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Abstract

The exploration-exploitation dilemma is still an
open problem in Reinforcement Learning (RL),
especially when coped with deep architectures
and in the context of continuous action spaces.
Uncertainty quantification has been extensively
used as a means to achieve efficient directed ex-
ploration. However, state-of-the-art methods for
continuous actions still suffer from high sam-
ple complexity requirements. Indeed, they ei-
ther completely lack strategies for propagating
the epistemic uncertainty throughout the updates,
or they mix it with aleatory uncertainty while
learning the full return distribution (e.g., distribu-
tional RL). In this paper, we propose Wasserstein
Actor-Critic (WAC), an actor-critic architecture
inspired by the recent Wasserstein Q-Learning
(WQL) (Metelli et al., 2019), that employs ap-
proximate Q-posteriors to represent the epistemic
uncertainty and Wasserstein barycenters for uncer-
tainty propagation across the state-action space.
WAC enforces exploration in a principled way
by guiding the policy learning process with the
optimization of an upper bound of the Q-value es-
timates. Furthermore, we study some peculiar
issues that arise when using function approxi-
mation, coupled with the uncertainty estimation,
and propose a regularized loss for the uncertainty
estimation. Finally, we evaluate our algorithm
on a suite of continuous-actions domains, where
exploration is crucial, in comparison with state-
of-the-art baselines. Our experiments show a
clear benefit of using uncertainty-aware critics
for continuous-actions control.
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1. Introduction
Reinforcement Learning (RL Sutton & Barto, 2018) is one
of the most widely used frameworks for solving sequen-
tial decision-making problems, especially in model-free
settings, where a model of the environment dynamics is
not available. When an agent acts in an uncertain envi-
ronment, it faces the choice between exploring with the
hope of discovering more profitable behaviors or exploit-
ing the current information about the actions’ values. This
exploration-exploitation dilemma is particularly challenging
in continuous-state spaces, where function approximation
is required to generalize across states, and, differently from
the tabular case, an accurate estimate of the uncertainty on
the value estimates is not available point-wise. Continuous-
action tasks pose additional challenges since most explo-
ration methods require the maximization of some objective
(e.g., upper bound of the Q-value) over the action space.
While in the discrete case, this maximization can be per-
formed by enumeration, in the continuous case it requires
solving a complex optimization problem, increasing the
computational demands.

Actor-Critic (AC) methods (Haarnoja et al., 2018; Ciosek
et al., 2019; Schulman et al., 2015) represent the cur-
rent state of the art for continuous control. Despite
their widespread adoption, these methods still suffer from
high sample complexity. Efficient exploration strate-
gies have been extensively studied in the literature as a
means of reducing sample complexity mainly in tabular
domains (Auer et al., 2008; Ian et al., 2013; Metelli et al.,
2019; O’Donoghue et al., 2018). Classical exploration strate-
gies, like ϵ-greedy or Boltzmann (Sutton & Barto, 2018),
inject noise around the current greedy policy to enforce
exploration. Although in simple settings this is enough to
guarantee convergence (Szepesvári, 1997), this exploration
strategy is not efficient in the general case.

Another line of approaches considers the maximum entropy
setting to improve exploration, and avoids the determinis-
tic collapse of the policies, e.g., Soft Actor Critic (SAC,
Haarnoja et al., 2018). In this setting, stochastic policies are
preferred by optimizing the expected return regularized with
an entropy term. This too represents a form of undirected
exploration since the policies are forced to be stochastic,
thanks to the entropy bonus, but the induced noise does
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not consciously shift its focus towards promising regions
of the state space. A common trend in the RL literature
consists in endowing existing methods with some form of
uncertainty quantification and using it to perform directed
exploration while focusing on the most promising regions.
For instance, optimistic approaches have been applied to
both Q-learning (Jin et al., 2018) and SAC. In particular,
a recent extension of SAC, Optimistic Actor-Critic(OAC,
Ciosek et al., 2019), proved to improve sample efficiency
over the standard SAC.

Indeed, uncertainty quantification is a fundamental step
to define efficient exploration strategies. The most used
exploration strategies, coming from the Multi-Armed Ban-
dit (MAB, Lattimore, 2020 - 2020) literature, use uncer-
tainty estimates to explore either based on optimism (Auer
et al., 2002) or posterior sampling(PS, Thompson, 1933).
These methods have been extended for the RL settings, start-
ing from tabular domains (Auer et al., 2008; Ian et al., 2013;
Metelli et al., 2019), with theoretical guarantees on the sam-
ple complexity and/or regret. Uncertainty quantification
methods have been proposed for the Deep Reinforcement
Learning (DRL) settings too, but the guarantees no longer
hold up. This is done by means of posterior distributions to
represent uncertainty. Posterior distributions are either mod-
eled explicitly (Metelli et al., 2019; Lee et al., 2021) or im-
plicitly by using an ensemble of value estimates (Wang et al.,
2021). Ensemble methods allow quantifying the uncertainty
but do not propagate it across the state action-space when
performing the critic updates. Uncertainty propagation is
a fundamental tool of any principled uncertainty estima-
tion approach since most AC methods rely on bootstrapping
when updating the critics. This results in Q-value estimates
that also incorporate uncertainty about the bootstrapped val-
ues. Distributional RL (O’Donoghue et al., 2018) allows for
uncertainty propagation but considers only aleatoric uncer-
tainty, being aimed at estimating the full return distribution.
This is not straightforward in practice, and, furthermore, it
is not strictly necessary in the classical RL setting where
the goal is to maximize the expected return. To the best of
our knowledge, the only method capable of propagating the
epistemic uncertainty, without the need to learn the return
distribution is Wasserstein Q-learning (WQL Metelli et al.,
2019), which has only been proposed for the discrete action
case.

