INFORMATION BOTTLENECK FOR ACTIVE FEATURE ACQUISITION

Anonymous authors

Paper under double-blind review

ABSTRACT

Traditional supervised learning typically assumes that all features are available simultaneously during deployment. However, this assumption does not hold in many real-world scenarios, such as medicine, where information is acquired sequentially based on an evolving understanding of a specific patient's condition. Active Feature Acquisition aims to address this problem by dynamically selecting which feature to measure based on the current observations, independently for each test instance. Current approaches either use Reinforcement Learning, which suffers from training difficulties; or greedily maximize the conditional mutual information of the label and unobserved features, which inherently makes myopic acquisitions. To address these shortcomings, we introduce a novel method using information bottleneck. Via stochastic encodings, we make acquisitions by reasoning about the features across many possible unobserved realizations in a regularized latent space. Extensive evaluation on a large range of synthetic and real datasets demonstrates that our approach reliably outperforms a diverse set of baselines.

025 026 027

003

006

008 009

010 011

012

013

014

015

016

017

018

019

021

023

024

1 INTRODUCTION

The standard supervised learning paradigm is to learn a predictive model using a training dataset of features and labels, such that the model can make accurate predictions on unseen test inputs. 029 A fundamental assumption is that, at test time, all features are jointly available, however, this assumption does not always hold. Consider the example of a doctor diagnosing a patient (Kachuee 031 et al., 2019b;a). Initially, there is little to no information available and, while there are many tests that could be conducted, the doctor will choose which ones to carry out based on their current 033 understanding of the specific patient's condition. For instance, if a patient has pain in their leg, and 034 the doctor suspects a fracture, a leg X-ray might be prioritized. Active Feature Acquisition $(AFA)^1$ is an inference time task, where the features are not assumed to be all available at once. Instead, on an instance-wise basis, a model sequentially acquires features based on the observations to best aid 037 long-term prediction. A common approach is to use Reinforcement Learning (RL) (Rückstieß et al., 2013; Shim et al., 2018), since this is a natural solution to a sequential decision making problem. However, RL suffers from training difficulties such as sparse reward, exploration vs exploitation, and the deadly-triad (Henderson et al., 2018; Erion et al., 2022; Van Hasselt et al., 2018). An alternative 040 approach is to select features that greedily maximize the conditional mutual information (CMI) (Chen 041 et al., 2015a;b). This has a significant drawback: CMI does not capture the effects of unobserved 042 features that can be acquired at a later stage due to marginalizing these out. This prevents CMI 043 from selecting features that are independent of the label but highly informative of which feature to 044 acquire next, resulting in myopic decision making that optimizes for immediate predictive power. Additionally, we argue that CMI is not even guaranteed to be the best short-term objective to make 046 decisive predictions. Since maximizing CMI is equivalent to minimizing entropy and this can be 047 achieved by making unlikely classes even more unlikely, rather than selecting features that distinguish 048 between more probable outcomes. We explore the drawbacks of CMI in more detail in Section 4.

Motivated by the shortcomings of RL and CMI maximization, we introduce a novel AFA approach using Information Bottleneck (IB) (Tishby et al., 2000). We call our approach Information Bottleneck for Feature Acquisition (IBFA) and it departs from existing methods in several key ways. First, we shift the acquisition problem from reasoning in a complex feature space to a latent space. This is

⁰⁵³

¹This problem has also been referred to as Dynamic Feature Selection in the literature.

054 regularized with IB such that decisions are made using label-relevant information only and not feature-055 level noise. Second, we use *stochastic* encoders, allowing us to acquire features by considering 056 their effect across a diverse range of possible latent realizations. By removing marginalization over 057 unobserved features the resulting acquisitions are non-greedy by design. Third, our acquisition 058 objective places more focus on labels with higher predicted likelihood, leading to acquisitions that help to disambiguate between the most likely classes. Finally, to avoid the difficulties posed by RL, we do not train our model to make acquisitions directly. Instead we train with a predictive 060 loss and make acquisitions by maximizing a custom objective in a suitably regularized latent space. 061 Our contributions are as follows: (1) We re-examine the CMI objective and provide theoretical 062 reasoning and concrete examples of its sub-optimality. (2) We introduce IBFA, our novel AFA 063 approach motivated by the limitations of RL and CMI maximization. (3) We evaluate IBFA on 064 multiple synthetic and real-world datasets, including cancer classification tasks. Comparing against 065 various AFA baselines, we see that IBFA consistently outperforms these methods. Extensive ablations 066 further demonstrate each novel design choice is required for the best performance.

067 068

2 RELATED WORK

069 070 071

2.1 ACTIVE FEATURE ACQUISITION

072 **Reinforcement Learning.** The most common AFA approach is to frame the problem as a Markov 073 Decision Process and train a policy network with RL to decide which feature to acquire next (Dulac-074 Arnold et al., 2011; Rückstieß et al., 2013; Shim et al., 2018; Janisch et al., 2019; Mnih et al., 2014; 075 Kachuee et al., 2019a). The RL approach readily extends to a temporal setting where features and 076 labels can change over time (Kossen et al., 2023; Yin et al., 2020). Whilst a natural solution to 077 AFA, RL suffers from training difficulties, and various advances in the RL field have been applied to account for this. For example, using generative models to augment datasets (Zannone et al., 2019), providing mutual information as additional input to the policy (Li & Oliva, 2021), using gradient 079 information in the training process (Ghosh & Lan, 2023), and reward shaping (Peng et al., 2018). 080

081 Conditional Mutual Information Maximization. Conditional Mutual information tells us how 082 much we can learn about one variable by measuring a second, whilst already knowing a third. Greedy 083 CMI maximization is a common AFA approach, due to its grounding in information theory, however 084 (as we demonstrate in Section 4), it inherently makes short-term acquisitions and is prone to making 085 acquisitions that do not distinguish between likely labels. Among existing approaches, networks can be trained to directly predict CMI (Gadgil et al., 2024), or policy networks can be specially 086 trained to maximize CMI without ever calculating it (Chattopadhyay et al., 2023; Covert et al., 087 2023). Generative models are a second way to estimate CMI by taking Monte Carlo estimates over 880 conditional distributions, (Chattopadhyay et al., 2022; Rangrej & Clark, 2021; Early et al., 2016). 089 This approach suffers from associated generative modeling challenges, producing poor estimates 090 of CMI, thus adding to the limitations. Improved performance can be achieved with advances in 091 generative modeling (Peis et al., 2022; He et al., 2022; Li et al., 2020; Li & Oliva, 2020). 092

Alternative Solutions. Sensitivity-based solutions make selections based on how sensitive the label is to a given feature (Kachuee et al., 2017; 2018). However, since missing values are filled with zero and measuring a feature is discontinuous, the gradient does not reliably represent the true sensitivity. Imitation learning has been applied (Valancius et al., 2023; He et al., 2016), however, this requires access to an oracle or to construct one. Prior to deep learning, decision trees were used, with features acquired at each branch of a tree if unobserved (Xu et al., 2012; 2013; Kusner et al., 2014; Trapeznikov & Saligrama, 2013; Xu et al., 2014). This has also been generalized to ensembles (Nan et al., 2015; 2016).

100 101

102

2.2 INFORMATION BOTTLENECK

Information bottleneck (IB) is a technique that aims to compress a feature vector to a new representation, so that as much label information is preserved while removing unnecessary feature information (Tishby et al., 2000; Alemi et al., 2017). Existing applications of IB include improving adversarial robustness (Zhang et al., 2022; Wang et al., 2021; Kuang et al., 2024), integrating data from multiple views (Lee & Van der Schaar, 2021; Wang et al., 2019; Federici et al., 2020), and recently imputation (Choi & Lee, 2023). IB has only recently been applied to standard feature selection. These methods

work by either scoring a feature with the optimized IB objective using only one feature (Pan et al., 2023), or by using a stochastic gate to drop features before the encoder, and optimizing both the encoder and gate with the IB objective (Zhang et al., 2023). We instead use IB to regularize the latent space in which we will be conducting AFA, rather than scoring features to find a fixed global subset.
To our best knowledge, we are the first to apply IB in the context of AFA.

113 114 115

126 127

3 ACTIVE FEATURE ACQUISITION

116 **Problem Setup.** In standard C-way classification, we have a d-dimensional feature vector given 117 by the random variable $X \in \mathcal{X}$ with realization $\mathbf{x} = (x_1, x_2, \dots, x_d)$, and a label given by $Y \in [C]$ 118 with realization y. Ordinarily, we assume all features are observed; however, more generally, we wish 119 to allow arbitrary feature subsets as valid inputs. Therefore, let * represent a missing feature value 120 and $\mathcal{X} = \prod_{i=1}^{d} (\mathcal{X}_i \cup \{*\})$. We denote an input with feature subset $S \subseteq [d]$, as \mathbf{x}_S , where $x_{S,i} = x_i$ if $i \in S$, and $x_{S,i} = *$ if $i \notin S$. Given a training set $\mathcal{D}_{\text{Train}} = \{(\mathbf{x}_S, y)_n\}_{n=1}^N$, the AFA task is to 121 122 train a model that takes a test instance with arbitrary observations \mathbf{x}_{Q} , and iteratively acquires new 123 features to improve predictive power. The model's long-term goal is to acquire a sequence of features 124 S^* to maximize its confidence in the prediction whilst minimizing the number of acquired features: 125

$$S^* = \underset{S \in [d] \setminus O}{\operatorname{arg\,max}} \left(\underset{c \in [C]}{\max} p_{\operatorname{Model}}(Y = c | \mathbf{x}_{O \cup S}) - \lambda |S| \right) \quad \text{subject to} \quad |S| \le B$$

128 129 Where λ balances how much we optimize for a confident prediction compared to acquiring as few 130 features as possible, and *B* is a given feature budget. These parameters are highly domain dependent, 131 for example, in medicine, where the stakes are high, we have large *B* and low λ , there is a high 131 tolerance for acquiring features if we can make confident predictions.

132 Acquisition in Practice. The standard approach to AFA is to construct an acquisition objective 133 function $R: \mathcal{X} \times [d] \to \mathbb{R}$, that scores each feature, and to select the feature that maximizes this: 134 $i^* = \arg \max_{i \in [d] \setminus O} R(\mathbf{x}_O, i)$. The objective is defined by the method. As discussed in the Related 135 Work, the two main approaches are CMI maximization and RL. CMI methods use the CMI to 136 score features, telling us how much measuring X_i will reduce the the entropy of Y conditioned 137 on \mathbf{x}_O : $R_{\text{CMI}}(\mathbf{x}_O, i) = I(X_i; Y | \mathbf{x}_O) = D_{\text{KL}}(p(X_i, Y | \mathbf{x}_O) || p(X_i | \mathbf{x}_O) p(Y | \mathbf{x}_O))$. RL methods use 138 the output of a policy or Q network, trained directly on the sequential feature acquisition problem: 139 $R_{\text{RL}}(\mathbf{x}_O, i) = Q_{\theta}(\mathbf{x}_O)_i$. Following this we update our observed feature set to be $O \cup i^*$, that is, we 140 use the new observed vector as input and repeat the acquisition process.

141 142

143

160

4 UNDERSTANDING THE LIMITATIONS OF CMI MAXIMIZATION

Here we more closely examine the shortcomings of greedy CMI maximization for AFA, to gain understanding into *why* CMI maximization can be sub-optimal and how this can be addressed. Whilst grounded in theory and extensively applied, it suffers from two drawbacks previously alluded to.

First, greedy CMI maximization makes myopic acquisitions, which in some scenarios is guaranteed to 148 be sub-optimal. We prove this with an example. Consider a feature vector with d+1 features, the first 149 d of which are binary, and the last taking an integer value from 1 to d: $X \in \{0,1\}^d \times [d]$. The final 150 feature acts as an indicator, informing us which of the other d features gives the label, $y = x_{x_{d+1}}$. The 151 optimal strategy is to first choose the indicator then its designated feature, 2 acquisitions. However, 152 to arrive at the *same* prediction, the expected number of acquisitions by greedily maximizing CMI 153 is $3 - \frac{1}{4}$. We prove this in Appendix G; here, we provide theoretical insight into why CMI fails on 154 this task, motivating our solution. CMI fails because possible future observations are not considered 155 in the present decision since they are marginalized out, $p(x_i, y | \mathbf{x}_O) = \int p(x_i, x_i, y | \mathbf{x}_O) dx_i$. Each acquisition is made like there are no subsequent acquisitions and therefore the indicator is not chosen 156 first. This is not specific to CMI, but any scoring that marginalizes out unobserved features. 157

Proposition 1. Any acquisition objective that uses the marginal $p(x_i, y)$ to score feature *i* will not select the indicator first.

161 The proof is straightforward: With no other features, the indicator and label are independent, so the marginal is given by $p(x_{d+1}, y) = p(x_{d+1})p(y)$. It is therefore impossible to measure its effect

on the label without considering possible values of other features, regardless of how the effect is
 measured. RL methods do not suffer from this, since during training different scenarios are seen
 and the effects distilled into the parameters. Building on this, adjusting the CMI objective to include
 possible values of unobserved features can solve the indicator problem under greedy maximization.

Proposition 2. Greedy maximization of $\int I(X_i; Y | \mathbf{x}_O, \mathbf{x}_U) p(\mathbf{x}_U | \mathbf{x}_O) d\mathbf{x}_U$ is an optimal strategy for the indicator problem, where \mathbf{x}_U are unobserved features excluding $i, U = \mathbf{x}_{[d] \setminus (O \cup i)}$.

We prove this in Appendix G. Note we will *not* use this as our acquisition objective, since this is intractable. The key takeaway from these two propositions is that considering possible values of other unobserved features is *necessary* for optimality and, if the objective is chosen well, *sufficient*.

172 The second drawback of CMI is that, even as a short-term objective, it is not guaranteed to be the 173 best objective for identifying the most likely class. CMI maximization is equivalent to minimizing 174 entropy, and to show why this is not guaranteed to be optimal, consider two distributions over 3 classes and their entropies: H([0.5, 0.5, 0.0]) = 0.693 and H([0.7, 0.15, 0.15]) = 0.819. The first 175 distribution has lower entropy, but the second is more favorable for making a prediction. It is possible 176 to maximize CMI by making low probabilities lower, rather than distinguishing between possible 177 answers. We provide a detailed example in Appendix H. The insight is that reducing the entropy is 178 not always equivalent to making a decisive prediction, therefore an effective acquisition objective 179 will place more focus on the most likely labels. 180

- 181
- 181
- 183

190 191

5 METHOD: INFORMATION BOTTLENECK FOR FEATURE ACQUISITION

To address the limitations of RL and CMI for AFA, we propose a novel method, called Information Bottleneck for Feature Acquisition (IBFA). We provide a block diagram of our method in Figure 1, showing both how the model makes predictions and calculates the acquisition objective. In short, IBFA uses an encoder-predictor architecture with intermediate latent variable $Z \in \mathcal{Z}$, predictions are given by $p_{\theta,\phi}(y|\mathbf{x}_S) = \int p_{\phi}(y|\mathbf{z})p_{\theta}(\mathbf{z}|\mathbf{x}_S)d\mathbf{z}$. The key novelty is in how we use and adapt this architecture to construct an effective acquisition objective. Our acquisition objective is:

$$R(\mathbf{x}_O, i) = \sum_{c \in [C]} p_{\theta,\phi}(Y = c | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(c, \mathbf{z}, i) d\mathbf{z}$$
(1)

for a given function $r : [C] \times \mathbb{Z} \times [d] \to \mathbb{R}_{\geq 0}$. We formally describe r in Section 5.2. At a high level, it can be viewed as calculating how much we expect measuring feature i to change the predicted probability of class c in the context of a sampled latent vector z. For now it is more important to understand the objective as a whole. We break down each technical detail below, giving the motivation based on the failure cases of CMI and RL.

