (Alg. 4) in Bellman
Diffusion as a general DGM.

D.2 DISFAVORED FULL TRAJECTORY SAMPLING

As mentioned in Sec. 2, a DGM that is qualified to be applied with the efficient Bellman update
needs to satisfy some linearity condition, otherwise one can only sample full state-action trajectories
to train the DGM, which is too costly for many RL environments. To understand this point, suppose
that there is an 1-dimensional maze with N blocks, with a robot moving from the leftmost block
to the rightmost block. If one directly trains the return model with the returns computed from full
trajectories, then the robot has to try to move to the final block after each action, resulting in a time
complexity at least as OpN ¨Nq “ OpN2q for every episode. In contrast, if the return model can be
trained with partial trajectories (e.g., 1 step) through the Bellman equation, then the time complexity
would be significantly reduced (e.g., OpN2q). There are many RL environments where the number
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Figure 5: Bellman Diffusion learns unusually clustered data. The subfigures, from left to right, show
the training data, estimated density field, gradient field, and generated samples.

N can be very big. For example, StarCraft II (Vinyals et al., 2017) and Counter-Strike (Pearce &
Zhu, 2022), where a full trajectory can contain over ten thousand steps.

D.3 EXPERIMENT SETTINGS

Unless specified, we construct the gradient and scalar field models gϕpxq and sφpxq using
MLPs (Pinkus, 1999). We employ Adam (Kingma, 2014) for optimization, without weight de-
cay or dropout. The parameter ϵ in the loss functions sLslice

gradpϕ; ϵq and sLslice
id pφ; ϵq ranges from 0.1 to

1.0, depending on the task. For the sampling dynamics defined in Eq. (7), we typically set T “ 300
and η “ 0.1. All models are trained on a single A100 GPU with 40GB memory, taking only a few
tens of minutes to a few hours.

E ADDITIONAL EXPERIMENTS

Due to the limited space, we put the minor experiments here in the appendix. The main experiments
involving field estimation, generative modeling, and RL are placed in the main text.

E.1 SYNTHETIC DATA GENERATION

2-dimensional moon-shaped data. To demonstrate the ability of Bellman Diffusion to learn dis-
tributions with disjoint supports, we test it on the two moon dataset, where samples cluster into two
disjoint half-cycles, as shown in the leftmost subfigure of Fig. 5.

The right three parts of Fig. 5 shows that the estimated scalar and gradient fields ptargetpxq and
∇ptargetpxq match the training samples, with correctly positioned density peaks (leftmost subfigure)
and critical points (middle subfigure). Our diffusion sampling dynamics accurately recover the
shape of the training data, even in low-density regions. Thus, we conclude that Bellman Diffusion
is effective in learning from complex data.

Comparison of Bellman Diffusion and DDPM on 2-dimensional MoG. We provide an addi-
tional comparison of generated samples from DDPM and Bellman Diffusion on a MoG dataset with
three modes. As the setup in Fig. 8, the training distribution consists of three modes with weights
of 0.45, 0.45, and 0.1. The results are shown in Fig. 6. We observe that the generated samples from
DDPM (right subfigure) fail to capture the different weights of these modes. In contrast, Bellman
Diffusion (left subfigure) successfully recovers the three modes with their respective weights, as also
demonstrated in Fig. 8.

The reason Bellman Diffusion may learn different modes of ptarget is that our training objectives di-
rectly model sφ « ptarget (and its gradient, gϕ « ∇ptarget). As a result, it can learn different modes
within ptarget. This contrasts with diffusion models, which learn the score function ∇ log ptarget for
generation.

To illustrate this difference, consider an example where ptarget “ ap
p1q

target ` bp
p2q

target, which repre-

sents a mixture of two modes with weights a and b, and where the supports of pp1q

target and p
p2q

target are
disjoint.
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Bellman Diffusion DDPM

Figure 6: Comparison of generated samples from MoG with three modes between Bellman Dif-
fusion and DDPM. (Left) Bellman Diffusion accurately captures the three modes with different
weights. (Right) DDPM struggles to reflect the correct weight distribution of the target.

Method Abalone Telemonitoring
Bellman Diffusion w/ ϵ “ 0.5, n “ 1 0.975 2.167
Bellman Diffusion w/ ϵ “ 1.0, n “ 1 1.113 2.379
Bellman Diffusion w/ ϵ “ 0.1, n “ 1 0.875 2.075

Bellman Diffusion w/ ϵ “ 0.01, n “ 1 1.567 3.231
Bellman Diffusion w/ ϵ “ 0.5, n “ 2 0.912 2.073
Bellman Diffusion w/ ϵ “ 0.5, n “ 3 0.895 1.951

Table 1: The experiment results of our case studies, with Wasserstein distance as the metric.

For a point x in the support of pp1q

target, we have:

∇x log ptargetpxq “ ∇x log a ` ∇x log p
p1q

targetpxq “ ∇x log p
p1q

targetpxq.