In this paper, we address the problem of uncertainty es-
timation and propagation in the context of continuous-
action RL. Starting from the methodology introduced in
WQL (Metelli et al., 2019), we devise a novel actor-critic
algorithm, Wasserstein Actor-Critic (WAC), which employs
Q-posteriors both to quantify uncertainty on the critic es-
timates to drive exploration, as well as a tool to propagate
it across the state-action space, by means of Wasserstein
barycenters (Section 3). The Q-posteriors quantify the epis-

temic uncertainty of the Q-values and incorporate both the
uncertainty due to the empirical estimate of the stochastic
transition and immediate reward sample, as well as the Q-
value uncertainty of the next states imported during the boot-
strapping of the Temporal Difference (TD, Sutton & Barto,
2018) updates. Furthermore, we consider some practical
problems that arise while quantifying uncertainty by means
of Q-posteriors coped with function approximators, espe-
cially neural networks. To this end, we propose a new reg-
ularization approach for the uncertainty networks to avoid
the collapse of the uncertainty estimates due to uncontrolled
generalization (Section 4). WAC uses the Q-posteriors to
explore efficiently, by optimizing an upper bound of the
Q-values. Unlike OAC (Ciosek et al., 2019), which employs
bootstrapped uncertainty estimates from an ensemble of
critics (two) to define the upper bound, we employ the Q-
posteriors, which will eventually shrink to point estimates.
Furthermore, WAC recovers SAC for a specific hyperparam-
eter configuration and, more importantly, is able to explore
more efficiently with negligible additional computational
costs. After revewing the literature (Section 5), we present
a thorough experimental evaluation over some simple 1D
navigation domains, as well as some Mujoco (Todorov et al.,
2012) tasks designed for exploration to assess the effect of
uncertainty estimation and propagation on exploration and
sample complexity (Section 6).

2. Preliminaries
Markov Decision Processes We consider infinite-horizon
discounted Markov Decision Processes (MDP, Puterman,
2014). An MDP is a 5-tupleM=(S,A,P,R,γ), defined
by the state space S, the action space A, a transition ker-
nel P :S×A→∆(S), a rewardR :S×A→∆(R) and the
discount factor γ∈ [0,1).1 Let r :S×A→R be the ex-
pectation of the reward R that we assume bounded in
[rmin, rmax]. The behavior of an agent is described by a
policy π :S→∆(A). When the agent observes state s∈S,
it chooses an action according to policy a∼π(s), executes
it and observes a reward, r∼R(s,a) and the next state
sampled from the transition kernel s′∼P(s,a). The per-
formance of a policy π is measured by its state-value func-
tion V π(s)=E [

∑∞
t=0 γ

trt|s0=s], where the expectation
is taken w.r.t. to the stochasticity of the reward, the transition
model, and the policy π. Similarly, the action-value func-
tion is defined as Qπ(s,a)=E [

∑∞
t=0 γ

trt|s0=s,a0=a],
where we fix the first action and follow policy π for the next
steps. The value functions satisfy the Bellman equations,
V π(s)=E [r(s,a)+γV π(s′)] for every s∈S, Qπ(s,a)=
r(s,a)+γE [Qπ(s′,a′)] for every (s,a)∈S×A. The opti-
mal action-value function Q∗ is the maximum, over all poli-

1∆(X ) denotes the set of probability distributions over the set
X .
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cies, of the Q function, for all state action pairs, Q∗(s,a)=
supπ{Qπ(s,a)}. Q∗ satisfies the Bellman optimality equa-
tion Q∗(s,a)=r(s,a)+γE [supa′∈A{Q∗(s′,a′)}]. The
Bellman equations form the basis of TD-learning, which
updates the estimation of the V or Q functions in the current
state using estimates of the next-states V or Q function. The
goal of learning algorithms in this setting is to find the opti-
mal policy π∗, which is defined as the policy that acts greed-
ily w.r.t. Q∗, π∗(·|s)∈∆(argmaxa∈A{Q∗(s,a)}) ,∀s∈S .

Actor-Critic Methods AC methods maintain a parame-
terized value-function Qω (critic) to estimate the value
of the current (or a given target) policy, and a param-
eterized policy πθ (actor), trained through gradient de-
scent. In particular, SAC (Haarnoja et al., 2018), em-
ploys an entropy-regularized architecture. It maintains
two parameterized action-value functions {Qω1

,Qω2
} to

estimate the entropy-regularized value function of pol-
icy πθ. They are trained on the same samples and dif-
fer only on the initialization of ω1 and ω2. The actor
optimizes a “lower bound” of the action-value function,
QLB(s,a)=min{Qω1

(s,a),Qω2
(s,a)}. To update the

critic, given a sample (s,a,r,s′), SAC uses the SARSA (Sut-
ton & Barto, 2018) update rule, Q{ω1,ω2}(s,a)←r+
γQLB(s

′,a′), where a′∼πθ(s
′). Specifically, SAC main-

tains experience collected with previous policies πθ in a
replay buffer D. The critic is trained to minimize the (en-
tropy regularized) Bellman error over this replay buffer, as
follows:

JC({ω1,ω2})= E
s,a,r,s′∼D

[
(Q{ω1,ω2}(s,a)−

(r+γQ̃(s′,a′)))2
]
,

(1)

where Q̃(s,a)=QLB(s,a)−α logπθ(s
′,a′), QLB(s,a)=

min{Qω1(s,a),Qω2(s,a)} is the lower bound of the Q-
values given from two target networks which are updated
slowly to improve stability (Mnih et al., 2015), a′∼πθ(s

′),
and α>0 specifies the level of entropy regularization. The
actor network is trained to optimize an entropy-regularized
objective. Since the target Q-function is a parameterized
function approximator, the policy can directly follow the
gradient of the critic:

JA(θ)= E
st∼D,at∼πθ(st)

[logπθ(st,at)−QLB(st,at)] .

