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ABSTRACT

Traditional supervised learning typically assumes that all features are available
simultaneously during deployment. However, this assumption does not hold in
many real-world scenarios, such as medicine, where information is acquired se-
quentially based on an evolving understanding of a specific patient’s condition.
Active Feature Acquisition aims to address this problem by dynamically selecting
which feature to measure based on the current observations, independently for each
test instance. Current approaches either use Reinforcement Learning, which suffers
from training difficulties; or greedily maximize the conditional mutual information
of the label and unobserved features, which inherently makes myopic acquisitions.
To address these shortcomings, we introduce a novel method using information
bottleneck. Via stochastic encodings, we make acquisitions by reasoning about the
features across many possible unobserved realizations in a regularized latent space.
Extensive evaluation on a large range of synthetic and real datasets demonstrates
that our approach reliably outperforms a diverse set of baselines.

1 INTRODUCTION

The standard supervised learning paradigm is to learn a predictive model using a training dataset
of features and labels, such that the model can make accurate predictions on unseen test inputs.
A fundamental assumption is that, at test time, all features are jointly available, however, this
assumption does not always hold. Consider the example of a doctor diagnosing a patient (Kachuee
et al., 2019b;a). Initially, there is little to no information available and, while there are many tests
that could be conducted, the doctor will choose which ones to carry out based on their current
understanding of the specific patient’s condition. For instance, if a patient has pain in their leg, and
the doctor suspects a fracture, a leg X-ray might be prioritized. Active Feature Acquisition (AFA)1 is
an inference time task, where the features are not assumed to be all available at once. Instead, on
an instance-wise basis, a model sequentially acquires features based on the observations to best aid
long-term prediction. A common approach is to use Reinforcement Learning (RL) (Rückstieß et al.,
2013; Shim et al., 2018), since this is a natural solution to a sequential decision making problem.
However, RL suffers from training difficulties such as sparse reward, exploration vs exploitation, and
the deadly-triad (Henderson et al., 2018; Erion et al., 2022; Van Hasselt et al., 2018). An alternative
approach is to select features that greedily maximize the conditional mutual information (CMI) (Chen
et al., 2015a;b). This has a significant drawback: CMI does not capture the effects of unobserved
features that can be acquired at a later stage due to marginalizing these out. This prevents CMI
from selecting features that are independent of the label but highly informative of which feature to
acquire next, resulting in myopic decision making that optimizes for immediate predictive power.
Additionally, we argue that CMI is not even guaranteed to be the best short-term objective to make
decisive predictions. Since maximizing CMI is equivalent to minimizing entropy and this can be
achieved by making unlikely classes even more unlikely, rather than selecting features that distinguish
between more probable outcomes. We explore the drawbacks of CMI in more detail in Section 4.

Motivated by the shortcomings of RL and CMI maximization, we introduce a novel AFA approach
using Information Bottleneck (IB) (Tishby et al., 2000). We call our approach Information Bottleneck
for Feature Acquisition (IBFA) and it departs from existing methods in several key ways. First, we
shift the acquisition problem from reasoning in a complex feature space to a latent space. This is

1This problem has also been referred to as Dynamic Feature Selection in the literature.
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regularized with IB such that decisions are made using label-relevant information only and not feature-
level noise. Second, we use stochastic encoders, allowing us to acquire features by considering
their effect across a diverse range of possible latent realizations. By removing marginalization over
unobserved features the resulting acquisitions are non-greedy by design. Third, our acquisition
objective places more focus on labels with higher predicted likelihood, leading to acquisitions that
help to disambiguate between the most likely classes. Finally, to avoid the difficulties posed by
RL, we do not train our model to make acquisitions directly. Instead we train with a predictive
loss and make acquisitions by maximizing a custom objective in a suitably regularized latent space.
Our contributions are as follows: (1) We re-examine the CMI objective and provide theoretical
reasoning and concrete examples of its sub-optimality. (2) We introduce IBFA, our novel AFA
approach motivated by the limitations of RL and CMI maximization. (3) We evaluate IBFA on
multiple synthetic and real-world datasets, including cancer classification tasks. Comparing against
various AFA baselines, we see that IBFA consistently outperforms these methods. Extensive ablations
further demonstrate each novel design choice is required for the best performance.

2 RELATED WORK

2.1 ACTIVE FEATURE ACQUISITION

Reinforcement Learning. The most common AFA approach is to frame the problem as a Markov
Decision Process and train a policy network with RL to decide which feature to acquire next (Dulac-
Arnold et al., 2011; Rückstieß et al., 2013; Shim et al., 2018; Janisch et al., 2019; Mnih et al., 2014;
Kachuee et al., 2019a). The RL approach readily extends to a temporal setting where features and
labels can change over time (Kossen et al., 2023; Yin et al., 2020). Whilst a natural solution to
AFA, RL suffers from training difficulties, and various advances in the RL field have been applied to
account for this. For example, using generative models to augment datasets (Zannone et al., 2019),
providing mutual information as additional input to the policy (Li & Oliva, 2021), using gradient
information in the training process (Ghosh & Lan, 2023), and reward shaping (Peng et al., 2018).

Conditional Mutual Information Maximization. Conditional Mutual information tells us how
much we can learn about one variable by measuring a second, whilst already knowing a third. Greedy
CMI maximization is a common AFA approach, due to its grounding in information theory, however
(as we demonstrate in Section 4), it inherently makes short-term acquisitions and is prone to making
acquisitions that do not distinguish between likely labels. Among existing approaches, networks
can be trained to directly predict CMI (Gadgil et al., 2024), or policy networks can be specially
trained to maximize CMI without ever calculating it (Chattopadhyay et al., 2023; Covert et al.,
2023). Generative models are a second way to estimate CMI by taking Monte Carlo estimates over
conditional distributions, (Chattopadhyay et al., 2022; Rangrej & Clark, 2021; Early et al., 2016).
This approach suffers from associated generative modeling challenges, producing poor estimates
of CMI, thus adding to the limitations. Improved performance can be achieved with advances in
generative modeling (Peis et al., 2022; He et al., 2022; Li et al., 2020; Li & Oliva, 2020).

Alternative Solutions. Sensitivity-based solutions make selections based on how sensitive the
label is to a given feature (Kachuee et al., 2017; 2018). However, since missing values are filled
with zero and measuring a feature is discontinuous, the gradient does not reliably represent the true
sensitivity. Imitation learning has been applied (Valancius et al., 2023; He et al., 2016), however, this
requires access to an oracle or to construct one. Prior to deep learning, decision trees were used, with
features acquired at each branch of a tree if unobserved (Xu et al., 2012; 2013; Kusner et al., 2014;
Trapeznikov & Saligrama, 2013; Xu et al., 2014). This has also been generalized to ensembles (Nan
et al., 2015; 2016).

2.2 INFORMATION BOTTLENECK

Information bottleneck (IB) is a technique that aims to compress a feature vector to a new representa-
tion, so that as much label information is preserved while removing unnecessary feature information
(Tishby et al., 2000; Alemi et al., 2017). Existing applications of IB include improving adversarial
robustness (Zhang et al., 2022; Wang et al., 2021; Kuang et al., 2024), integrating data from multiple
views (Lee & Van der Schaar, 2021; Wang et al., 2019; Federici et al., 2020), and recently imputation
(Choi & Lee, 2023). IB has only recently been applied to standard feature selection. These methods

2
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work by either scoring a feature with the optimized IB objective using only one feature (Pan et al.,
2023), or by using a stochastic gate to drop features before the encoder, and optimizing both the
encoder and gate with the IB objective (Zhang et al., 2023). We instead use IB to regularize the latent
space in which we will be conducting AFA, rather than scoring features to find a fixed global subset.
To our best knowledge, we are the first to apply IB in the context of AFA.

3 ACTIVE FEATURE ACQUISITION

Problem Setup. In standard C-way classification, we have a d-dimensional feature vector given
by the random variable X ∈ X with realization x = (x1, x2, . . . , xd), and a label given by Y ∈ [C]
with realization y. Ordinarily, we assume all features are observed; however, more generally, we wish
to allow arbitrary feature subsets as valid inputs. Therefore, let ∗ represent a missing feature value
and X =

∏d
i=1(Xi ∪ {∗}). We denote an input with feature subset S ⊆ [d], as xS , where xS,i = xi

if i ∈ S, and xS,i = ∗ if i /∈ S. Given a training set DTrain = {(xS , y)n}Nn=1, the AFA task is to
train a model that takes a test instance with arbitrary observations xO, and iteratively acquires new
features to improve predictive power. The model’s long-term goal is to acquire a sequence of features
S∗ to maximize its confidence in the prediction whilst minimizing the number of acquired features:

S∗ = argmax
S∈[d]\O

(
max
c∈[C]

pModel(Y = c|xO∪S)− λ|S|
)

subject to |S| ≤ B

Where λ balances how much we optimize for a confident prediction compared to acquiring as few
features as possible, and B is a given feature budget. These parameters are highly domain dependent,
for example, in medicine, where the stakes are high, we have large B and low λ, there is a high
tolerance for acquiring features if we can make confident predictions.

Acquisition in Practice. The standard approach to AFA is to construct an acquisition objective
function R : X × [d] −→ R, that scores each feature, and to select the feature that maximizes this:
i∗ = argmaxi∈[d]\O R(xO, i). The objective is defined by the method. As discussed in the Related
Work, the two main approaches are CMI maximization and RL. CMI methods use the CMI to
score features, telling us how much measuring Xi will reduce the the entropy of Y conditioned
on xO: RCMI(xO, i) = I(Xi;Y |xO) = DKL(p(Xi, Y |xO)||p(Xi|xO)p(Y |xO)). RL methods use
the output of a policy or Q network, trained directly on the sequential feature acquisition problem:
RRL(xO, i) = Qθ(xO)i. Following this we update our observed feature set to be O ∪ i∗, that is, we
use the new observed vector as input and repeat the acquisition process.

4 UNDERSTANDING THE LIMITATIONS OF CMI MAXIMIZATION

Here we more closely examine the shortcomings of greedy CMI maximization for AFA, to gain
understanding into why CMI maximization can be sub-optimal and how this can be addressed. Whilst
grounded in theory and extensively applied, it suffers from two drawbacks previously alluded to.

First, greedy CMI maximization makes myopic acquisitions, which in some scenarios is guaranteed to
be sub-optimal. We prove this with an example. Consider a feature vector with d+1 features, the first
d of which are binary, and the last taking an integer value from 1 to d: X ∈ {0, 1}d × [d]. The final
feature acts as an indicator, informing us which of the other d features gives the label, y = xxd+1

. The
optimal strategy is to first choose the indicator then its designated feature, 2 acquisitions. However,
to arrive at the same prediction, the expected number of acquisitions by greedily maximizing CMI
is 3− 1

d . We prove this in Appendix G; here, we provide theoretical insight into why CMI fails on
this task, motivating our solution. CMI fails because possible future observations are not considered
in the present decision since they are marginalized out, p(xi, y|xO) =

∫
p(xj , xi, y|xO)dxj . Each

acquisition is made like there are no subsequent acquisitions and therefore the indicator is not chosen
first. This is not specific to CMI, but any scoring that marginalizes out unobserved features.

Proposition 1. Any acquisition objective that uses the marginal p(xi, y) to score feature i will not
select the indicator first.

