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ABSTRACT

Compositional generalization—the ability to reason about novel combinations of
familiar concepts—is fundamental to human cognition and a critical challenge for
machine learning. Object-Centric representation learning has been proposed as a
promising approach for achieving this capability. However, systematic evaluation
of these methods in visually complex settings remains limited. In this work, we
introduce a benchmark to measure how well vision encoders, with and without
object-centric biases, generalize to unseen combinations of object properties. Us-
ing CLEVRTex-style images, we create multiple training splits with partial cover-
age of object property combinations and generate question–answer pairs to assess
compositional generalization on a held-out test set. We focus on comparing pre-
trained foundation models with object-centric models that incorporate such foun-
dation models as backbones—a leading approach in this domain. To ensure a fair
and comprehensive comparison, we carefully account for representation format
differences. In this preliminary study, we use DINOv2 as the foundation model
and DINOSAURv2 as its object-centric counterpart. We control for compute bud-
get and differences in image representation sizes to ensure robustness. Our key
findings reveal that object-centric approaches (1) converge faster on in-distribution
data but underperform slightly when non-object-centric models are given a signif-
icant compute advantage, and (2) they exhibit superior compositional generaliza-
tion, outperforming DINOv2 on unseen combinations of object properties while
requiring approximately four to eight times less downstream compute.

1 INTRODUCTION

Object-centric learning has generated considerable interest due to its promise of enabling more com-
positional and generalizable representations (Greff et al., 2020; Locatello et al., 2020; Dittadi et al.,
2022; Jiang et al., 2023; Brady et al., 2023). Despite these claims, the relationship between object-
centric representations and compositionality remains largely untested in a systematic and principled
manner. Compositionality itself has been explored in various domains, each with distinct definitions
and evaluation protocols but sharing the core idea of recombining familiar components in novel
ways. In text, it often refers to rearranging or recombining words and numbers (Lake & Baroni,
2018; Dziri et al., 2024). In images, it may involve combining known objects or recombining seen
object properties to create novel objects (Kim et al., 2024; Haramati et al., 2024; Montero et al.,
2024; Abbasi et al., 2024). Text-to-image generation tasks assess compositionality by increasing the
complexity of visual combinations in a prompt (Wu et al., 2024; Li et al., 2024), while image-to-text
tasks, such as Visual Question Answering, evaluate how well models can reason about new com-
binations of visual and linguistic elements (Hsieh et al., 2024; Ma et al., 2023; Yuksekgonul et al.,
2022).

Given the aforementioned claims of object-centric learning as a potential solution and several pre-
liminary indications (Yoon et al., 2023; Montero et al., 2024; Kim et al., 2024; Haramati et al.,
2024), we now want to investigate them in greater depth. The flavor of compositionality we are
most interested in is object property composition (Johnson et al., 2017; Abbasi et al., 2024; Montero
et al., 2024; Kim et al., 2024), as it aligns closely with real-world scenarios and has been investigated
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the least. It is the ability of a model to generalize to novel combinations of previously seen object
properties from a visual world. For instance, a model trained only on a red cube and a blue sphere
should successfully handle a blue cube or a red sphere at test time.1

As this form of compositionality requires precise control over the factors of variation in the vi-
sual world, most works rely on synthetically generated images from a computer graphics tool (Kim
et al., 2024; Montero et al., 2024) or a pretrained generative model (Abbasi et al., 2024). Although
compositionality is often described as a core motivation for object-centric representations, its eval-
uation is typically limited to changing the number of objects (Johnson et al., 2017; Locatello et al.,
2020; Karazija et al., 2021; Biza et al., 2023), a type of generalization known as scene composition.
The works most similar to ours are Kim et al. (2024) and Montero et al. (2024), both investigat-
ing compositional generalization of object properties. However, Kim et al. (2024) use a generative
formulation that only allows evaluation of generative models rather than general image representa-
tions and do not isolate which design choices contribute to better performance, while Montero et al.
(2024) examine compositionality only under more limited settings.