(2)

Wasserstein TD-Learning Bayesian RL approaches (Dear-
den et al., 1998; Metelli et al., 2019) maintain, for each state-
action pair (s,a)∈S×A, a probability distributionQ(s,a),
called a Q-posterior, used to represent the epistemic uncer-
tainty over the value estimates. In practice, Q is an approxi-
mate distribution in a class Q (e.g., Gaussians). V-Posteriors
can be defined, as in the classical way, as an average of the Q-
posteriors, by employing the notion of barycenters defined
in terms of a given divergence. As in (Metelli et al., 2019),

we choose Wasserstein (Villani, 2008) divergence since
the variance of our Q-posteriors vanishes as the number of
samples grows to infinity, and the Wasserstein divergence
allows computing the distance between distributions with
disjoint support. Given two probability distributions, µ and
ν, the Lp-Wasserstein distance between µ and ν is defined
as: Wp(µ,ν)=(infρ∈Γ(µ,ν)EX,Y∼ρ[d(X,Y )p])1/p, where
Γ(µ,ν) is the set of all joint measures with marginals µ and
ν, and d is a metric. Given a class of probability distribu-
tions N , a set of probability distributions {µi}ni=1, µi∈N
and a set of weights {ξi}ni=1,

∑n
i=1 ξi=1 and ξi≥0, the

L2-Wasserstein barycenter is defined as (Agueh & Carlier,
2011) µ∈argminµ∈N {

∑n
i=1 ξiW2(µ,µi)

2}.

Using the concept of Wasserstein barycenter, we can also
propagate the uncertainty of the value function estimates
across the state-action space. Indeed, having observed
a transition (s,a,r,s′), the Wasserstein Temporal Differ-
ence (WTD, Metelli et al., 2019) update rule is defined via
the computation of the barycenter of the current Q-posterior
and the TD- target posterior, defined as Tt=r+γQt(s

′,a′):

Qt+1(s,a)∈argmin
Q∈Q

{
(1−αt)W2 (Q,Qt(s,a))

2
+

αtW2 (Q,Tt)2
}
,

(3)

where αt is the learning rate, and a′ is the action taken in
the next step. Depending on the policy chosen to take action
a′ the update can be on-policy or off-policy. The presence
of γ in the definition of Tt shrinks the posteriors, vanish-
ing the uncertainty when the number of samples grows to
infinity. When the Q-posteriors become point estimates,
the update rule reduces to the classic TD update rule. For
some choices of distribution classes, Equation (3) can be
computed in closed form. We will focus on Gaussian pos-
teriors; this is not a limiting choice, as the sample mean is
approximately Gaussian with enough samples, even if the
return distribution is not Gaussian in the general case.

3. Wasserstein Actor-Critic
In this section, we introduce Wasserstein Actor-Critic
(WAC), which extends WQL (Metelli et al., 2019) to handle
environments with continuous-action spaces. We present
the algorithm, define the update rules, and a regularization
for the uncertainty estimates.

Distributional Critic Similar to Bayesian approaches,
WAC uses distributional critics to represent the epistemic
uncertainty on the Q-value estimates. For each state-action
pair (s,a)∈S×A, we maintain an approximate distribution
Q(s,a)∼Q(s,a), representing a Q-posterior over the pos-
sible values of Q(s,a) to model the uncertainty estimate on
the value function. While these distributions will generally
depend on the aleatoric uncertainty of the environment (state
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Algorithm 1 Wasserstein Actor-Critic.

Input: critic parameters ω1,ω2, policy parameters θ,θT

InitializeQ{1,2}(s,a) with the priorQ0

Initialize replay buffer D←∅
for epoch=1,2, ... do

for t=1,2, ... do
Take action at∼πθ(·|st)
Observe st+1 and rt+1

D←D
⋃
(st,at, rt+1,st+1)

end for
σ
{1,2}
old ←σω{1,2}

for iteration=1,2, ... do
Update critic weights ω{1,2} using Equation (8)
Update actor weights θ (θT ) using Equation (6) (Equa-
tion (7))

end for
end for=0

transition and reward), our updates will vanish the variance
as we collect samples. This represents our main difference
w.r.t. Distributional RL, as we do not require learning the
whole return distribution, while still propagating uncertainty
across the state-action space. More specifically, given a
replay buffer of past behavior D, our critic minimizes the
L2-Wasserstein distance between the Q-posterior Qω and
the target posterior r+γQω , defined through the target pa-
rameters ω and target policy πθT :

JC(ω)= E
s,a,s′,r∼D

[
W2 (Qω(s,a), r+γQω(s

′,πθT (s′))
2
]
.