The proof is straightforward: With no other features, the indicator and label are independent, so
the marginal is given by p(xd+1, y) = p(xd+1)p(y). It is therefore impossible to measure its effect

3
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on the label without considering possible values of other features, regardless of how the effect is
measured. RL methods do not suffer from this, since during training different scenarios are seen
and the effects distilled into the parameters. Building on this, adjusting the CMI objective to include
possible values of unobserved features can solve the indicator problem under greedy maximization.
Proposition 2. Greedy maximization of

∫
I(Xi;Y |xO,xU )p(xU |xO)dxU is an optimal strategy for

the indicator problem, where xU are unobserved features excluding i, U = x[d]\(O∪i).

We prove this in Appendix G. Note we will not use this as our acquisition objective, since this is
intractable. The key takeaway from these two propositions is that considering possible values of other
unobserved features is necessary for optimality and, if the objective is chosen well, sufficient.

The second drawback of CMI is that, even as a short-term objective, it is not guaranteed to be the
best objective for identifying the most likely class. CMI maximization is equivalent to minimizing
entropy, and to show why this is not guaranteed to be optimal, consider two distributions over 3
classes and their entropies: H([0.5, 0.5, 0.0]) = 0.693 and H([0.7, 0.15, 0.15]) = 0.819. The first
distribution has lower entropy, but the second is more favorable for making a prediction. It is possible
to maximize CMI by making low probabilities lower, rather than distinguishing between possible
answers. We provide a detailed example in Appendix H. The insight is that reducing the entropy is
not always equivalent to making a decisive prediction, therefore an effective acquisition objective
will place more focus on the most likely labels.

5 METHOD: INFORMATION BOTTLENECK FOR FEATURE ACQUISITION

To address the limitations of RL and CMI for AFA, we propose a novel method, called Information
Bottleneck for Feature Acquisition (IBFA). We provide a block diagram of our method in Figure 1,
showing both how the model makes predictions and calculates the acquisition objective. In short,
IBFA uses an encoder-predictor architecture with intermediate latent variable Z ∈ Z , predictions
are given by pθ,ϕ(y|xS) =

∫
pϕ(y|z)pθ(z|xS)dz. The key novelty is in how we use and adapt this

architecture to construct an effective acquisition objective. Our acquisition objective is:

R(xO, i) =
∑
c∈[C]

pθ,ϕ(Y = c|xO)

∫
pθ(z|xO)r(c, z, i)dz (1)

for a given function r : [C]×Z × [d] −→ R≥0. We formally describe r in Section 5.2. At a high level,
it can be viewed as calculating how much we expect measuring feature i to change the predicted
probability of class c in the context of a sampled latent vector z. For now it is more important to
understand the objective as a whole. We break down each technical detail below, giving the motivation
based on the failure cases of CMI and RL.

Training with Predictive Loss. To avoid the difficulites associated with training an acquisition
objective with RL, we train using a novel predictive loss (given in Section 5.3) with IB regularization
(Tishby et al., 2000). Our objective is explicitly defined in equation 1.

Acquisition via the Latent Space. The label can be a highly non-linear function of the features,
and training an AFA model to make decisions directly in the feature space can be an equally complex
task. We sidestep this difficulty by writing the acquisition objective as an expectation in a highly
regularized latent space. This is why r takes z as an explicit input, and not xO, under sufficient IB
regularization, z contains only label relevant information and no noise associated with the features.

Stochastic Encodings. As demonstrated in Section 4, taking into account possible values of other
unobserved features is necessary for optimality. Therefore we take an expectation of r(c, z, i), over
the latent distribution pθ(z|xO). This way, future possible latent realizations are taken into account in
the current decision. To sample the full diversity of the latent space, we take multiple samples during
acquisition, we empirically verify the importance of this in Section 6.

Weighting by Predictions. Finally, as demonstrated in Section 4, CMI maximization can be
achieved by focusing on reducing the likelihood of classes with already low probabilities. To
overcome this, r takes c as input, measuring how much observing feature i would affect the predicted
probability of class c. And then an expectation is taken using the current predictions pθ,ϕ(Y = c|xO)
so that our acquisition objective places more focus on the classes with higher predicted likelihood.
We demonstrate the impact of this idea empirically in ablations in Appendix C.
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Figure 1: Block diagram of IBFA. Illustrated using 3 features and 4 latent components per feature.
The presence or absence of a feature value is indicated with a mask vector m. Prediction and acquisi-
tion scoring with one latent sample is given with example numerical values given for acquisition.

5.1 ARCHITECTURE

Encoder. A crucial element of our method is the ability to take decisions made in the latent space
and easily translate these to the feature space. With fully connected, non-linear encoders this is a
non-trivial task. To overcome this barrier we propose to factorize the latent distribution such that
each feature is individually responsible for l latent components

pθ(z|x) =
d∏

i=1

pθi(zGi
|xi).

Here Gi selects the latent components that feature i is responsible for encoding. For example, if l = 3
then G1 = {1, 2, 3},G2 = {4, 5, 6} etc. This allows us to define r(c, z, i), such that it only calculates
the sensitivities of the output with respect to latent samples, and then we can trivially link the most
important latent components to the feature that encodes them. We achieve this factorization by having
an encoder for each feature (see Figure 1). Each encoder is an MLP, fe

θi
: Xi × {0, 1} −→ Rl × Rl

>0
with parameters θi. They take as input a feature value and a binary mask indicating missingness, and
output a mean and diagonal standard deviation of a normal distribution.

Predictor. We make predictions on individual latent samples with a predictor network given by an
MLP, fp

ϕ : Rld −→ ∆C with parameters ϕ, that predicts a probability distribution over C classes.

5.2 SCORING FUNCTION

To calculate r(c, z, i), we propose using the gradients of the predicted probability with respect to the
latent sample, since they are scalable, available via backpropagation, and they tell us how sensitive
pϕ(Y = c|z) is to a latent sample. Additionally, since the distribution of z is factorized such that
feature i is only responsible for zGi , it is trivial to score features. Our proposed scoring is given by

r(c, z, i) =
||gGi

||2∑d
j=1 ||gGj

||2
, where g = ∇zpϕ(Y = c|z). (2)
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The reasoning behind this form is as follows: the gradient vector points in the direction that locally
pϕ(Y = c|z) is most sensitive to. We calculate the feature scores by considering the length of the
gradient in a feature’s associated latent components, telling us how sensitive the prediction is to those
specific components. Finally, we normalize scores to sum to one to treat each latent sample equally,
removing the effect of the overall gradient length. For a worked example see Figure 1 or Appendix J.

5.3 TRAINING

We train the above networks in a supervised fashion: training only to make predictions with appro-
priate latent space regularization that makes it conducive to acquisition. By training in a supervised
manner, we avoid potential issues associated with RL.

Information Bottleneck. We use IB (Tishby et al., 2000; Alemi et al., 2017) to regularize the latent
space, whose criterion for an arbitrary model with parameters θ is

max
θ

Iθ(Z;Y )− βIθ(Z;X).

This seeks to find a stochastic encoding of x to z that maintains maximum information about the
label whilst simultaneously removing irrelevant information about the features. This is a natural
choice for our application, since we reason about the acquisition in the latent space with stochastic
encodings, we want to use representations that only contain information relevant to predicting the
label. The standard approach to Deep IB is the Variational IB (VIB) Loss (Alemi et al., 2017), for a
single subsampled point this is:

LVIB = E
pθ(z|xS)

[
− log(pϕ(y|z))

]
+ βDKL(pθ(Z|xS)||p(Z)),

this is averaged over all points in the batch. The first term corresponds to Iϕ(Z;Y )2 The second term
corresponds to Iθ(Z;X), N (0, 1) is used as p(Z) since it gives a closed form solution.

Custom Loss for AFA. The VIB loss is intended for prediction tasks only, and not AFA. Therefore
we adapt the loss for AFA by: (1) moving the expectation over pθ(z|xS) inside the logarithm and (2)
taking multiple samples giving our custom loss for a single subsampled train point

L = − log
(

E
pθ(z|xS)

[
pϕ(y|z)

])
+ βDKL(pθ(Z|xS)||p(Z)). (3)

The change is subtle but important. If we were to train taking the mean outside the logarithm or only
using one sample, all samples from pθ(z|x) must individually produce good predictions. In particular,
this affects the case where we have very few features, all samples from pθ(z|x) produce high
uncertainty predictions. This does not affect the predictive power of the model, but the acquisitions
suffer, during acquisition if all samples produce the same prediction then there is no diversity across
latent samples, and the acquisition relies on this to make long-term acquisitions (we empirically
verify this in Section 6).

Additional Regularization. The proposed change to the loss function is crucial to encourage
diversity across latent samples. However, there is an alternative theoretical justification for the change.
Within the IB framework, the change can be framed as adding further regularization to the latent
space that makes it more conducive to acquisitions. Whilst we have explained why CMI is not an
optimal acquisition objective, it still provides a useful foundation to consider how the latent space
can be further regularized. The CMI objective can first be rewritten.
Theorem 1. The CMI objective can be written as the equivalent minimization in the latent space

argmin
i

E
pθ,ϕ(xi|xO)

Iθ,ϕ(Z;Y |xi,xO).

We prove this equivalence in Appendix E. An acquisition that maximizes CMI is one where the
information between the label and latent variable is minimized, this is unexpected but the key is
conditioning on features. To provide intuition, consider a latent space with disparate regions, within
each region the prediction is the same. A good acquisition is one where the latent distribution
pθ(z|xO) shrinks to contain only one of these regions. No matter where we move within p(z|xi,xO),

2There is in fact an H(Y ) term missing which is not affected by the optimization so is disregarded.
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the prediction is the same, and the label and latent variable are independent conditioned on the features.
We desire a latent space where acquisitions like this are possible and regular. To encourage this
property across all possible feature subsets we therefore want to additionally minimize Iθ,ϕ(Z;Y |XS).
The caveat is that Iϕ(Z;Y ) must still be maximized so that individual latent samples make decisive
predictions, since a trivial way to minimize Iθ,ϕ(Z;Y |XS) on its own is to undesirably predict a
uniform distribution for any z. Note this is not carrying out CMI maximization as an acquisition
objective, but shaping the latent space during training, to make acquisition with our objective more
effective. This desired regularization term is in fact in our custom loss.

Theorem 2. The loss given in equation 3 is equivalent to −Iϕ(Z;Y )+βIθ(Z;XS)+Iθ,ϕ(Z;Y |XS).

We prove this result in Appendix F. This gives us the required IB objective with the additional desired
regularization term Iθ,ϕ(Z;Y |XS) derived from analyzing Theorem 1.

6 EXPERIMENTS

Here we evaluate IBFA against various deep AFA baselines. We consider a range of synthetic, image,
tabular, and medical datasets. For reproducibility, we provide full experimental details in Appendix
K, including hyperparameter choices and training procedures, and full dataset details in Appendix I.

Baselines. We consider four different state-of-the-art baselines: Opportunistic Learning as an RL
baseline (Kachuee et al., 2019a), GDFS (Covert et al., 2023) and DIME (Gadgil et al., 2024) as
greedy CMI maximization methods, and EDDI (Ma et al., 2019) as a generative model for CMI
maximization. We also use two vanilla baselines: a VAE (Kingma & Welling, 2013), which has
a separate predictive and generative model to estimate the CMI, and an MLP to determine a fixed
global ordering of features. Further details about all baselines are given in Appendix J.