Training with Predictive Loss. To avoid the difficulites associated with training an acquisition objective with RL, we train using a novel predictive loss (given in Section 5.3) with IB regularization (Tishby et al., 2000). Our objective is *explicitly* defined in equation 1.

Acquisition via the Latent Space. The label can be a highly non-linear function of the features, and training an AFA model to make decisions directly in the feature space can be an equally complex task. We sidestep this difficulty by writing the acquisition objective as an expectation in a highly regularized latent space. This is why r takes z as an explicit input, and not x_O , under sufficient IB regularization, z contains only label relevant information and no noise associated with the features.

Stochastic Encodings. As demonstrated in Section 4, taking into account possible values of other unobserved features is necessary for optimality. Therefore we take an expectation of $r(c, \mathbf{z}, i)$, over the latent distribution $p_{\theta}(\mathbf{z}|\mathbf{x}_{O})$. This way, future possible latent realizations are taken into account in the current decision. To sample the full diversity of the latent space, we take multiple samples during acquisition, we empirically verify the importance of this in Section 6.

211 Weighting by Predictions. Finally, as demonstrated in Section 4, CMI maximization can be 212 achieved by focusing on reducing the likelihood of classes with already low probabilities. To 213 overcome this, r takes c as input, measuring how much observing feature i would affect the predicted 214 probability of class c. And then an expectation is taken using the current predictions $p_{\theta,\phi}(Y = c | \mathbf{x}_O)$ 215 so that our acquisition objective places more focus on the classes with higher predicted likelihood. 216 We demonstrate the impact of this idea empirically in ablations in Appendix C.

Figure 1: **Block diagram of IBFA.** Illustrated using 3 features and 4 latent components per feature. The presence or absence of a feature value is indicated with a mask vector **m**. Prediction and acquisition scoring with one latent sample is given with example numerical values given for acquisition.

5.1 ARCHITECTURE

Encoder. A crucial element of our method is the ability to take decisions made in the latent space and easily translate these to the feature space. With fully connected, non-linear encoders this is a non-trivial task. To overcome this barrier we propose to factorize the latent distribution such that each feature is individually responsible for l latent components

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \prod_{i=1}^{d} p_{\theta_i}(\mathbf{z}_{\mathcal{G}_i}|x_i)$$

Here G_i selects the latent components that feature *i* is responsible for encoding. For example, if l = 3then $G_1 = \{1, 2, 3\}, G_2 = \{4, 5, 6\}$ etc. This allows us to define $r(c, \mathbf{z}, i)$, such that it only calculates the sensitivities of the output with respect to latent samples, and then we can trivially link the most important latent components to the feature that encodes them. We achieve this factorization by having an encoder for each feature (see Figure 1). Each encoder is an MLP, $f_{\theta_i}^e : \mathcal{X}_i \times \{0, 1\} \to \mathbb{R}^l \times \mathbb{R}^l_{>0}$ with parameters θ_i . They take as input a feature value and a binary mask indicating missingness, and output a mean and diagonal standard deviation of a normal distribution.

Predictor. We make predictions on individual latent samples with a predictor network given by an MLP, $f_{\phi}^{p} : \mathbb{R}^{ld} \to \Delta_{C}$ with parameters ϕ , that predicts a probability distribution over C classes.

5.2 SCORING FUNCTION

To calculate $r(c, \mathbf{z}, i)$, we propose using the gradients of the predicted probability with respect to the latent sample, since they are scalable, available via backpropagation, and they tell us how sensitive $p_{\phi}(Y = c | \mathbf{z})$ is to a latent sample. Additionally, since the distribution of \mathbf{z} is factorized such that feature *i* is only responsible for \mathbf{z}_{G_i} , it is trivial to score features. Our proposed scoring is given by

261 262

263

239

240 241 242

243 244

245

246

247

$$r(c, \mathbf{z}, i) = \frac{||\mathbf{g}_{\mathcal{G}_i}||_2}{\sum_{j=1}^d ||\mathbf{g}_{\mathcal{G}_j}||_2}, \quad \text{where } \mathbf{g} = \nabla_{\mathbf{z}} p_{\phi}(Y = c | \mathbf{z}).$$
(2)

The reasoning behind this form is as follows: the gradient vector points in the direction that locally $p_{\phi}(Y = c|\mathbf{z})$ is most sensitive to. We calculate the feature scores by considering the length of the gradient in a feature's associated latent components, telling us how sensitive the prediction is to those specific components. Finally, we normalize scores to sum to one to treat each latent sample equally, removing the effect of the overall gradient length. For a worked example see Figure 1 or Appendix J.

5.3 TRAINING

275 276

277

283 284

291 292 293

296

297

298

299 300 301

315 316 317

We train the above networks in a supervised fashion: training only to make predictions with appropriate latent space regularization that makes it conducive to acquisition. By training in a supervised manner, we avoid potential issues associated with RL.

Information Bottleneck. We use IB (Tishby et al., 2000; Alemi et al., 2017) to regularize the latent space, whose criterion for an arbitrary model with parameters θ is

$$\max_{\alpha} I_{\theta}(Z;Y) - \beta I_{\theta}(Z;X)$$

This seeks to find a stochastic encoding of x to z that maintains maximum information about the label whilst simultaneously removing irrelevant information about the features. This is a natural choice for our application, since we reason about the acquisition in the latent space with stochastic encodings, we want to use representations that only contain information relevant to predicting the label. The standard approach to Deep IB is the Variational IB (VIB) Loss (Alemi et al., 2017), for a single subsampled point this is:

$$L_{\text{VIB}} = \mathop{\mathbb{E}}_{p_{\theta}(\mathbf{z}|\mathbf{x}_{S})} \left[-\log(p_{\phi}(y|\mathbf{z})) \right] + \beta D_{\text{KL}}(p_{\theta}(Z|\mathbf{x}_{S})||p(Z))$$

this is averaged over all points in the batch. The first term corresponds to $I_{\phi}(Z;Y)^2$ The second term corresponds to $I_{\theta}(Z;X)$, $\mathcal{N}(0,1)$ is used as p(Z) since it gives a closed form solution.

Custom Loss for AFA. The VIB loss is intended for prediction tasks only, and not AFA. Therefore we *adapt* the loss for AFA by: (1) moving the expectation over $p_{\theta}(\mathbf{z}|\mathbf{x}_S)$ inside the logarithm and (2) taking multiple samples giving our custom loss for a single subsampled train point

$$L = -\log\left(\mathbb{E}_{p_{\theta}(\mathbf{z}|\mathbf{x}_{S})}\left[p_{\phi}(y|\mathbf{z})\right]\right) + \beta D_{\mathrm{KL}}(p_{\theta}(Z|\mathbf{x}_{S})||p(Z)).$$
(3)

The change is subtle but important. If we were to train taking the mean outside the logarithm or only using one sample, all samples from $p_{\theta}(\mathbf{z}|\mathbf{x})$ must *individually* produce good predictions. In particular, this affects the case where we have very few features, all samples from $p_{\theta}(\mathbf{z}|\mathbf{x})$ produce high uncertainty predictions. This does not affect the *predictive* power of the model, but the acquisitions suffer, during acquisition if all samples produce the same prediction then there is no diversity across latent samples, and the acquisition relies on this to make long-term acquisitions (we empirically verify this in Section 6).

Additional Regularization. The proposed change to the loss function is crucial to encourage diversity across latent samples. However, there is an alternative theoretical justification for the change. Within the IB framework, the change can be framed as adding further regularization to the latent space that makes it more conducive to acquisitions. Whilst we have explained why CMI is not an *optimal* acquisition objective, it still provides a useful foundation to consider how the latent space can be further regularized. The CMI objective can first be rewritten.

Theorem 1. The CMI objective can be written as the equivalent minimization in the latent space

$$\arg\min_{i} \mathbb{E}_{p_{\theta,\phi}(x_i|\mathbf{x}_O)} I_{\theta,\phi}(Z;Y|x_i,\mathbf{x}_O).$$

We prove this equivalence in Appendix E. An acquisition that maximizes CMI is one where the information between the label and latent variable is minimized, this is unexpected but the key is conditioning on features. To provide intuition, consider a latent space with disparate regions, within each region the prediction is the same. A good acquisition is one where the latent distribution $p_{\theta}(\mathbf{z}|\mathbf{x}_{O})$ shrinks to contain only one of these regions. No matter where we move within $p(\mathbf{z}|x_{i}, \mathbf{x}_{O})$,

²There is in fact an H(Y) term missing which is not affected by the optimization so is disregarded.

324 the prediction is the same, and the label and latent variable are independent *conditioned on the features*. 325 We desire a latent space where acquisitions like this are possible and regular. To encourage this 326 property across all possible feature subsets we therefore want to additionally minimize $I_{\theta,\phi}(Z;Y|X_S)$. 327 The caveat is that $I_{\phi}(Z;Y)$ must still be maximized so that individual latent samples make decisive 328 predictions, since a trivial way to minimize $I_{\theta,\phi}(Z;Y|X_S)$ on its own is to undesirably predict a uniform distribution for any z. Note this is not carrying out CMI maximization as an acquisition 329 objective, but shaping the latent space during training, to make acquisition with our objective more 330 effective. This desired regularization term is in fact in our custom loss. 331

Theorem 2. The loss given in equation 3 is equivalent to $-I_{\phi}(Z;Y) + \beta I_{\theta}(Z;X_S) + I_{\theta,\phi}(Z;Y|X_S)$.

We prove this result in Appendix F. This gives us the required IB objective with the additional desired regularization term $I_{\theta,\phi}(Z;Y|X_S)$ derived from analyzing Theorem 1.

EXPERIMENTS 6

Here we evaluate IBFA against various deep AFA baselines. We consider a range of synthetic, image, tabular, and medical datasets. For reproducibility, we provide full experimental details in Appendix K, including hyperparameter choices and training procedures, and full dataset details in Appendix I.

Baselines. We consider four different state-of-the-art baselines: Opportunistic Learning as an RL 343 baseline (Kachuee et al., 2019a), GDFS (Covert et al., 2023) and DIME (Gadgil et al., 2024) as 344 greedy CMI maximization methods, and EDDI (Ma et al., 2019) as a generative model for CMI 345 maximization. We also use two vanilla baselines: a VAE (Kingma & Welling, 2013), which has 346 a separate predictive and generative model to estimate the CMI, and an MLP to determine a fixed 347 global ordering of features. Further details about all baselines are given in Appendix J. 348

349 350

351

356 357 358

369

332

333

334

335 336 337

338 339

340

341

342

6.1 SYNTHETIC DATASETS

We begin by constructing three synthetic classification tasks (denoted Syn 1-3) based on the synthetic 352 experiments used by Yoon et al. (2019), where we know the optimal instance-wise feature ordering. 353 These are binary classification tasks with 11 normally distributed features. Three logits, ℓ are 354 calculated from the first ten features, defined as: 355

$$\ell_1 = 4x_1x_2,$$
 $\ell_2 = \sum_{i=3}^{6} 1.2x_i^2 - 4.2,$ $\ell_3 = -10\sin(0.2x_7) + |x_8| + x_9 + e^{-x_{10}}$

359 The binary label is sampled with $p(Y = 1) = (1 + e^{\ell})^{-1}$. Syn 1 uses ℓ_1 if $x_{11} < 0$ and ℓ_2 otherwise. Syn 2 uses ℓ_1 if $x_{11} < 0$ and ℓ_3 otherwise. Syn 3 uses ℓ_2 if $x_{11} < 0$ and ℓ_3 otherwise. In all cases x_{11} 360 determines which features are important to the prediction, so the optimal strategy is to acquire x_{11} 361 first and then to acquire the relevant features. Table 1 shows how many features each model acquires 362 until all features relevant to a particular instance (including x_{11}) are selected. IBFA achieves this in 363 the fewest acquisitions and is close to optimal in all three datasets. Estimating CMI using generative 364 models (EDDI and VAE) performs worse than the fixed ordering, showing that inaccurate estimation 365 of CMI worsens the issues already associated with its greedy maximization. EDDI, in particular, 366 consistently performs poorly across all experiments, since it is only trained to indirectly predict y367 from \mathbf{x}_S and thus subsequently inaccurately estimates CMI and $p(y|\mathbf{x}_S)$. 368

370 Table 1: Number of acquisitions to acquire the correct features on the synthetic datasets, the lower 371 the better. We provide the mean and one standard error.

Model	Syn 1	Syn 2	Syn 3
DIME	4.079 ± 0.057	4.581 ± 0.194	5.667 ± 0.034
EDDI	9.183 ± 0.187	9.208 ± 0.371	9.789 ± 0.167
Fixed MLP	6.009 ± 0.000	5.996 ± 0.000	7.999 ± 0.000
GDFS	4.568 ± 0.195	4.484 ± 0.142	5.587 ± 0.179
Opportunistic RL	4.203 ± 0.034	4.846 ± 0.020	5.856 ± 0.063
VAE	6.593 ± 0.085	6.659 ± 0.131	7.895 ± 0.057
IBFA (ours)	4.017 ± 0.003	4.098 ± 0.007	5.081 ± 0.021

We investigate which features are acquired by the best four models for Syn 3 (Figure 2). IBFA consistently chooses x_{11} first and then continues to make optimal acquisitions, almost achieving the best possible performance of 5 (Table 1). In contrast, DIME acquires x_7 first, since this has the highest mutual information initially, despite not being the best for long-term acquisitions. Therefore, when $x_{11} < 0$, DIME does not start acquiring features 3-6 until acquisition 3. GDFS performs similarly, since it is also trained to maximize CMI. Opportunistic RL tends to make noisy acquisitions, as seen by the red trajectories, demonstrating how it suffers from training difficulties. See Appendix A for equivalent diagrams and analysis for Syn 1 and Syn 2.

Figure 2: Acquisition heat maps and trajectories for Syn 3. Individual trajectories are plotted in red, with the acquisition proportions at each step as a heat map. Green boxes show the optimal strategy, while the vertical black line denotes the minimum number of features required (5).

Ablations. To provide further insight into why IBFA performs well, we conduct ablations on the synthetic datasets in Table 2. We investigate the impact of removing IB so the loss reduces to negative log-likelihood with no latent space regularization; using only a single latent sample during training so the loss reduces to the standard variational IB loss without the additional $I_{\theta,\phi}(Z;Y|X_S)$ term; using only one latent sample during acquisition so we do not sample the full diversity of the latent space; and using a deterministic encoder with no IB or sampling in the acquisition. Removing any of the novel components significantly impacts the model's performance. We examine acquisition heat maps in Appendix B to better understand the performance differences, for completeness we also carry out sensitivity analyses on β , number of train samples and number of acquisition samples.

Table 2: Ablation for number of acquisitions to acquire the correct features on the synthetic datasets, the lower the better. We provide the mean with one standard error.

 r							
Model	Syn 1	Syn 2	Syn 3				
No IB	4.529 ± 0.074	4.571 ± 0.095	5.719 ± 0.094				
1 Train Sample	4.420 ± 0.156	4.714 ± 0.141	5.187 ± 0.095				
1 Acquisition Sample	4.679 ± 0.025	4.868 ± 0.027	5.690 ± 0.024				
Deterministic Encoder	4.910 ± 0.105	4.679 ± 0.239	5.523 ± 0.110				
IBFA (full)	4.017 ± 0.003	4.098 ± 0.007	5.081 ± 0.021				

6.2 DATASETS WITH UNKNOWN FEATURE ORDERINGS

Here, we consider multiple synthetic and real-world datasets where the correct feature ordering is not known a priori. To evaluate, we start with zero features and calculate the evaluation metric at every step during acquisition. For binary classification tasks the metric is AUROC, for multi-class it is accuracy. We report the average metric during acquisition in Table 3 and we plot the curves for IBFA, DIME, GDFS, Opportunistic RL and the fixed MLP ordering in Figure 3.