(4)
Like in the original WQL paper, different flavors of the
algorithm can be proposed, based on the combination of:
(i) distribution classes Q, (ii) behavioral πθ , and (iii) target
πθT policies. In the discrete-action case, the exploration
policy can follow an optimistic approach (maximizing an
upper bound on the Q-values) or a posterior sampling ap-
proach (sampling actions with the probability of being opti-
mal). However, when moving to continuous actions, even
sampling from the distribution of the maximum requires
computing a product integral (D’Eramo et al., 2017). In
addition, we could only sample from the distribution ap-
proximately (e.g., through a Monte Carlo random walk
over the action space). For this reason, we focus on the
optimistic exploration, that just requires optimizing upper
bounds. Finally, although other distribution classes, like
particle-models, could be employed, we limit our discussion
to Gaussian posteriors, as their parametrization allows for
direct control over the distribution variance.

Similar to WQL, we maintain a parameterized distributional
critic using a function approximator (e.g., neural network)
that outputs the parameters of the distribution. For the Gaus-
sian case, Q(s,a)∼N (µω(s,a),σω(s,a)), the Wasserstein
distance has a closed form, and the critic objective becomes:

JC(ω)= E
s,a,s′,r∼D

[(
µω(s,a)−(r+γµ̃ω(s

′,πθT (s′)))
)2

+
(
σω(s,a)−γσω(s

′,πθT (s′))
)2]

,

(5)

where µ̃ω(s,a)=µω(s,a)−α logπθT (s,a). In practice,
µω and σω can use either a shared network architecture
or two different networks. Similar to WQL, we initialize
the posterior networks using the bias of the last layer of the
network. If the reward function is limited in the interval
[rmin, rmax], the Q values will be in the range [qmin, qmax]
with qmin=rmin/(1−γ) and qmax=rmax/(1−γ). We
therefore initialize the uncertainty networks to σ0=(qmax−
qmin)/

√
12, i.e. the Gaussian minimizing the KL divergence

with the uniform distribution in [qmin, qmax].

Actor The actor in WAC is updated by optimizing an upper
bound U δ

ω of the estimated Q-value, which we can efficiently
compute using Gaussian posterior: U δ

ω(s,a)=µω(s,a)+
σω(s,a)Φ

−1(δ), where Φ−1 is the quantile function of the
standard normal and δ∈(0,1). When actions are finite,
no actor is needed, as we can compute the maximum by
enumeration. However, in our case, we need an actor that
follows U δ

ω(s,a), which is differentiable in ω, leading to
the minimization of the objective:

JA(θ)= E
st∼D,at∼πθ(st)

[
logπθ(st,at)−U δ

ω(st,at)
]
, (6)

where θ are the parameters of the behavioral policy. In
practice, as discussed in Section 2, we employ a double critic
strategy to improve stability, like SAC, i.e., we maintain two
distributional critics and use the minimum of the two upper
bounds, as target: U δ

ω(s,a)=min{U δ
ω1

(s,a),Uδ
ω2

(s,a)}.2

Target Policy We propose two alternatives for the target
policy πθT , corresponding to different estimators for the
target posterior Tt. First, we can use the same policy we
use for exploration, i.e., θ=θT , like SAC. This has the
advantage of not requiring a second parameterized policy.
We call this version Optimistic Estimator-WAC (OE-WAC),
which represents an on-policy algorithm. Alternatively, we
can use a greedy policy that optimizes the expected value of
the Q-posteriors (the mean critic µω(s,a) in the Gaussian
case). In this case, the target policy minimizes:

JT (θT )= E
st∼D,at∼πθT (st)

[logπθT (st,at)−µω(st,at)] .

(7)
We call this version Mean Estimator-WAC (ME-WAC). The
best version to use between the two is task-dependent. Gen-
erally, OE-WAC is more suitable for environments that re-
quire large exploration, whereas ME-WAC is more suit-
able for simpler environments where OE-WAC might over-

2It is worth noting that if both Uδ
ω1

and Uδ
ω2

are upper bounds
of Qω , their minimum is still an upper bound.
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Figure 1: Example of uncertainty estimates. σ0 shows the
initial constant high value. The other curves show potential
estimates after two collected samples (red crosses).

explore and might suffer from some instability.

4. Regularized Uncertainty Estimation
Our Q-posteriors are initialized to high uncertainty at the
beginning of the learning process. Since they represent epis-
temic uncertainty, their variance will shrink as we observe
more samples. This is apparent in Equation (5), where the
targets σω are multiplied with γ. In tabular settings, the up-
dates are localized, i.e., they affect a single state-action pair,
without interfering with the others. However, when function
approximators are involved, generalizing uncertainty in an
uncontrolled way might cause non-visited areas of the state-
action space to take low uncertainty values, which might be
undesired.3 Consider the example in Figure 1. The graph
shows the uncertainty estimate as a function of the action,
in a fixed state s. Starting from an initial high constant
estimate of σ0, at the beginning of the learning process, we
will observe samples like the red crosses in the figure, i.e.,
with lower uncertainty since it gets shrunk with γ. Among
all the possible fitting lines, we would prefer an estimate
like σ3

1 , which keeps high uncertainty in unseen regions,
and would like to avoid failures like σ1

1 . This requires con-
trolling the “smoothness” properties of the approximator.
To avoid the additional computational burden, we propose
a simple scheme based on synthetic samples. Specifically,
we periodically save the weights of the uncertainty network
σold and use it as the target for state-action pairs drawn
uniformly from the state-action space. More formally, our
distributional critic minimizes:
J ′
C(ω{1,2})=JC(ω{1,2})+

λ E
s,a∼U(S×A)

[(
σω{1,2}(s,a)−σold(s,a

)2]
,

(8)

where JC(ω{1,2}) is defined in Equation (5) and λ≥0 de-
fines the relative weight of the regularization. Furthermore,

3This generalization phenomenon happens for the mean too,
but, as visible in Equation (5), is particularly critical for the vari-
ance that gets updated with the next-state-action variance scaled
by γ<1.

in practice we add a second parameter, ρ∈ [0,1] which rep-
resents the fraction of fake samples (w.r.t. the samples used
for JC(ω{1,2})) drawn for regularization. Specifically, if
we estimate JC(ω{1,2} using N samples from replay buffer
D, we will estimate the expectation in Equation (8) with
M=ρN samples from U(S×A). In Section 6, we will see
that for simple environments, small values of ρ are enough,
while for more complex tasks the regularizer will require
larger ρ values. Algorithm 1 reports the pseudocode of
WAC, embedding the regularized uncertainty estimation.

