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Abstract

Co-training is a semi-supervised learning tech-001
nique that leverages two views of the data. It002
trains a classifier for each view using a small003
labelled dataset and uses the classifiers to la-004
bel training data for each other. Intuitively,005
co-training works by encouraging agreement006
between the classifiers; an idea exploited in007
co-regularization. In this work, we propose ra-008
tionalized co-training: a variant of co-training009
that encourages agreement between the ratio-010
nales of the classifiers’ predictions. Experi-011
ments on two datasets showed that rationalized012
co-training reduces the error rates of the par-013
tially and fully supervised models by 32.3%.014
This error rate reduction outperformed that of015
vanilla co-training by 8.51%.016

1 Introduction017

Co-training (Blum and Mitchell, 1998) is a semi-018

supervised learning technique that uses a large un-019

labelled dataset to improve a model’s performance020

when only a small labelled dataset is available. To021

do so, co-training requires two views of the data.022

Co-training first trains a classifier on each view of023

the labelled dataset. The most confident predictions024

of each classifier on the unlabelled dataset are then025

selected as pseudo-labelled training data for both.026

Co-training has been successfully applied to many027

natural language processing (NLP) tasks such as028

machine translation (Callison-Burch, 2002), senti-029

ment classification (Wan, 2009), and named entity030

recognition (Li et al., 2013).031

Separately, prior works have improved a model’s032

performance by exploiting human-labelled ratio-033

nales: subsets of the inputs that justify the classifi-034

cation (Du et al., 2019; Zaidan et al., 2007; Zhang035

et al., 2016). Using the movie review task as ex-036

ample, the phrase "the acting is great!" in a long037

movie review is the rationale that justifies the posi-038

tive review. These works argue that rationales can039

aid learning by 1) directing the learning algorithm’s040

to the important features and 2) reducing overfit- 041

ting on dataset biases. However, human-labelled 042

rationales may not be readily available. To circum- 043

vent this, Bhat et al. (2021) proposed a self-training 044

framework wherein a teacher model generates both 045

task and rationale labels for a student model to learn 046

from. In this paper, we investigate the following 047

idea: can we improve co-training by encouraging 048

the two classifiers to share the rationales behind 049

their predictions? This sharing ideally models how 050

humans discuss: a two-way exchange of thought 051

processes. This question is important because it 052

proposes a possible improvement to co-training, 053

which has been successfully applied to many NLP 054

tasks (Callison-Burch, 2002; Wan, 2009; Li et al., 055

2013). In this work, we use machine rationales and 056

do not assume access to human-labelled rationales 057

which may not be readily available in practice. 058

To study this possibility, we propose rationalized 059

co-training: a variant of co-training that encourages 060

agreement between the rationales of the classifiers’ 061

predictions. Concretely, we use the classifier’s 062

most confident predictions and the correspond- 063

ing rationales as pseudo-labels. Our proposed ap- 064

proach requires a mapping between the rationales 065

of the two views. For example, if we use languages 066

as views, the word alignments between the trans- 067

lated texts are valid mappings. Using a model’s 068

rationale as pseudo-labels constraints the choice of 069

models to those that (1) expose their rationales, and 070

(2) can leverage rationales to improve performance. 071

To satisfy these constraints, we used Hierarchi- 072

cal Attention Networks (HAN) (Yang et al., 2016) 073

with an additional rationale agreement loss. Con- 074

cretely, HAN’s attention weights naturally prox- 075

ies as the model’s rationale (first constraint) and 076

can be trained using the loss between the attention 077

weights and the pseudo-labelled rationales (second 078

constraint). While we experimented with HAN, 079

we believe that the same modifications can be ex- 080

tended to most attention neural networks, which 081
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dominate the state-of-the-art neural architectures082