In order to study the compositional generalization capabilities of visual representations for object
property composition, we design our own benchmark. First, we use the generation pipeline from
Kim et al. (2024) to generate CLEVRTex-style images by precisely defining the entire visual world.
Specifically, we consider every combination of individual factors of variation—such as material,
shape, and size—that characterize each object. Then, we allocate 80% of these object combinations
to progressively smaller subsets, with the smallest containing only 10%. The remaining 20% con-
stitutes the compositional generalization test dataset, ensuring that no test objects were encountered
during training even though their individual properties (e.g., shape, material, and size) were ob-
served many times. To evaluate this compositional generalization via VQA, we follow Mamaghan
et al. (2024) by generating question–answer pairs for all images. This process results in five train-
ing datasets—CLEVRTex “super easy” (80%), “easy” (60%), “medium” (40%), “hard” (20%),
and “super hard” (10%)—and one dataset dedicated to testing compositional generalization, called
CLEVRTex “COOD”.

For our comparisons, we focus on pretrained foundation models and object-centric models that in-
corporate such foundation models as backbones, a leading approach in this domain. Specifically, we
use DINOv2 (Oquab et al., 2023) as the foundation model and DINOSAURv2 (Seitzer et al., 2022)
as its object-centric counterpart. To ensure a fair and comprehensive comparison, we account for
differences in representation format by controlling for image representation sizes. We achieve this
by employing a small cross-attention layer within the downstream VQA model to up- or downscale
image representations as needed, ensuring that differences in compute allocation do not unfairly
advantage one approach over another.

We then evaluate all models by training distinct downstream models on the VQA task under each
training variant, testing on the respective in-distribution (ID) set as well as on the fixed composi-
tional out-of-distribution (COOD) generalization set. Following the framework of Mamaghan et al.
(2024), we vary the size of the downstream model and, additionally, the input size of the image
representation. Finally, by carefully controlling the visual combinations that models are exposed to
at train and test time, we can systematically adjust the hardness of the generalization task until even
an oracle with access to ground-truth inputs struggles to generalize at test time.

Our main contributions can be summarized as follows:

• Datasets: We design our own compositional generalization benchmark based on the CLEVR-
Tex dataset (Karazija et al., 2021; Kim et al., 2024; Mamaghan et al., 2024). To assess compo-
sitional generalization, we define a fixed held-out test set containing 20% of all object-property
combinations, along with five progressively smaller subsets from the remaining combinations.
The smaller the subset, the greater the challenge for generalization. The compositional test set
ensures that no test objects appear during training, while all their individual properties—such
as shape, material, and size—are encountered. Finally, we generate question–answer pairs for
all images to evaluate all models on a VQA task.

• Finding I: For harder compositional generalization tasks, object-centric representations outper-
form DINOv2 at any compute budget, even when giving the downstream model for DINOv2
four to eight times more compute.

1This is a simplified version of the compositional generalization experiment in Johnson et al. (2017).
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• Finding II: For the in-distribution setting, DINOv2 representations only begin to surpass the
object-centric counterpart when the downstream model is given three times as much training
compute. Even then, the improvement is less than 2% at the end of training with four times
more compute.

• Finding III: In-distribution performance is very strongly correlated with compositional out-of-
distribution performance. For easier generalizations, the relationship is almost perfectly linear,
with only a small constant drop, but becomes sublinear as the tasks become more difficult.

2 RELATED WORK: COMPOSITIONALITY

Compositionality has been defined and tested in a variety of ways. Below, we briefly summarize
relevant approaches in text, images, text-to-image, and image-to-text settings.

Text. Lake & Baroni (2018) studied compositionality by training a model to decode natural-
language commands into action sequences that feature novel combinations of concepts at test time.
In a related line of work, Dziri et al. (2024) demonstrated that transformers can fail catastrophi-
cally on seemingly simple tasks (e.g., multi-digit integer multiplication) when test conditions differ
slightly from training (e.g., more digits).

Images. Kim et al. (2024) explored compositionality without language annotations by construct-
ing a visual world of objects with simple attributes (e.g., shape, texture). They controlled which
portion of the combinatorial attribute space was shown during training and formulated a generative
task where the model must learn and apply transformation rules (e.g., swapping shapes) to unseen
combinations at test time. Haramati et al. (2024) probe, among other things, the compositional
generalization of different components of their architecture in a reinforcement learning task that
involves arranging objects in a specified way on a table with a robotic arm.

Text-to-image. Some recent work frames compositionality as a text-to-image generation task,
prompting models with increasingly complex combinations of visual concepts to test that all men-
tioned concepts appear in the generated image (Wu et al., 2024; Li et al., 2024).