Cube. We start with the Cube Synthetic Dataset (Rückstieß et al., 2013; Shim et al., 2018; Zannone et al., 2019). The task is eight-way classification with 20 features. The feature vector is normally distributed around the corners of a cube, with the cube occupying three different dimensions for each class. Irrelevant features are normally distributed around the center. IBFA has the highest average
 accuracy, and consistently maintains the highest acquisition curve. All active methods outperform the
 fixed ordering, except EDDI which suffers from the lack of an inbuilt predictive model.

Table 3: Average evaluation metrics during acquisition. Higher values are better, we report the mean and standard error.

nuulu enter.				
Model	Cube	Bank Marketing	California Housing	MiniBooNE
DIME	0.901 ± 0.001	0.905 ± 0.002	0.661 ± 0.002	0.951 ± 0.001
EDDI	0.764 ± 0.004	0.705 ± 0.011	0.414 ± 0.011	0.843 ± 0.007
Fixed MLP	0.883 ± 0.001	0.908 ± 0.001	0.658 ± 0.002	0.954 ± 0.000
GDFS	0.900 ± 0.000	0.905 ± 0.001	0.653 ± 0.002	0.949 ± 0.000
Opportunistic RL	0.901 ± 0.000	0.909 ± 0.000	0.658 ± 0.001	0.953 ± 0.000
VAE	0.901 ± 0.001	0.877 ± 0.002	0.631 ± 0.005	0.925 ± 0.002
IBFA (ours)	0.904 ± 0.001	0.919 ± 0.001	0.675 ± 0.004	0.957 ± 0.000
Model	MNIST	Fashion MNIST	METABRIC	TCGA
DIME	0.731 ± 0.002	0.703 ± 0.002	0.670 ± 0.006	0.805 ± 0.002
EDDI	0.574 ± 0.002	0.603 ± 0.001	0.557 ± 0.013	0.635 ± 0.006
Fixed MLP	0.708 ± 0.001	0.690 ± 0.001	0.685 ± 0.003	0.799 ± 0.004
GDFS	0.732 ± 0.001	0.692 ± 0.002	0.671 ± 0.004	0.797 ± 0.001
Opportunistic RL	0.740 ± 0.000	0.708 ± 0.000	0.708 ± 0.004	0.839 ± 0.001
VAE	0.715 ± 0.001	0.685 ± 0.001	0.686 ± 0.003	0.800 ± 0.002
IBFA (ours)	0.761 ± 0.001	0.717 ± 0.001	0.709 ± 0.002	0.845 ± 0.002

Figure 3: Evaluation metrics plots, starting from the first to the final acquisition across all datasets. Zoomed in curves are shown in the bottom right corner of each plot.

Real Tabular. Next, we consider three real tabular datasets. Bank Marketing (Moro et al., 2014), California Housing (Pace & Barry, 1997) and MiniBooNE (Roe et al., 2005; Roe, 2010). The Bank Marketing dataset is a binary classification task, predicting if a customer subscribes to a product based on marketing data. California Housing consists of features about houses in California districts and the label is the median house price. We converted this into four-way classification by bucketing the labels into four equally sized bins. The MiniBooNE dataset is a particle physics binary classification task trying to distinguish between electron-neutrinos and muon-neutrinos. In all cases, IBFA has both the highest average evaluation metric and maintains the best evaluation metric through the acquisition curve, in particular on Bank Marketing and Califonia Housing. Interestingly on MiniBooNE the fixed ordering is the second best method, despite the other methods actively acquiring features. Again, the generative models underperform due to inaccurate CMI estimation.

Image Classification. Next we consider MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao et al., 2017), and acquire up to twenty pixels (Table 3 and Figure 3). Here, the fixed ordering is inadequate, and the active methods perform better. Opportunistic RL outperforms DIME and GDFS, demonstrating RL is still an effective method for AFA despite its training difficulties, whereas the problems associated with CMI maximization appear more fundamental. Again, IBFA strongly outperforms all methods by a significant margin, both in terms of average acquisition performance and the acquisition curve being consistently the highest throughout the acquisition.

486 6.3 CANCER CLASSIFICATION

498

499

500

501

502

508 509

510

511

522 523

524

488 Finally, we look at IBFA in the context of medicine. We consider two cancer classification tasks. The first is METABRIC (Curtis et al., 2012; Pereira et al., 2016), where the task is to predict the PAM50 489 status of breast cancer subjects from gene expression data. The six classes are Luminal A, Luminal 490 B, HER2 Enriched, Basal Like, Claudin Low, and Normal Like. The second dataset uses The Cancer 491 Genome Atlas (TCGA) (Weinstein et al., 2013). The goal is to predict the location of a tumor based 492 on DNA methylation data. The average accuracies are given in Table 3 and the acquisition curves in 493 Figure 3. On METABRIC, IBFA and Opportunistic RL perform similarly, outperforming all other 494 baselines. On TCGA, IBFA significantly outperforms all baselines with Opportunistic RL a strong 495 second, significantly outperforming DIME and GDFS (which perform worse than the fixed MLP on 496 METABRIC), further demonstrating CMI is a flawed AFA objective. 497

Figure 4: TCGA acquisition heat maps and trajectories for four tumor locations. We show the first 6 acquisitions.

To further validate the acquisitions of IBFA, we visualize the trajectories and heat maps for four 512 cancer types in Figure 4, and provide scientific literature supporting the acquisitions made. The first 513 feature selected is always ST6GAL1 (feature 18), which is known to be upregulated in a number of 514 cancers including Breast, Prostate, Pancreatic, and Ovarian (Garnham et al., 2019). For Breast, Lung, 515 and Liver cancers, DNASE1L3 (feature 3) is often acquired next; this gene has been identified as a 516 potential biomarker in Breast, Liver, and Lung cancer (as well as kidney and stomach) (Deng et al., 517 2021), and so makes sense as a second feature to acquire for these cancers. For Prostate cancer, the 518 second feature that tends to be acquired is SERPINB1 (feature 17), which is linked to prostate cancer 519 (Lerman et al., 2019). For the third acquisition, for Lung and Liver cancers, IBFA typically acquires 520 PON3 (feature 15). It has been shown that PON3 is largely restricted to solid tumors such as those in 521 Liver, Lung, and Colon cancer (Schweikert et al., 2012).

7 CONCLUSION

This paper considered Active Feature Acquisition, the test time task of actively choosing which features to observe to improve a prediction. We introduced a novel approach for AFA, moving away from previous solutions based on RL and CMI maximization, using IB to regularize a stochastic latent embedding space of the features. Our method regularly outperformed previous methods across a range of tasks, and we validated acquired features in the scientific literature.

530 **Limitations.** Currently our method applies to classification tasks but not to regression tasks. This 531 is because our method requires separation of class probabilities during acquisition and this notion 532 is not well defined for continuous labels. We view this as an interesting avenue for future work. 533 Our method also includes the encoding architecture that features are mapped *separately* to latent 534 components. This means that observed features cannot affect the latent distribution of unobserved features. The trade-off is that it becomes trivial to link latent components to features, we see in the 536 experiments this choice does not prevent IBFA from outperforming the baselines. Finally, due to 537 requiring multiple latent samples, IBFA, has larger memory requirements at inference time than RL baselines, depending on how many samples are used. However, CMI maximization methods with 538 generative models also require multiple samples at inference time, so this is not a new limitation for AFA models.

540 REFERENCES 541

552

553

554

555

563

565

566 567

569

571

572

573

574

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information 542 bottleneck. In International Conference on Learning Representations, 2017. URL https: 543 //openreview.net/forum?id=HyxQzBceq. 544

- Aditya Chattopadhyay, Stewart Slocum, Benjamin D Haeffele, Rene Vidal, and Donald Geman. In-546 terpretable by design: Learning predictors by composing interpretable queries. IEEE Transactions 547 on Pattern Analysis and Machine Intelligence, 45(6):7430–7443, 2022. 548
- Aditya Chattopadhyay, Kwan Ho Ryan Chan, Benjamin D Haeffele, Donald Geman, and René Vidal. 549 Variational information pursuit for interpretable predictions. International Conference on Learning 550 Representations, 2023. 551
 - Yuxin Chen, S Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information maximization: When is greedy near-optimal? In Conference on Learning Theory, pp. 338–363. PMLR, 2015a.
- Yuxin Chen, Shervin Javdani, Amin Karbasi, J Bagnell, Siddhartha Srinivasa, and Andreas Krause. 556 Submodular surrogates for value of information. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015b. 558
- 559 MinGyu Choi and Changhee Lee. Conditional information bottleneck approach for time series 560 imputation. In The Twelfth International Conference on Learning Representations, 2023. 561
- 562 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.
 - Ian Connick Covert, Wei Qiu, Mingyu Lu, Na Yoon Kim, Nathan J White, and Su-In Lee. Learning to maximize mutual information for dynamic feature selection. In International Conference on Machine Learning, pp. 6424–6447. PMLR, 2023.
- Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda, Mark J 568 Dunning, Doug Speed, Andy G Lynch, Shamith Samarajiwa, Yinyin Yuan, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature*, 486(7403): 570 346-352, 2012.
 - Zenghua Deng, Mengmeng Xiao, Dexiao Du, Nan Luo, Dongfang Liu, Tingting Liu, Dongbo Lian, and Jirun Peng. Dnase113 as a prognostic biomarker associated with immune cell infiltration in cancer. OncoTargets and therapy, pp. 2003–2017, 2021.
- 575 Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari. Datum-wise clas-576 sification: a sequential approach to sparsity. In Machine Learning and Knowledge Discovery in 577 Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pp. 375–390. Springer, 2011. 578
- 579 Kirstin Early, Stephen E. Fienberg, and Jennifer Mankoff. Test time feature ordering with FOCUS: 580 interactive predictions with minimal user burden. International Joint Conference on Pervasive and 581 Ubiquitous Computing, 2016. 582
- 583 Gabriel Erion, Joseph D Janizek, Carly Hudelson, Richard B Utarnachitt, Andrew M McCoy, 584 Michael R Sayre, Nathan J White, and Su-In Lee. Coai: Cost-aware artificial intelligence for 585 health care. Nature biomedical engineering, 6:1384, 2022.
- 586 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust 587 representations via multi-view information bottleneck. arXiv preprint arXiv:2002.07017, 2020. 588
- 589 Soham Gadgil, Ian Connick Covert, and Su-In Lee. Estimating conditional mutual information for 590 dynamic feature selection. In The Twelfth International Conference on Learning Representations, 591 2024. URL https://openreview.net/forum?id=0ju2Qu9jvn. 592
- Rebecca Garnham, Emma Scott, Karen E Livermore, and Jennifer Munkley. St6gal1: A key player in cancer. Oncology letters, 18(2):983-989, 2019.

594 595 596	Aritra Ghosh and Andrew Lan. Difa: Differentiable feature acquisition. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 7705–7713, 2023.
597	He He, Paul Mineiro, and Nikos Karampatziakis. Active information acquisition, 2016.
598	Weilie He Vischer Mer Cher Me Ve Hunne José Minuel Herrinder Lehete and Tine Cher
599	Weijie He, Xiaonao Mao, Chao Ma, Yu Huang, Jose Miguel Hernandez-Lobato, and Ting Chen.
600	Web Conformed 2022 pp. 2511, 2521, 2022
601	<i>web Conjerence 2022</i> , pp. 2511–2521, 2022.
602	Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
603	Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
604	intelligence, volume 32, 2018.
605	Carrow Jaffe and Christian Seconds. Databasemeli-sticas Accelerations does not used to inter by
606	reducing internal covariate shift. In International conference on machine learning, pp. 448, 456
607	nmlr 2015
608	phili, 2015.
609	Jaromír Janisch, Tomáš Pevnỳ, and Viliam Lisỳ. Classification with costly features using deep rein-
610	forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
611	pp. 3959–3966, 2019.
612	Mahammad Kachuaa, Anahita Hassaini, Rahak Maatamad, Sajad Darahi, and Majid Sarrafzadah
613	Context-aware feature query to improve the prediction performance. In 2017 IFFF Global
614	Conference on Signal and Information Processing (GlobalSIP), pp. 838–842, IEEE, 2017.
615	
616	Mohammad Kachuee, Sajad Darabi, Babak Moatamed, and Majid Sarrafzadeh. Dynamic feature
617	acquisition using denoising autoencoders. <i>IEEE transactions on neural networks and learning</i>
618	systems, 30(8):2252–2262, 2018.
619	Mohammad Kachuee, Orpaz Goldstein, Kimmo Kärkkäinen, and Maiid Sarrafzadehm, Opportunistic
620	learning: Budgeted cost-sensitive learning from data streams. In <i>International Conference on Learn-</i>
621	ing Representations, 2019a. URL https://openreview.net/forum?id=S1eOHo09KX.
622	
624	Mohammad Kachuee, Kimmo Karkkainen, Orpaz Goldstein, Davina Zamanzadeh, and Majid Sar-
625	arXiv:1902.07102, 2019b.
626	Diederik P Kingma and Jimmy Ba Adam: A method for stochastic optimization International
627	Conference on Learning Representations, 2015.
628	
620	Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
631	arXiv:1312.6114, 2013.
632	Jannik Kossen, Cătălina Cangea, Eszter Vértes, Andrew Jaegle, Viorica Patraucean, Ira Ktena, Nenad
633	Tomasev, and Danielle Belgrave. Active acquisition for multimodal temporal data: A challenging
634	decision-making task. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
635	https://openreview.net/forum?id=Gbu1bHQhEL.
636	Husfang Kuong Hang Liu Vangilan Wu Chin'ish: Catal and Danaman I. Jamma'and the state
637	robustness via information bottleneck distillation Advances in Neural Information Processing
638	Systems, 36, 2024.
639	~,~·····,, ··
640	Matt Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Weinberger, and Yixin Chen.
641	Feature-cost sensitive learning with submodular trees of classifiers. In Proceedings of the AAAI
642	Conference on Artificial Intelligence, volume 28, 2014.
643	Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
644	document recognition. <i>Proceedings of the IEEE</i> , 86(11):2278–2324, 1998.
645	
646	Changhee Lee and Mihaela Van der Schaar. A variational information bottleneck approach to multi-
647	omics data integration. In International Conference on Artificial Intelligence and Statistics, pp. 1513–1521. PMLR, 2021.