in NLP (Devlin et al., 2019; Vaswani et al., 2017).083

Experiments on two datasets from the ERASER084

benchmark (DeYoung et al., 2020) showed that085

rationalized co-training reduced the error rates be-086

tween the partially and fully supervised models by087

32.3%. This error rate reduction outperformed that088

of vanilla co-training by 8.51%.089

2 Problem Formulation090

In this paper, we consider sentence pairs in two091

languages (obtained by machine translation) as the092

two views for co-training. Languages as views093

have been used in prior works (Callison-Burch,094

2002; Wan, 2009; Li et al., 2013). We denote the095

datasets as Ds for the source language and Dt for096

the target language. These datasets are partitioned097

into a large unlabelled dataset Us, Ut, and a limited098

labelled dataset, Ls, Lt. These labels consist of099

only task labels, and not human-labelled rationales.100

To apply rationalized co-training, we need a map-101

ping between the rationales in the two views. With102

languages as views, we use a word aligner As,t,103

whose objective is to find the correspondence be-104

tween words of a sentence pair in two languages105

(Dou and Neubig, 2021). To allow the use of ratio-106

nales as pseudo-labels, we employ the Hierarchical107

Attention Networks (Yang et al., 2016) as the base108

classification model. Finally, the goal is to max-109

imise the task performance of classifiers in both110

languages Cs and Ct.111

3 Hierarchical Attention Networks112

We address the problem of document classification113

(e.g. movie reviews). We assume that a document114

has N sentences, {si}i∈[1,N ], and each sentence si115

contains T words, {wit}t∈[1,T ]. The classifier C116

represents each document as a vector, and outputs117

a single label (e.g., positive/negative).118

Word Encoder. We embed words with multilin-119

gual BERT (Devlin et al., 2019), xij = We(wij)120

where We denotes the embedding function. To121

obtain each word’s representation, we used a bidi-122

rectional GRU (Bahdanau et al., 2016) containing123

the forward GRU
−→
f which reads the sentence si124

from xi1 to xiT and a backward GRU
←−
f which125

reads from xiT to xi1:126

−→
hit =

−−−→
GRU(xit), t ∈ [1, T ],127

←−
hit =

←−−−
GRU(xit), t ∈ [T, 1].128

We then obtain each word’s representation by con- 129

catenating the two hidden states, hit = [
−→
hit,
←−
hit]. 130

Word Attention. The word attention weighs the 131

importance of each word in the sentence: 132

uit = tanh(Wwhit + bw), (1) 133

αit =
exp(u⊤ituw)∑
t exp(u

⊤
ituw)

, (2) 134

si =
∑
t

αithit. (3) 135

Equation 1 represents a linear layer. Equation 2 136

measures a word’s importance as the normalized 137

similarity of uit with a word level context vector 138

uw. Equation 3 computes the sentence vector si 139

as the weighted sum of the word representations 140

based on the attention. 141

Sentence Encoder. The sentence encoder is sim- 142

ilar to the word encoder. We used a bidirectional 143

GRU to encode the sentences: 144

−→
hi =

−−−→
GRU(si), i ∈ [1, N ], 145

←−
hi =

←−−−
GRU(si), i ∈ [N, 1]. 146

We then concatenate the hidden states, hi = 147

[
−→
hi ,
←−
hi ]. The sentence attention mechanism is sim- 148

ilar to the word attention mechanism: 149

ui = tanh(Wshi + bs), (4) 150

αi =
exp(u⊤i us)∑
i exp(u

⊤
i us)

, (5) 151

v =
∑
i

αihi, (6) 152

where v is the document vector summarizing in- 153

formation from all sentences. Lastly, we pass the 154

document vector as input to a linear layer and soft- 155

max for classification: p = softmax(Wcv + bc), 156

where p represents the probability vector. 157

4 Rationalized Co-Training 158

Rationale agreement loss. Rationalized co- 159

training uses one classifier’s most confident pre- 160

dictions and corresponding rationales as pseudo- 161

labels for the other. To do so, we first need a notion 162

of what a classifier’s rationale is. Observe that the 163

attention weights α of HAN naturally proxies as 164

rationales (equations 2, 5). For example, if the 165

attention weight for the ith sentence is high, the 166

document vector v will then place more weight to 167
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the ith sentence’s representation hi. Similarly for168