To investigate the effectiveness of the regularized uncer-
tainty loss, on an illustrative example, we trained two dif-
ferent agents, in a one-dimensional Linear Quadratic Reg-
ulator (LQG, Dorato et al., 2000). This task has a one-
dimensional state and action spaces, which allow us to visu-
alize the uncertainty estimates. As function approximator,
we used a two-layer MLP (Bishop, 2006) of 128 neurons
per layer. Figure 2 shows the comparison of the uncertainty
estimation with and without the regularized uncertainty loss.
The first row depicts the case without regularization (Equa-
tion 5) and the second row with regularization (Equation 8).
On the left, we show the empirical state-action visitation dis-
tribution. The agent starts in one of the borders of the state
space and has to reach the center in a few steps while cali-
brating the actions (there is a punishment for high actions).
This is apparent in both left plots, with the highest densi-
ties in the borders and the center. We consider desirable to
obtain uncertainty estimates that mirror these state-action
densities, as the epistemic uncertainty is inversely propor-
tional to the state-action visitation. While in both cases, the
state-action densities are similar, the uncertainty estimates
are completely different. In the top-right figure, we see
the output of the uncertainty critic, without regularization,
completely fails to represent the uncertainty. On the bottom-
right corner, we can see that the regularized uncertainty
critic, almost perfectly matches the state-action densities,
with low uncertainty in the center and a gradual increase
as we move away and then again a sharp decrease close
to the borders. In Section 6 and Appendix B we show a
more thorough investigation of the effect of the regularized
uncertainty loss.

5. Related Works
There is a large body of literature studying efficient explo-
ration techniques in RL. In the tabular settings, provably
efficient methods have been devised, both in the model-
based (Auer et al., 2008; Jaksch et al., 2010; Ian et al.,
2013) and model-free (Jin et al., 2018; Strehl et al., 2006;
Metelli et al., 2019) settings. These methods cannot be eas-
ily extended to the Deep RL setting, or when extensions
are proposed, they lose their theoretical guarantees. In this
section, we focus on tractable exploration methods proposed
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Figure 2: Comparison on the uncertainty estimates after training with and without uncertainty regularization in the LQG
illustrative example (action on the y axis and state on the x axis).

for Deep RL for continuous action spaces. Two main ex-
ploration frameworks exist: uncertainty-based methods and
intrinsic motivation methods.

Uncertainty-Based Methods Classical value-based meth-
ods (including ACs) maintain a point estimate of the value
functions for each state (or state-action pairs). Exploration
policies, like ϵ-greedy or Boltzmann (Sutton & Barto, 2018),
add noise around the greedy action derived from these point
estimates. These methods are not efficient, mainly because
the exploration is not directed towards unvisited regions of
the state space. The entropy regularization of SAC is a form
of undirected exploration too, as the policies are trained to
sacrifice some returns to preserve stochastic behavior. In
recent years, several methods that move away from point
estimates have been proposed. Ensemble methods (Chen
et al., 2021; Wang et al., 2021) implicitly model the epis-
temic uncertainty of the Q-value estimates by maintaining
multiple Q-function approximators. OAC (Ciosek et al.,
2019) explicitly models the uncertainty on the value esti-
mates by computing the variance of two critics, and it uses
it to compute an exploration policy that optimizes an up-
per bound of the Q-values. Unfortunately, this uncertainty
estimate is just heuristic and only stems from the disagree-
ment between the two Q-networks with different initializa-
tion. Indeed, the networks are also trained with the same
samples, and same target Q-values, so any disagreement

is purely due to the random initialization only. Recently,
SUNRISE (Lee et al., 2021) proposes a framework to unify
ensemble methods for epistemic uncertainty estimation and
shows considerable performance improvements in discrete
and continuous action spaces. Distributional RL (Belle-
mare et al., 2017), on the other hand, models the aleatoric
uncertainty, as its goal is to estimate the whole return distri-
bution. First proposed for problems with a discrete action
space (Bellemare et al., 2017; Dabney et al., 2018; Mavrin
et al., 2019), it has been successfully extended also to the
AC setting in TOP (Moskovitz et al., 2021). TOP models
both aleatoric and epistemic uncertainty and adapts the level
of optimism/pessimism by means of a Multi-Armed Ban-
dit (MAB, Lattimore, 2020 - 2020) approach. While TOP
deals with uncertainty propagation, it mixes the epistemic
and aleatoric uncertainty while estimating the return dis-
tribution. To the best of our knowledge, WAC is the first
method able to propagate epistemic uncertainty in continu-
ous action spaces, without the need for estimating the full
return distributions.

