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Abstract

Co-training is a semi-supervised learning tech-
nique that leverages two views of the data. It
trains a classifier for each view using a small
labelled dataset and uses the classifiers to la-
bel training data for each other. Intuitively,
co-training works by encouraging agreement
between the classifiers; an idea exploited in
co-regularization. In this work, we propose ra-
tionalized co-training: a variant of co-training
that encourages agreement between the ratio-
nales of the classifiers’ predictions. Experi-
ments on two datasets showed that rationalized
co-training reduces the error rates of the par-
tially and fully supervised models by 32.3%.
This error rate reduction outperformed that of
vanilla co-training by 8.51%.

1 Introduction

Co-training (Blum and Mitchell, 1998) is a semi-
supervised learning technique that uses a large un-
labelled dataset to improve a model’s performance
when only a small labelled dataset is available. To
do so, co-training requires two views of the data.
Co-training first trains a classifier on each view of
the labelled dataset. The most confident predictions
of each classifier on the unlabelled dataset are then
selected as pseudo-labelled training data for both.
Co-training has been successfully applied to many
natural language processing (NLP) tasks such as
machine translation (Callison-Burch, 2002), senti-
ment classification (Wan, 2009), and named entity
recognition (Li et al., 2013).

Separately, prior works have improved a model’s
performance by exploiting human-labelled ratio-
nales: subsets of the inputs that justify the classifi-
cation (Du et al., 2019; Zaidan et al., 2007; Zhang
et al., 2016). Using the movie review task as ex-
ample, the phrase "the acting is great!" in a long
movie review is the rationale that justifies the posi-
tive review. These works argue that rationales can
aid learning by 1) directing the learning algorithm’s

to the important features and 2) reducing overfit-
ting on dataset biases. However, human-labelled
rationales may not be readily available. To circum-
vent this, Bhat et al. (2021) proposed a self-training
framework wherein a teacher model generates both
task and rationale labels for a student model to learn
from. In this paper, we investigate the following
idea: can we improve co-training by encouraging
the two classifiers to share the rationales behind
their predictions? This sharing ideally models how
humans discuss: a two-way exchange of thought
processes. This question is important because it
proposes a possible improvement to co-training,
which has been successfully applied to many NLP
tasks (Callison-Burch, 2002; Wan, 2009; Li et al.,
2013). In this work, we use machine rationales and
do not assume access to human-labelled rationales
which may not be readily available in practice.

To study this possibility, we propose rationalized
co-training: a variant of co-training that encourages
agreement between the rationales of the classifiers’
predictions. Concretely, we use the classifier’s
most confident predictions and the correspond-
ing rationales as pseudo-labels. Our proposed ap-
proach requires a mapping between the rationales
of the two views. For example, if we use languages
as views, the word alignments between the trans-
lated texts are valid mappings. Using a model’s
rationale as pseudo-labels constraints the choice of
models to those that (1) expose their rationales, and
(2) can leverage rationales to improve performance.
To satisfy these constraints, we used Hierarchi-
cal Attention Networks (HAN) (Yang et al., 2016)
with an additional rationale agreement loss. Con-
cretely, HAN’s attention weights naturally prox-
ies as the model’s rationale (first constraint) and
can be trained using the loss between the attention
weights and the pseudo-labelled rationales (second
constraint). While we experimented with HAN,
we believe that the same modifications can be ex-
tended to most attention neural networks, which



dominate the state-of-the-art neural architectures
in NLP (Devlin et al., 2019; Vaswani et al., 2017).
Experiments on two datasets from the ERASER
benchmark (DeYoung et al., 2020) showed that
rationalized co-training reduced the error rates be-
tween the partially and fully supervised models by
32.3%. This error rate reduction outperformed that
of vanilla co-training by 8.51%.

2 Problem Formulation

In this paper, we consider sentence pairs in two
languages (obtained by machine translation) as the
two views for co-training. Languages as views
have been used in prior works (Callison-Burch,
2002; Wan, 2009; Li et al., 2013). We denote the
datasets as D for the source language and D; for
the target language. These datasets are partitioned
into a large unlabelled dataset Uy, Uy, and a limited
labelled dataset, Ls, L;. These labels consist of
only task labels, and not human-labelled rationales.