Image-to-text and VQA. The SugarCrepe benchmark evaluates compositional comprehension by
presenting an image alongside a correct caption and a closely matched “hard negative”, which can
involve object swapping or replacement (Hsieh et al., 2024). The model must choose the caption
that accurately describes the image, extending earlier approaches such as Ma et al. (2023).

Object-Centric Representations. In the context of reinforcement learning, Yoon et al. (2023)
and Haramati et al. (2024) found that object-centric representations are mostly beneficial for tasks
requiring relational reasoning with object interactions. Additionally, Haramati et al. (2024) also
demonstrated that their agent can generalize compositionally to more objects than seen during train-
ing, both empirically and theoretically. Kim et al. (2024) provided some evidence that a slot-based
State-Space Model improves compositional generalization, though the specific design elements driv-
ing this improvement remain unclear. Furthermore, Montero et al. (2024) show that a simple object-
centric model reconstructs novel objects with hold-out ranges of properties (e.g., color or rotation)
for a single object better than a non-object-centric alternative when the models have been trained on
all combinations for the rest of the objects.

3 PROBLEM SETUP

3.1 DATASET GENERATION

Inspired by Kim et al. (2024), we create five CLEVRTex-style (Karazija et al., 2021) datasets labeled
from super easy to super hard, each containing a progressively smaller share of all possible object
types. Each object is defined by a triplet of properties (material, shape, size) chosen from 8, 8,
and 3 possible values, respectively, yielding 192 unique object types. We render images using
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Blender,2 randomly selecting 3–6 allowed objects per scene in each dataset. Unlike Kim et al.
(2024), who frame this as a generative task, we evaluate general visual representations via VQA
instead. Specifically, we follow the question–answer generation approach of Johnson et al. (2017)
and its CLEVRTex adaptation (Mamaghan et al., 2024), adding human-readable labels for each of
the eight rendering materials (details in Appendix A). As a result, we obtain five training datasets—
CLEVRTex “super easy” (80% of all possible objects), “easy” (60%), “medium” (40%), “hard”
(20%), and “super hard” (10%)—each with 48k images (40k for training, 4k for validation, and
4k for in-distribution testing). A separate dataset, CLEVRTex “COOD”, consists of 4k images
containing the remaining 20% of objects and is used consistently across all training variants to test
compositional object property generalization. There are on average 42 question–answer pairs per
image, resulting in roughly 170k QA pairs per test set and 1.7M QA pairs per training set.

3.2 MODELS AND EVALUATION

Starting from a strong pretrained vision model in DINOv2 (Oquab et al., 2023), we additionally
pretrain an object-centric model for every CLEVRTex variant by reconstructing the self-supervised
image features with a Slot-Attention bottleneck, corresponding to the DINOSAURv2 model (Seitzer
et al., 2022; Didolkar et al., 2024). Architectural and hyperparameter details are in Appendix B.1.
To train the downstream VQA model, we follow Mamaghan et al. (2024). Questions are encoded
by a pretrained T5-base model (Raffel et al., 2020), and the answers as 28 distinct labels, which
include “yes”, “no”, natural numbers up to the maximum number of objects, and all possible values
of object properties. We feed the image features from DINOv2 or DINOSAURv2, together with the
text embeddings into the downstream model (details in Appendix B.2).

DINOv2 and DINOSAURv2 produce image representations of different sizes, which strongly im-
pacts the downstream model’s FLOPs because the transformer encoder needs the biggest share of the
compute and scales quadratically with sequence length (see Appendix B.3 for details). To enable a
fair comparison, we introduce downstream model variants that include a single cross-attention layer
immediately after the vision encoder output. This layer up- or downsizes the image representation to
a target size, resulting in almost identical compute requirements for the DINOv2 and DINOSAURv2
variants, and is trained jointly with the downstream model. Other resizing methods were tested but
proved less effective or introduced unnecessary complexity. For example, a cross-attention layer
mapping to a target size of the same size as the input image representation, where we present some
of the results in Section 4.1, but this did not result in significant and consistent improvements, so we
excluded it from the detailed analysis in Section 4.2. More results are in Appendix C. We also exper-
imented with replacing the slot-attention bottleneck in DINOSAURv2 with a similar cross-attention
approach and substituting slot-attention with a cross-attention layer in end-to-end training. Both
attempts yielded suboptimal results, suggesting that more careful consideration of architectural or
hyperparameter choices is likely required.