the word attention αit. The classification is based169

on the document vector v, which is the weighted170

sum of the sentence representations. Each sentence171

representation is in turn the weighted sum of the172

word representations. Thus, the attention weights173

on both the word and sentence level directly influ-174

ences the classification, and can be a proxy for the175

classifier’s rationale.176

We now describe how one classifier can use the177

rationales of the other to improve task performance.178

To this end, we introduce L1 losses over the atten-179

tion weights of both classifiers. Formally,180

Lsent = L1(αit, α
′
it), i ∈ [1, N ] t ∈ [1, Ti],181

Ldoc = L1(αi, α
′
i), i ∈ [1, N ],182

L = Ltask + γLsent + βLdoc,183

where α′
it, α

′
i are the other classifier’s word and184

sentence rationales, γ, β are hyperparameters to185

balance the weighted sum. The L1 loss is suit-186

able because the attention weights are softmaxed,187

thus the classifier should not assign weights that188

are too high or low. Intuitively, the loss encour-189

ages the classifier to pay attention to the same190

words/sentences as the other classifier.191

Rationalized co-training algorithm. The ratio-192

nalized co-training algorithm is similar to the193

vanilla co-training. The key difference is that we194

used the classifier’s rationales in addition to their195

most confident task labels as pseudo-labels.196

We start by training our classifiers Cs, Ct on197

the labelled datasets Ls, Lt respectively. The algo-198

rithm then iterates the following procedure. First,199

it computes the number of examples to label: s =200

p × |Us| × k, where p denotes the proportion of201

the unlabelled set to label and k denotes the iter-202

ation number. Second, Cs, Ct label s most confi-203

dent examples and corresponding rationales from204

Ls, Lt to form the pseudo-labelled set L′
ss, L

′
tt re-205

spectively. L′
ss denotes the examples labelled by206

Cs, whose pseudo-labelled rationales are in lan-207

guage s. However, Ct cannot leverage L′
ss directly208

as Ct is trained in language t. Thus, we used As,t209

to align the pseudo-labelled rationales of L′
ss in210

language s to L′
st in language t. We do the same211

with L′
tt to create L′

ts. Finally, we augment the212

training datasets Ls, Lt with L′
ts, L

′
st respectively,213

i.e. Ls ∪ L′
ts, Lt ∪ L′

st. Note that we did not in-214

clude L′
ss in Ls to avoid Cs from learning from215

it’s own pseudo-labelled examples (without loss216

of generality to Ct). Lastly, we finetune Cs, Ct on 217

the augmented sets Ls, Lt respectively. While the 218

original co-training paper retrained the classifiers, 219

we opted to fine-tune to save training time. 220

5 Experiments 221

We used the following datasets from the ERASER 222

benchmark (DeYoung et al., 2020): 1) Movie Re- 223

views is the task of labelling a movie review as 224

positive/negative (size: 2K). 2) e-SNLI is the task 225

of determining the inference relation between two 226

short texts: entailment, contradiction, or neutral 227

(size: 570K). We used 20% of the training set as 228

our labelled dataset L, and the remaining 80% as 229

the unlabelled dataset U . The validation set is used 230

for early stopping and model selection. We re- 231

peated all experiments thrice and took the average 232

results. 233

We used the AWESOME word aligner for it’s 234

state-of-the-art performance (Dou and Neubig, 235

2021). As the aligner performs well between En- 236

glish and French, we used these languages as views. 237

As the ERASER benchmark is in English, we 238

Google Translated it to French and mapped the 239

rationales with the aligner. 240

To measure task performance, we used macro 241

F1 score. To measure co-training performance, 242

we used the error rate reduction between partially 243

and fully supervised models: 1− F1sup−F1cotrain
F1sup−F1partial

, 244

where F1sup, F1cotrain, F1partial denote the best 245

F1 score of the fully supervised, partially super- 246

vised, and co-training experiments. We also lever- 247

aged ERASER’s human-labelled rationales to eval- 248

uate the correctness of the model’s proxy rationales. 249

To this end, we used the L1 loss between the model 250

and human-labelled attention, denoted by L′
S , L

′
W 251

for the sentence and word level respectively. To 252

compute the human-labelled word attention, we 253

normalised the human-labelled rationales. To com- 254

pute the human-labelled doc attention, we compute 255

the proportion of rationale tokens in each sentence 256

and normalized this vector of proportions. 257

Results and Analysis Our results are sum- 258

marised in Table 1. Rationalized co-training re- 259

duced the error rates between the partially and fully 260

supervised models by an average of 32.3%. This 261

error rate reduction outperformed that of vanilla co- 262

training by an average of 8.51%. Furthermore, the 263

test F1 score is still increasing after 2 co-training 264

epochs whereas vanilla co-training generally tapers 265

after the first epoch (Figure 1). We did not con- 266
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Method Movies eSNLI
En Fr En Fr

ER F1 L′
S L′

W ER F1 L′
S L′

W ER F1 L′
S L′

W ER F1 L′
S L′

W

Vanilla 37 73.9 4.1 8.8 45 74.0 4.0 9.5 0.0 69.6 26 13 13 66.7 26 13
Ours 44 75.5 3.4 8.7 61 75.9 3.5 9.2 4.3 70.0 17 12 20 67.2 18 12
Full - 87.7 3.6 8.8 - 80.9 4.0 10 - 75.9 26 14 - 73.7 26 13
Partial - 65.9 3.8 8.6 - 68.3 3.7 9.1 - 69.7 26 14 - 65.7 26 13

Table 1: Test set results comparing rationalized co-training to vanilla co-training, fully supervised and partially
supervised models. ER denotes error rate reduction. L′

S , L
′
W denote the L1 Loss between the best model’s and

human-labelled sentence/word attention weight (1e-2 units). The highest ER and lowest L′
S , L′

W is bolded. Results
shown are the average of three repeats.