Intrinsic Motivation Tractable model-free methods based
on intrinsic motivation have been proposed in recent years.
Methods based on pseudo-counts (Bellemare et al., 2016;
Ostrovski et al., 2017) assign exploration bonuses according
to the novelty of the state-action pairs visited. While they
have been applied with good results to deep architectures,
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they generally rely on (often pre-trained) density-models,
which are not straightforward to maintain. Other methods
apply exploration bonuses based on the state-action visi-
tation density of the policy. MADE (Zhang et al., 2021)
adds an exploration bonus, based on the deviation of the
state visitation density of the new policy from the last ob-
served policies. While it has been applied to continuous
state-action spaces, it comes with a considerable computa-
tional cost to estimate the state densities and also requires
pre-training of density models. State entropy maximiza-
tion (Mutti et al., 2021; Seo et al., 2021; Yarats et al., 2021)
has also been applied as an incentive to explore the whole
state-action space, including hard to reach regions. These
methods generally scale better to continuous domains, as
they do not explicitly need to estimate the state occupancy
but only the entropy of this distribution. Numerous meth-
ods have also been proposed, with bonuses based on the
information-gain (Houthooft et al., 2016; Achiam & Sas-
try, 2017; Pathak et al., 2019), but come with considerable
computational costs to estimate these bonuses.

6. Experiments
In this section, we present the empirical evaluation of WAC
in various continuous control domains. We start from sim-
ple domains like LQG and a continuous version of River-
swim (Strehl & Littman, 2008), where we can better vi-
sualize the effects of the Q-posteriors in the learning and
exploration process. Then we evaluate WAC on a set of Mu-
joco (Todorov et al., 2012) tasks designed for exploration.

1D Navigation The goal of this set of experiments is to
measure the effect of uncertainty estimation on exploration.
We keep track of the cumulative coverage of the state-action
space, i.e., the portion of the total volume visited with rel-
ative frequency larger than ϵ>0. For this reason, we per-
form an empirical evaluation of WAC in two simple 1D
navigation tasks. We consider a one-dimensional LQG, an
environment with no particular exploration challenges, and
a more challenging continuous-action version of the River-
swim chain, where long sequences of rewardless actions are
needed to reach high reward states. A full description of the
environments is reported in Appendix A.

Figure 3 shows the results of these experiments. For each
environment, we train WAC, varying the parameters λ and
ρ of the regularized uncertainty loss in Equation (8). For
each value, we report the coverage averaged over all training
epochs. Firstly, we observe that both parameters directly
control the amount of exploration. Indeed, the coverage is
monotonically increasing with both λ and ρ. As expected,
low values of ρ cause higher variance, as fewer samples are
employed to estimate the uncertainty regularization. This
can be seen in all the curves of the leftmost plot, as well
as in the third plot, where the black curve corresponding to

ρ=0.25 suffers from a high variance. In Appendix B we
perform a similar study for OAC, varying the parameters β
and δ which control exploration, and we observe that the
coverage is not so easily controllable with these parameters.
We attribute this to the heuristic nature of the uncertainty
estimation of OAC, based on the critics’ disagreement only.

2D Navigation To assess whether a principled uncertainty
estimation and propagation translate into lower sample com-
plexity, we perform an empirical evaluation in a set of Mu-
joco (Todorov et al., 2012) tasks, where the amount of ex-
ploration needed to solve the task can be controlled. We
start from the 2D navigation task used in (Moro et al., 2022),
where the agent has to reach a goal state in a 2D world, by
avoiding obstacles. The reward is the negative Euclidean dis-
tance from the goal state. While this is a dense reward, the
obstacle presence generates local optima which the agent
needs to overcome by exploring efficiently. We progres-
sively make the task more challenging by adding additional
walls and obstacles. A visual representation of the tasks is
shown in Figure 4a. We leave the full description of the
environments in Appendix A . We name the tasks as “Point
x” with x∈{1,2,3,4}, where a higher x means a more dif-
ficult exploration challenge. We compare the performance
of WAC, in both versions defined in Section 3, with SAC
and OAC. In each task, we track the cumulative return, as
well as the number of episodes completed in a fixed number
of steps (higher is better). We use the implementation of
SAC and OAC used in (Ciosek et al., 2019), and extend
the repository with our implementation, to guarantee com-
parable results. The same network architectures are used
for all algorithms. For the common hyperparameters, we
only tune SAC and use the same values for WAC and OAC,
by additionally tuning the algorithm specific parameters
(δ and β for OAC and λ and ρ for WAC). Details on the
hyperparameter tuning are in Appendix A .

In Figure 4b, we present the average return as a function
of the training epochs, whereas in Figure 4c we present the
number of episodes completed in 3000 steps of interaction.
Starting from left to right, we increase the difficulty of the
task. We can see that for the easiest task, all algorithms
are able to find the optimal policy of quickly avoiding an
obstacle in the middle to reach the goal state, even though
SAC learns slower compared to the others. Being a sim-
ple exploration task, ME-WAC performs better and is more
stable than OE-WAC. OAC is also able to quickly solve
the task. While the difference in return is negligible, the
number of completed episodes shows an advantage for ME-
WAC, which completes more episodes faster. Finally, we
underline that even though the task does not require par-
ticular exploration, WAC does not over-explore, but rather
solves with a speed comparable with the other baselines.
The clear advantages of WAC in terms of exploration can
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(a) Coverage in LQG.
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(b) Coverage in Riverswim.