6.1 SYNTHETIC DATASETS

We begin by constructing three synthetic classification tasks (denoted Syn 1-3) based on the synthetic
experiments used by Yoon et al. (2019), where we know the optimal instance-wise feature ordering.
These are binary classification tasks with 11 normally distributed features. Three logits, ℓ are
calculated from the first ten features, defined as:

ℓ1 = 4x1x2, ℓ2 =

6∑
i=3

1.2x2
i − 4.2, ℓ3 = −10 sin(0.2x7) + |x8|+ x9 + e−x10

The binary label is sampled with p(Y = 1) = (1 + eℓ)−1. Syn 1 uses ℓ1 if x11 < 0 and ℓ2 otherwise.
Syn 2 uses ℓ1 if x11 < 0 and ℓ3 otherwise. Syn 3 uses ℓ2 if x11 < 0 and ℓ3 otherwise. In all cases x11

determines which features are important to the prediction, so the optimal strategy is to acquire x11

first and then to acquire the relevant features. Table 1 shows how many features each model acquires
until all features relevant to a particular instance (including x11) are selected. IBFA achieves this in
the fewest acquisitions and is close to optimal in all three datasets. Estimating CMI using generative
models (EDDI and VAE) performs worse than the fixed ordering, showing that inaccurate estimation
of CMI worsens the issues already associated with its greedy maximization. EDDI, in particular,
consistently performs poorly across all experiments, since it is only trained to indirectly predict y
from xS and thus subsequently inaccurately estimates CMI and p(y|xS).

Table 1: Number of acquisitions to acquire the correct features on the synthetic datasets, the lower
the better. We provide the mean and one standard error.

Model Syn 1 Syn 2 Syn 3

DIME 4.079± 0.057 4.581± 0.194 5.667± 0.034
EDDI 9.183± 0.187 9.208± 0.371 9.789± 0.167

Fixed MLP 6.009± 0.000 5.996± 0.000 7.999± 0.000
GDFS 4.568± 0.195 4.484± 0.142 5.587± 0.179

Opportunistic RL 4.203± 0.034 4.846± 0.020 5.856± 0.063
VAE 6.593± 0.085 6.659± 0.131 7.895± 0.057

IBFA (ours) 4.017± 0.003 4.098± 0.007 5.081± 0.021
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We investigate which features are acquired by the best four models for Syn 3 (Figure 2). IBFA
consistently chooses x11 first and then continues to make optimal acquisitions, almost achieving
the best possible performance of 5 (Table 1). In contrast, DIME acquires x7 first, since this has the
highest mutual information initially, despite not being the best for long-term acquisitions. Therefore,
when x11 < 0, DIME does not start acquiring features 3-6 until acquisition 3. GDFS performs
similarly, since it is also trained to maximize CMI. Opportunistic RL tends to make noisy acquisitions,
as seen by the red trajectories, demonstrating how it suffers from training difficulties. See Appendix
A for equivalent diagrams and analysis for Syn 1 and Syn 2.
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Figure 2: Acquisition heat maps and trajectories for Syn 3. Individual trajectories are plotted in red,
with the acquisition proportions at each step as a heat map. Green boxes show the optimal strategy,
while the vertical black line denotes the minimum number of features required (5).

Ablations. To provide further insight into why IBFA performs well, we conduct ablations on the
synthetic datasets in Table 2. We investigate the impact of removing IB so the loss reduces to negative
log-likelihood with no latent space regularization; using only a single latent sample during training so
the loss reduces to the standard variational IB loss without the additional Iθ,ϕ(Z;Y |XS) term; using
only one latent sample during acquisition so we do not sample the full diversity of the latent space;
and using a deterministic encoder with no IB or sampling in the acquisition. Removing any of the
novel components significantly impacts the model’s performance. We examine acquisition heat maps
in Appendix B to better understand the performance differences, for completeness we also carry out
sensitivity analyses on β, number of train samples and number of acquisition samples.

Table 2: Ablation for number of acquisitions to acquire the correct features on the synthetic datasets,
the lower the better. We provide the mean with one standard error.

Model Syn 1 Syn 2 Syn 3

No IB 4.529± 0.074 4.571± 0.095 5.719± 0.094
1 Train Sample 4.420± 0.156 4.714± 0.141 5.187± 0.095

1 Acquisition Sample 4.679± 0.025 4.868± 0.027 5.690± 0.024
Deterministic Encoder 4.910± 0.105 4.679± 0.239 5.523± 0.110

IBFA (full) 4.017± 0.003 4.098± 0.007 5.081± 0.021

6.2 DATASETS WITH UNKNOWN FEATURE ORDERINGS

Here, we consider multiple synthetic and real-world datasets where the correct feature ordering is
not known a priori. To evaluate, we start with zero features and calculate the evaluation metric at
every step during acquisition. For binary classification tasks the metric is AUROC, for multi-class it
is accuracy. We report the average metric during acquisition in Table 3 and we plot the curves for
IBFA, DIME, GDFS, Opportunistic RL and the fixed MLP ordering in Figure 3.

Cube. We start with the Cube Synthetic Dataset (Rückstieß et al., 2013; Shim et al., 2018; Zannone
et al., 2019). The task is eight-way classification with 20 features. The feature vector is normally
distributed around the corners of a cube, with the cube occupying three different dimensions for each
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class. Irrelevant features are normally distributed around the center. IBFA has the highest average
accuracy, and consistently maintains the highest acquisition curve. All active methods outperform the
fixed ordering, except EDDI which suffers from the lack of an inbuilt predictive model.

Table 3: Average evaluation metrics during acquisition. Higher values are better, we report the mean
and standard error.

Model Cube Bank Marketing California Housing MiniBooNE

DIME 0.901± 0.001 0.905± 0.002 0.661± 0.002 0.951± 0.001
EDDI 0.764± 0.004 0.705± 0.011 0.414± 0.011 0.843± 0.007

Fixed MLP 0.883± 0.001 0.908± 0.001 0.658± 0.002 0.954± 0.000
GDFS 0.900± 0.000 0.905± 0.001 0.653± 0.002 0.949± 0.000

Opportunistic RL 0.901± 0.000 0.909± 0.000 0.658± 0.001 0.953± 0.000
VAE 0.901± 0.001 0.877± 0.002 0.631± 0.005 0.925± 0.002

IBFA (ours) 0.904± 0.001 0.919± 0.001 0.675± 0.004 0.957± 0.000

Model MNIST Fashion MNIST METABRIC TCGA

DIME 0.731± 0.002 0.703± 0.002 0.670± 0.006 0.805± 0.002
EDDI 0.574± 0.002 0.603± 0.001 0.557± 0.013 0.635± 0.006

Fixed MLP 0.708± 0.001 0.690± 0.001 0.685± 0.003 0.799± 0.004
GDFS 0.732± 0.001 0.692± 0.002 0.671± 0.004 0.797± 0.001

Opportunistic RL 0.740± 0.000 0.708± 0.000 0.708± 0.004 0.839± 0.001
VAE 0.715± 0.001 0.685± 0.001 0.686± 0.003 0.800± 0.002

IBFA (ours) 0.761± 0.001 0.717± 0.001 0.709± 0.002 0.845± 0.002
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Figure 3: Evaluation metrics plots, starting from the first to the final acquisition across all datasets.
Zoomed in curves are shown in the bottom right corner of each plot.
Real Tabular. Next, we consider three real tabular datasets. Bank Marketing (Moro et al., 2014),
California Housing (Pace & Barry, 1997) and MiniBooNE (Roe et al., 2005; Roe, 2010). The Bank
Marketing dataset is a binary classification task, predicting if a customer subscribes to a product based
on marketing data. California Housing consists of features about houses in California districts and
the label is the median house price. We converted this into four-way classification by bucketing the
labels into four equally sized bins. The MiniBooNE dataset is a particle physics binary classification
task trying to distinguish between electron-neutrinos and muon-neutrinos. In all cases, IBFA has both
the highest average evaluation metric and maintains the best evaluation metric through the acquisition
curve, in particular on Bank Marketing and Califonia Housing. Interestingly on MiniBooNE the fixed
ordering is the second best method, despite the other methods actively acquiring features. Again, the
generative models underperform due to inaccurate CMI estimation.

Image Classification. Next we consider MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao
et al., 2017), and acquire up to twenty pixels (Table 3 and Figure 3). Here, the fixed ordering
is inadequate, and the active methods perform better. Opportunistic RL outperforms DIME and
GDFS, demonstrating RL is still an effective method for AFA despite its training difficulties, whereas
the problems associated with CMI maximization appear more fundamental. Again, IBFA strongly
outperforms all methods by a significant margin, both in terms of average acquisition performance
and the acquisition curve being consistently the highest throughout the acquisition.
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6.3 CANCER CLASSIFICATION

Finally, we look at IBFA in the context of medicine. We consider two cancer classification tasks. The
first is METABRIC (Curtis et al., 2012; Pereira et al., 2016), where the task is to predict the PAM50
status of breast cancer subjects from gene expression data. The six classes are Luminal A, Luminal
B, HER2 Enriched, Basal Like, Claudin Low, and Normal Like. The second dataset uses The Cancer
Genome Atlas (TCGA) (Weinstein et al., 2013). The goal is to predict the location of a tumor based
on DNA methylation data. The average accuracies are given in Table 3 and the acquisition curves in
Figure 3. On METABRIC, IBFA and Opportunistic RL perform similarly, outperforming all other
baselines. On TCGA, IBFA significantly outperforms all baselines with Opportunistic RL a strong
second, significantly outperforming DIME and GDFS (which perform worse than the fixed MLP on
METABRIC), further demonstrating CMI is a flawed AFA objective.
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Figure 4: TCGA acquisition heat maps and trajectories for four tumor locations. We show the first 6
acquisitions.

To further validate the acquisitions of IBFA, we visualize the trajectories and heat maps for four
cancer types in Figure 4, and provide scientific literature supporting the acquisitions made. The first
feature selected is always ST6GAL1 (feature 18), which is known to be upregulated in a number of
cancers including Breast, Prostate, Pancreatic, and Ovarian (Garnham et al., 2019). For Breast, Lung,
and Liver cancers, DNASE1L3 (feature 3) is often acquired next; this gene has been identified as a
potential biomarker in Breast, Liver, and Lung cancer (as well as kidney and stomach) (Deng et al.,
2021), and so makes sense as a second feature to acquire for these cancers. For Prostate cancer, the
second feature that tends to be acquired is SERPINB1 (feature 17), which is linked to prostate cancer
(Lerman et al., 2019). For the third acquisition, for Lung and Liver cancers, IBFA typically acquires
PON3 (feature 15). It has been shown that PON3 is largely restricted to solid tumors such as those in
Liver, Lung, and Colon cancer (Schweikert et al., 2012).

7 CONCLUSION

This paper considered Active Feature Acquisition, the test time task of actively choosing which
features to observe to improve a prediction. We introduced a novel approach for AFA, moving away
from previous solutions based on RL and CMI maximization, using IB to regularize a stochastic
latent embedding space of the features. Our method regularly outperformed previous methods across
a range of tasks, and we validated acquired features in the scientific literature.