Figure 1: Test F1 scores against co-training epochs.

tinue training due to time constraints. The error267

rate reduction is higher for movies than eSNLI be-268

cause the average number of tokens in the former269

is higher than the latter (774 > 16), thus benefitting270

more from rationale supervision.271

Rationalized co-training also has an average272

L′
S , L

′
W of 0.106, the lowest amongst vanilla273

(0.131), fully (0.133) and partially supervised base-274

lines (0.131). This result suggests that rationalized275

co-training aids the learning of human rationales,276

even without supervision on them. We also note277

that the fully supervised model has the highest loss,278

which suggests overfitting to dataset biases.279

6 Related Work280

Co-training. Co-training was initially proposed281

with the assumption of conditionally independent282

views given the class labels (Blum and Mitchell,283

1998). However, it has been shown to succeed in284

many applications that do not satisfy such condi-285

tions (Callison-Burch, 2002). Works have since286

proposed assumptions in weaker forms (Abney,287

2002; Wang and Zhou, 2010). Other variants of288

co-training addressed the assumption of having289

two conditionally independent views. Zhou and290

Li (2005) proposed to use three classifiers trained 291

on the same dataset to teach each other. Qiao et al. 292

(2018) trained multiple neural models to be of dif- 293

ferent views by exploiting adversarial examples to 294

encourage view difference. Sindhwani and Niyogi 295

(2005) extended the idea of co-training by propos- 296

ing a co-regularisation approach that encourages 297

agreeement between views. Our work builds on 298

this line of work by encouraging agreement be- 299

tween the rationales of the classifier’s predictions. 300

Exploiting Rationales Prior works have shown 301

that training with human-labelled rationales can 302

improve performance. Zaidan et al. (2007) first 303

demonstrated the usefulness of rationales in sup- 304

port vector machines. Zhang et al. (2016) aug- 305

mented neural networks with rationale supervision 306

for text classification. Melamud et al. (2019) used 307

rationales to augment unsupervised pre-training for 308

text classification. However, human labelled ratio- 309

nales may not be readily available. To circumvent 310

this, Bhat et al. (2021) proposed a self-training 311

framework wherein a teacher model generates both 312

task and rationale labels for a student model to 313

learn from. Our work builds on this line of work 314

by encouraging classifiers to share the rationales 315

behind their predictions. 316

7 Conclusion 317

We proposed rationalized co-training: a variant 318

of co-training that encourages agreement between 319

the rationales of the classifiers’ predictions. Our 320

method requires a mapping between rationales in 321

the two views. As we used languages as views 322

here, the rationales are transferable using the word 323

alignments between sentence pairs. Our approach 324

also requires classifiers which expose their ratio- 325

nales and can leverage rationales to improve perfor- 326

mance. We hope to generalise to other classifiers 327

and to cases where the mapping between rationales 328

is non-trivial (e.g. between latent representations). 329
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Algorithm 1 Rationalized Co-Training algorithm.

Require:
1: • Large unlabelled datasets Us, Ut in source

language s and target language t

• Limited labelled dataset Ls, Lt

• Word aligner As,t

2: Train classifiers Cs, Ct on Ls, Lt respectively
3: for k ← 1 to K do
4: s← p× |Us| × k
5: Cs, Ct labels s most confident examples

and corresponding rationales from Ls, Lt to
form L′

ss, L
′
tt respectively

6: Use As,t to align L′
ss in language s to L′

st

in language t and L′
tt in language t to L′

ts in
language s.