Similarly, for a point x in the support of pp2q

target, we have:

∇x log ptargetpxq “ ∇x log p
p2q

targetpxq.

This example illustrates that, by using the score function (as in the case of diffusion models), we are
unable to recover the weights a and b of the mixture components.

E.2 IMAGE GENERATION

While image generation is not the main focus of our paper, we show that Bellman Diffusion is
also promising in that direction. We adopt a variant of the widely used architecture of latent dif-
fusion (Rombach et al., 2022), with VAE to encode images into latent representations and Bellman
Diffusion to learn the distribution of such representations. We run such a model on MNIST (Deng,
2012), a classical image dataset. The results are shown in Fig. 4. We can see that most gener-
ated images are high-quality. This experiment verify that Bellman Diffusion is applicable to high-
dimensional data, including image generation.

E.3 ABLATION STUDIES

There are some important hyper-parameters of Bellman Diffusion that need careful studies to deter-
mine their proper values for use. This part aims to achieve this goal. We adopt two tabular datasets:
Abalone and Telemonitoring, with the Wasserstein distance as the metric.

The variance of Gaussian coefficients. The loss functions sLgradpϕ; ϵq, sLidpφ; ϵq of both gradi-
ent and scalar matching contain a term ϵ, which is to relax their original limit forms for practical
computation. As shown in the first 4 rows of Table 1, either too big or too small value of term ϵ
leads to worse performance of our Bellman Diffusion model. These experiment results also make
sense because too big ϵ will significantly deviate the loss functions from their limit values, and too
small ϵ will also cause numerical instability.
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Number of slice vectors. Intuitively, more slice vectors will make our loss estimation more ac-
curate, leading to better model performance. The experiment results in the first and the last two
rows of Table 1 confirm this intuition, but also indicate that such performance gains are not notable.
Therefore, we adopt n “ 1 slice vectors in experiments to maintain high efficiency.

F SCALING FIELD MATCHING LOSSES

Slice trick for efficient training. While the loss functions sLgradpϕ; ϵq and sLidpφ; ϵq support Monte
Carlo estimation, the term trp∇gϕpx1qq in sLgradpϕ; ϵq is computationally expensive, limiting the
scalability in high dimensions. To address this problem, we apply the slice trick (Kolouri et al.,
2019; Song et al., 2020) to estimate the trace term efficiently. The resulting objective is summarized
in the following proposition.

Proposition F.1 (Sliced Gradient Matching). We define the sliced version of Lgrad (i.e., Eq. (3)) as

Lslice
gradpϕq “ Ev„qpvq,x„ptargetpxq

”

`

vJ∇ptargetpxq ´ vJgϕpxq
˘2

ı

,

where v represents the slice vector drawn from a continuous distribution qpvq. This sliced loss also
has an equivalent form:

Lslice
gradpϕq “ C 1

grad` lim
ϵÑ0

E v„qpvq;
x1,x2„ptargetpxq

”

pvJgϕpx1qq2`pvJ∇x1
gϕpx1qvqN px2´x1;0, ϵIDq

ı

,

where C 1
grad is another constant independent of the model parameters.

Similar to Eq. (6), we can define a proxy loss for Lslice
gradpϕq as follows with a sufficiently small ϵ:

Ev„qpvq;x1,x2„ptargetpxq

”

pvJgϕpx1qq2 ` pvJ∇x1
gϕpx1qvqN px2 ´ x1;0, ϵIDq

ı

, (16)

which allows Monte Carlo estimation from samples X . This proxy loss serves as a reasonable
estimator (Lai et al., 2023) for Lgradpϕq.

Slice trick for improving sample efficiency. When the data dimension D is large, the multiplier
N px2 ´ x1;0, ϵIDq in the loss functions: sLgradpϕ; ϵq and sLidpφ; ϵq, will become nearly zero due
to the p2πq´D{2 factor, requiring a very large batch size for accurate Monte Carlo estimation and
leading to low data efficiency.

To resolve this issue, we apply an additional slice trick, projecting the D-dimensional Gaussian
density N px2 ´ x1;0, ϵIDq into a 1-dimensional density N pwJx2 ´ wJx1, 0, ϵq along a random
direction w „ qpwq, where w follows a slice vector distribution qpwq. Combining with Eq. (16),
this results in our ultimate gradient field matching loss:

sLslice
gradpϕ; ϵq :“ Ew„qpwq,v„qpvq;

x1,x2„ptargetpxq

”

pvJgϕpx1qq2`pvJ∇x1gϕpx1qvqN pwJx2´wJx1; 0, ϵq
ı

.

(17)

Similarly, we apply the same trick to sLidpφ; ϵq for dimension projection and obtain:

sLslice
id pφ; ϵq :“ E w„qpwq;

x1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN pwJx2 ´ wJx1; 0, ϵq
ı

. (18)

We adopt sLslice
gradpϕ; ϵq and sLslice

id pφ; ϵq for vector and scalar field matching losses, as they offer
more practical and efficient objectives than Lgradpϕq and Lidpφq, respectively. Empirically, these
adaptations significantly stabilize the model in experiments.
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Figure 7: Bellman Diffusion captures the uniform distribution supported on disjoint spans. The
leftmost subfigure presents the training data histogram, while the next three show the estimated
density, derivative functions, and samples generated by Bellman Diffusion.