Limitations. Currently our method applies to classification tasks but not to regression tasks. This
is because our method requires separation of class probabilities during acquisition and this notion
is not well defined for continuous labels. We view this as an interesting avenue for future work.
Our method also includes the encoding architecture that features are mapped separately to latent
components. This means that observed features cannot affect the latent distribution of unobserved
features. The trade-off is that it becomes trivial to link latent components to features, we see in the
experiments this choice does not prevent IBFA from outperforming the baselines. Finally, due to
requiring multiple latent samples, IBFA, has larger memory requirements at inference time than RL
baselines, depending on how many samples are used. However, CMI maximization methods with
generative models also require multiple samples at inference time, so this is not a new limitation for
AFA models.
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BROADER IMPACT

Our paper is concerned with Active Feature Acquisition, the test time task of acquiring features to
iteratively improve a model’s predictions on a given data instance. Applications range from medical
diagnosis to polling a population. We believe on the whole these applications have a positive benefit
on society. Naturally, since this is a general task (any task where features are not all available
immediately), malicious applications do exist. For example, iteratively harvesting personal data to
send targeted misinformation. However, this work does not focus on those applications, and since
this area of machine learning research is still in its relative infancy we do not envisage this occurring
for the foreseeable future. An important consideration is if this work is used in a positive setting but
gives incorrect predictions. In the medical scenario a doctor might miss an important test to diagnose
a patient, or conduct a painful/dangerous but unnecessary test. This work is not in a position to be
deployed currently, so this is not an issue yet. However, if it were to be deployed, this problem can be
mitigated by being used as a tool by domain experts to aid them in their decision making instead of
replacing them.

A ADDITIONAL SYNTHETIC HEAT MAPS & TRAJECTORIES

To complement the synthetic experiments presented in Section 6 we provide the heat maps and
trajectories for Syn 1 in Figure 5 and Syn 2 in Figure 6. In agreement with Table 1, IBFA can be
seen to clearly perform best on both Syn 1 and Syn 2. In both cases x11 is acquired first, informing
the model where it needs to look next. All features are acquired by the theoretical minimum with
the exception of a minority of trajectories. Opportunistic RL and DIME have a small but noticeable
portion of sub-optimal trajectories on Syn 1 when x11 < 0. GDFS performs particularly poorly on
Syn 1, when x11 < 0 a high proportion of required feature acquisitions are made after the theoretical
minimum of 3 since initially x4 and x5 are selected. Additionally, GDFS regularly selects x11 late
into the acquisition process. On Syn 2, the three baselines do not place all attention on x11 initially.
In fact Opportunistic RL and GDFS mostly acquire x7 first since it provides the best immediate
predictive signal. When x11 ≥ 0 the baselines tend to acquire all relevant features in the theoretical
minimum albeit in sub-optimal orders (the same applies to Syn 1). However we see when x11 < 0
this is not the case with many required acquisitions being made after the minimum of 3, since x7 has
been selected first.
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Figure 5: Acquisition heat maps and trajectories on Syn 1. Trajectories are plotted in red, with the
acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal
strategy and a vertical black line to show the minimum number of features required (3 or 5).
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Figure 6: Acquisition heat maps and trajectories on Syn 2. Trajectories are plotted in red, with the
acquisition proportions at each step as a heat map behind. We use green boxes to highlight the optimal
strategy and a vertical black line to show the minimum number of features required (3 or 5).

B SYNTHETIC ABLATIONS AND SENSITIVITY ANALYSIS

Heat maps and Trajectories. We supplement the synthetic ablations in Table 2 by studying the
acquisition heat maps and trajectories with No IB, 1 Train Sample and 1 Acquisition Sample. We plot
these for Syn 1-3 in Figures 7, 8 and 9. All three figures show that removing each of our proposed
components degrades acquisition performance, confirming Table 2. All three reduced versions of
IBFA in all cases select relevant features after the theoretical minimum. Acquiring with one latent
sample leads to trajectories that approximately sample uniformly among all features relevant to a
given synthetic task. Confirming that we need to take many acquisition samples to see a feature’s
effect on a diverse range of possible latent realizations. Training with one latent sample and without
IB also makes noisy, sub-optimal acquisitions. All three reduced methods regularly select x11 late
into the acquisition.
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Figure 7: Acquisition heat maps and trajectories on Syn 1 ablations. Individual trajectories are plotted
in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to
highlight the optimal strategy and a vertical black line to show the minimum number of features
required (3 or 5).
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Figure 8: Acquisition heat maps and trajectories on Syn 2 ablations. Individual trajectories are plotted
in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to
highlight the optimal strategy and a vertical black line to show the minimum number of features
required (3 or 5).
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Figure 9: Acquisition heat maps and trajectories on Syn 3 ablations. Individual trajectories are plotted
in red, with the acquisition proportions at each step as a heat map behind. We use green boxes to
highlight the optimal strategy and a vertical black line to show the minimum number of features
required (5).

Sensitivity Analysis of β. To further explore the importance of a well regularized latent space,
we conduct a sensitivity analysis on the hyperparameter β, keeping all other hyperparameters the
same. Higher β leads to the encoders removing more information about the features. We plot the
number of acquisitions required to select all relevant features on the synthetic datasets in Figure 10.
For all datasets, as expected, if β is too high, the latent space is too heavily regularized. There is not
enough label information in the latent space, so decisions made there lead to sub-optimal acquisitions.
Equally, by not regularizing the latent space enough, there is nothing explicitly enforcing the latent
space to remove irrelevant information about the features, also leading to sub-optimal acquisitions.

Sensitivity Analysis of Number of Acquisition Samples. To further investigate the importance of
using multiple acquisition samples, to sample the full latent diversity, we run a sensitivity analysis
on the synthetic tasks. We plot the number of acquisitions required to select all relevant features in
Figure 11. As expected if not enough samples are used the number of acquisitions required is larger.
We use 200 acquisition samples in our experiments which is low enough for fast acquisition, and high
enough that performance has plateaued.

Sensitivity Analysis of Number of Train Samples. To further investigate the importance of using
multiple training samples, to shape the latent space for successful acquisitions, we run a sensitivity
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analysis on the synthetic tasks. We plot the number of acquisitions required to select all relevant
features in Figure 12. For Syn 1 and Syn 2 we see that performance tends to improve with the number
of samples as expected. For Syn 3 we see the best performance is achieved with 100 samples, which
is the number we used in experiments.

0 10 6 10 5 10 4 10 3 10 2 10 1 100 101
4.0

4.1

4.2

4.3

4.4

4.5

4.6

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 1

0 10 6 10 5 10 4 10 3 10 2 10 1 100 101

4.2

4.4

4.6

4.8

5.0

5.2

5.4

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 2

0 10 6 10 5 10 4 10 3 10 2 10 1 100 101

5.00

5.25

5.50

5.75

6.00

6.25

6.50

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 3

Figure 10: The number of acquisitions to select the correct relevant features for different values of β
on the synthetic tasks. The x axis is logarithmic and includes zero.

100 101 102 103 104

No. Acquisition Samples

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 1

100 101 102 103 104

No. Acquisition Samples

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 2

100 101 102 103 104

No. Acquisition Samples

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 3

Figure 11: The number of acquisitions to select the correct relevant features for different numbers of
acquisition samples on the synthetic tasks. The x axis is logarithmic.
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Figure 12: The number of acquisitions to select the correct relevant features for different numbers of
training samples on the synthetic tasks. The x axis is logarithmic.
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C REAL DATA ABLATIONS

To further demonstrate each novel model component leads to performance gains, we also carry out
ablations on a subset of the real datasets. Additionally here we investigate the final novelty we
introduced, probability weighting, where we weight the scores during acquisition by the predicted
probabilities pθ,ϕ(Y = c|xO). We investigate the use of this technique by removing the weight and
taking a mean, treating each class equally. This was not possible on the synthetic ablations because
this does not affect binary classification tasks. To see this, recall how features are scored

R(xO, i) =
∑
c∈[C]

pθ,ϕ(Y = c|xO)

∫
pθ(z|xO)r(c, z, i)dz.

Writing this in the binary case gives

R(xO, i) = pθ,ϕ(Y = 0|xO)

∫
pθ(z|xO)r(0, z, i)dz+ pθ,ϕ(Y = 1|xO)

∫
pθ(z|xO)r(1, z, i)dz.

Since pϕ(Y = 1|z) = 1 − pϕ(Y = 0|z), ∇zpϕ(Y = 1|z) = −∇zpϕ(Y = 0|z), therefore
r(0, z, i) = r(1, z, i), since the gradients point in opposite directions, and taking Euclidean norms
and normalizing is agnostic to the negative sign. Therefore

R(xO, i) = pθ,ϕ(Y = 0|xO)

∫
pθ(z|xO)r(0, z, i)dz+ pθ,ϕ(Y = 1|xO)

∫
pθ(z|xO)r(0, z, i)dz,

R(xO, i) =
(
pθ,ϕ(Y = 0|xO) + pθ,ϕ(Y = 1|xO)

) ∫
pθ(z|xO)r(0, z, i)dz

R(xO, i) =

∫
pθ(z|xO)r(0, z, i)dz =

∫
pθ(z|xO)r(1, z, i)dz.

The weighting is removed in the binary case, thus proving treating each class equally and taking
a mean will only affect the multi-class setting. Therefore, we run the ablations on the multi-class
datasets MNIST, Fashion MNIST and TCGA. We provide average acquisition accuracies in Table 4
and the acquisition curves in Figure 13. As hypothesized, probability weighting leads to a significant
performance improvement, the average acquisition accuracy is improved, and the full acquisition
curves (blue) are consistently higher than without probability weighting (orange). Additionally, taking
only either one sample during training or during acquisition also leads to performance degradation,
both curves (red and purple respectively) are consistently lower than the full model curve (blue).
Setting β to zero i.e. training without IB regularization leads to the smallest drop in performance. In
fact on Fashion MNIST the average acquisition accuracy is marginally higher, within one standard
error. We hypothesize this is due to the MNIST and Fashion MNIST settings, since these datasets are
relatively noiseless, IB regularization is not necessary, therefore does not affect performance in these
cases. When we consider the noisy real medical dataset TCGA, we see that training without IB does
lead to a significant performance drop, both in terms of average acquisition accuracy and that the
acquisition curve (green) is consistently slightly lower than the full model curve (blue).

Table 4: Average accuracies during acquisition on multi-class ablations. We give the mean and
standard error.

Model MNIST Fashion MNIST TCGA

WO Prob Weighting 0.752± 0.001 0.694± 0.001 0.832± 0.001
No IB 0.759± 0.000 0.718± 0.001 0.840± 0.001

1 Train Sample 0.741± 0.001 0.707± 0.001 0.833± 0.002
1 Acq Sample 0.728± 0.000 0.700± 0.000 0.826± 0.002

IBFA (full) 0.761± 0.001 0.717± 0.001 0.845± 0.002
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Figure 13: Evaluation metrics starting from the first to the final acquisition for the ablations. To
distinguish curves we provide zoomed in versions in the bottom right corner of each plot.