648 649 650 651	Irina Lerman, Xiaoting Ma, Christina Seger, Aerken Maolake, Maria de la Luz Garcia-Hernandez, Javier Rangel-Moreno, Jessica Ackerman, Kent L Nastiuk, Martha Susiarjo, and Stephen R Hammes. Epigenetic suppression of serpinb1 promotes inflammation-mediated prostate cancer progression. <i>Molecular Cancer Research</i> , 17(4):845–859, 2019.
652 653 654 655	Wenling Li, Hideki Nakano, Wei Fan, Yuanyuan Li, Payel Sil, Keiko Nakano, Fei Zhao, Peer W Karmaus, Sara A Grimm, Min Shi, et al. Dnase113 enhances antitumor immunity and suppresses tumor progression in colon cancer. <i>JCI insight</i> , 8(17), 2023.
656 657	Yang Li and Junier Oliva. Active feature acquisition with generative surrogate models. In <i>International Conference on Machine Learning</i> , pp. 6450–6459. PMLR, 2021.
658 659 660	Yang Li and Junier B Oliva. Dynamic feature acquisition with arbitrary conditional flows. <i>arXiv</i> preprint arXiv:2006.07701, 2020.
661 662	Yang Li, Shoaib Akbar, and Junier Oliva. Acflow: Flow models for arbitrary conditional likelihoods. In <i>International Conference on Machine Learning</i> , pp. 5831–5841. PMLR, 2020.
663 664 665 666	Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, and Cheng Zhang. EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. <i>International Conference on Machine Learning</i> , 2019.
667 668	Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. <i>Advances in neural information processing systems</i> , 27, 2014.
669 670	Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank telemarketing. <i>Decision Support Systems</i> , 62:22–31, 2014.
672 673	Feng Nan, Joseph Wang, and Venkatesh Saligrama. Feature-budgeted random forest. In <i>International conference on machine learning</i> , pp. 1983–1991. PMLR, 2015.
674 675	Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests for prediction on a budget. <i>Advances in neural information processing systems</i> , 29, 2016.
676 677 678	R Kelley Pace and Ronald Barry. Sparse spatial autoregressions, statistics and probability letters, 1997.
679 680	Junlong Pan, Weifu Li, Liyuan Liu, Kang Jia, Tong Liu, and Fen Chen. Variable selection using deep variational information bottleneck with drop-out-one loss. <i>Applied Sciences</i> , 13(5):3008, 2023.
681 682 683 684	Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. <i>NeurIPS Workshop on Automatic Differentiation</i> , 2017.
685 686 687 688	F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten- hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. <i>Journal of Machine Learning Research</i> , 12:2825–2830, 2011.
689 690 691	Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acquisition with deep hierarchical models and hamiltonian monte carlo. <i>Advances in Neural Information Processing Systems</i> , 35:35839–35851, 2022.
693 694 695 696 697 698	Yu-Shao Peng, Kai-Fu Tang, Hsuan-Tien Lin, and Edward Chang. Refuel: Exploring sparse features in deep reinforcement learning for fast disease diagnosis. In S. Ben- gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/ file/b5a1d925221b37e2e399f7b319038ba0-Paper.pdf.
699 700 701	Bernard Pereira, Suet-Feung Chin, Oscar M Rueda, Hans-Kristian Moen Vollan, Elena Provenzano, Helen A Bardwell, Michelle Pugh, Linda Jones, Roslin Russell, Stephen-John Sammut, et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. <i>Nature communications</i> , 7(1):1–16, 2016.

702 703 704	Samrudhdhi B Rangrej and James J Clark. A probabilistic hard attention model for sequentially observed scenes. <i>arXiv preprint arXiv:2111.07534</i> , 2021.
705 706	Byron Roe. MiniBooNE particle identification. UCI Machine Learning Repository, 2010. DOI: https://doi.org/10.24432/C5QC87.
707 708 709 710 711	Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision trees as an alternative to artificial neural networks for particle identification. <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 543(2-3):577–584, 2005.
712 713 714	Thomas Rückstieß, Christian Osendorfer, and Patrick van der Smagt. Minimizing data consumption with sequential online feature selection. <i>International Journal of Machine Learning and Cybernetics</i> , 4:235–243, 2013.
715 716 717 718	EM Schweikert, A Devarajan, I Witte, P Wilgenbus, J Amort, U Förstermann, A Shabazian, V Gri- jalva, DM Shih, R Farias-Eisner, et al. Pon3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death. <i>Cell Death & Differentiation</i> , 19(9):1549–1560, 2012.
719 720 721	Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition and classification with variable-size set encoding. <i>Advances in neural information processing systems</i> , 31, 2018.
722 723 724	Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. <i>arXiv</i> preprint physics/0004057, 2000.
724 725 726	Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential classification under budget constraints. In <i>Artificial intelligence and statistics</i> , pp. 581–589. PMLR, 2013.
727 728 729	Michael Valancius, Max Lennon, and Junier Oliva. Acquisition conditioned oracle for nongreedy active feature acquisition. <i>arXiv preprint arXiv:2302.13960</i> , 2023.
730 731	Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008.
732 733 734 735	Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil. Deep reinforcement learning and the deadly triad. <i>arXiv preprint arXiv:1812.02648</i> , 2018.
736 737 738	Qi Wang, Claire Boudreau, Qixing Luo, Pang-Ning Tan, and Jiayu Zhou. Deep multi-view information bottleneck. In <i>Proceedings of the 2019 SIAM International Conference on Data Mining</i> , pp. 37–45. SIAM, 2019.
739 740 741	Zifeng Wang, Tong Jian, Aria Masoomi, Stratis Ioannidis, and Jennifer Dy. Revisiting hilbert-schmidt information bottleneck for adversarial robustness. <i>Advances in Neural Information Processing Systems</i> , 34:586–597, 2021.
742 743 744 745	John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer analysis project. <i>Nature genetics</i> , 45(10):1113–1120, 2013.
746 747 748	Aleksander Wieczorek, Mario Wieser, Damian Murezzan, and Volker Roth. Learning sparse latent representations with the deep copula information bottleneck. <i>International Conference on Learning Representations</i> , 2018.
749 750 751	Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.
752 753	Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. The greedy miser: Learning under test-time budgets. <i>International Conference on Machine Learning</i> , 2012.
755	Zhixiang Xu, Matt Kusner, Kilian Weinberger, and Minmin Chen. Cost-sensitive tree of classifiers. In <i>International conference on machine learning</i> , pp. 133–141. PMLR, 2013.

756 757	Zhixiang Xu, Matt J Kusner, Kilian Q Weinberger, Minmin Chen, and Olivier Chapelle. Classifier cascades and trees for minimizing feature evaluation cost. <i>The Journal of Machine Learning</i>
758	<i>Research</i> , 15(1):2113–2144, 2014.
759	Yutaro Yamada, Ofir Lindenhaum, Sahand Negahban, and Yuyal Kluger. Feature selection using
760	stochastic gates. In Hal Daumé III and Aarti Singh (eds.), <i>Proceedings of the 37th International</i>
701	Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
762	10648–10659. PMLR, 2020.
767	Univer Vie Vienshard Li Gines Links Day Change 7 hans and Schooting Taskistashah Deinfersonant
765	learning with efficient active feature acquisition. arXiv preprint arXiv:2011.00825, 2020.
766	
767	Jinsung Yoon, James Jordon, and Mihaela van der Schaar. INVASE: Instance-wise variable selection
768 769	https://openreview.net/forum?id=BJg_roAcK7.
770	Sara Zannone, José Miguel Hernández-Lobato, Cheng Zhang, and Konstantina Palla, ODIN: Ontimal
771	Discovery of High-Value INformation Using Model-based Deep Reinforcement Learning. In <i>ICML Real-world Sequential Decision Making Workshop</i> , 2019.
773	
774	Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh.
775	Improving the adversarial robustness of nlp models by information bottleneck. arXiv preprint
776	urxiv:2200.05511, 2022.
777	Qi Zhang, Shujian Yu, Mingfei Lu, Jingmin Xin, and Badong Chen. An information bottleneck
778	approach for multi-view feature selection. Available at SSRN 4339659, 2023.
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	

810 BROADER IMPACT

Our paper is concerned with Active Feature Acquisition, the test time task of acquiring features to iteratively improve a model's predictions on a given data instance. Applications range from medical diagnosis to polling a population. We believe on the whole these applications have a positive benefit on society. Naturally, since this is a general task (any task where features are not all available immediately), malicious applications do exist. For example, iteratively harvesting personal data to send targeted misinformation. However, this work does not focus on those applications, and since this area of machine learning research is still in its relative infancy we do not envisage this occurring for the foreseeable future. An important consideration is if this work is used in a positive setting but gives incorrect predictions. In the medical scenario a doctor might miss an important test to diagnose a patient, or conduct a painful/dangerous but unnecessary test. This work is not in a position to be deployed currently, so this is not an issue yet. However, if it were to be deployed, this problem can be mitigated by being used as a tool by domain experts to aid them in their decision making instead of replacing them.

A ADDITIONAL SYNTHETIC HEAT MAPS & TRAJECTORIES

To complement the synthetic experiments presented in Section 6 we provide the heat maps and trajectories for Syn 1 in Figure 5 and Syn 2 in Figure 6. In agreement with Table 1, IBFA can be seen to clearly perform best on both Syn 1 and Syn 2. In both cases x_{11} is acquired first, informing the model where it needs to look next. All features are acquired by the theoretical minimum with the exception of a minority of trajectories. Opportunistic RL and DIME have a small but noticeable portion of sub-optimal trajectories on Syn 1 when $x_{11} < 0$. GDFS performs particularly poorly on Syn 1, when $x_{11} < 0$ a high proportion of required feature acquisitions are made after the theoretical minimum of 3 since initially x_4 and x_5 are selected. Additionally, GDFS regularly selects x_{11} late into the acquisition process. On Syn 2, the three baselines do not place all attention on x_{11} initially. In fact Opportunistic RL and GDFS mostly acquire x_7 first since it provides the best immediate predictive signal. When $x_{11} \ge 0$ the baselines tend to acquire all relevant features in the theoretical minimum albeit in sub-optimal orders (the same applies to Syn 1). However we see when $x_{11} < 0$ this is not the case with many required acquisitions being made after the minimum of 3, since x_7 has been selected first.

Figure 5: Acquisition heat maps and trajectories on Syn 1. Trajectories are plotted in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum number of features required (3 or 5).

Figure 6: Acquisition heat maps and trajectories on Syn 2. Trajectories are plotted in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum number of features required (3 or 5).

B SYNTHETIC ABLATIONS AND SENSITIVITY ANALYSIS

Heat maps and Trajectories. We supplement the synthetic ablations in Table 2 by studying the acquisition heat maps and trajectories with No IB, 1 Train Sample and 1 Acquisition Sample. We plot these for Syn 1-3 in Figures 7, 8 and 9. All three figures show that removing each of our proposed components degrades acquisition performance, confirming Table 2. All three reduced versions of IBFA in all cases select relevant features after the theoretical minimum. Acquiring with one latent sample leads to trajectories that approximately sample uniformly among all features relevant to a given synthetic task. Confirming that we need to take many acquisition samples to see a feature's effect on a diverse range of possible latent realizations. Training with one latent sample and without IB also makes noisy, sub-optimal acquisitions. All three reduced methods regularly select x_{11} late into the acquisition.

Figure 7: Acquisition heat maps and trajectories on Syn 1 ablations. Individual trajectories are plotted in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum number of features required (3 or 5).

Figure 8: Acquisition heat maps and trajectories on Syn 2 ablations. Individual trajectories are plotted in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum number of features required (3 or 5).

Figure 9: Acquisition heat maps and trajectories on Syn 3 ablations. Individual trajectories are plotted in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum number of features required (5).

Sensitivity Analysis of β . To further explore the importance of a well regularized latent space, we conduct a sensitivity analysis on the hyperparameter β , keeping all other hyperparameters the same. Higher β leads to the encoders removing more information about the features. We plot the number of acquisitions required to select all relevant features on the synthetic datasets in Figure 10. For all datasets, as expected, if β is too high, the latent space is too heavily regularized. There is not enough label information in the latent space, so decisions made there lead to sub-optimal acquisitions. Equally, by not regularizing the latent space enough, there is nothing explicitly enforcing the latent space to remove irrelevant information about the features, also leading to sub-optimal acquisitions.

Sensitivity Analysis of Number of Acquisition Samples. To further investigate the importance of using multiple acquisition samples, to sample the full latent diversity, we run a sensitivity analysis on the synthetic tasks. We plot the number of acquisitions required to select all relevant features in Figure 11. As expected if not enough samples are used the number of acquisitions required is larger. We use 200 acquisition samples in our experiments which is low enough for fast acquisition, and high enough that performance has plateaued.

971 Sensitivity Analysis of Number of Train Samples. To further investigate the importance of using multiple training samples, to shape the latent space for successful acquisitions, we run a sensitivity

analysis on the synthetic tasks. We plot the number of acquisitions required to select all relevant
features in Figure 12. For Syn 1 and Syn 2 we see that performance tends to improve with the number
of samples as expected. For Syn 3 we see the best performance is achieved with 100 samples, which
is the number we used in experiments.

Figure 10: The number of acquisitions to select the correct relevant features for different values of β on the synthetic tasks. The x axis is logarithmic and includes zero.

Figure 11: The number of acquisitions to select the correct relevant features for different numbers of acquisition samples on the synthetic tasks. The x axis is logarithmic.

Figure 12: The number of acquisitions to select the correct relevant features for different numbers of training samples on the synthetic tasks. The x axis is logarithmic.

1026 C REAL DATA ABLATIONS

To further demonstrate each novel model component leads to performance gains, we also carry out ablations on a subset of the real datasets. Additionally here we investigate the final novelty we introduced, probability weighting, where we weight the scores during acquisition by the predicted probabilities $p_{\theta,\phi}(Y = c | \mathbf{x}_O)$. We investigate the use of this technique by removing the weight and taking a mean, treating each class equally. This was not possible on the synthetic ablations because this does not affect binary classification tasks. To see this, recall how features are scored

1034

1039 1040 Writing this in the binary case gives

$$R(\mathbf{x}_O, i) = p_{\theta,\phi}(Y = 0 | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(0, \mathbf{z}, i) d\mathbf{z} + p_{\theta,\phi}(Y = 1 | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(1, \mathbf{z}, i) d\mathbf{z}.$$

 $R(\mathbf{x}_O, i) = \sum_{c \in [C]} p_{\theta, \phi}(Y = c | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(c, \mathbf{z}, i) d\mathbf{z}.$

1041 1042 Since $p_{\phi}(Y = 1|\mathbf{z}) = 1 - p_{\phi}(Y = 0|\mathbf{z}), \nabla_{\mathbf{z}}p_{\phi}(Y = 1|\mathbf{z}) = -\nabla_{\mathbf{z}}p_{\phi}(Y = 0|\mathbf{z})$, therefore 1043 $r(0, \mathbf{z}, i) = r(1, \mathbf{z}, i)$, since the gradients point in opposite directions, and taking Euclidean norms and normalizing is agnostic to the negative sign. Therefore

$$R(\mathbf{x}_O, i) = p_{\theta,\phi}(Y = 0 | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(0, \mathbf{z}, i) d\mathbf{z} + p_{\theta,\phi}(Y = 1 | \mathbf{x}_O) \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(0, \mathbf{z}, i) d\mathbf{z},$$

$$R(\mathbf{x}_O, i) = \left(p_{\theta,\phi}(Y=0|\mathbf{x}_O) + p_{\theta,\phi}(Y=1|\mathbf{x}_O) \right) \int p_{\theta}(\mathbf{z}|\mathbf{x}_O) r(0, \mathbf{z}, i) d\mathbf{z}$$

 $R(\mathbf{x}_O, i) = \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(0, \mathbf{z}, i) d\mathbf{z} = \int p_{\theta}(\mathbf{z} | \mathbf{x}_O) r(1, \mathbf{z}, i) d\mathbf{z}.$

The weighting is removed in the binary case, thus proving treating each class equally and taking 1052 a mean will only affect the multi-class setting. Therefore, we run the ablations on the multi-class 1053 datasets MNIST, Fashion MNIST and TCGA. We provide average acquisition accuracies in Table 4 1054 and the acquisition curves in Figure 13. As hypothesized, probability weighting leads to a significant 1055 performance improvement, the average acquisition accuracy is improved, and the full acquisition 1056 curves (blue) are consistently higher than without probability weighting (orange). Additionally, taking 1057 only either one sample during training or during acquisition also leads to performance degradation, 1058 both curves (red and purple respectively) are consistently lower than the full model curve (blue). Setting β to zero i.e. training without IB regularization leads to the smallest drop in performance. In fact on Fashion MNIST the average acquisition accuracy is marginally higher, within one standard error. We hypothesize this is due to the MNIST and Fashion MNIST settings, since these datasets are 1061 relatively noiseless, IB regularization is not necessary, therefore does not affect performance in these 1062 cases. When we consider the noisy real medical dataset TCGA, we see that training without IB does 1063 lead to a significant performance drop, both in terms of average acquisition accuracy and that the 1064 acquisition curve (green) is consistently slightly lower than the full model curve (blue).