Figure 8: Bellman Diffusion learns the unbalanced MoG, which is hard for score-based models.
The subfigures, from left to right, display the training data, estimated scalar and gradient fields, and
samples generated by our Bellman Diffusion.

G ADDITIONAL MAIN EXPERIMENTS: BELLMAN DIFFUSION AS A
GENERAL DGM

To further verify the effectiveness of Bellman Diffusion as a capable DGM, we conducted extensive
experiments on various synthetic and real benchmarks across different tasks. We also place the
experiment setup in Appendix D.3 and other supplementary experiments in Appendix E.

G.1 SYNTHETIC DATASETS

In this part, we aim to show that Bellman Diffusion can accurately estimate the scalar and gradient
fields ∇ptargetpxq, ptargetpxq and the associated sampling dynamics can recover the data distribution
in terms of the estimation models gϕpxq, sφpxq. For visualization purpose, we will adopt low-
dimensional synthetic data (i.e., D “ 1, or 2) in the studies.

1-dimensional uniform distribution. We use Bellman Diffusion to model a uniform distribution
over three disjoint spans, illustrated in the leftmost subfigure of Fig. 7. A key challenge is ap-
proximating the discontinuous data distribution using continuous neural networks. Interestingly, the
results in Fig. 7 show that the estimated field models gϕpxq and sφpxq closely match the true values
on the support (e.g., r´1.0, 2.0s) and perform reasonably in undefined regions. For instance, gϕpxq

resembles a negative sine curve on r´4.5,´0.5s, aligning with the definitions of one-sided deriva-
tive. Notably, Bellman Diffusion Dynamic yields a generated distribution closely aligned with the
target distribution and demonstrates its effectiveness in modeling discontinuous data distributions.

2-Dimensional Mixture of Gaussians (MoG). Bellman Diffusion effectively approximates the den-
sity and gradient fields for multimodal distributions, even with unbalanced weights. We demonstrate
this using a MoG with three modes with weights 0.45, 0.45, and 0.1, as shown in the leftmost sub-
figure of Fig. 8. The right three subfigures show accurate estimations of both scalar and gradient
fields for the target distribution and its gradient. The three clustering centers of the training data
align with the density peaks in the scalar field (leftmost subfigure) and critical points in the gradi-
ent field (middle subfigure). Bellman Diffusion successfully recovers the unbalanced modes of the
target distribution and estimates the fields accurately, even in low-density regions—a challenge for
SGMs (Song & Ermon, 2019). Additional results in Appendix E.1 show Bellman Diffusion’s ef-
fectiveness in generating clustered, geometric data structures using the ”moon-shape” dataset, along
with a comparison to DDPM (a type of SGM) on MoG datasets.

G.2 HIGH-DIMENSIONAL DATA GENERATION
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Dataset Denoising Diffusion Models Our Model: Bellman Diffusion
Wasserstein Ó MMD (10´3) Ó Wasserstein Ó MMD (10´3) Ó

Abalone 0.975 5.72 0.763 5.15
Telemonitoring 2.167 10.15 2.061 9.76
Mushroom 1.732 4.29 1.871 5.12
Parkinsons 0.862 3.51 0.995 3.46
Red Wine 1.151 3.83 1.096 3.91

Figure 9: Results on high-dimensional datasets. Bellman
Diffusion is an effective DGM in high dimensions.

In this section, we follow the com-
mon practice (Song et al., 2020) to
examine the scalability of our ap-
proach across multiple UCI tabu-
lar datasets (Asuncion et al., 2007),
including Abalone, Telemonitoring,
Mushroom, Parkinson’s, and Red
Wine. We apply several preprocess-
ing steps to these datasets, such as imputation and feature selection, resulting in data dimensions of
7, 16, 5, 15, and 10, respectively. For evaluation metrics, we utilize the commonly used Wasserstein
distance (Rüschendorf, 1985) and maximum mean discrepancy (MMD) (Dziugaite et al., 2015).
The performance of a generative model is considered better when both metrics are lower. Table 9
shows the experimental results. We observe that, regardless of the dataset or metric, Bellman Diffu-
sion performs competitively with DDPM (Ho et al., 2020; Song & Ermon, 2019), a diffusion model
known for its scalability.

We further demonstrate in Appendix E.2 that Bellman Diffusion is compatible with VAE (Kingma,
2013), allowing latent generative model training similar to latent diffusion models (Rombach et al.,
2022) for higher-resolution image generation. These results demonstrate that Bellman Diffusion is a
scalable DGM. However, a more comprehensive study on large-scale Bellman Diffusion as a DGM
is left for future work, as our current focus is on unlocking DGM applications in MDPs.
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