D ADDITIONAL TCGA TRAJECTORIES

To further augment the TCGA analysis in Section 6, we provide the heat maps and trajectories across
all 17 tumor locations in Figure 14. We indeed see that selections are instance-wise orderings since
different trajectories emerge for the different tumor locations. Due to the nature of the task and data
there is still associated noise. Further to the justification in the main paper, we see that in many cases
after ST6GAL1 (feature 18), DNASE1L3 (feature 3) is selected next. This is because is has been
linked to: bladder cancer, breast cancer, gastric carcinoma, liver cancer, lung adenocarcinoma, lung
squamous cell carcinoma, ovarian cancer, cervical squamous cell carcinoma, head-neck squamous
cell carcinoma, pancreatic adenocarcinoma and kidney renal clear cell carcinoma (Deng et al., 2021).
Additionally it has been linked to colon cancer progression (Li et al., 2023), and was found to be
downregulated in prostate adenocarcinoma and uterine corpus endometrial carcinoma (Deng et al.,
2021). This is why we see it occasionally being selected first, it is a strong predictor on its own.
ST6GAL1 is the most commonly selected but subsequently we see DNASE1L3 regularly selected
second for Bladder, Breast, Stomach, Liver, Lung, Ovary, Cervical, Endometrial, Head and Neck,
Pancreas, Colon, and partially for Kidney and Prostate. However we do not see it being present in the
trajectories for Central Nervous System or Thyroid. Showing this acquisition choice is instance-wise
and not a global decision. We likely see the selection appearing for Brain and Bone Marrow as a way
to rule out these other likely locations after selecting ST6GAL1.
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Figure 14: Acquisition Trajectories for TCGA across all classes. The trajectories are given in red, the
heat map of acquisition proportions at each step are behind.
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E MUTUAL INFORMATION CALCULATION IN A LATENT SPACE

Here we prove Theorem 1 claiming that maximizing conditional mutual information between the label
and an unknown feature, as calculated by our model, can be framed as an equivalent minimization in
the latent space

max
i

Iθ,ϕ(Xi;Y |xO) ≡ min
i

E
pθ,ϕ(xi|xO)

Iθ,ϕ(Z;Y |xi,xO).

Our proof is based on a similar result in EDDI (Ma et al., 2019), however our proof is for a different
way of writing out the CMI objective. Consider selecting an unknown feature to acquire that will
maximize CMI calculated using our model

max
i

∫
pθ,ϕ(xi, y|xO) log

(
pθ,ϕ(y|xi,xO)

pθ,ϕ(y|xO)

)
dydxi.

We can include a marginalization over the latent variable z without changing the result

max
i

∫
pθ,ϕ(xi, y, z|xO) log

(
pθ,ϕ(y|xi,xO)

pθ,ϕ(y|xO)

)
dydxidz.

We can then use Bayes’ theorem p(a|c) = p(a|b,c)p(b|c)
p(b|a,c) to introduce the latent variable into the

numerator and denominator of the fraction in the logarithm (also using pθ,ϕ(z|x) = pθ(z|x))

max
i

∫
pθ,ϕ(xi, y, z|xO) log

(
pθ,ϕ(y|z, xi,xO)pθ(z|xi,xO)

pθ,ϕ(z|y, xi,xO)

pθ,ϕ(z|y,xO)

pθ,ϕ(y|z,xO)pθ(z|xO)

)
dydxidz.

We only need to consider the first part of the logarithm since the second part is not affected by the
optimization over i. We also use the fact that our model architecture enforces y being independent of
x conditioned on z, (pθ,ϕ(y|z, xi,xO) = pϕ(y|z)), since the Markov chain of the encoder-predictor
architecture is X − Z − Y . This gives

max
i

∫
pθ,ϕ(xi, y, z|xO) log

(
pϕ(y|z)pθ(z|xi,xO)

pθ,ϕ(z|y, xi,xO)

)
dydxidz.

Again we remove the part that does not depend on xi

max
i

∫
pθ,ϕ(xi, y, z|xO) log

(
pθ(z|xi,xO)

pθ,ϕ(z|y, xi,xO)

)
dydxidz.

We flip the fraction in the logarithm and turn the maximization into a minimization

min
i

∫
pθ,ϕ(xi, y, z|xO) log

(
pθ,ϕ(z|y, xi,xO)

pθ(z|xi,xO)

)
dydxidz.

We again apply Bayes’ theorem to pθ,ϕ(xi, y, z|xO) = pθ,ϕ(z, y|xi,xO)pθ,ϕ(xi|xO) giving

min
i

E
pθ,ϕ(xi|xO)

[ ∫
pθ,ϕ(z, y|, xi,xO) log

(
pθ,ϕ(z|y, xi,xO)

pθ(z|xi,xO)

)
dydz

]
.

After applying the definition of conditional mutual information this gives

min
i

E
pθ,ϕ(xi|xO)

Iθ,ϕ(Z;Y |xi,xO)

as an equivalent latent space minimization. Completing the proof.

F LOSS FUNCTION

Here we prove Theorem 2. Our loss function, when we include an expectation over a subsampled
batch, is given by

E
pD(xS ,y)

[
− log( E

pθ(z|xS)
[pϕ(y|z)])

]
+ β E

pD(xS)

[
DKL(pθ(Z|xS)||p(Z))

]
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Where the difference with the standard variational Information Bottleneck loss is taking the first term,
moving the expectation inside the logarithm and taking many samples. The expectation inside the
logarithm makes this equal to the model’s predicted negative log-likelihood.

E
pD(xS ,y)

[
− log(pθ,ϕ(y|xS))

]
From here, to ease notation, we drop the subsampling index S, and include it in the data distribution
of X . The negative log-likelihood is equal to −Iθ,ϕ(X;Y ) +H(Y ).

Using the chain rule of mutual information Iθ,ϕ(X;Y ) = Iθ,ϕ(Y ;X,Z)− Iθ,ϕ(Z;Y |X).

Our encoder-predictor architecture enforces the Markov chain X −Z−Y , such that y is independent
of x conditioned on z. Therefore, Iθ,ϕ(Y ;X,Z) = Iϕ(Y ;Z) = Iϕ(Z;Y ), giving

Iθ,ϕ(X;Y ) = Iϕ(Z;Y )− Iθ,ϕ(Z;Y |X).

Substituting this back into the loss function gives

L = −Iϕ(Z;Y ) +H(Y ) + βIθ(Z;X) + Iθ,ϕ(Z;Y |X).

Finally, since the entropy of the label does not depend on the model, and is therefore a constant, it is
disregarded in the simplified final form giving

L = −Iϕ(Z;Y ) + βIθ(Z;X) + Iθ,ϕ(Z;Y |X),

completing the proof.

G INDICATOR EXAMPLE

Here we elaborate on our indicator example, a simple case where CMI fails. First we demonstrate that
CMI fails, and then we show that by considering possible unobserved feature values in the calculation
we can recover the optimal policy.

Recall the example, we have features X ∈ {0, 1}d × [d], i.e the first d dimensions are binary and
the final feature is an indicator. The label is given by using the value at the feature index given by
the indicator y = xxd+1

. In the absence of any of the first d features, the indicator and label are
independent p(y, xd+1) = p(y)p(xd+1). Substituting this into the definition of mutual information
gives

I(Y ;Xd+1) = DKL(p(y, xd+1)||p(y)p(xd+1)) = DKL(p(y)p(xd+1)||p(y)p(xd+1)) = 0.

Now consider the mutual information for the other features. Due to the symmetry of the problem, the
mutual information for one of these features is the same for all others. The mutual information can
be more usefully written as

I(Y ;Xi) = H(Y )−
∫

H(Y |xi)p(xi)dxi.

The entropy of the label is log 2 since there is equal chance of being 0 or 1. Again using the symmetry
of the system, the entropy of Y if Xi = 0 is the same as if Xi = 1, so we only calculate for one
case. When Xi = 0, the probability of Y = 0 is 1

d × 1 + d−1
d × 1

2 . Since in 1
d cases it takes the

exact value of Xi based on the value of the indicator, and in d−1
d cases Y is given by a different

unknown feature value. This gives p(Y = 0|Xi = 0) = d+1
2d . The expression for binary entropy,

−p log(p)−(1−p) log(1−p) is maximized by p = 0.5, giving log 2. Since p(Y = 0|Xi = 0) > 0.5,
the entropy is lower than log 2 in this case. Exploiting the symmetry of the system we conclude that∫
H(Y |xi)p(xi)dxi < log 2, and therefore I(Y ;Xi) > 0.

Therefore, the indicator is never chosen first, which is a sub-optimal strategy. It can be shown, but
is not necessary, that the indicator will be chosen second, a sketch of the reasoning is that now that
the value of one feature is known, the indicator and the label are now correlated. Therefore, there
is non-zero CMI which turns out to be larger than for the other features. And once the indicator
is chosen the correct feature is the only feature afterward with non-zero CMI. So this strategy will
acquire the correct features in 3 selections d−1

d of the time (random feature, indicator, correct feature)
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and in 2 selections 1
d of the time (correct feature, indicator). Thus the expected number of acquisitons

for this strategy is

2
1

d
+ 3

d− 1

d
= 3− 1

d
So as d gets large, the expected number of required acquisitions approaches 3.

Now consider our proposed solution of using an information theoretic objective that considers
the values of other features. Recall Proposition 2, we propose

∫
I(Y ;Xi|xU ,xO)p(xU |xO)dxU ,

recovers the optimal strategy, where xU is the vector of all other unobserved features. We prove that
this will lead to an optimal strategy below.

Initially there are no features, so the acquisition objective is
∫
I(Y ;Xi|xU )p(xU )dxU . Writing this

in terms of entropies gives∫
I(Y ;Xi|xU )p(xU )dxU =

∫ (
H(Y |xU )−

∫
H(Y |xi,xU )p(xi|xU )dxi

)
p(xU )dxU .

The entropy when all features are known is zero, so for any i this is∫
H(Y |xU )p(xU )dxU .

If we consider one of the first d features, we can again apply symmetry to calculate this quantity for
feature i and apply it to all of them. In d−1

d cases the entropy is zero, since we will have all of the
information required. However if xd+1 = i, then H(Y |xU ) = log 2, since we don’t know feature i

and therefore Y has equal likelihood of being 0 or 1, this happens in 1
d cases so this quantity is log 2

d
for the first d features.

For the indicator, p(Y = 0|xU ) is the proportion of the first d features for a given sample xU that
are also 0. All features are independent with probability 0.5 of being 0, so this becomes a binomial
distribution with d trials

d∑
i=0

(
d

i

)
1

2d

(
−
( i
d

)
log
( i
d

)
−
(
1− i

d

)
log
(
1− i

d

))
.

It is not immediately clear that this is larger than the quantity log 2
d for the other features. The first

thing we can do calculate this quantity when d = 3, which gives 0.477, and this is larger than
log 2
3 = 0.231. And the next thing is to notice that this quantity is increasing with d, since as d gets

larger there will be more probability mass at i = d
2 . As d −→ ∞ the binomial distribution becomes

Gaussian with mean d
2 and variance d

4 , so i
d will approximately be distributed normally with mean 1

2

and standard deviation 1
2
√
d

. Therefore this quantity asymptotes towards log 2.

Therefore for d ≥ 3, this objective will choose the indicator first, and not the other features (for d = 2
all features are scores the same, and for d = 1 the indicator is not the optimal choice). After choosing
the indicator, the second selection is trivial. The relevant feature has non-zero CMI, all other features
are independent of the label conditioned on the indicator so they have zero CMI. Therefore the correct
feature is chosen. This strategy’s expected number of acquisitions is 2, which is less than 3− 1

d .