Finally, to gauge dataset difficulty, we train two additional baselines: a lower question-only baseline
using only the questions as inputs to the downstream model and a ground-truth oracle that supplies
the true object properties of all visible objects in a scene as image representations for the downstream
model. After training, each model is evaluated on its corresponding in-distribution test set and on
CLEVRTex “COOD” to measure compositional generalization at every training checkpoint.

4 EXPERIMENTS

In our experiments, we first show a strong correlation between in-distribution accuracy and compo-
sitional out-of-distribution performance. The relationship transitions from nearly linear to sublin-
ear as generalization difficulty increases. Next, we factor in compute considerations by estimating
FLOPs and find that DINOSAURv2, an object-centric model, achieves robust ID performance at
significantly lower compute, whereas DINOv2 can surpass it only when granted substantially more
resources. Finally, on harder compositional generalization tasks, DINOSAURv2 consistently out-
performs DINOv2 at any compute budget, and in some settings, a small object-centric representation
with a small downstream model beats a large DINOv2 variant with a larger downstream model, de-
spite up to eightfold difference in compute.

2https://www.blender.org/
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Figure 1: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated
(highly significant: p-value < .01). Performances for CLEVRTex “super easy”, “medium”, and “super hard”
at the end of training (600k steps) with correlations and ground-truth oracle (upper right: black) and question-
only baseline (lower left: grey).

First, we verify that our dataset and downstream model setup are suitable for testing compositional
generalization by establishing that a model with the ”right” representation is able to solve the task in-
distribution (ID) but still might lack in compositional out-of-distribution (COOD) generalization as
the hardness increases. We do this by training an oracle that uses the ground-truth object properties
as image representation. As shown in Fig. 1, the oracle can achieve perfect ID test accuracy on
all dataset variants, given a sufficiently large downstream model (for the full results, see Fig. 5).
However, its compositional generalization drops notably when trained on smaller subsets of the full
visual space. More precisely, while it still reaches 100% on “COOD” by training on “super easy”,
it struggles to even reach 70% when training on “super hard”.

After confirming the validity of our setup, we turn towards learned image representations. For all
vision encoders considered here, an obvious pattern emerges. As generalization difficulty grows,
the benefit of a ”better” representation shrinks where the in-distribution accuracies increase and the
compositional out-of-distribution accuracies decrease. This is expected as the ID task gets easier by
training and testing on fewer visual combinations. In contrast, the generalization becomes harder
because a model has to generalize to the same fixed “COOD” dataset while being trained on fewer
combinations.

4.1 STRONG CORRELATION BETWEEN IN-DISTRIBUTION AND COMPOSITIONAL
OUT-OF-DISTRIBUTION PERFORMANCE

We find that in-distribution performance is very strongly correlated with compositional out-
of-distribution performance across all dataset variants. For easier generalizations (from “super
easy”, “easy”), the relationship appears almost perfectly linear, with only a small constant gap
below the ideal performance curve for the super easy variant. In contrast, for harder generalizations
(from “hard”, “super hard”), the trend remains monotonic but becomes sublinear.

Although using the larger downstream model is always better for both ID and COOD accuracies
in Fig. 1 and Fig. 5, DINOSAURv2 variants already perform well with a smaller model, whereas
DINOv2 benefits more from additional transformer layers. This seems to be mostly due to the
image representation size, as the DINOSAURv2 variant with a large representation (with a cross-
attention layer increasing the sequence length) often shows the same trend as for the large DINOv2
representation. However, there are exceptions, especially on “medium” in Fig. 1 middle, where for
the small downstream model, the large DINOSAURv2 variant generalizes better than other large
image representations from DINOv2. Notably, upscaling DINOSAURv2’s image representations
offers no ID or COOD benefit over the original small image representation and actually degrades
performance.

Regarding best absolute performances, a DINOv2 variant consistently reaches the highest ID accu-
racy on each dataset. For the compositional generalizations the picture is more nuanced, for the eas-
ier variants DINOv2 is slightly better (<1%), while for medium and harder datasets a DINOSAURv2
variant is always better (<2%).
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Figure 2: Object-centric representations slightly underperform on in-distribution tasks (left) but outperform on
compositional out-of-distribution tasks (right), both at four to eight times lower compute. VQA ID accuracy
for CLEVRTex super easy (left) and COOD for CLEVRTex hard (right) at different compute budgets with
question-only baseline (dashed grey).