To apply rationalized co-training, we need a map-
ping between the rationales in the two views. With
languages as views, we use a word aligner A,
whose objective is to find the correspondence be-
tween words of a sentence pair in two languages
(Dou and Neubig, 2021). To allow the use of ratio-
nales as pseudo-labels, we employ the Hierarchical
Attention Networks (Yang et al., 2016) as the base
classification model. Finally, the goal is to max-
imise the task performance of classifiers in both
languages Cs and C4.

3 Hierarchical Attention Networks

We address the problem of document classification
(e.g. movie reviews). We assume that a document
has N sentences, {s; };c[1,n], and each sentence s;
contains 7" words, {wjt }¢ep1,7]- The classifier C
represents each document as a vector, and outputs
a single label (e.g., positive/negative).

Word Encoder. We embed words with multilin-
gual BERT (Devlin et al., 2019), z;; = We(w;;)
where W, denotes the embedding function. To
obtain each word’s representation, we used a bidi-
rectional GRU (Bahdanau et al., 2016) containing
the forward GRU f which reads the sentence s;
from z;; to x;7 and a backward GRU ? which
reads from x;7 to x;1:

We then obtain each word’s representation by con-
catenating the two hidden states, h;; = [hit, ;zjt]

Word Attention. The word attention weighs the
importance of each word in the sentence:

i = tanh(Wy,hir + by), )
exp(u;uw)
Qjt = = (2)
>t exp(u;uw)
i = Z aithit. 3)
t

Equation 1 represents a linear layer. Equation 2
measures a word’s importance as the normalized
similarity of u;; with a word level context vector
uy. Equation 3 computes the sentence vector s;
as the weighted sum of the word representations
based on the attention.

Sentence Encoder. The sentence encoder is sim-
ilar to the word encoder. We used a bidirectional
GRU to encode the sentences:

h GRUz( ) zE[l,N]
i = GRU(sy),i € [N, 1].
We then concatenate the hidden states, h; =

hz, ﬁ The sentence attention mechanism is sim-
ilar to the word attention mechanism:

u; = tanh(Wgh; + bs), 4
exp(u, us)

i = —Z7 5

@ > exp(u;-rus) ©)

v = Zaihi, (6)

where v is the document vector summarizing in-
formation from all sentences. Lastly, we pass the
document vector as input to a linear layer and soft-
max for classification: p = softmax(Wev + b.),
where p represents the probability vector.

4 Rationalized Co-Training

Rationale agreement loss. Rationalized co-
training uses one classifier’s most confident pre-
dictions and corresponding rationales as pseudo-
labels for the other. To do so, we first need a notion
of what a classifier’s rationale is. Observe that the
attention weights o of HAN naturally proxies as
rationales (equations 2, 5). For example, if the
attention weight for the i*" sentence is high, the
document vector v will then place more weight to



the i*" sentence’s representation h;. Similarly for
the word attention «;;. The classification is based
on the document vector v, which is the weighted
sum of the sentence representations. Each sentence
representation is in turn the weighted sum of the
word representations. Thus, the attention weights
on both the word and sentence level directly influ-
ences the classification, and can be a proxy for the
classifier’s rationale.

We now describe how one classifier can use the
rationales of the other to improve task performance.
To this end, we introduce L1 losses over the atten-
tion weights of both classifiers. Formally,

Lsent = Ll(aitaa;t)vi € [17N} te [17T’Z]’
Ldoc = Ll(aiaag)ai € [LN]?
L= Ltask + ’YLsent + BLdom

where o, o/ are the other classifier’s word and
sentence rationales, «, 5 are hyperparameters to
balance the weighted sum. The L1 loss is suit-
able because the attention weights are softmaxed,
thus the classifier should not assign weights that
are too high or low. Intuitively, the loss encour-
ages the classifier to pay attention to the same
words/sentences as the other classifier.

Rationalized co-training algorithm. The ratio-
nalized co-training algorithm is similar to the
vanilla co-training. The key difference is that we
used the classifier’s rationales in addition to their
most confident task labels as pseudo-labels.