1066

1069 1070 1071

1067Table 4: Average accuracies during acquisition on multi-class ablations. We give the mean and1068standard error.

Model	MNIST	Fashion MNIST	TCGA
WO Prob Weighting	0.752 ± 0.001	0.694 ± 0.001	0.832 ± 0.00
No IB	0.759 ± 0.000	$\boldsymbol{0.718 \pm 0.001}$	0.840 ± 0.00
1 Train Sample	0.741 ± 0.001	0.707 ± 0.001	0.833 ± 0.00
1 Acq Sample	0.728 ± 0.000	0.700 ± 0.000	0.826 ± 0.00
IBFA (full)	0.761 ± 0.001	0.717 ± 0.001	0.845 ± 0.00

1077 1078 1079

Figure 13: Evaluation metrics starting from the first to the final acquisition for the ablations. To distinguish curves we provide zoomed in versions in the bottom right corner of each plot.

D ADDITIONAL TCGA TRAJECTORIES

To further augment the TCGA analysis in Section 6, we provide the heat maps and trajectories across all 17 tumor locations in Figure 14. We indeed see that selections are instance-wise orderings since different trajectories emerge for the different tumor locations. Due to the nature of the task and data there is still associated noise. Further to the justification in the main paper, we see that in many cases after ST6GAL1 (feature 18), DNASE1L3 (feature 3) is selected next. This is because is has been linked to: bladder cancer, breast cancer, gastric carcinoma, liver cancer, lung adenocarcinoma, lung squamous cell carcinoma, ovarian cancer, cervical squamous cell carcinoma, head-neck squamous cell carcinoma, pancreatic adenocarcinoma and kidney renal clear cell carcinoma (Deng et al., 2021). Additionally it has been linked to colon cancer progression (Li et al., 2023), and was found to be downregulated in prostate adenocarcinoma and uterine corpus endometrial carcinoma (Deng et al., 2021). This is why we see it occasionally being selected first, it is a strong predictor on its own. ST6GAL1 is the most commonly selected but subsequently we see DNASE1L3 regularly selected second for Bladder, Breast, Stomach, Liver, Lung, Ovary, Cervical, Endometrial, Head and Neck, Pancreas, Colon, and partially for Kidney and Prostate. However we do not see it being present in the trajectories for Central Nervous System or Thyroid. Showing this acquisition choice is instance-wise and not a global decision. We likely see the selection appearing for Brain and Bone Marrow as a way to rule out these other likely locations after selecting ST6GAL1.

Figure 14: Acquisition Trajectories for TCGA across all classes. The trajectories are given in red, the heat map of acquisition proportions at each step are behind.

1188 E MUTUAL INFORMATION CALCULATION IN A LATENT SPACE

Here we prove Theorem 1 claiming that maximizing conditional mutual information between the label
 and an unknown feature, as calculated by our model, can be framed as an equivalent minimization in
 the latent space

$$\max_{i} I_{\theta,\phi}(X_{i};Y|\mathbf{x}_{O}) \equiv \min_{i} \mathbb{E}_{p_{\theta,\phi}(x_{i}|\mathbf{x}_{O})} I_{\theta,\phi}(Z;Y|x_{i},\mathbf{x}_{O}).$$

Our proof is based on a similar result in EDDI (Ma et al., 2019), however our proof is for a different way of writing out the CMI objective. Consider selecting an unknown feature to acquire that will maximize CMI calculated using our model

$$\max_{i} \int p_{\theta,\phi}(x_i, y | \mathbf{x}_O) \log \left(\frac{p_{\theta,\phi}(y | x_i, \mathbf{x}_O)}{p_{\theta,\phi}(y | \mathbf{x}_O)} \right) dy dx_i.$$

We can include a marginalization over the latent variable z without changing the result

$$\max_{i} \int p_{\theta,\phi}(x_i, y, \mathbf{z} | \mathbf{x}_O) \log \left(\frac{p_{\theta,\phi}(y | x_i, \mathbf{x}_O)}{p_{\theta,\phi}(y | \mathbf{x}_O)} \right) dy dx_i d\mathbf{z}.$$

We can then use Bayes' theorem $p(a|c) = \frac{p(a|b,c)p(b|c)}{p(b|a,c)}$ to introduce the latent variable into the numerator and denominator of the fraction in the logarithm (also using $p_{\theta,\phi}(\mathbf{z}|\mathbf{x}) = p_{\theta}(\mathbf{z}|\mathbf{x})$)

$$= \max_{i} \int p_{\theta,\phi}(x_i, y, \mathbf{z} | \mathbf{x}_O) \log \left(\frac{p_{\theta,\phi}(y | \mathbf{z}, x_i, \mathbf{x}_O) p_{\theta}(\mathbf{z} | x_i, \mathbf{x}_O)}{p_{\theta,\phi}(\mathbf{z} | y, x_i, \mathbf{x}_O)} \frac{p_{\theta,\phi}(\mathbf{z} | y, \mathbf{x}_O)}{p_{\theta,\phi}(y | \mathbf{z}, \mathbf{x}_O) p_{\theta}(\mathbf{z} | \mathbf{x}_O)} \right) dy dx_i d\mathbf{z}.$$

1211 We only need to consider the first part of the logarithm since the second part is not affected by the 1212 optimization over *i*. We also use the fact that our model architecture enforces *y* being independent of 1213 **x** conditioned on **z**, $(p_{\theta,\phi}(y|\mathbf{z}, x_i, \mathbf{x}_O) = p_{\phi}(y|\mathbf{z}))$, since the Markov chain of the encoder-predictor 1214 architecture is X - Z - Y. This gives

$$\max_{i} \int p_{\theta,\phi}(x_i, y, \mathbf{z} | \mathbf{x}_O) \log \left(\frac{p_{\phi}(y | \mathbf{z}) p_{\theta}(\mathbf{z} | x_i, \mathbf{x}_O)}{p_{\theta,\phi}(\mathbf{z} | y, x_i, \mathbf{x}_O)} \right) dy dx_i d\mathbf{z}.$$

1218 Again we remove the part that does not depend on x_i

$$\max_{i} \int p_{\theta,\phi}(x_{i}, y, \mathbf{z} | \mathbf{x}_{O}) \log \left(\frac{p_{\theta}(\mathbf{z} | x_{i}, \mathbf{x}_{O})}{p_{\theta,\phi}(\mathbf{z} | y, x_{i}, \mathbf{x}_{O})} \right) dy dx_{i} d\mathbf{z}.$$

¹²²² We flip the fraction in the logarithm and turn the maximization into a minimization

$$\min_{i} \int p_{\theta,\phi}(x_i, y, \mathbf{z} | \mathbf{x}_O) \log \left(\frac{p_{\theta,\phi}(\mathbf{z} | y, x_i, \mathbf{x}_O)}{p_{\theta}(\mathbf{z} | x_i, \mathbf{x}_O)} \right) dy dx_i d\mathbf{z}_i$$

We again apply Bayes' theorem to $p_{\theta,\phi}(x_i, y, \mathbf{z}|\mathbf{x}_O) = p_{\theta,\phi}(\mathbf{z}, y|x_i, \mathbf{x}_O)p_{\theta,\phi}(x_i|\mathbf{x}_O)$ giving

$$\min_{i} \mathop{\mathbb{E}}_{p_{\theta,\phi}(x_i|\mathbf{x}_O)} \bigg[\int p_{\theta,\phi}(\mathbf{z}, y|, x_i, \mathbf{x}_O) \log \bigg(\frac{p_{\theta,\phi}(\mathbf{z}|y, x_i, \mathbf{x}_O)}{p_{\theta}(\mathbf{z}|x_i, \mathbf{x}_O)} \bigg) dy d\mathbf{z} \bigg].$$

After applying the definition of conditional mutual information this gives

1232
$$\min_{i} \mathop{\mathbb{E}}_{p_{\theta,\phi}(x_i|\mathbf{x}_O)} I_{\theta,\phi}(Z;Y|x_i,\mathbf{x}_O)$$
1233

as an equivalent latent space minimization. Completing the proof.

F LOSS FUNCTION

Here we prove Theorem 2. Our loss function, when we include an expectation over a subsampled
 batch, is given by

$$\mathbb{E}_{p_{\mathsf{D}}(\mathbf{x}_{S},y)}\left[-\log(\mathbb{E}_{p_{\theta}(\mathbf{z}|\mathbf{x}_{S})}[p_{\phi}(y|\mathbf{z})])\right] + \beta \mathbb{E}_{p_{\mathsf{D}}(\mathbf{x}_{S})}\left[D_{\mathsf{KL}}(p_{\theta}(Z|\mathbf{x}_{S})||p(Z))\right]$$

1235 1236 1237

1241

1193 1194 1195

1199

1203 1204 1205

1209 1210

1215 1216 1217

1219 1220 1221

1223 1224 1225

1228

Where the difference with the standard variational Information Bottleneck loss is taking the first term, moving the expectation inside the logarithm and taking many samples. The expectation inside the logarithm makes this equal to the model's predicted negative log-likelihood.

$$\mathbb{E}_{p_{\mathrm{D}}(\mathbf{x}_{S},y)} \left[-\log(p_{\theta,\phi}(y|\mathbf{x}_{S})) \right]$$

From here, to ease notation, we drop the subsampling index S, and include it in the data distribution of X. The negative log-likelihood is equal to $-I_{\theta,\phi}(X;Y) + H(Y)$.

Using the chain rule of mutual information $I_{\theta,\phi}(X;Y) = I_{\theta,\phi}(Y;X,Z) - I_{\theta,\phi}(Z;Y|X)$.

Our encoder-predictor architecture enforces the Markov chain X - Z - Y, such that y is independent of x conditioned on z. Therefore, $I_{\theta,\phi}(Y; X, Z) = I_{\phi}(Y; Z) = I_{\phi}(Z; Y)$, giving

$$I_{\theta,\phi}(X;Y) = I_{\phi}(Z;Y) - I_{\theta,\phi}(Z;Y|X)$$

1256 Substituting this back into the loss function gives

$$L = -I_{\phi}(Z;Y) + H(Y) + \beta I_{\theta}(Z;X) + I_{\theta,\phi}(Z;Y|X)$$

Finally, since the entropy of the label does not depend on the model, and is therefore a constant, it is disregarded in the simplified final form giving

$$L = -I_{\phi}(Z;Y) + \beta I_{\theta}(Z;X) + I_{\theta,\phi}(Z;Y|X).$$

1263 completing the proof.

1264

1276

1280 1281 1282

1261 1262

1246 1247

1255

1257

¹²⁶⁵ G INDICATOR EXAMPLE 1266

Here we elaborate on our indicator example, a simple case where CMI fails. First we demonstrate that
 CMI fails, and then we show that by considering possible unobserved feature values in the calculation
 we can recover the optimal policy.

Recall the example, we have features $X \in \{0,1\}^d \times [d]$, i.e the first d dimensions are binary and the final feature is an indicator. The label is given by using the value at the feature index given by the indicator $y = x_{x_{d+1}}$. In the absence of any of the first d features, the indicator and label are independent $p(y, x_{d+1}) = p(y)p(x_{d+1})$. Substituting this into the definition of mutual information gives

$$I(Y; X_{d+1}) = D_{\mathrm{KL}}(p(y, x_{d+1}) || p(y)p(x_{d+1})) = D_{\mathrm{KL}}(p(y)p(x_{d+1}) || p(y)p(x_{d+1})) = 0$$

Now consider the mutual information for the other features. Due to the symmetry of the problem, the
mutual information for one of these features is the same for all others. The mutual information can
be more usefully written as

$$I(Y;X_i) = H(Y) - \int H(Y|x_i)p(x_i)dx_i$$

The entropy of the label is $\log 2$ since there is equal chance of being 0 or 1. Again using the symmetry of the system, the entropy of Y if $X_i = 0$ is the same as if $X_i = 1$, so we only calculate for one case. When $X_i = 0$, the probability of Y = 0 is $\frac{1}{d} \times 1 + \frac{d-1}{d} \times \frac{1}{2}$. Since in $\frac{1}{d}$ cases it takes the exact value of X_i based on the value of the indicator, and in $\frac{d-1}{d}$ cases Y is given by a different unknown feature value. This gives $p(Y = 0|X_i = 0) = \frac{d+1}{2d}$. The expression for binary entropy, $-p \log(p) - (1-p) \log(1-p)$ is maximized by p = 0.5, giving $\log 2$. Since $p(Y = 0|X_i = 0) > 0.5$, the entropy is lower than $\log 2$ in this case. Exploiting the symmetry of the system we conclude that $\int H(Y|x_i)p(x_i)dx_i < \log 2$, and therefore $I(Y; X_i) > 0$.

Therefore, the indicator is never chosen first, which is a sub-optimal strategy. It can be shown, but is not necessary, that the indicator will be chosen second, a sketch of the reasoning is that now that the value of one feature is known, the indicator and the label are now correlated. Therefore, there is non-zero CMI which turns out to be larger than for the other features. And once the indicator is chosen the correct feature is the only feature afterward with non-zero CMI. So this strategy will acquire the correct features in 3 selections $\frac{d-1}{d}$ of the time (random feature, indicator, correct feature) and in 2 selections $\frac{1}{d}$ of the time (correct feature, indicator). Thus the expected number of acquisitons for this strategy is

$$2\frac{1}{d} + 3\frac{d-1}{d} = 3 - \frac{1}{d}$$

1299

1309

1313

1300 So as d gets large, the expected number of required acquisitions approaches 3.

Now consider our proposed solution of using an information theoretic objective that considers the values of other features. Recall Proposition 2, we propose $\int I(Y; X_i | \mathbf{x}_U, \mathbf{x}_O) p(\mathbf{x}_U | \mathbf{x}_O) d\mathbf{x}_U$, recovers the optimal strategy, where \mathbf{x}_U is the vector of all other unobserved features. We prove that this will lead to an optimal strategy below.

Initially there are no features, so the acquisition objective is $\int I(Y; X_i | \mathbf{x}_U) p(\mathbf{x}_U) d\mathbf{x}_U$. Writing this in terms of entropies gives

$$\int I(Y; X_i | \mathbf{x}_U) p(\mathbf{x}_U) d\mathbf{x}_U = \int \left(H(Y | \mathbf{x}_U) - \int H(Y | x_i, \mathbf{x}_U) p(x_i | \mathbf{x}_U) dx_i \right) p(\mathbf{x}_U) d\mathbf{x}_U$$

The entropy when all features are known is zero, so for any i this is

$$\int H(Y|\mathbf{x}_U)p(\mathbf{x}_U)d\mathbf{x}_U.$$

1314 If we consider one of the first d features, we can again apply symmetry to calculate this quantity for 1315 feature i and apply it to all of them. In $\frac{d-1}{d}$ cases the entropy is zero, since we will have all of the 1316 information required. However if $x_{d+1} = i$, then $H(Y|\mathbf{x}_U) = \log 2$, since we don't know feature i 1317 and therefore Y has equal likelihood of being 0 or 1, this happens in $\frac{1}{d}$ cases so this quantity is $\frac{\log 2}{d}$ 1318 for the first d features.