4.2 OBJECT-CENTRIC REPRESENTATIONS SLIGHTLY UNDERPERFORM IN-DISTRIBUTION
AT SIGNIFICANTLY LOWER COMPUTE

In the previous section, we did not directly address the mismatch in downstream compute across
different image representations. Instead, we compared end-of-training performance directly. Here,
we provide a fairer comparison (for details see Section 3.2 and Appendix B.3) by estimating the
FLOPs per training step for each downstream model3 including only the model components affected
by the different image feature sizes.4

First, we examine in-distribution test performance on CLEVRTex “super easy” across varying com-
pute budgets (Fig. 2 left), as it presents the hardest ID setting with the largest observed differ-
ences between models (see beginning of Section 4). For any compute budget up to around four
PFLOPs (end of training for smaller image representations), DINOSAURv2’s object-centric
representation outperforms all others. Interestingly, a smaller downstream model converges faster
and plateaus earlier, making it advantageous in the early training phase.

To surpass DINOSAURv2’s ID performance, one must invest over three times more compute
with DINOv2, yet the resulting gain is under 2% at the end of training with four times the
compute. As before, increasing the representation size of DINOSAURv2 offers no benefit whatso-
ever and worsens performance despite a higher compute budget. Similar trends hold for all other
in-distribution settings but diminish for harder datasets, where the differences between models are
generally smaller (see Appendix C).

Considering all models at the same time, using a small downstream model for best ID performance
only makes sense for very constrained compute budgets under 0.5 PFLOPs for all datasets. Then,
DINOSAURv2’s small image representation with a small downstream model performs best.

4.3 OBJECT-CENTRIC REPRESENTATIONS EXCEL AT HARDER COMPOSITIONAL
GENERALIZATION WITH MUCH LESS COMPUTE

Moving on to compositional generalization, we find that models begin plateauing in accuracy and
overfitting in cross-entropy increasingly early, going from “super easy” to “super hard” (see Figs. 2
right, 6 and 7).

On CLEVRTex “medium” (Fig. 6), at any given compute budget, the small DINOSAURv2
representation outperforms all alternatives; even granting DINOv2 four times more compute

3https://github.com/facebookresearch/fvcore
4We can cache image and text representations prior to downstream training.
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fails to surpass it. This pattern holds for harder generalizations as well, i.e. CLEVRTex “hard” in
Fig. 2 right and “super hard” Fig. 6.

Additionally, in the hard generalization scenario (Fig. 2 right), a small DINOSAURv2 represen-
tation coupled with either downstream model consistently beats any DINOv2 representation and
downstream model combination for all compute budgets. In short, a small object-centric repre-
sentation with a small downstream model is better than a large DINOv2 representation with a
large downstream model, even at nearly eight times the compute.

5 CONCLUSION

In this work, we systematically evaluated the compositional generalization capabilities of object-
centric representations in controlled, visually rich settings. By introducing a benchmark based on
the CLEVRTex dataset, we demonstrated that object-centric models, specifically DINOSAURv2,
exhibit superior compositional generalization compared to non-object-centric alternatives, such as
DINOv2, while requiring significantly less compute. Our results further reveal that object-centric
representations converge faster in in-distribution tasks but underperform slightly when giving non-
object-centric models significantly more compute. Moreover, our analysis confirmed a strong cor-
relation between in-distribution and compositional out-of-distribution performance.

These findings reinforce the potential of object-centric approaches for tasks requiring systematic
compositional reasoning and highlight the need for further exploration into their applications be-
yond synthetic benchmarks. Future work may extend this by investigating the effectiveness of
object-centric learning in real-world scenarios, incorporating more diverse datasets, and optimiz-
ing architectural choices to enhance performance across a broader range of vision tasks.
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A DATA GENERATION

The used attributes for image generation are in Table 1, and some example images with question–
answer pairs are in Fig. 3.