This example illustrates that by considering the possible realizations in the calculation, and not
marginalizing them out, we can make long-term acquisitions. Note we do not use this specific
quantity in our paper, it involves an additional expectation over unobserved values as well as the
expectation inside the CMI which is intractable. This does not even account for the difficulty in
estimating the conditional distributions in feature space.

H ENTROPY EXAMPLE

In Section 4 we claimed that CMI maximization can lead to acquisitions that focus on making low
probabilities lower, rather than distinguishing between possible answers. Here we provide a concrete
example of this occurring. We have binary feature vectors with six features X ∈ {0, 1}6. The label
consists of three classes, where the probabilities of each class are given by

p(Y = 0|x) = x1 + x2∑
i xi

, p(Y = 1|x) = x3 + x4∑
i xi

, p(Y = 2|x) = x5 + x6∑
i xi
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Now consider the case where X1 = 0. The current distribution of Y is [0.204, 0.398, 0.398].

In this case if we acquire feature 2 then in half the cases X2 = 0 and the distribution be-
comes [0.020, 0.490, 0.490]. In the other half of cases X2 = 1 and the distribution becomes
[0.388, 0.306, 0.306]. In both cases acquiring feature 2 does not help to distinguish between the
possible answers very well.

If instead we acquire any of the other features, lets say feature 3. If X3 = 0, which happens in half
the cases, the distribution becomes [0.255, 0.255, 0.490]. And in the other half of cases X3 = 1, the
distribution becomes [0.153, 0.541, 0.306]. In both of these cases the feature has helped to distinguish
between likely scenarios more than feature 2.

Finally, we can calculate the CMI for all features when feature 1 is 0.

I(X1;Y |X1 = 0) = 0

I(X2;Y |X1 = 0) = 0.1389

I(X3;Y |X1 = 0) = 0.0055

I(X4;Y |X1 = 0) = 0.0055

I(X5;Y |X1 = 0) = 0.0055

I(X6;Y |X1 = 0) = 0.0055

Naturally there is 0 CMI for feature 1 since it is already known. However feature 2 has the largest
CMI, and so a CMI objective would acquire this feature over the other 4, which is undesirable. The
results from this example can be calculated by enumerating all possible feature values and label
probabilities and calculating the quantities directly with a computer. We include code to reproduce
this calculation.

I DATASET DETAILS

Here we provide all the details about each dataset, including sizes, number of features, and how to
access the real datasets.

Synthetic. The synthetic experiments are based on (Yoon et al., 2019) where we know the features
that are predictive, and we know that there is a heterogenous order. The datasets are binary datasets
where the feature vector has 11 independent features drawn from a standard normal. There are three
possible logits:

ℓ1 = 4x1x2, ℓ2 =

6∑
i=3

1.2x2
i − 4.2, ℓ3 = −10 sin(0.2x7) + |x8|+ x9 + e−x10

Then for a given logit value the label is sampled from a Bernoulli distribution with probability
p(Y = 1) = (1 + eℓ)−1. We construct three datasets:

• Synthetic 1: If x11 < 0 we use ℓ1, otherwise ℓ2

• Synthetic 2: If x11 < 0 we use ℓ1, otherwise ℓ3

• Synthetic 3: If x11 < 0 we use ℓ2, otherwise ℓ3

The logits have been adapted from the originals in (Yoon et al., 2019) to produce probabilities closer
to 0 or 1. This is so all the models have stronger purely predictive performance. The train set is size
60000, the validation and test set are both size 10000. AUROC is used as the evaluation metric.

Cube. The Cube dataset is a synthetic dataset that is regularly used to evaluate Active Feature
Acquisition methods (Rückstieß et al., 2013; Shim et al., 2018; Zannone et al., 2019). We specifically
use the normally distributed version (Zannone et al., 2019). There are 20 continuous features, where
different features are relevant for different classes. All features are drawn from a normal distribution
with mean 0.5 and standard deviation 0.3, except for the following cases:

• Class 1: Features 1, 2, 3 have mean [0, 0, 0] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 2: Features 2, 3, 4 have mean [1, 0, 0]and diagonal standard deviation [0.1, 0.1, 0.1].
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• Class 3: Features 3, 4, 5 have mean [0, 1, 0]and diagonal standard deviation [0.1, 0.1, 0.1].
• Class 4: Features 4, 5, 6 have mean [1, 1, 0]and diagonal standard deviation [0.1, 0.1, 0.1].
• Class 5: Features 5, 6, 7 have mean [0, 0, 1]and diagonal standard deviation [0.1, 0.1, 0.1].
• Class 6: Features 6, 7, 8 have mean [1, 0, 1] and diagonal standard deviation [0.1, 0.1, 0.1].
• Class 7: Features 7, 8, 9 have mean [0, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1].
• Class 8: Features 8, 9, 10 have mean [1, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

We use a train set with size 60000 and the validation and test sets are both size 10000. Accuracy is
the evaluation metric.

Bank Marketing. The Bank Marketing dataset (Moro et al., 2014) can be found at: https://
archive.ics.uci.edu/dataset/222/bank+marketing, we accessed it on 19th April
2024, the dataset has a Creative Commons Attribution 4.0 International license. The data is taken
from a marketing campaign conducted by a Portuguese bank. The task is binary classification, where
the label indicates whether a client subscribed to a term deposit at the bank. The features are both the
client’s information and information about the calls. There are 15 features in total (after combining
the month and day of the call into one feature), 7 are continuous and 8 are categorical. A full list of
features can be found at the dataset origin. We use an 80:10:10 split giving train, validation and test
sizes of 36168, 4521 and 4522. The evaluation metric is AUROC.

California Housing. The California Housing dataset is obtained through Scikit-Learn (Pedregosa
et al., 2011) https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.fetch_california_housing.html, using a Creative Commons 0 license. The
labels are median house prices in California districts expressed in 100,000 dollars. There are 8
continuous features that can be found at the above URL. To convert this to a classification task we
bucket the labels into 4 equally sized bins. We use an 80:10:10 split giving train, validation and test
sizes of 16512, 2064 and 2064. The evaluation metric is accuracy.

MiniBooNE. MiniBooNE is an experiment at Fermilab designed to detect neutrino oscil-
lations, namely muon neutrinos into electron neutrinos (Roe et al., 2005; Roe, 2010). The
data was obtained from https://archive.ics.uci.edu/dataset/199/miniboone+
particle+identification on 23rd February 2024, the dataset has a Creative Commons
Attribution 4.0 International license. The task is binary classification, distinguishing electron neutrino
events from background events. There are 50 continuous features. The dataset does not have balanced
classes, we enforced balance by reducing the number of background events at random to match
the number of signal events. We also reduced the feature set down to 20 features using STG as a
preprocessing feature selection step (Yamada et al., 2020). The selected features were [ 2, 3, 6, 14,
15, 17, 20, 21, 22, 23, 25, 26, 29, 34, 39, 40, 41, 42, 43, 44]. The train set is size 56499 and the
validation and test sets are both size 10000. The evaluation metric is AUROC.

MNIST and Fashion MNIST. MNIST and Fashion MNIST are image classificaton datasets with
10 classes, consisting of images of handwritten digits and items of clothing respectively. MNIST
is available under the Creative Commons Attribution-Share Alike 3.0 license and Fashion MNIST
uses the MIT license. Both datasets have images that are 28× 28 = 784 pixels. We preprocess by
reducing the dimensionality to 20 pixels each, for computational reasons - an acquisition trajectory
with 784 features, where the majority are redundant, will be very slow, especially for methods such as
EDDI and VAE where the whole acquisition is O(d2). To do this we use STG (Yamada et al., 2020) a
deep learning method for feature selection. After flattening the images to vectors, the features found
by STG were:

• MNIST: [153, 154, 210, 211, 243, 269, 271, 295, 327, 348, 350, 375, 405, 409, 427, 430,
461, 514, 543, 655]

• Fashion MNIST: [ 10, 38, 121, 146, 202, 246, 248, 341, 343, 362, 406, 434, 454, 490, 546,
574, 580, 602, 742, 770]

For both datasets we split the provided train set into a train set with size 50000 and validation set with
size 10000, we use the provided test sets each with size 10000. The evaluation metric is accuracy.

METABRIC. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
database consists of clinical and genetic Data for 1,980 breast cancer subjects (Curtis et al., 2012;
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Pereira et al., 2016). The data was accessed at https://www.kaggle.com/datasets/
raghadalharbi/breast-cancer-gene-expression-profiles-metabric on
25th April 2024 under the Apache 2.0 license. We construct a classification task, predicting the
Pam50 status using gene expressions as features. There are six classes:

Luminal A1. Luminal B2. Her2 Enriched3.
Claudin Low4. Basal Low5. Normal6.

As with the other high dimensional datasets we used STG to reduce the dimensionality to twelve
continuous gene expressions given by:

CCNB11. CDK12. E2F23. E2F74.
STAT5B5. Notch 16. RBPJ7. Bcl-28.
eGFR9. ERBB210. ERBB311. ABCB112.

We use an 80:10:10 split resulting in train, validation and test sizes of 1518, 189 and 191. The
evaluation metric is accuracy.

TCGA. The Cancer Genome Atlas (TCGA) consists of genetic data for over 11,000 cancer
patients (Weinstein et al., 2013). The data was accessed at https://www.cancer.gov/ccg/
research/genome-sequencing/tcga on 7th January 2023 under their Data Use Agreement.
We construct the classification task of predicting location of the tumor based on DNA methylation
data. We use 17 locations as the classes:

Breast1. Lung2. Kidney3.
Brain4. Ovary5. Endometrium6.
Head and Neck7. Central Nervous System8. Thyroid9.
Prostate10. Colon11. Stomach12.
Bladder13. Liver14. Cervix15.
Bone Marrow16. Pancreas17.

As the first step of dimensionality reduction we removed features with more than 15% missingness.
Following this, we used STG to reduce dimensionality to 21 features:

C7orf511. DEF62. DNASE1L33. EFS4.
FOXE15. GPR816. GRIA27. GSDMC8.
HOXA99. KAAG110. KLF511. LOC28339212.
LTBR13. LYPLAL114. PON315. POU3F316.
SERPINB117. ST6GAL118. TMEM106A19. ZNF58320.
ZNF79021.

We then removed subjects with more than 10% missing features and used an 80:10:10 split. This
gave train, validation and test sizes of 6327, 790 and 792. The evaluation metric is accuracy.

J MODEL DETAILS AND IMPLEMENTATIONS

All models were implemented using PyTorch (Paszke et al., 2017), code shall be released publicly
after the review period. It can currently be found in the supplementary material. We implemented all
models ourselves to fit into our pipeline, the applicable licenses for the baseline models are:

• Opportunistic RL: MIT License (https://github.com/mkachuee/
Opportunistic)

• DIME: No license provided (https://github.com/suinleelab/DIME/tree/
main)

• GDFS: MIT License (https://github.com/iancovert/
dynamic-selection)

• EDDI: Microsoft Research License (https://github.com/microsoft/EDDI)
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J.1 GENERAL MODEL DETAILS

Here we provide details that tend to be shared across models. We explicitly state if a model does not
follow the above and provide model specific details in the next section.