7: Ls ← Ls ∪ L′
ts

8: Lt ← Lt ∪ L′
st

9: Finetune Cs, Ct on Ls, Lt respectively
10: end for

rationales. To translate the ERASER benchmark434

from English to French, we google translated the435

documents and used our word alignment tool to436

map the rationales. For words that are in English437

but not in French, we take the next closest word in438

the alignment. We intend to release the translated439

datasets and codebase. For our movies dataset, we440

excluded the query from the document since it is441

constant across all examples (e.g. "What is the442

sentiment of this review?).443

B.2 Hyperparameter Configurations444

We trained the models with the Adam optimiser,445

setting epochs=20, patience=5, learning rate=1e-446

3, batch size=64, proportion p=0.1, number of447

co-training iterations K=2. We also set the atten-448

tion loss weights γ, β to (5, 25) and (10, 2.5) for449

the movie reviews and eSNLI dataset respectively.450

These weights were not tuned. They were cho-451

sen with the prior knowledge that sentence atten-452

tion loss matters more in shorter documents (e.g.453

eSNLI), while the doc attention loss matters more454

in longer documents (e.g. Movie Reviews). The455

values were also not too high such that they over-456

whelm the task loss and not too low such that it457

does not aid learning.458

B.3 Definition of Human-Labelled Attention459

Human-labelled rationales are provided as token-460

level binary rationale labels, indicating if the token461

is a rationale or not (e.g. "The movie is really great"462

Dataset Size (train/val/test) #Tokens
Movies 1600 / 200 / 200 774
eSNLI 549309 / 9823 / 9807 16

Table 2: Statistics of the datasets used. Tokens is the
average number of tokens in each document.

→ (0, 0, 1, 1)). To compute the human-labelled 463

word attention, we divided the vector by it’s sum 464

(e.g. (0, 0, 1, 1)→ (0, 0, 0.5, 0.5)). This normalised 465

vector represents the gold attention weights, thus 466

allowing us to evaluate the model’s word attention 467

weights via the L1 loss between them. To compute 468

the human-labelled doc attention, we first compute 469

the proportion of rationale tokens in each sentence 470

(e.g. (0, 0, 1, 1) → (0.5)). A document is then 471

represented as a vector of proportions (e.g. (0.2, 472

0.5, 0.4) for a document of 3 sentences). We then 473

divided the vector of proportions by it’s sum (e.g. 474

(0.2, 0.5, 0.4)→ (0.18, 0.45, 0.36)), which allows 475

us to evaluate the model’s doc attention weights 476

via the L1 loss. Since the L1 loss is differentiable, 477

we can also use this approach to train HAN with 478

human rationale labels if given. 479

B.4 Reproducibility Checklist 480

1. A clear description of the mathematical set- 481

ting, algorithm, and/or model. We show 482

the rationalized co-training algorithm in Algo- 483

rithm 1. The mathematical setting and model 484

is described in Problem Formulation 2 of the 485

main text. 486

2. A link to a downloadable source code, with 487

specification of all dependencies, including 488

external libraries (recommended for cam- 489

era ready, though welcome for initial sub- 490

mission). We intend to release the source code 491

(and translated datasets) soon. 492

3. A description of computing infrastructure 493

used. We ran our experiments on a GeForce 494

RTX 2080 Ti. 495

4. The average runtime for each model or al- 496

gorithm, or estimated energy cost. The esti- 497

mated runtime for co-training on the Movies 498

and eSNLI dataset is 1 hour and 3 hours re- 499

spectively. 500

5. The number of parameters in each model. 501

Our HAN model has 1003402 parameters. 502
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6. Corresponding validation performance for503

each reported test result. We intend to re-504

lease the validation performance in the next505

iteration of the paper.506

7. A clear definition of the specific evaluation507

measure or statistics used to report results.508

The definition of error rate reduction is de-509

tailed in the experiments 5. The definition of510

L′
S , L

′
W is detailed in the appendix B.2.511

8. The exact number of training and evalu-512

ation runs. We trained for 20 epochs and513

co-trained for 2 epochs.514

9. The bounds for each hyperparameter. The515

method of choosing hyperparameter val-516

ues (e.g. manual tuning, uniform sampling,517

etc.) and the criterion used to select among518

them (e.g. accuracy) Hyperparameter tuning519

was not done. We used the default (PyTorch)520

values.521

10. Summary statistics of the results (e.g. mean,522

variance, error bars, etc.). All results are523

reported in Table 1. The results are averaged524

across three runs.525

11. Relevant statistics such as number of ex-526

amples and label distributions. The dataset527

statistics are summarised in Table 2. More de-528

tails can be found in the ERASER benchmark529

(DeYoung et al., 2020).530

12. Details of train/validation/test splits. Speci-531

fied in Table 2.532

13. An explanation of any data that were ex-533

cluded, and all pre-processing steps. De-534

tailed in the appendix section: Experimental535

Details B.536

14. For natural language data, the name of the537

language(s). English and French.538

15. A link to a downloadable version of the539

dataset or simulation environment. The540

ERASER dataset is available at: link. We541

intend to release the translated Movies and542

eSNLI dataset in French soon.543

16. For new data collected, a complete descrip-544

tion of the data collection process, such as545

instructions to annotators and methods for546

quality control. Detailed in the appendix sec-547

tion: Experimental Details B.548
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