For the indicator, $p(Y = 0 | \mathbf{x}_U)$ is the proportion of the first *d* features for a given sample \mathbf{x}_U that are also 0. All features are independent with probability 0.5 of being 0, so this becomes a binomial distribution with *d* trials

1322
1323
1324
$$\sum_{i=0}^{d} \binom{d}{i} \frac{1}{2^{d}} \left(-\left(\frac{i}{d}\right) \log\left(\frac{i}{d}\right) - \left(1 - \frac{i}{d}\right) \log\left(1 - \frac{i}{d}\right)\right).$$

1325 It is not immediately clear that this is larger than the quantity $\frac{\log 2}{d}$ for the other features. The first 1326 thing we can do calculate this quantity when d = 3, which gives 0.477, and this is larger than 1327 $\frac{\log 2}{3} = 0.231$. And the next thing is to notice that this quantity is increasing with d, since as d gets 1328 larger there will be more probability mass at $i = \frac{d}{2}$. As $d \to \infty$ the binomial distribution becomes 1329 Gaussian with mean $\frac{d}{2}$ and variance $\frac{d}{4}$, so $\frac{i}{d}$ will approximately be distributed normally with mean $\frac{1}{2}$ 1330 and standard deviation $\frac{1}{2\sqrt{d}}$. Therefore this quantity asymptotes towards $\log 2$.

Therefore for $d \ge 3$, this objective will choose the indicator first, and not the other features (for d = 2all features are scores the same, and for d = 1 the indicator is not the optimal choice). After choosing the indicator, the second selection is trivial. The relevant feature has non-zero CMI, all other features are independent of the label conditioned on the indicator so they have zero CMI. Therefore the correct feature is chosen. This strategy's expected number of acquisitions is 2, which is less than $3 - \frac{1}{d}$.

This example illustrates that by considering the possible realizations in the calculation, and not marginalizing them out, we can make long-term acquisitions. Note we do not use this specific quantity in our paper, it involves an additional expectation over unobserved values as well as the expectation inside the CMI which is intractable. This does not even account for the difficulty in estimating the conditional distributions in feature space.

134:

3 H ENTROPY EXAMPLE

1344

In Section 4 we claimed that CMI maximization can lead to acquisitions that focus on making low probabilities lower, rather than distinguishing between possible answers. Here we provide a concrete example of this occurring. We have binary feature vectors with six features $X \in \{0, 1\}^6$. The label consists of three classes, where the probabilities of each class are given by

$$p(Y=0|\mathbf{x}) = \frac{x_1 + x_2}{\sum_i x_i} \quad , \quad p(Y=1|\mathbf{x}) = \frac{x_3 + x_4}{\sum_i x_i} \quad , \quad p(Y=2|\mathbf{x}) = \frac{x_5 + x_6}{\sum_i x_i}$$

Now consider the case where $X_1 = 0$. The current distribution of Y is [0.204, 0.398, 0.398].

In this case if we acquire feature 2 then in half the cases $X_2 = 0$ and the distribution becomes [0.020, 0.490, 0.490]. In the other half of cases $X_2 = 1$ and the distribution becomes [0.388, 0.306, 0.306]. In both cases acquiring feature 2 does not help to distinguish between the possible answers very well.

1356 If instead we acquire any of the other features, lets say feature 3. If $X_3 = 0$, which happens in half 1357 the cases, the distribution becomes [0.255, 0.255, 0.490]. And in the other half of cases $X_3 = 1$, the 1358 distribution becomes [0.153, 0.541, 0.306]. In both of these cases the feature has helped to distinguish 1359 between likely scenarios more than feature 2.

Finally, we can calculate the CMI for all features when feature 1 is 0.

1001	$I(\mathbf{Y}_{1} \cdot \mathbf{V} \mathbf{Y}_{1} = 0) = 0$
1362	$I(\mathbf{A}_1, \mathbf{I} \mid \mathbf{A}_1 = 0) = 0$
1363	$I(X_2; Y X_1 = 0) = 0.1389$
1364	$I(X_3; Y X_1 = 0) = 0.0055$
1365	$I(X_4; Y X_1 = 0) = 0.0055$
1366	$I(X_5; Y X_1 = 0) = 0.0055$
1367	$U(V \cdot V V = 0) = 0.0055$
1368	$I(\Lambda_6; I \Lambda_1 = 0) = 0.0055$

Naturally there is 0 CMI for feature 1 since it is already known. However feature 2 has the largest
CMI, and so a CMI objective would acquire this feature over the other 4, which is undesirable. The
results from this example can be calculated by enumerating all possible feature values and label
probabilities and calculating the quantities directly with a computer. We include code to reproduce
this calculation.

1374

1375 I DATASET DETAILS

1376

Here we provide all the details about each dataset, including sizes, number of features, and how to access the real datasets.

Synthetic. The synthetic experiments are based on (Yoon et al., 2019) where we know the features that are predictive, and we know that there is a heterogenous order. The datasets are binary datasets where the feature vector has 11 independent features drawn from a standard normal. There are three possible logits:

1383 1384 1385

1386

$$\ell_1 = 4x_1x_2,$$
 $\ell_2 = \sum_{i=3}^{6} 1.2x_i^2 - 4.2,$ $\ell_3 = -10\sin(0.2x_7) + |x_8| + x_9 + e^{-x_{10}}$

Then for a given logit value the label is sampled from a Bernoulli distribution with probability $p(Y = 1) = (1 + e^{\ell})^{-1}$. We construct three datasets:

1389 1390

1391

1392

- Synthetic 1: If $x_{11} < 0$ we use ℓ_1 , otherwise ℓ_2
- Synthetic 2: If $x_{11} < 0$ we use ℓ_1 , otherwise ℓ_3
- Synthetic 3: If $x_{11} < 0$ we use ℓ_2 , otherwise ℓ_3

The logits have been adapted from the originals in (Yoon et al., 2019) to produce probabilities closer to 0 or 1. This is so all the models have stronger purely predictive performance. The train set is size 60000, the validation and test set are both size 10000. AUROC is used as the evaluation metric.

Cube. The Cube dataset is a synthetic dataset that is regularly used to evaluate Active Feature
Acquisition methods (Rückstieß et al., 2013; Shim et al., 2018; Zannone et al., 2019). We specifically
use the normally distributed version (Zannone et al., 2019). There are 20 continuous features, where
different features are relevant for different classes. All features are drawn from a normal distribution
with mean 0.5 and standard deviation 0.3, except for the following cases:

- 1402 1403
- Class 1: Features 1, 2, 3 have mean [0, 0, 0] and diagonal standard deviation [0.1, 0.1, 0.1].
- Class 2: Features 2, 3, 4 have mean [1,0,0] and diagonal standard deviation [0.1,0.1,0.1].

1404 • Class 3: Features 3, 4, 5 have mean [0, 1, 0] and diagonal standard deviation [0.1, 0.1, 0.1]. 1405 • Class 4: Features 4, 5, 6 have mean [1,1,0] and diagonal standard deviation [0.1,0.1,0.1].

- 1406
- 1407
- 1408
- 1409
- Class 7: Features 7, 8, 9 have mean [0, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1]. • Class 8: Features 8, 9, 10 have mean [1, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 5: Features 5, 6, 7 have mean [0, 0, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 6: Features 6, 7, 8 have mean [1,0,1] and diagonal standard deviation [0.1,0.1,0.1].

- 1410 1411
- 1412 We use a train set with size 60000 and the validation and test sets are both size 10000. Accuracy is 1413 the evaluation metric.

1414 Bank Marketing. The Bank Marketing dataset (Moro et al., 2014) can be found at: https:// 1415 archive.ics.uci.edu/dataset/222/bank+marketing, we accessed it on 19th April 1416 2024, the dataset has a Creative Commons Attribution 4.0 International license. The data is taken 1417 from a marketing campaign conducted by a Portuguese bank. The task is binary classification, where 1418 the label indicates whether a client subscribed to a term deposit at the bank. The features are both the 1419 client's information and information about the calls. There are 15 features in total (after combining the month and day of the call into one feature), 7 are continuous and 8 are categorical. A full list of 1420 features can be found at the dataset origin. We use an 80:10:10 split giving train, validation and test 1421 sizes of 36168, 4521 and 4522. The evaluation metric is AUROC. 1422

1423 California Housing. The California Housing dataset is obtained through Scikit-Learn (Pedregosa 1424 et al., 2011) https://scikit-learn.org/stable/modules/generated/sklearn. 1425 datasets.fetch_california_housing.html, using a Creative Commons 0 license. The 1426 labels are median house prices in California districts expressed in 100,000 dollars. There are 8 1427 continuous features that can be found at the above URL. To convert this to a classification task we bucket the labels into 4 equally sized bins. We use an 80:10:10 split giving train, validation and test 1428 sizes of 16512, 2064 and 2064. The evaluation metric is accuracy. 1429

1430 MiniBooNE is an experiment at Fermilab designed to detect neutrino oscil-MiniBooNE. 1431 lations, namely muon neutrinos into electron neutrinos (Roe et al., 2005; Roe, 2010). The 1432 data was obtained from https://archive.ics.uci.edu/dataset/199/miniboone+ particle+identification on 23rd February 2024, the dataset has a Creative Commons 1433 Attribution 4.0 International license. The task is binary classification, distinguishing electron neutrino 1434 events from background events. There are 50 continuous features. The dataset does not have balanced 1435 classes, we enforced balance by reducing the number of background events at random to match 1436 the number of signal events. We also reduced the feature set down to 20 features using STG as a 1437 preprocessing feature selection step (Yamada et al., 2020). The selected features were [2, 3, 6, 14, 1438 15, 17, 20, 21, 22, 23, 25, 26, 29, 34, 39, 40, 41, 42, 43, 44]. The train set is size 56499 and the 1439 validation and test sets are both size 10000. The evaluation metric is AUROC. 1440

MNIST and Fashion MNIST. MNIST and Fashion MNIST are image classificaton datasets with 1441 10 classes, consisting of images of handwritten digits and items of clothing respectively. MNIST 1442 is available under the Creative Commons Attribution-Share Alike 3.0 license and Fashion MNIST 1443 uses the MIT license. Both datasets have images that are $28 \times 28 = 784$ pixels. We preprocess by 1444 reducing the dimensionality to 20 pixels each, for computational reasons - an acquisition trajectory 1445 with 784 features, where the majority are redundant, will be very slow, especially for methods such as 1446 EDDI and VAE where the whole acquisition is $\mathcal{O}(d^2)$. To do this we use STG (Yamada et al., 2020) a 1447 deep learning method for feature selection. After flattening the images to vectors, the features found 1448 by STG were:

1449 1450

1451

• MNIST: [153, 154, 210, 211, 243, 269, 271, 295, 327, 348, 350, 375, 405, 409, 427, 430, 461, 514, 543, 655]

• Fashion MNIST: [10, 38, 121, 146, 202, 246, 248, 341, 343, 362, 406, 434, 454, 490, 546, 1452 574, 580, 602, 742, 770] 1453

1454 For both datasets we split the provided train set into a train set with size 50000 and validation set with 1455 size 10000, we use the provided test sets each with size 10000. The evaluation metric is accuracy. 1456

METABRIC. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 1457 database consists of clinical and genetic Data for 1,980 breast cancer subjects (Curtis et al., 2012; 1458 Pereira et al., 2016). The data was accessed at https://www.kaggle.com/datasets/ 1459 raghadalharbi/breast-cancer-gene-expression-profiles-metabric on 1460 25th April 2024 under the Apache 2.0 license. We construct a classification task, predicting the 1461 Pam50 status using gene expressions as features. There are six classes: 1462 1. Luminal A 2. Luminal B 3. Her2 Enriched 1463 Claudin Low 5. Basal Low 6. Normal 1464 1465 As with the other high dimensional datasets we used STG to reduce the dimensionality to twelve 1466 continuous gene expressions given by: 1467 1. CCNB1 2. CDK1 3. E2F2 4. E2F7 1468 5. STAT5B 6. Notch 1 7. RBPJ 8. Bcl-2 1469 9. eGFR 10. ERBB2 11. ERBB3 12. ABCB1 1470 1471 We use an 80:10:10 split resulting in train, validation and test sizes of 1518, 189 and 191. The 1472 evaluation metric is accuracy. 1473 1474 TCGA. The Cancer Genome Atlas (TCGA) consists of genetic data for over 11,000 cancer 1475 patients (Weinstein et al., 2013). The data was accessed at https://www.cancer.gov/ccg/ research/genome-sequencing/tcga on 7th January 2023 under their Data Use Agreement. 1476 We construct the classification task of predicting location of the tumor based on DNA methylation 1477 data. We use 17 locations as the classes: 1478 1479 1. Breast 2. Lung 3. Kidney 1480 4. Brain 5. Ovary 6. Endometrium 1481 7. Head and Neck 8. Central Nervous System 9. Thyroid 1482 10. Prostate 11. Colon 12. Stomach 1483 13. Bladder 14. Liver 15. Cervix 1484 16. Bone Marrow 17. Pancreas 1485 1486 As the first step of dimensionality reduction we removed features with more than 15% missingness. 1487 Following this, we used STG to reduce dimensionality to 21 features: 1488 1. C7orf51 2. DEF6 3. DNASE1L3 4. EFS 1489 5. FOXE1 6. GPR81 7. **GRIA2** 8. GSDMC 1490 9. HOXA9 10. KAAG1 11. KLF5 12. LOC283392 1491 1492 13. LTBR 14. LYPLAL1 15. PON3 16. POU3F3 1493 17. SERPINB1 18. ST6GAL1 19. TMEM106A 20. ZNF583 1494 21. ZNF790 1495 1496 We then removed subjects with more than 10% missing features and used an 80:10:10 split. This gave train, validation and test sizes of 6327, 790 and 792. The evaluation metric is accuracy. 1497 1498 1499 MODEL DETAILS AND IMPLEMENTATIONS J 1500 1501 All models were implemented using PyTorch (Paszke et al., 2017), code shall be released publicly 1502 after the review period. It can currently be found in the supplementary material. We implemented all 1503 models ourselves to fit into our pipeline, the applicable licenses for the baseline models are: 1504 RL: • Opportunistic MIT License (https://github.com/mkachuee/ 1506 Opportunistic) 1507 • DIME: No license provided (https://github.com/suinleelab/DIME/tree/ main) 1509 • GDFS: MIT License (https://github.com/iancovert/ 1510 dynamic-selection) 1511

• EDDI: Microsoft Research License (https://github.com/microsoft/EDDI)

1512 J.1 GENERAL MODEL DETAILS

Here we provide details that tend to be shared across models. We explicitly state if a model does not follow the above and provide model specific details in the next section.

1516 **Input Layer.** In this paper not all features are available all at once. In order to account for this we 1517 use a binary mask to indicate whether a feature is available or not to a model. The input x and the 1518 mask m go through an input layer before the main model which accounts for missing features. For 1519 continuous features the input is given by $[\mathbf{x} \odot \mathbf{m}, \mathbf{m}]$, which is the element-wise product between the 1520 continuous features & their mask concatenated with the mask. Categorical features use a one-hot 1521 encoding, where we include an additional class to indicate a missing feature, i.e. if the mask value is 0 then the encoding has 1 at the first position. Continuous and categorical features are encoded 1522 separately as above and then concatenated as input to the main model. This applies to the Fixed MLP, 1523 DIME, GDFS, Opportunistic RL and VAE. 1524

1525 Deep Networks. All deep networks follow the same structure. After any specific input layers, we
1526 use linear layers. Each hidden layer has a ReLU activation followed by Batch Normalization (Ioffe & Szegedy, 2015). All hidden layers in a given network are the same width, which is a hyperparameter
1528 that can be tuned as well as the number of hidden layers. The exception to this is the Opportunistic
1529 RL model, where we replace Batch Normalization with dropout with 0.5 probability in accordance with the method's implementation (Kachuee et al., 2019a).