(a) CLEVRTex “super easy”
Q: Do the cube that is in front
of the medium cone and the cone
have the same material?
A: False

(b) CLEVRTex “easy”
Q: How many objects are cylin-
ders on the left side of the large
teapot or medium rocky gravel
cylinders?
A: 2

(c) CLEVRTex “medium”
Q: Are there any other things that
are the same shape as the blue
denim thing?
A: False

(d) CLEVRTex “hard”
Q: Are there any medium things
behind the big thing to the left of
the white sandstone object?
A: False

(e) CLEVRTex “super hard”
Q: What size is the cube left
of the block that is in front of
the thing behind the green forest
torus?
A: Large

(f) CLEVRTex “COOD”
Q: How many other objects are
there of the same material as the
small teapot?
A: 0

Figure 3: Dataset examples with question–answer pairs from each CLEVRTex variant.

Table 1: Attributes for the image and question generation.

Material Shape Size
green tiled cube small
blue denim cylinder medium
red fabric monkey head large

green forest icosahedron
red leather teapot

rocky gravel sphere
rusty metal cone

white sandstone torus
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B MODELS

B.1 DINOSAURV2

The hyperparameters of the base configuration for the DINOSAURv2 versions can be found in
Table 2.

Table 2: Hyperparameters of DINOSAURv2.

Hyperparameter CLEVRTex Variants
Training Steps 300k
Batch Size 128
LR Warmup Steps 10k
Peak LR 0.0002
Exp. Decay Half-Life 100k
Feature Extractor DINOv2 s
Patch Size 14
Feature Dim. 384
Gradient Norm Clipping 0.1

Image Size 224
Cropping Strategy Full
Image Tokens 256

Decoder
Type MLP
Layers 4
MLP Hidden Dim. 2048

Slot Attention
Iterations 3
Number of Slots 7
Slot Dim. 256
MLP Hidden Dim. 1024

B.2 DOWSTREAM VQA MODEL

Architecture We adopt a transformer-based architecture for VQA, following Mamaghan et al.
(2024). We first project both image and text representations via separate linear layers (output size
126) with a dropout of 0.1, and augment them with a two-dimensional one-hot vector to indicate
whether they originate from image features or text embeddings. We then add a sinusoidal positional
encoding to the text embeddings. To perform classification, we use a trainable CLS ∈ R128 vector.
We concatenate the image and text representations (plus the CLS token) and pass them through a
transformer encoder with dmodel = 128 and a hidden dimension of 128. The transformed CLS token
is fed into a two-layer MLP (hidden dimension 128) with layer normalization, a dropout rate of 0.1,
and a ReLU activation between layers. This MLP outputs a probability distribution over all possible
answers.

Training For all CLEVRTex variants, we train the downstream models with a batch size of 128, a
learning rate of 0.0001, and a cross-entropy loss for 600k steps. We use downstream model variants
where we vary the number of layers of the transformer encoder, either 2 or 5 layers with 64 heads.

B.3 COMPUTE

The base models DINOv2 and DINOSAURv2 produce for all CLEVRTex variants, with an im-
age size of 224, representations of shape [256, 384] and [7, 256], respectively. This results in a huge
compute mismatch for the downstream model in Fig. 4, where the FLOPs for the downstream model
with the DINOv2 image representation are roughly four times that of DINOSAURv2 for both trans-
former sizes. To remedy that, we use a single cross-attention layer with four heads right after the
vision encoder to map from the large, i.e. the shape for DINOv2, to the small image representation
or vice-versa. We additionally considered mapping from the input size to the output size to match
the compute of different variants even more, but this did not result in consistent improvements.
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Figure 4: GFLOPs for one step of the downstream model for DINOv2 and DINOSAURv2 with both two or
five layers for the transformer encoder (TF 2, TF 5).

C ADDITIONAL COMPARISONS
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Figure 5: VQA in-distribution and compositional out-of-distribution accuracy are very strongly correlated
(highly significant: p-value < .01). Performances for every CLEVRTex dataset variant at the end of training
(600k steps) with correlations and ground-truth oracle (upper right: black) and question-only baseline (lower
left: grey).
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Figure 6: VQA in-distribution and compositional out-of-distribution accuracy for all CLEVRTex dataset vari-
ants with ground-truth oracle (upper: dashed black) and question-only baseline (lower: dashed grey).
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Figure 7: VQA in-distribution and compositional out-of-distribution cross-entropy for all CLEVRTex dataset
variants with ground-truth oracle (lower: dashed black) and question-only baseline (upper: dashed grey).
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