Figure 3: Coverage in LQG and Riverswim as function of λ and ρ; average of 5 seeds, 95% c.i..

be seen starting from the second task, where the exploration
requirements are increased. Both versions of WAC learn
faster and with less variance compared with both SAC and
OAC. The difference is even more apparent in the number
of episodes completed, where SAC and WAC have disjoint
confidence intervals. In the third task, SAC completely fails
in learning to reach the goal, while OAC succeeds in some
of the seeds only, showing a high variance. WAC, on the
other hand, outperforms them both in terms of return and
completed episodes. ME-WAC performs better, even though
the task requires a good amount of exploration. Compared
to ME-WAC, OE-WAC over-explores and it shows a slower
learning curve. The last task is solved by the WAC agents
only. SAC and OAC never reach the goal state. WAC out-
performs them, in both versions, with statistical significance.
We also see the need for larger exploration, apparent from
the difference in performance between OE-WAC and ME-
WAC.

Finally, Figure 4d presents the number of episodes com-
pleted in a sparse reward version of the same tasks. In this
scenario, we do not show the return as it is proportional to
the number of completed episodes. We only trained OE-
WAC agents in these tasks, as they present a substantial
exploration challenge. The advantage of WAC is extremely
evident in these tasks. SAC and OAC are only able to solve
the simplest task. In a sparse reward setting, SAC and OAC
will only explore randomly so they fully rely on the chance
of reaching the goal state with random actions. OAC ex-
plores more compared to SAC, but since the exploration
does not depend on the state-action visitations, but only on
the disagreement between the critics, sparse reward tasks
are a great challenge. WAC, instead, will still explore, even
when facing sparse rewards since the uncertainty will gradu-
ally decline in visited regions, so the upper bounds will favor
reaching unvisited ones. Indeed, OE-WAC outperforms both
baselines in all the tasks with sparse rewards.

7. Conclusions
In this paper, we presented a novel AC algorithm to perform
directed exploration. We presented WAC, which extends
the recently proposed WQL to the continuous-actions case.
Furthermore, we addressed a problem of uncertainty estima-
tion that arises when using function approximation, related
to the generalization of the uncertainty estimates. We pro-
posed a simple, yet effective, regularization method, based
on synthetic samples that allowed us to better generalize
the uncertainty across the state-action space. Finally, we
performed a thorough empirical evaluation to investigate
the advantages of performing a principled uncertainty esti-
mation and propagation in continuous-action domains. We
observed that the uncertainty estimates of WAC can effec-
tively steer exploration towards promising regions of the
state-action space, even under sparse rewards, especially
when comparing it with heuristic uncertainty estimation
based on ensemble methods. Future work includes extend-
ing the current method to posterior sampling exploration
strategies.
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(a) Visual representation of the 4 2D navigation tasks.
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(b) Average return in 4 2D navigation tasks.
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(c) Number of episodes completed in 3000 steps in 4 2D navigation tasks.
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(d) Number of episodes completed in 3000 steps in 4 2D navigation tasks with sparse reward function.

Figure 4: Experimental results in 4 2D navigation tasks starting from the easiest (left) to the hardest (right); average of 5
seeds, 95% c.i..
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A. Experimental Details
A.1. Environments Description

RiverSwim We extend the classical Riverswim domain (Strehl & Littman, 2008) to a continuous setting. In this environment,
the agent has to navigate a 1 dimensional state space, ranging from 0 to max_state, by applying a 1 dimensional action,
representing the intended movement a∈ [−1 1]. The initial state is a uniformly distributed in [0 0.5]. When an action
is chosen the agent moves left or right on the state space. The distance of the movement is equal to the absolute value of
the action (if the result is outside the state space a clip operations brings it back inside). The direction d∈{−1,0,1} of the
movement is stochastic, according to the following probabilities:

P (d=−1|a)=

{
1−0.9 ·(a+1) if a≤0

0.1 if a>0

P (d=0|a)=

{
0.9 ·(a+1) if a≤0

0.9−0.3a if a>0

P (d=1|a)=

{
0 if a≤0

0.3a if a>0

Given the current state st, the action at and the direction dt sampled according the previous probabilities, the next state is
st+1=clip(st+dt|at|), where clip clips the state in the range [0 max_state] The reward depends on the starting state s
and the action sign:

r=


5 ·10−4 if s≤1

1 if s≥(max_state−1) and a>0

0 otherwise

The optimal policy is to always perform a=1 which gives the agent the best chance of moving toward high reward states.

In our experiments:

• max_state=25

LQG We test our agents also on an instance of a Linear Quadratic Gaussian control. Given a state x, an action a, and
v∼N (0,0.5) the next state and the cost c (=−r) are defined as:

x′=Ax+Ba+v

c=Qx2+Ra2

In our experiments, we use A=1,B=1,Q=0.9,R=0.9. The agents starts from the borders of the state space and, with
this configuration, the goal is to reach the origin of the state space while balancing the actions.

Point This environment models a sphere moving inside a two-dimensional maze. The goal of the agent is to get close
enough to a goal state on the right side of the maze, while avoiding obstacles. Once the agent gets close enough to the goal
(Euclidean distance <2) the episode ends. The state space includes the agent position in the 2-dimensional space, as well as
the velocities. The action space is also 2-dimensional, controlling the actuators in both directions. We use 2 reward functions
for this task. In the dense reward version of the environment, the reward is the negative Euclidean distance of the sphere
from the center of the goal. This represents a dense reward signal, which makes optimization easier but also introduces local
maximums due to the presence of the obstacles. In the sparse version the reward is always −1, so the optimal policy is to
reach the goal as quickly as possible so that the episodes ends. We devise 4 environment configuarations, with different
levels of difficulty.