1531Acquiring Features.To acquire features each method individually has its own way to positively1532score all features, where higher scores mean that feature is better to acquire. These scores are1533multiplied by (1 - m) so that we do not acquire features we already have. This is also multiplied by1534the full data mask so that we do not acquire features that are not available. This would not apply at1535deployment where we have the ability to measure all features if desired.

1536

1537 J.2 MODEL SPECIFIC DETAILS

1538

Here we include any key details that are specific to given models, such as hyperparameter names and roles. We highly recommend seeing each method's paper for full details of each model. Unless otherwise stated, each method follows the general rules stated previously.

Multi-layer Perceptron. The Fixed MLP uses a simple MLP structure as described above. It is trained for 120 epochs. We prevent overfitting during training by choosing the iteration with the best validation accuracy/AUROC. The greedy fixed order is found after training by masking out all features, and calculating the evaluation metric on the train set for each feature individually. The best feature is chosen and is unmasked for the model. The procedure is repeated with the best feature being kept to find the second best feature. This is repeated until all features have been placed in a fixed greedy order.

GDFS. GDFS (Covert et al., 2023) has two separate networks, one for prediction, one for scoring 1549 features. Both use the same input layer previously described, both have a softmax final activation to 1550 give a probability distribution over the label and a positive score for each feature. Our implementation 1551 follows the original. We use the same hidden width and number of hidden layers for both networks. 1552 The Boolean "Share Parameters" hyperparameter says whether to share half the hidden layers between 1553 the two networks, this is presented in the paper as a possible way to increase performance, we treat 1554 it as a hyperparameter. We carry out pretraining on the predictor network for 80 epochs, we then 1555 carry out main training on both networks. This is done using a geometric temperature progression 1556 of $T \times [1.00, 0.56, 0.32, 0.18, 0.1]$, where the initial temperature T is a hyperparameter. For each 1557 temperature in the progression main training is carried out for 15 epochs, please see the original paper for full details, the temperature is used in the reparameterized sampling of features from the 1558 network scores (hence why we use softmax to convert to a distribution). Main training consists of 1559 sampling feature acquisitions and training the scoring network to choose features with the best greedy 1560 prediction from the predictor network. 1561

DIME. DIME (Gadgil et al., 2024) uses two separate networks, one for prediction and one for predicting the CMI of features with the label. The information network is used to score each feature. The prediction network uses softmax to give a distribution as the prediction. The information network limits the output to a minimum of zero and maximum of the entropy of the current predictions $H(Y|\mathbf{x}_S)$ (Cover, 1999). This is done by using a sigmoid followed by multiplying by the entropy as 1566 1567 suggested in the paper. The majority of the DIME implementation follows the GDFS implementation 1568 above. Instead of a temperature progression we use an ϵ progression during main training (as is done 1569 in the paper). This is given by ϵ -Initial×[1.0, 0.25, 0.05, 0.005], this gives the probability of choosing 1569 a feature uniformly at random compared to the best feature predicted by the information network. 1570 This and the temperature parameter in GDFS allow the models to explore the space of possibilities 1571 early and exploit the best ones later. Main training is also done for 15 epochs for each ϵ value, the 1572 information network is trained to predict the change in loss when a given feature is acquired.

1573 **Opportunistic RL.** Opportunistic RL (Kachuee et al., 2019a) is a Deep Q learning method, where 1574 the reward is given by the l_1 norm of the change in prediction distribution after an acquisition. The 1575 target network is updated compared to the main network with a rate of 0.001 as suggested. Batch 1576 Normalization is replaced with dropout with probability 0.5 as suggested. Predictions are made by using dropout to provide different network parameters at test time with 50 samples taken and 1577 averaged as suggested. The P and Q networks share representations as described in the paper. The 1578 γ hyperparameter refers to the discount factor associated with RL. The model is trained for 20000 1579 episodes with evaluation every 100 episodes. For the first 2000 episodes only the predictor network is 1580 trained, using uniformly random actions. Following this the probability of a random action decays by 1581 $0.1\frac{1}{2000}$ every episode to a minimum of 0.1. After 10000 episodes and for every 2000 episodes after 1582 that, the learning rate decays by a factor of 0.2. This is all in line with the original implementation. The only change is that each episode we do not consider individual samples from the dataset (it is not 1584 an online stream of data), instead we train using a batch of samples each episode, this improves the 1585 training, improving Opportunistic RL compared to its original online setting. 1586

VAE. The VAE method is a vanilla generative modeling approach to the AFA problem to analyse 1587 the viability of generative models. We use a Variational Auto-Encoder (Kingma & Welling, 2013) to model the distribution of the features. Since our input layer allows for missing features this 1589 allows us to model the distribution of missing features conditioned on observed ones. We train 1590 with the standard ELBO. The encoder and decoder are separate networks with separate width and 1591 number of hidden layers. The encoder predicts μ_z and σ_z , where σ_z is diagonal and is enforced to be 1592 positive by pushing the activations through a softplus and adding 0.001 as a minimum. The decoder 1593 predicts a mean for continuous features, with σ being the standard deviation to estimate the normal 1594 log-likelihood (this is a hyperparameter). For categorical features the decoder predicts logits that go 1595 through softmax. We then train a separate predictor that uses a standard MLP. Features are scored by taking samples of the unknown features conditioned on the observed ones. These samples go 1596 through the predictor to give an estimated label distribution. The mutual information is then estimated 1597 with $I(X_i; Y | \mathbf{x}_S) = \mathbb{E}_{p(x_i | \mathbf{x}_S)}[D_{\text{KL}}(p(Y | x_i, \mathbf{x}_S) | | p(Y | \mathbf{x}_S))]$. We train for 120 epochs. We prevent 1598 overfitting during training by choosing the iteration with the best validation ELBO. 1599

EDDI. EDDI (Ma et al., 2019) is an advanced generative modeling method for AFA. The encoder is a Partial VAE. For each continuous feature x_i , the input to a shared encoding network is $|x_i, x_i \mathbf{e}_i|$, where \mathbf{e}_i is a learnable vector which is different for each feature. This goes through a shared network giving s_i for each continuous feature. For categorical features a learnable representation is created 1603 for each feature for each possible category including a missing category. So without a network we 1604 still create s_i for a categorical feature by learning a matrix and selecting the row according to the category for each feature. We then take the sum $\mathbf{c} = \sum_{i} m_i \mathbf{s}_i$ so we only include the representations for observed features. This aggregated representation c goes through another network to give the latent μ_z and σ_z . We enforce σ_z to be positive by pushing it through a softplus and adding 0.001 as 1608 the minimum. The number of hidden encoder layers refers to both the continuous feature encoder and 1609 c-to-latent encoder, the number is divided by 2 and that many are used in each. We encode the label 1610 in the same way as a categorical feature. We do not include a separate predictor, instead we follow 1611 the original paper to make predictions: features are encoded to a latent distribution and samples are 1612 decoded to y, the absence of a dedicated predictor negatively impacts the results for EDDI. The decoder follows the same structure as for the VAE. We train for 400 epochs, to prevent overfitting 1613 we choose the iteration with the best validation ELBO. Features are scored based on a sampled KL 1614 divergence calculated in the latent space as described in the original paper, we use 50 samples. 1615

1616 IBFA. Our method, as described in the main paper, encodes each feature separately to a normal distribution (so we have many small encoding networks, one for each continuous feature). For each continuous feature we give $[m_i \tilde{x}_i, m_i]$ to that feature's specific deep encoder, where each continuous feature also goes through a copula transform $\tilde{x}_i = \Phi^{-1}(F_i(x_i))$ initially. The copula

1620 transform is given by F_i , the empirical CDF of the continuous feature, followed by Φ^{-1} , the inverse 1621 standard normal CDF. This transformation, as described in its paper (Wieczorek et al., 2018), enforces 1622 a symmetry associated with Information Bottleneck and encourages sparse, disentangled latent 1623 representations, both desired properties. The networks predict μ and σ for each feature by outputing 1624 two unbounded vectors whose size is the number of latent components per feature - a hyperparameter. Both of the unbounded vectors go through Batch Normalization which we found sped up training. 1625 The first is μ and the second goes through softplus and has 0.001 added, enforcing it to be positive 1626 giving σ . 1627

For each categorical feature we have a learnable matrix, where each row is a vector whose size is the number of latent components per feature. So for a given category (where missing is the first category) we simply select the row of the matrix. We use two of these for each feature for the μ and σ . The selected vectors are unbounded so they go through the same procedure - batch normalization applied to both, and then softplus and +0.001 to the second to get μ and σ . After concatenating, samples from the latent distribution can go through an MLP predictor network with softmax to give a predicted label distribution for that sample.

1635 During acquisition we encode the features we have to the latent distribution, and take 200 samples. 1636 Each is pushed through the predictor to give a distribution for each sample. To score the features 1637 we take the gradient of each classes' probability with respect to every sample. This gives $\mathbf{g} = \nabla_{\mathbf{z}} p_{\phi} (Y = c | \mathbf{z})$. To convert this to a score we calculate the normalized length of the vector in each 1639 feature's latent dimensions. For example, if we have two features and each is encoded to three latent 1640 components, the gradient could be

[1.19, -0.87, 0.81, 0.63, -0.40, 0.29].

1643 We reshape to the number of features by the number of latent components per feature:

1644 1645

1648

1649

1651

1652

[[1.19, -0.87, 0.81], [0.63, -0.40, 0.29]].

1646 We calculate the length of each of these giving

$$\left[\sqrt{1.19^2 + 0.87^2 + 0.81^2}, \sqrt{0.63^2 + 0.40^2 + 0.29^2}\right] = \left[1.68, 0.801\right].$$

1650 We then normalize by dividing by the sum of these

[1.68, 0.801]/(1.68 + 0.801) = [0.68, 0.32].

1653 And this gives us a score for each feature from this latent sample for this class $r(c, \mathbf{z}, i)$. We average 1654 across all samples, and sum across all classes weighted by $p(Y = c | \mathbf{x}_O)$. This gives a score for every 1655 feature.

To train, we subsample the feature and encode them to the latent distribution. We take 100 samples, these go through the predictor giving 100 label distributions which are averaged as the model's full prediction. We then calculate the log-likelihood of the overall prediction. We then add the KL divergence of the latent distribution with a standard normal to enforce the information bottleneck regularization. We train for 120 epochs, using 200 latent samples for acquisition and prediction during evaluation.

1662

1663 J.3 MODEL RUNTIMES 1664

There are two places to consider runtime: training and inference. In Table 5 we provide the scaling laws of each method with respect to number of features d.

RL, DIME and GDFS train by simulating acquisition, so each step scales linearly with the number of features. Generative models (and IBFA) are constant to train since they only train to predict well. However, during inference, RL, DIME and GDFS only require one forward pass of their policy/CMI network, whereas EDDI and VAE must individually score every feature. IBFA instead takes gradients with respect to the predicted class outputs, so the runtime is linear in the number of classes, which is typically far fewer than the number of features. The main takeaway is that IBFA scales better than half the methods at training time, better than the other half during acquisition (assuming fewer labels than features), and never the worst.

IBFA

Table 5: Runtime	es for the models that ac	ctively acquire features.
Model	Single Training Step	Single Acquisition Step
DIME	$\mathcal{O}(d)$	$\mathcal{O}(1)$
GDFS	$\mathcal{O}(d)$	$\mathcal{O}(1)$
EDDI	$\mathcal{O}(1)$	$\mathcal{O}(d)$
Opportunistic RL	$\mathcal{O}(d)$	$\mathcal{O}(1)$
VAE	$\mathcal{O}(1)$	$\mathcal{O}(d)$

features.

1685 Κ EXPERIMENTAL DETAILS 1686

1674

1675 1676

1683 1684

1727

1687 All experiments were run on an Nvidia Quadro RTX 8000 GPU the data sheet can be found at https: 1688 //www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/ 1689 quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web. 1690 pdf. All experiments were repeated five times over parameter initializations to obtain means and standard error estimates. Experiments took approximately one month to complete. 1692

 $\mathcal{O}(1)$

 $\mathcal{O}(|y|)$

Training. We train all models using the Adam optimizer (Kingma & Ba, 2015), the learning rate and 1693 batch size are treated as hyperparameters that are tuned using a validation set. All methods (except 1694 for Opportunistic RL) use a learning rate scheduler that multiplies the learning rate by 0.2 when there 1695 have been a set number of epochs without validation metric improvement - the patience, which is also tuned. 1697

We prevent overfitting during training by tracking a validation metric every epoch and using the iteration with the best value. The validation metric we choose (unless explicitly stated for a given 1699 model) is the area under the acquisition curve, starting from zero features we acquire features 1700 individually, calculating the accuracy/AUROC at each acquisition, and then the validation metric is 1701 the area under the acquisition curve divided by the total number of features. 1702

For every model, initial hyperparameter tuning was conducted by Hyperparameter Tuning. 1703 finding ranges for each hyperparameter that produced strong acquisition performance on the synthetic 1704 datasets. Following this, for each model we generated 9 random hyperparameter configurations using 1705 the ranges.³ For each method we test each configuration 3 times producing a mean value for the area 1706 under the acquisition curve. The configuration with the highest mean value is separately trained 5 1707 times in the main experiments. The nine configurations for each method are provided in Tables 6, 7, 1708 8, 9, 10, 11 and 12. We give the selected hyperparameter configurations for each dataset in Table 13. 1709

1710						
1711	Table 6: Hyperpa	arameter	configur	ations fo	r Fixed M	LP.
1712	Hyperparameter	1	2	3	4	5
1713	Hidden Width	200	100	200	100	300
1714	No. Hidden Lavers	2	2	1	1	2
1715	Learning Rate	0.001	0.001	0.001	0.001	0.001
1716	Batch Size	128	128	128	128	256
1717	Patience	5	5	5	5	5
1718	Hyperparameter	6	7	8	9	
1719	Tryperparameter		,	0		
1720	Hidden Width	100	250	50	120	
1721	No. Hidden Layers	2	3	2	2	
1700	Learning Rate	0.001	0.001	0.001	0.0005	
1722	Batch Size	128	256	64	128	
1723	Patience	2	10	5	5	
1724		I	-	-		
1725						
1726						

³We did a random search because we did not have the computational resources to carry out a full grid search.