We start by training our classifiers Cs, C; on
the labelled datasets L, L; respectively. The algo-
rithm then iterates the following procedure. First,
it computes the number of examples to label: s =
p X |Us| x k, where p denotes the proportion of
the unlabelled set to label and & denotes the iter-
ation number. Second, Cj, C; label s most confi-
dent examples and corresponding rationales from
Ly, L; to form the pseudo-labelled set L', ,, L}, re-
spectively. L.  denotes the examples labelled by
Cs, whose pseudo-labelled rationales are in lan-
guage s. However, C; cannot leverage L, directly
as Cy is trained in language ¢. Thus, we used A, ;
to align the pseudo-labelled rationales of L. in
language s to L', in language ¢. We do the same
with L}, to create L},. Finally, we augment the
training datasets Lg, Ly with L}, L, respectively,
ie. Ly ULj,, L UL, Note that we did not in-
clude L, in Ly to avoid C; from learning from
it’s own pseudo-labelled examples (without loss

of generality to C}). Lastly, we finetune Cj, C; on
the augmented sets L, L; respectively. While the
original co-training paper retrained the classifiers,
we opted to fine-tune to save training time.

S Experiments

We used the following datasets from the ERASER
benchmark (DeYoung et al., 2020): 1) Movie Re-
views is the task of labelling a movie review as
positive/negative (size: 2K). 2) e-SNLI is the task
of determining the inference relation between two
short texts: entailment, contradiction, or neutral
(size: 570K). We used 20% of the training set as
our labelled dataset L, and the remaining 80% as
the unlabelled dataset U. The validation set is used
for early stopping and model selection. We re-
peated all experiments thrice and took the average
results.

We used the AWESOME word aligner for it’s
state-of-the-art performance (Dou and Neubig,
2021). As the aligner performs well between En-
glish and French, we used these languages as views.
As the ERASER benchmark is in English, we
Google Translated it to French and mapped the
rationales with the aligner.

To measure task performance, we used macro
F1 score. To measure co-training performance,
we used the error rate reduction be}g\iveen I;)flrtially
and fully supervised models: 1 — ﬁ,
where F'lg,p, F'leotrains F'lpartiar denote the best
F1 score of the fully supervised, partially super-
vised, and co-training experiments. We also lever-
aged ERASER’s human-labelled rationales to eval-
uate the correctness of the model’s proxy rationales.
To this end, we used the L1 loss between the model
and human-labelled attention, denoted by L, L};,
for the sentence and word level respectively. To
compute the human-labelled word attention, we
normalised the human-labelled rationales. To com-
pute the human-labelled doc attention, we compute
the proportion of rationale tokens in each sentence
and normalized this vector of proportions.

Results and Analysis Our results are sum-
marised in Table 1. Rationalized co-training re-
duced the error rates between the partially and fully
supervised models by an average of 32.3%. This
error rate reduction outperformed that of vanilla co-
training by an average of 8.51%. Furthermore, the
test F1 score is still increasing after 2 co-training
epochs whereas vanilla co-training generally tapers
after the first epoch (Figure 1). We did not con-



Method Movies

eSNLI

En Fr
ER Fl Ls Ly ER Fl L

‘w ER Fl

En Fr
L w ER Fl Ls Ly

Vanilla 37 739 41 88 45 740 4.0
Ours 4 755 34 87 61 759 35
Full - 877 36 88 - 809 4.0
Partial - 659 38 86 - 68.3 3.7

95 00 696 26 13 13 667 26 13
92 43 700 17 12 20 672 18 12
10 - 759 26 14 - 737 26 13
91 - 69.7 26 14 - 657 26 13

Table 1: Test set results comparing rationalized co-training to vanilla co-training, fully supervised and partially
supervised models. ER denotes error rate reduction. LY, L};, denote the L1 Loss between the best model’s and
human-labelled sentence/word attention weight (1e-2 units). The highest ER and lowest L, L};, is bolded. Results

shown are the average of three repeats.
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Figure 1: Test F1 scores against co-training epochs.

tinue training due to time constraints. The error
rate reduction is higher for movies than eSNLI be-
cause the average number of tokens in the former
is higher than the latter (774 > 16), thus benefitting
more from rationale supervision.
Rationalized co-training also has an average
‘s, Ly, of 0.106, the lowest amongst vanilla
(0.131), fully (0.133) and partially supervised base-
lines (0.131). This result suggests that rationalized
co-training aids the learning of human rationales,
even without supervision on them. We also note
that the fully supervised model has the highest loss,
which suggests overfitting to dataset biases.