Input Layer. In this paper not all features are available all at once. In order to account for this we
use a binary mask to indicate whether a feature is available or not to a model. The input x and the
mask m go through an input layer before the main model which accounts for missing features. For
continuous features the input is given by [x⊙m,m], which is the element-wise product between the
continuous features & their mask concatenated with the mask. Categorical features use a one-hot
encoding, where we include an additional class to indicate a missing feature, i.e. if the mask value
is 0 then the encoding has 1 at the first position. Continuous and categorical features are encoded
separately as above and then concatenated as input to the main model. This applies to the Fixed MLP,
DIME, GDFS, Opportunistic RL and VAE.

Deep Networks. All deep networks follow the same structure. After any specific input layers, we
use linear layers. Each hidden layer has a ReLU activation followed by Batch Normalization (Ioffe &
Szegedy, 2015). All hidden layers in a given network are the same width, which is a hyperparameter
that can be tuned as well as the number of hidden layers. The exception to this is the Opportunistic
RL model, where we replace Batch Normalization with dropout with 0.5 probability in accordance
with the method’s implementation (Kachuee et al., 2019a).

Acquiring Features. To acquire features each method individually has its own way to positively
score all features, where higher scores mean that feature is better to acquire. These scores are
multiplied by (1−m) so that we do not acquire features we already have. This is also multiplied by
the full data mask so that we do not acquire features that are not available. This would not apply at
deployment where we have the ability to measure all features if desired.

J.2 MODEL SPECIFIC DETAILS

Here we include any key details that are specific to given models, such as hyperparameter names
and roles. We highly recommend seeing each method’s paper for full details of each model. Unless
otherwise stated, each method follows the general rules stated previously.

Multi-layer Perceptron. The Fixed MLP uses a simple MLP structure as described above. It is
trained for 120 epochs. We prevent overfitting during training by choosing the iteration with the
best validation accuracy/AUROC. The greedy fixed order is found after training by masking out all
features, and calculating the evaluation metric on the train set for each feature individually. The best
feature is chosen and is unmasked for the model. The procedure is repeated with the best feature
being kept to find the second best feature. This is repeated until all features have been placed in a
fixed greedy order.

GDFS. GDFS (Covert et al., 2023) has two separate networks, one for prediction, one for scoring
features. Both use the same input layer previously described, both have a softmax final activation to
give a probability distribution over the label and a positive score for each feature. Our implementation
follows the original. We use the same hidden width and number of hidden layers for both networks.
The Boolean “Share Parameters” hyperparameter says whether to share half the hidden layers between
the two networks, this is presented in the paper as a possible way to increase performance, we treat
it as a hyperparameter. We carry out pretraining on the predictor network for 80 epochs, we then
carry out main training on both networks. This is done using a geometric temperature progression
of T×[1.00, 0.56, 0.32, 0.18, 0.1], where the initial temperature T is a hyperparameter. For each
temperature in the progression main training is carried out for 15 epochs, please see the original
paper for full details, the temperature is used in the reparameterized sampling of features from the
network scores (hence why we use softmax to convert to a distribution). Main training consists of
sampling feature acquisitions and training the scoring network to choose features with the best greedy
prediction from the predictor network.

DIME. DIME (Gadgil et al., 2024) uses two separate networks, one for prediction and one for
predicting the CMI of features with the label. The information network is used to score each feature.
The prediction network uses softmax to give a distribution as the prediction. The information network
limits the output to a minimum of zero and maximum of the entropy of the current predictions
H(Y |xS) (Cover, 1999). This is done by using a sigmoid followed by multiplying by the entropy as
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suggested in the paper. The majority of the DIME implementation follows the GDFS implementation
above. Instead of a temperature progression we use an ϵ progression during main training (as is done
in the paper). This is given by ϵ-Initial×[1.0, 0.25, 0.05, 0.005], this gives the probability of choosing
a feature uniformly at random compared to the best feature predicted by the information network.
This and the temperature parameter in GDFS allow the models to explore the space of possibilities
early and exploit the best ones later. Main training is also done for 15 epochs for each ϵ value, the
information network is trained to predict the change in loss when a given feature is acquired.

Opportunistic RL. Opportunistic RL (Kachuee et al., 2019a) is a Deep Q learning method, where
the reward is given by the l1 norm of the change in prediction distribution after an acquisition. The
target network is updated compared to the main network with a rate of 0.001 as suggested. Batch
Normalization is replaced with dropout with probability 0.5 as suggested. Predictions are made
by using dropout to provide different network parameters at test time with 50 samples taken and
averaged as suggested. The P and Q networks share representations as described in the paper. The
γ hyperparameter refers to the discount factor associated with RL. The model is trained for 20000
episodes with evaluation every 100 episodes. For the first 2000 episodes only the predictor network is
trained, using uniformly random actions. Following this the probability of a random action decays by
0.1

1
20000 every episode to a minimum of 0.1. After 10000 episodes and for every 2000 episodes after

that, the learning rate decays by a factor of 0.2. This is all in line with the original implementation.
The only change is that each episode we do not consider individual samples from the dataset (it is not
an online stream of data), instead we train using a batch of samples each episode, this improves the
training, improving Opportunistic RL compared to its original online setting.

VAE. The VAE method is a vanilla generative modeling approach to the AFA problem to analyse
the viability of generative models. We use a Variational Auto-Encoder (Kingma & Welling, 2013)
to model the distribution of the features. Since our input layer allows for missing features this
allows us to model the distribution of missing features conditioned on observed ones. We train
with the standard ELBO. The encoder and decoder are separate networks with separate width and
number of hidden layers. The encoder predicts µz and σz , where σz is diagonal and is enforced to be
positive by pushing the activations through a softplus and adding 0.001 as a minimum. The decoder
predicts a mean for continuous features, with σ being the standard deviation to estimate the normal
log-likelihood (this is a hyperparameter). For categorical features the decoder predicts logits that go
through softmax. We then train a separate predictor that uses a standard MLP. Features are scored
by taking samples of the unknown features conditioned on the observed ones. These samples go
through the predictor to give an estimated label distribution. The mutual information is then estimated
with I(Xi;Y |xS) = Ep(xi|xS)[DKL(p(Y |xi,xS)||p(Y |xS))]. We train for 120 epochs. We prevent
overfitting during training by choosing the iteration with the best validation ELBO.

EDDI. EDDI (Ma et al., 2019) is an advanced generative modeling method for AFA. The encoder is
a Partial VAE. For each continuous feature xi, the input to a shared encoding network is [xi, xiei],
where ei is a learnable vector which is different for each feature. This goes through a shared network
giving si for each continuous feature. For categorical features a learnable representation is created
for each feature for each possible category including a missing category. So without a network we
still create si for a categorical feature by learning a matrix and selecting the row according to the
category for each feature. We then take the sum c =

∑
i misi so we only include the representations

for observed features. This aggregated representation c goes through another network to give the
latent µz and σz . We enforce σz to be positive by pushing it through a softplus and adding 0.001 as
the minimum. The number of hidden encoder layers refers to both the continuous feature encoder and
c-to-latent encoder, the number is divided by 2 and that many are used in each. We encode the label
in the same way as a categorical feature. We do not include a separate predictor, instead we follow
the original paper to make predictions: features are encoded to a latent distribution and samples are
decoded to y, the absence of a dedicated predictor negatively impacts the results for EDDI. The
decoder follows the same structure as for the VAE. We train for 400 epochs, to prevent overfitting
we choose the iteration with the best validation ELBO. Features are scored based on a sampled KL
divergence calculated in the latent space as described in the original paper, we use 50 samples.

IBFA. Our method, as described in the main paper, encodes each feature separately to a normal
distribution (so we have many small encoding networks, one for each continuous feature). For
each continuous feature we give [mix̃i,mi] to that feature’s specific deep encoder, where each
continuous feature also goes through a copula transform x̃i = Φ−1(Fi(xi)) initially. The copula
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transform is given by Fi, the empirical CDF of the continuous feature, followed by Φ−1, the inverse
standard normal CDF. This transformation, as described in its paper (Wieczorek et al., 2018), enforces
a symmetry associated with Information Bottleneck and encourages sparse, disentangled latent
representations, both desired properties. The networks predict µ and σ for each feature by outputing
two unbounded vectors whose size is the number of latent components per feature - a hyperparameter.
Both of the unbounded vectors go through Batch Normalization which we found sped up training.
The first is µ and the second goes through softplus and has 0.001 added, enforcing it to be positive
giving σ.

For each categorical feature we have a learnable matrix, where each row is a vector whose size is the
number of latent components per feature. So for a given category (where missing is the first category)
we simply select the row of the matrix. We use two of these for each feature for the µ and σ. The
selected vectors are unbounded so they go through the same procedure - batch normalization applied
to both, and then softplus and +0.001 to the second to get µ and σ. After concatenating, samples from
the latent distribution can go through an MLP predictor network with softmax to give a predicted
label distribution for that sample.

During acquisition we encode the features we have to the latent distribution, and take 200 samples.
Each is pushed through the predictor to give a distribution for each sample. To score the features
we take the gradient of each classes’ probability with respect to every sample. This gives g =
∇zpϕ(Y = c|z). To convert this to a score we calculate the normalized length of the vector in each
feature’s latent dimensions. For example, if we have two features and each is encoded to three latent
components, the gradient could be

[1.19,−0.87, 0.81, 0.63,−0.40, 0.29].

We reshape to the number of features by the number of latent components per feature:

[[1.19,−0.87, 0.81], [0.63,−0.40, 0.29]].

We calculate the length of each of these giving

[
√
1.192 + 0.872 + 0.812,

√
0.632 + 0.402 + 0.292] = [1.68, 0.801].

We then normalize by dividing by the sum of these

[1.68, 0.801]/(1.68 + 0.801) = [0.68, 0.32].

And this gives us a score for each feature from this latent sample for this class r(c, z, i). We average
across all samples, and sum across all classes weighted by p(Y = c|xO). This gives a score for every
feature.

To train, we subsample the feature and encode them to the latent distribution. We take 100 samples,
these go through the predictor giving 100 label distributions which are averaged as the model’s
full prediction. We then calculate the log-likelihood of the overall prediction. We then add the KL
divergence of the latent distribution with a standard normal to enforce the information bottleneck
regularization. We train for 120 epochs, using 200 latent samples for acquisition and prediction
during evaluation.

J.3 MODEL RUNTIMES

There are two places to consider runtime: training and inference. In Table 5 we provide the scaling
laws of each method with respect to number of features d.

RL, DIME and GDFS train by simulating acquisition, so each step scales linearly with the number of
features. Generative models (and IBFA) are constant to train since they only train to predict well.
However, during inference, RL, DIME and GDFS only require one forward pass of their policy/CMI
network, whereas EDDI and VAE must individually score every feature. IBFA instead takes gradients
with respect to the predicted class outputs, so the runtime is linear in the number of classes, which is
typically far fewer than the number of features. The main takeaway is that IBFA scales better than
half the methods at training time, better than the other half during acquisition (assuming fewer labels
than features), and never the worst.
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Table 5: Runtimes for the models that actively acquire features.
Model Single Training Step Single Acquisition Step

DIME O(d) O(1)
GDFS O(d) O(1)
EDDI O(1) O(d)

Opportunistic RL O(d) O(1)
VAE O(1) O(d)

IBFA O(1) O(|y|)

K EXPERIMENTAL DETAILS

All experiments were run on an Nvidia Quadro RTX 8000 GPU the data sheet can be found at https:
//www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/
quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.
pdf. All experiments were repeated five times over parameter initializations to obtain means and
standard error estimates. Experiments took approximately one month to complete.