Table 7: Hyperpara	Table 7: Hyperparameter configurations for DIME.					
Hyperparameter	1	2	3	4	5	
Hidden Width	200	200	200	200	100	
No. Hidden Layers	2	2	2	2	2	
Share Parameters	False	False	False	True	True	
Pretraining Learning Rate	0.001	0.001	0.001	0.001	0.001	
Main Training Learning Rate	0.001	0.001	0.001	0.001	0.001	
Batch Size	128	128	128	128	128	
Patience	5	5	5	5	2	
ϵ Initial	0.4	0.2	0.1	0.4	0.2	
Hyperparameter	6	7	8	9		
Hidden Width	200	100	100	100		
No. Hidden Layers	2	1	3	1		
Share Parameters	True	False	False	True		
Pretraining Learning Rate	0.001	0.001	0.001	0.001		
Main Training Learning Rate	0.001	0.001	0.001	0.0001		
Batch Size	128	512	256	512		
Patience	5	5	3	5		
e Initial	0.1	0.4	0.2	0.1		

Table 8: Hyperparameter configurations for (GDFS.
--	-------

Hyperparameter	1	2	3	4	5
Hidden Width	200	200	200	200	200
No. Hidden Layers	2	2	2	2	2
Share Parameters	False	False	False	True	True
Pretraining Learning Rate	0.001	0.001	0.001	0.001	0.001
Main Training Learning Rate	0.001	0.001	0.001	0.001	0.001
Batch Size	128	128	128	128	128
Patience	2	2	2	2	2
Temp Initial	2.0	1.0	0.1	2.0	1.0
Hyperparameter	6	7	8	9	
Hidden Width	200	100	200	200	
No. Hidden Layers	2	1	2	2	
Share Parameters	True	True	False	True	
Pretraining Learning Rate	0.001	0.001	0.001	0.001	
Main Training Learning Rate	0.001	0.001	0.001	0.001	
Batch Size	128	512	512	512	
Patience	2	2	2	2	
Temp Initial	0.1	2.0	1.0	0.1	

1782						
1783						
1784	Table 9: Hyperpara	ameter c	onfigurati	ons for `	VAE.	
1785	Hyperparameter	1	2	3	4	5
1786	Tryperparameter	1	2	5		
1787	Latent Width	30	10	50	30	50
1788	No. Hidden Decoder Layers	2	2	2	1	2
1789	Decoder Hidden Width	100	200	150	200	200
1790	No. Hidden Encoder Layers	2	2	150	1	150
1791	Encoder Hidden Width	100	200	150	200	150
1702	Dradiator Hiddan Width	2 100	2 100	200	200	200^{2}
1703	Learning Pate	0.001	0.001	200	200	200
1793	Batch Size	128	128	128	128	256
1794	σ Decoder	0.2	0.2	0.2	0.2	0.2
1795	Patience	5	5	5	5	5
1796		5	-			
1797	Hyperparameter	6	7	8	9	
1798	Latent Width	10	30	40	20	
1799	No. Hidden Decoder Layers	2	2	2	3	
1800	Decoder Hidden Width	100	100	200	250	
1801	No. Hidden Encoder Layers	2	2	2	3	
1802	Encoder Hidden Width	100	100	200	250	
1803	No. Hidden Predictor Layers	2	2	2	2	
1804	Predictor Hidden Width	100	100	200	100	
1805	Learning Rate	0.001	0.0005	0.001	0.001	
1806	Batch Size	512	64	128	512	
1807	σ Decoder	1.0	0.2	0.2	0.2	
1808	Patience	5	5	3	5	
1809						
1809 1810						
1809 1810 1811						
1809 1810 1811 1812	Table 10. Hereare		C	f 1		
1809 1810 1811 1812 1813	Table 10: Hyperpar	ameter c	onfigurati	ons for l	EDDI.	
1809 1810 1811 1812 1813 1814	Table 10: Hyperpar Hyperparameter	ameter c	onfigurati 2	ons for 1 3	EDDI. 4	5
1809 1810 1811 1812 1813 1814 1815	Table 10: Hyperpara Hyperparameter C Dim	ameter c 1 200	onfigurati 2 200	$\frac{\text{ons for I}}{3}$	EDDI. 4 100	5
1809 1810 1811 1812 1813 1814 1815 1816	Table 10: Hyperpara Hyperparameter C Dim Latent Width	ameter c 1 200 200	onfigurati 2 200 200	$\frac{\text{ons for I}}{3}$ $\frac{50}{100}$	EDDI. 4 100 50	5 20 20
1809 1810 1811 1812 1813 1814 1815 1816 1817	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers	ameter c 1 200 200 2	onfigurati 2 200 200 2	$\frac{\text{ons for I}}{3}$ 50 100 2	EDDI. 4 100 50 2	5 20 20 2 2
1809 1810 1811 1812 1813 1814 1815 1816 1817	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers Decoder Hidden Width	ameter c 1 200 200 2 200	onfigurati 2 200 200 2 200 2	$\frac{\text{ons for I}}{3}$ $\frac{50}{100}$ 2 200	EDDI. 4 100 50 2 200	5 20 20 2 200
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers Decoder Hidden Width No. Hidden Encoder Layers	ameter c 1 200 200 2 200 2 200 2	onfigurati 2 200 200 2 200 2 200 2	$\frac{\text{ons for I}}{3}$ $\frac{50}{100}$ 2 200 2	EDDI. 4 100 50 2 200 2	5 20 20 2 200 2 200 2
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers Decoder Hidden Width No. Hidden Encoder Layers Encoder Hidden Width	ameter c 1 200 200 2 200 2 200 2 200	onfigurati 2 200 200 2 200 2 200 2 200	ons for l 3 50 100 2 200 2 200 2	EDDI. 4 100 50 2 200 2 200 2 200	5 20 20 2 200 2 200 2 200
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers Decoder Hidden Width No. Hidden Encoder Layers Encoder Hidden Width Learning Rate	ameter c 1 200 200 2 200 2 200 0.001	onfigurati 2 200 200 2 200 2 200 2 200 0.001	ons for l 3 50 100 2 200 2 200 0.001	EDDI. 4 100 50 2 200 2 200 2 200 0.001	5 20 20 2 200 2 200 2.00 0.001
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821	Table 10: Hyperpara Hyperparameter C Dim Latent Width No. Hidden Decoder Layers Decoder Hidden Width No. Hidden Encoder Layers Encoder Hidden Width Learning Rate Batch Size	ameter c 1 200 200 2 200 2 200 0.001 128	onfigurati 2 200 200 2 200 2 200 0.001 512	ons for 1 3 50 100 2 200 2 200 0.001 128	EDDI. 4 100 50 2 200 2 200 0.001 256	5 20 20 2 200 2 200 0.001 512
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ Decoder	ameter c 1 200 200 2 200 2 200 0.001 128 0.2	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2	5 20 20 2 200 2 200 0.001 512 0.2
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatience	ameter c 1 200 200 2 200 0.001 128 0.2 5	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameter	ameter c 1 200 200 2 200 0.001 128 0.2 5 6	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5 7	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5 8	EDDI. 4 100 50 2 200 2.00 0.001 256 0.2 5 9	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameter	ameter c 1 200 200 2 200 0.001 128 0.2 5 6	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5 7	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 (0)	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatene Witkle	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5 7 250	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100 10	EDDI. 4 100 50 2 200 2.200 0.001 256 0.2 5 9 60 60	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder Layers	ameter c 1 200 2 200 2 200 0.001 128 0.2 5 6 80 80 1	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5 7 250 250 2 2 2 2 2 2 2 2 2 2 2 2 2	ons for l 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100 40 2	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 60 60 1	5 20 2 200 2 200 2. 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder Layers	ameter c 1 200 200 2 200 2 200 0.001 128 0.2 5 6 80 80 1 100	onfigurati 2 200 200 2 200 2 200 0.001 512 1.0 5 7 250 250 2 100	ons for l 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100 40 2 75	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 60 60 1 200	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden Width	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2	onfigurati 2 200 200 2 200 0.001 512 1.0 5 7 250 250 2 100 2	ons for 1 3 50 100 2 200 2.00 0.001 128 0.2 5 8 100 40 2 75 2	EDDI. 4 100 50 2 200 2.00 0.001 256 0.2 5 9 60 60 1 200 2 3	5 20 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1823 1824 1825 1826 1827 1828 1829 1830	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden Width	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2 100	$ \begin{array}{r} \text{onfigurati} \\ \hline 2 \\ \hline 200 \\ 2 \\ 200 \\ 2 \\ 200 \\ 0.001 \\ 512 \\ 1.0 \\ 5 \\ \hline 7 \\ \hline 250 \\ 250 \\ 2 \\ 100 \\ 3 \\ 100 \\ \end{array} $	$ \begin{array}{r} $	EDDI. 4 100 50 2 200 2.00 0.001 256 0.2 5 9 60 60 1 200 3 200 2.00 0.001 2.00 0.001 0.2 5 9 60 60 1 2.00 3 2.00 0.001 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0	5 20 20 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning Rate	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2 100 0.001	onfigurati 2 200 200 2 200 0.001 512 1.0 5 7 250 250 2 100 3 100 0.001	$ \begin{array}{r} $	EDDI. 4 100 50 2 200 2.00 0.001 256 0.2 5 9 60 60 1 200 3 200 0.001	5 20 20 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1830 1831	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2 100 0.001 128	onfigurati 2 200 200 2 200 0.001 512 1.0 5 7 250 250 2 100 3 100 0.001 128	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100 40 2 75 2 75 0.001 256	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 60 60 1 200 3 200 0.001 512	5 20 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ Decoder	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2 100 0.001 128 0.2	onfigurati 2 200 200 2 200 0.001 512 1.0 5 7 250 250 2 100 3 100 0.001 128 0.2	ons for 1 3 50 100 2 200 2 200 0.001 128 0.2 5 8 100 40 2 75 2 75 0.001 256 0.2	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 60 60 1 200 3 200 0.001 512 0.2	5 20 2 200 2 200 2 200 0.001 512 0.2 5
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834	Table 10: HyperparaHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatienceHyperparameterC DimLatent WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Decoder LayersDecoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthNo. Hidden Encoder LayersEncoder Hidden WidthLearning RateBatch Size σ DecoderPatience	ameter c 1 200 200 2 200 0.001 128 0.2 5 6 80 80 1 100 2 100 0.001 128 0.2 5 5 6 80 80 1 100 2 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 100 0.001 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 100 0.001 128 0.2 5 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 0.2 5 100 100 100 100 100 100 100	onfigurati 2 200 200 2 200 0.001 512 1.0 5 7 250 250 2 100 3 100 0.001 128 0.2 5	ons for 1 3 50 100 2 200 0.001 128 0.2 5 8 100 40 2 75 2 75 0.001 256 0.2 5	EDDI. 4 100 50 2 200 2 200 0.001 256 0.2 5 9 60 60 1 200 3 200 0.001 512 0.2 5 9	5 20 2 200 2 200 2 200 0.001 512 0.2 5

Table 11: Hyperparameter configurations for Opportunistic RL.					
Hyperparameter	1	2	3	4	5
Hidden Width	200	200	200	100	200
RL γ	0.5	0.75	0.25	0.5	0.75
Batch Size	0.001 128	0.001 128	0.001 128	0.001 256	0.001 256
Hyperparameter	6	7	8	9	
Hidden Width	200	100	200	100	
No. Hidden Layers	2	1	1	1	
RL γ	0.25	0.5	0.75	0.25	
Learning Rate Batch Size	0.0001 128	0.001 256	0.0001 256	0.001 128	

Table 12:	Hyperparameter	configurations	for IBFA.

Hyperparameter	1	2	3	4	5
Latent Components per Feature	4	4	4	6	4
No. Hidden Predictor Layers	2	2	2	2	2
Predictor Hidden Width	100	250	100	150	250
No. Hidden Encoder Layers	2	2	2	2	2
Encoder Hidden Width	20	150	20	50	150
IB β	0.0005	0.001	0.001	0.0005	0.005
Learning Rate	0.001	0.0005	0.001	0.001	0.0003
Batch Size	128	128	128	128	128
Patience	5	5	5	5	5
Hyperparameter	6	7	8	9	
Latent Components per Feature	8	4	6	8	
No. Hidden Predictor Layers	1	2	3	2	
Predictor Hidden Width	250	180	250	250	
No. Hidden Encoder Layers	1	2	3	2	
Encoder Hidden Width	100	40	100	100	
IB β	0.0001	0.0008	0.001	0.005	
Learning Rate	0.001	0.0005	0.0005	0.0005	
Batch Size	256	128	256	128	
Patience	5	8	5	5	

Table 13:	Selected I	hyper	parameter	configur	ations	for	each	datase	t.
		~ .		<u> </u>					

Dataset	Opportunistic RL	DIME	GDFS	Fixed MLP	VAE	EDDI	IBFA
Syn 1	1	5	9	7	1	3	4
Syn 2	1	6	6	7	2	5	1
Syn 3	5	4	6	7	8	3	6
Cube	3	4	6	3	2	4	5
Bank Marketing	4	4	3	7	9	8	4
California Housing	3	6	5	7	3	7	7
MiniBooNE	6	4	2	7	9	9	7
MNIST	3	6	6	7	3	7	8
Fashion MNIST	3	4	9	7	5	4	8
METABRIC	9	5	2	5	4	4	5
TCGA	6	4	2	1	4	4	4

1890 L INTERPRETABILITY

1891 1892

To explore one possible way of interpreting our model, we consider the log determinant of the latent covariance matrix. This tells us the latent uncertainty as we acquire features. We consider the synthetic datasets where we know the optimal behavior. We consider the case with no features, all features, feature 1, feature 5, feature 10 and feature 11 since each of those is associated with one of the logits of the synthetic datasets and feature 11 tells us which logit to use. The results are given below in Table 14:

- 1898
- 1899 1900 1901

Table 14: Latent uncertainties as features are acquired in the synthetic experiments.

	Syn 1	Syn 2	Syn 3
$\log(\Sigma)$ No Features	1.366 ± 0.551	2.557 ± 0.314	19.468 ± 1.294
$\log(\Sigma)$ All Features	-25.002 ± 0.306	-21.004 ± 0.398	-44.015 ± 2.032
$\log(\Sigma)$ Feature 1	-3.787 ± 0.592	-2.524 ± 0.214	19.236 ± 1.227
$\log(\Sigma)$ Feature 5	-1.516 ± 0.485	2.489 ± 0.317	12.424 ± 0.854
$\log(\Sigma)$ Feature 10	1.307 ± 0.557	0.020 ± 0.417	11.905 ± 0.804
$\log(\Sigma)$ Feature 11	-3.144 ± 0.626	-1.792 ± 0.236	6.450 ± 1.106

1907 1908

We see that in all cases we have the most latent uncertainty when we have no features, and the least 1909 uncertainty when we have all features. If we were to acquire the uninformative feature for each 1910 dataset (10 for Syn 1, 5 for Syn 2 and 1 for Syn 3) we see that the latent uncertainty does not reduce 1911 significantly, IB has worked effectively and (mostly) disregards these features. We see in the case 1912 of Syn 3 that feature 11 reduces the uncertainty the most, showing that even though it does not 1913 reduce uncertainty in the label at first it is able to reduce the uncertainty in the latent space. It also 1914 significantly reduces the uncertainty for Syn 1 and Syn 2, although not as much as Feature 1 in those 1915 cases. An interpretive insight is that an effective acquisition reduces latent uncertainty, although this 1916 does not explain the *exact* ordering of acquisitions.

We augment this table by plotting TSNE projections of the latent space (Van der Maaten & Hinton, 2008), in Figure 15. The plot shows TSNE projections for Syn 3, where we color the data points based on the actual class and if a given feature is positive or negative. This has been done for Features 1, 10 and 11. Feature 11 is able to cluster the latent space more distinctly than the other features, showing it has a significant effect on the encodings. We also see that Feature 10 is able to cluster more distinctly than Feature 1, showing that it is also more important for prediction on Syn 3, as expected.

1924 1925

1926

1933

M ADDITIONAL BASELINE - GSMRL

Finally, we consider an additional baseline GSMRL (Li & Oliva, 2021). This is a hybrid approach that uses a Generative Model to improve the RL approach, this is done by providing intermediate reward based on information gain and providing additional information to the RL agent. We consider GSMRL against IBFA and Opportunistic RL on the Cube dataset. We provide the mean accuracy during acquisition in Table 15 and plot the acquisition curves in Figure 16. We see that GSMRL does not perform as well as IBFA or Opportunistic RL.

1934		
1935	Table 15: Average Acq	uisition accuracies on the Cube dataset.
1936	Model	Average Acquisition Performance
1937	IBFA (ours)	0.904 ± 0.001
1938	Opportunistic RL	0.901 ± 0.000
1939	GSMRL	0.823 ± 0.002
1940		
1941		
1942		
1943		

feature value is positive or negative.

Figure 16: Acquisition curves on the Cube dataset, forIBFA, Opportunistic RL and GSMRL.