6 Related Work

Co-training. Co-training was initially proposed
with the assumption of conditionally independent
views given the class labels (Blum and Mitchell,
1998). However, it has been shown to succeed in
many applications that do not satisfy such condi-
tions (Callison-Burch, 2002). Works have since
proposed assumptions in weaker forms (Abney,
2002; Wang and Zhou, 2010). Other variants of
co-training addressed the assumption of having
two conditionally independent views. Zhou and

Li (2005) proposed to use three classifiers trained
on the same dataset to teach each other. Qiao et al.
(2018) trained multiple neural models to be of dif-
ferent views by exploiting adversarial examples to
encourage view difference. Sindhwani and Niyogi
(2005) extended the idea of co-training by propos-
ing a co-regularisation approach that encourages
agreeement between views. Our work builds on
this line of work by encouraging agreement be-
tween the rationales of the classifier’s predictions.

Exploiting Rationales Prior works have shown
that training with human-labelled rationales can
improve performance. Zaidan et al. (2007) first
demonstrated the usefulness of rationales in sup-
port vector machines. Zhang et al. (2016) aug-
mented neural networks with rationale supervision
for text classification. Melamud et al. (2019) used
rationales to augment unsupervised pre-training for
text classification. However, human labelled ratio-
nales may not be readily available. To circumvent
this, Bhat et al. (2021) proposed a self-training
framework wherein a teacher model generates both
task and rationale labels for a student model to
learn from. Our work builds on this line of work
by encouraging classifiers to share the rationales
behind their predictions.

7 Conclusion

We proposed rationalized co-training: a variant
of co-training that encourages agreement between
the rationales of the classifiers’ predictions. Our
method requires a mapping between rationales in
the two views. As we used languages as views
here, the rationales are transferable using the word
alignments between sentence pairs. Our approach
also requires classifiers which expose their ratio-
nales and can leverage rationales to improve perfor-
mance. We hope to generalise to other classifiers
and to cases where the mapping between rationales
is non-trivial (e.g. between latent representations).
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A Rationalized Co-Training Pseudocode

We show the rationalized co-training algorithm in
Algorithm 1.

B Experiment Details

B.1 Data Processing

We used the publicly available ERASER bench-
mark: link. We used the ERASER dataset as it
contains human-labelled rationales, which allows
us to evaluate the correctness of our model proxy
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Algorithm 1 Rationalized Co-Training algorithm. Dataset  Size (train/val/test) #Tokens
Require: Movies 1600 /200 / 200 774
1:  » Large unlabelled datasets Uy, Uy in source eSNLI 549309 /9823 / 9807 16

language s and target language ¢
e Limited labelled dataset L, L

* Word aligner A ;
Train classifiers Cy, Cy on L, Ly respectively
for k < 1to K do
s+ px|Us| xk
Cs, Cy labels s most confident examples
and corresponding rationales from L, L; to
form L., L}, respectively
6: Use A, to align L in language s to L,
in language ¢ and L}, in language ¢ to L}, in
language s.
Ls+ LyULj,
Lt — Lt U L;t
: Finetune Cy, Cy on L, L; respectively
10: end for

rationales. To translate the ERASER benchmark
from English to French, we google translated the
documents and used our word alignment tool to
map the rationales. For words that are in English
but not in French, we take the next closest word in
the alignment. We intend to release the translated
datasets and codebase. For our movies dataset, we
excluded the query from the document since it is
constant across all examples (e.g. "What is the
sentiment of this review?).