The first environment (Figure 5a) has a U-shaped wall in the middle. The agent has to overcome it by either running into
it and then moving back to outflank it, so it can escape the local maximum, or preferably, it has to go around it without
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(a) Point 1 (b) Point 2

(c) Point 3 (d) Point 4

touching it. The U-shaped of the wall makes the task more difficult since the agent is unlikely to be able to escape the local
maximum once it has hit the wall by simply playing random actions.

The second environment (Figure 5b) has 2 simpler obstacles to overcome compared to first environment, yet the agent now
has to learn how to overcome two obstacles which overall makes the second task more difficult than the first one.

To overcome the obstacle of the third environment (Figure 5c) the agent has to perform a rather complete exploration of the
space since the gateway to the second room is quite narrow and it is easy to be stuck in a local maximum at the border due
to the reward function based on the Euclidean Distance.

The forth and last environment shown in Figure 5d, puts together the challenges of the previous two, it has 2 obstacles to
overcome and it also requires a rather complete exploration of the space to advance to the goal.

A.2. Tuning procedures

In this appendix, we present the hyperparameter tuning employed, as well as the final values used in our experiments. For
all the approximators employed, including critics and actors, we use 2 layer MLPs. For what concerns LQG all algorithms
could solve it easily independently from the hyper-parameters chosen. The same can be said for RiverSwim, except for SAC
which could not solve for any set of hyper-parameters contained in the grid search we performed.

In point environment we performed a grid search on all environments with dense rewards starting with SAC (3 runs with 3
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different seeds for each node of the grid). We choose the set of hyper-parameters that could solve the most runs for the two
most difficult environments in which at least one run could learn a policy that reached the goal. The best recovered values
are reported in Table 1.

Table 1: SAC parameters

Parameter best value
networks’ number of layers 2
layers’ size 256
replay buffer size 106

number of train steps per train loop 1000
number of exploration steps per train loop 1000
batch size 256
learning rates 10−3

Afterwards, we performed a grid search on OAC and WAC, where we fixed all the hyper-parameters they share with SAC to
the best values we found on SAC hyper-parameter tuning and we tuned only on their additional hyper-parameters. Once
again, we choose the hyper-parameters sets that allow each algorithm to perform best the 2 most difficult environment it
could solve. The final values are reported in Table 2 and Table 3.

Table 2: OAC parameters

Parameter best value
δ 18
βUB 6.5

Table 3: WAC parameters

Parameter best value
δ 0.95
λ 0.6
ρ 0.6

B. Additional Experiments
B.1. Tuning on δ

In Section 6 we have shown how by tuning λ and ρ we can control the amount of exploration. We now show some experiment
that illustrate how the hyper parameter δ can also be use to control exploration, since it defines what percentile of the
estimated Gaussian distribution we use as upper bound. The results are reported in Figure 6. We observe that also δ is
directly related with the coverage. Indeed by increasing δ, we employ larger upper bounds for the value estimates, and this
directly translates to larger coverage of the state-action space.

B.2. Coverage in OAC

We performed a similar study to the one presented in Section 6 on WAC for OAC, to investigate whether we could control
how much the algorithm explores based on the values of the hyper-parameters. However, what we found is that is hard to
predict OAC’s exploration based on its hyper parameters δ and βUB . In OAC, δ controls how much the exploration policy
differs from the target policy. From Figure 7, we can see that δ can even negatively affect exploration, if we allow the
exploration policy to differ too much from the target policy. The dependence on β, which controls the definition of the upper
bound (similar to our δ in OAC), suggests that the uncertainty estimate of OAC is not directly related to exploration either.
We attribute both these results to the heuristic estimation of uncertainty that OAC employees, based only on the disagreement
between the two critics. We argue that this uncertainty estimation is not enough to direct exploration meaningfully.

B.3. Exploration Heatmaps in Point

In this section, we show some additional heatmaps which represents the visited states (we have ignored velocities so we
could visualize the location of the agent) over 300 epochs of all algorithms we have tested throughout the paper. Figure 8
shows the heatmaps from runs on Point 3 environment, with dense rewards. In Figure 8a we see that SAC cannot get past
the first wall and does not explore the space around the local maximum enough to reach other maxima. In Figure 8b we
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Figure 6: Coverage in LQG and Riverswim as function of δ; average of 5 seeds, 95% c.i..
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Figure 7: Coverage in LQG as function of δ and βUB ; average of 5 seeds, 95% c.i..
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see that OAC finds a better maximum but still a local one. WAC does find the same local maximum as OAC, in fact we
can see in Figure 8c it visits it many times, yet once the uncertainty estimate is low enough it is able to keep exploring and
ultimately reach the goal. We have also reported in Figure 8d the same heatmap created by the target policy which follows
the critic of the mean instead of the upper bound.

Figure 9 shows the cumulative visited states in the Point 2 environment with sparse reward. We can observe that SAC,
having no uncertainty estimate and no informative rewards, mostly explores around the starting states with very simple
policies that follow straight lines. OAC is able to reach areas of the maze which are further away from the starting point but
it still can’t reach the goal. Finally, WAC manages to reach the goal of the maze and explores almost every area of the it.



Directed Exploration via Uncertainty-Aware Critics

x

y

(a) SAC

x
y

(b) OAC exploration policy

x

y

(c) WAC exploration policy

x

y

(d) WAC evaluation policy

Figure 8: Cumulative visited states in 300 epochs in Point 3 environment (Dense Reward)
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Figure 9: Cumulative visited states in 300 epochs in Point 2 environment (Sparse Reward)
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