Training. We train all models using the Adam optimizer (Kingma & Ba, 2015), the learning rate and
batch size are treated as hyperparameters that are tuned using a validation set. All methods (except
for Opportunistic RL) use a learning rate scheduler that multiplies the learning rate by 0.2 when there
have been a set number of epochs without validation metric improvement - the patience, which is
also tuned.

We prevent overfitting during training by tracking a validation metric every epoch and using the
iteration with the best value. The validation metric we choose (unless explicitly stated for a given
model) is the area under the acquisition curve, starting from zero features we acquire features
individually, calculating the accuracy/AUROC at each acquisition, and then the validation metric is
the area under the acquisition curve divided by the total number of features.

Hyperparameter Tuning. For every model, initial hyperparameter tuning was conducted by
finding ranges for each hyperparameter that produced strong acquisition performance on the synthetic
datasets. Following this, for each model we generated 9 random hyperparameter configurations using
the ranges.3 For each method we test each configuration 3 times producing a mean value for the area
under the acquisition curve. The configuration with the highest mean value is separately trained 5
times in the main experiments. The nine configurations for each method are provided in Tables 6, ,7,
8, 9, 10, 11 and 12. We give the selected hyperparameter configurations for each dataset in Table 13.

Table 6: Hyperparameter configurations for Fixed MLP.
Hyperparameter 1 2 3 4 5

Hidden Width 200 100 200 100 300
No. Hidden Layers 2 2 1 1 2
Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 128 256
Patience 5 5 5 5 5

Hyperparameter 6 7 8 9

Hidden Width 100 250 50 120
No. Hidden Layers 2 3 2 2
Learning Rate 0.001 0.001 0.001 0.0005
Batch Size 128 256 64 128
Patience 2 10 5 5

3We did a random search because we did not have the computational resources to carry out a full grid search.
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Table 7: Hyperparameter configurations for DIME.
Hyperparameter 1 2 3 4 5

Hidden Width 200 200 200 200 100
No. Hidden Layers 2 2 2 2 2
Share Parameters False False False True True
Pretraining Learning Rate 0.001 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 128 128
Patience 5 5 5 5 2
ϵ Initial 0.4 0.2 0.1 0.4 0.2

Hyperparameter 6 7 8 9

Hidden Width 200 100 100 100
No. Hidden Layers 2 1 3 1
Share Parameters True False False True
Pretraining Learning Rate 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.0001
Batch Size 128 512 256 512
Patience 5 5 3 5
ϵ Initial 0.1 0.4 0.2 0.1

Table 8: Hyperparameter configurations for GDFS.
Hyperparameter 1 2 3 4 5

Hidden Width 200 200 200 200 200
No. Hidden Layers 2 2 2 2 2
Share Parameters False False False True True
Pretraining Learning Rate 0.001 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 128 128
Patience 2 2 2 2 2
Temp Initial 2.0 1.0 0.1 2.0 1.0

Hyperparameter 6 7 8 9

Hidden Width 200 100 200 200
No. Hidden Layers 2 1 2 2
Share Parameters True True False True
Pretraining Learning Rate 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.001
Batch Size 128 512 512 512
Patience 2 2 2 2
Temp Initial 0.1 2.0 1.0 0.1
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Table 9: Hyperparameter configurations for VAE.
Hyperparameter 1 2 3 4 5

Latent Width 30 10 50 30 50
No. Hidden Decoder Layers 2 2 2 1 2
Decoder Hidden Width 100 200 150 200 200
No. Hidden Encoder Layers 2 2 2 1 1
Encoder Hidden Width 100 200 150 200 150
No. Hidden Predictor Layers 2 2 2 1 2
Predictor Hidden Width 100 100 200 200 200
Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 128 256
σ Decoder 0.2 0.2 0.2 0.2 0.2
Patience 5 5 5 5 5

Hyperparameter 6 7 8 9

Latent Width 10 30 40 20
No. Hidden Decoder Layers 2 2 2 3
Decoder Hidden Width 100 100 200 250
No. Hidden Encoder Layers 2 2 2 3
Encoder Hidden Width 100 100 200 250
No. Hidden Predictor Layers 2 2 2 2
Predictor Hidden Width 100 100 200 100
Learning Rate 0.001 0.0005 0.001 0.001
Batch Size 512 64 128 512
σ Decoder 1.0 0.2 0.2 0.2
Patience 5 5 3 5

Table 10: Hyperparameter configurations for EDDI.
Hyperparameter 1 2 3 4 5

C Dim 200 200 50 100 20
Latent Width 200 200 100 50 20
No. Hidden Decoder Layers 2 2 2 2 2
Decoder Hidden Width 200 200 200 200 200
No. Hidden Encoder Layers 2 2 2 2 2
Encoder Hidden Width 200 200 200 200 200
Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 512 128 256 512
σ Decoder 0.2 1.0 0.2 0.2 0.2
Patience 5 5 5 5 5

Hyperparameter 6 7 8 9

C Dim 80 250 100 60
Latent Width 80 250 40 60
No. Hidden Decoder Layers 1 2 2 1
Decoder Hidden Width 100 100 75 200
No. Hidden Encoder Layers 2 3 2 3
Encoder Hidden Width 100 100 75 200
Learning Rate 0.001 0.001 0.001 0.001
Batch Size 128 128 256 512
σ Decoder 0.2 0.2 0.2 0.2
Patience 5 5 5 5
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Table 11: Hyperparameter configurations for Opportunistic RL.
Hyperparameter 1 2 3 4 5

Hidden Width 200 200 200 100 200
No. Hidden Layers 2 2 2 2 2
RL γ 0.5 0.75 0.25 0.5 0.75
Learning Rate 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 256 256

Hyperparameter 6 7 8 9

Hidden Width 200 100 200 100
No. Hidden Layers 2 1 1 1
RL γ 0.25 0.5 0.75 0.25
Learning Rate 0.0001 0.001 0.0001 0.001
Batch Size 128 256 256 128

Table 12: Hyperparameter configurations for IBFA.
Hyperparameter 1 2 3 4 5

Latent Components per Feature 4 4 4 6 4
No. Hidden Predictor Layers 2 2 2 2 2
Predictor Hidden Width 100 250 100 150 250
No. Hidden Encoder Layers 2 2 2 2 2
Encoder Hidden Width 20 150 20 50 150
IB β 0.0005 0.001 0.001 0.0005 0.005
Learning Rate 0.001 0.0005 0.001 0.001 0.0003
Batch Size 128 128 128 128 128
Patience 5 5 5 5 5

Hyperparameter 6 7 8 9

Latent Components per Feature 8 4 6 8
No. Hidden Predictor Layers 1 2 3 2
Predictor Hidden Width 250 180 250 250
No. Hidden Encoder Layers 1 2 3 2
Encoder Hidden Width 100 40 100 100
IB β 0.0001 0.0008 0.001 0.005
Learning Rate 0.001 0.0005 0.0005 0.0005
Batch Size 256 128 256 128
Patience 5 8 5 5

Table 13: Selected hyperparameter configurations for each dataset.

Dataset Opportunistic DIME GDFS Fixed VAE EDDI IBFARL MLP

Syn 1 1 5 9 7 1 3 4
Syn 2 1 6 6 7 2 5 1
Syn 3 5 4 6 7 8 3 6
Cube 3 4 6 3 2 4 5
Bank Marketing 4 4 3 7 9 8 4
California Housing 3 6 5 7 3 7 7
MiniBooNE 6 4 2 7 9 9 7
MNIST 3 6 6 7 3 7 8
Fashion MNIST 3 4 9 7 5 4 8
METABRIC 9 5 2 5 4 4 5
TCGA 6 4 2 1 4 4 4
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L INTERPRETABILITY

To explore one possible way of interpreting our model, we consider the log determinant of the
latent covariance matrix. This tells us the latent uncertainty as we acquire features. We consider the
synthetic datasets where we know the optimal behavior. We consider the case with no features, all
features, feature 1, feature 5, feature 10 and feature 11 since each of those is associated with one of
the logits of the synthetic datasets and feature 11 tells us which logit to use. The results are given
below in Table 14:

Table 14: Latent uncertainties as features are acquired in the synthetic experiments.
Syn 1 Syn 2 Syn 3

log(|Σ|) No Features 1.366± 0.551 2.557± 0.314 19.468± 1.294
log(|Σ|) All Features −25.002± 0.306 −21.004± 0.398 −44.015± 2.032
log(|Σ|) Feature 1 −3.787± 0.592 −2.524± 0.214 19.236± 1.227
log(|Σ|) Feature 5 −1.516± 0.485 2.489± 0.317 12.424± 0.854
log(|Σ|) Feature 10 1.307± 0.557 0.020± 0.417 11.905± 0.804
log(|Σ|) Feature 11 −3.144± 0.626 −1.792± 0.236 6.450± 1.106

We see that in all cases we have the most latent uncertainty when we have no features, and the least
uncertainty when we have all features. If we were to acquire the uninformative feature for each
dataset (10 for Syn 1, 5 for Syn 2 and 1 for Syn 3) we see that the latent uncertainty does not reduce
significantly, IB has worked effectively and (mostly) disregards these features. We see in the case
of Syn 3 that feature 11 reduces the uncertainty the most, showing that even though it does not
reduce uncertainty in the label at first it is able to reduce the uncertainty in the latent space. It also
significantly reduces the uncertainty for Syn 1 and Syn 2, although not as much as Feature 1 in those
cases. An interpretive insight is that an effective acquisition reduces latent uncertainty, although this
does not explain the exact ordering of acquisitions.

We augment this table by plotting TSNE projections of the latent space (Van der Maaten & Hinton,
2008), in Figure 15. The plot shows TSNE projections for Syn 3, where we color the data points
based on the actual class and if a given feature is positive or negative. This has been done for Features
1, 10 and 11. Feature 11 is able to cluster the latent space more distinctly than the other features,
showing it has a significant effect on the encodings. We also see that Feature 10 is able to cluster
more distinctly than Feature 1, showing that it is also more important for prediction on Syn 3, as
expected.

M ADDITIONAL BASELINE - GSMRL

Finally, we consider an additional baseline GSMRL (Li & Oliva, 2021). This is a hybrid approach
that uses a Generative Model to improve the RL approach, this is done by providing intermediate
reward based on information gain and providing additional information to the RL agent. We consider
GSMRL against IBFA and Opportunistic RL on the Cube dataset. We provide the mean accuracy
during acquisition in Table 15 and plot the acquisition curves in Figure 16. We see that GSMRL does
not perform as well as IBFA or Opportunistic RL.

Table 15: Average Acquisition accuracies on the Cube dataset.
Model Average Acquisition Performance

IBFA (ours) 0.904± 0.001
Opportunistic RL 0.901± 0.000

GSMRL 0.823± 0.002
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Figure 15: TSNE projections of the latent encodings, coloring is based on the class and if a given
feature value is positive or negative.
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Figure 16: Acquisition curves on the Cube dataset, forIBFA, Opportunistic RL and GSMRL.
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