B.2 Hyperparameter Configurations

We trained the models with the Adam optimiser,
setting epochs=20, patience=5, learning rate=1e-
3, batch size=64, proportion p=0.1, number of
co-training iterations K=2. We also set the atten-
tion loss weights ~, 5 to (5, 25) and (10, 2.5) for
the movie reviews and eSNLI dataset respectively.
These weights were not tuned. They were cho-
sen with the prior knowledge that sentence atten-
tion loss matters more in shorter documents (e.g.
eSNLI), while the doc attention loss matters more
in longer documents (e.g. Movie Reviews). The
values were also not too high such that they over-
whelm the task loss and not too low such that it
does not aid learning.

B.3 Definition of Human-Labelled Attention

Human-labelled rationales are provided as token-
level binary rationale labels, indicating if the token
is arationale or not (e.g. "The movie is really great”

Table 2: Statistics of the datasets used. Tokens is the
average number of tokens in each document.

— (0, 0, 1, 1)). To compute the human-labelled
word attention, we divided the vector by it’s sum
(e.g. (0,0,1,1)— (0,0, 0.5, 0.5)). This normalised
vector represents the gold attention weights, thus
allowing us to evaluate the model’s word attention
weights via the L1 loss between them. To compute
the human-labelled doc attention, we first compute
the proportion of rationale tokens in each sentence
(e.g. (0,0,1,1) — (0.5)). A document is then
represented as a vector of proportions (e.g. (0.2,
0.5, 0.4) for a document of 3 sentences). We then
divided the vector of proportions by it’s sum (e.g.
(0.2,0.5,0.4) — (0.18, 0.45, 0.36)), which allows
us to evaluate the model’s doc attention weights
via the L1 loss. Since the L1 loss is differentiable,
we can also use this approach to train HAN with
human rationale labels if given.

B.4 Reproducibility Checklist

1. A clear description of the mathematical set-
ting, algorithm, and/or model. We show
the rationalized co-training algorithm in Algo-
rithm 1. The mathematical setting and model
is described in Problem Formulation 2 of the
main text.

2. A link to a downloadable source code, with
specification of all dependencies, including
external libraries (recommended for cam-
era ready, though welcome for initial sub-
mission). We intend to release the source code
(and translated datasets) soon.

3. A description of computing infrastructure
used. We ran our experiments on a GeForce
RTX 2080 Ti.

4. The average runtime for each model or al-
gorithm, or estimated energy cost. The esti-
mated runtime for co-training on the Movies
and eSNLI dataset is 1 hour and 3 hours re-
spectively.

5. The number of parameters in each model.
Our HAN model has 1003402 parameters.



10.

11.

12.

13.

14.

15.

16.

Corresponding validation performance for
each reported test result. We intend to re-
lease the validation performance in the next
iteration of the paper.

A clear definition of the specific evaluation

measure or statistics used to report results.

The definition of error rate reduction is de-

tailed in the experiments 5. The definition of
's, Ly is detailed in the appendix B.2.

. The exact number of training and evalu-

ation runs. We trained for 20 epochs and
co-trained for 2 epochs.

The bounds for each hyperparameter. The
method of choosing hyperparameter val-
ues (e.g. manual tuning, uniform sampling,
etc.) and the criterion used to select among
them (e.g. accuracy) Hyperparameter tuning
was not done. We used the default (PyTorch)
values.

Summary statistics of the results (e.g. mean,
variance, error bars, etc.). All results are
reported in Table 1. The results are averaged
across three runs.

Relevant statistics such as number of ex-
amples and label distributions. The dataset
statistics are summarised in Table 2. More de-
tails can be found in the ERASER benchmark
(DeYoung et al., 2020).

Details of train/validation/test splits. Speci-
fied in Table 2.

An explanation of any data that were ex-
cluded, and all pre-processing steps. De-
tailed in the appendix section: Experimental
Details B.

For natural language data, the name of the
language(s). English and French.

A link to a downloadable version of the
dataset or simulation environment. The
ERASER dataset is available at: link. We
intend to release the translated Movies and
eSNLI dataset in French soon.

For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control. Detailed in the appendix sec-
tion: Experimental Details B.


https://www.eraserbenchmark.com

